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a b s t r a c t

We discuss a simple definition of conditional mutual information (CMI) for fields and
σ -fields. The new definition is applicable also in nonregular cases, unlike the well-known
but more restricted definition of CMI by Dobrushin. Certain properties of the two notions
of CMI and their equivalence for countably generated σ -fields are established. We also
consider an application, which concerns the ergodic decomposition of mutual information
for stationary processes. In this case, CMI is tightly linked, via additivity of information,
with entropy defined as self-information. Thus we reconsider the latter concept in some
detail.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The extension of entropy and related informationmeasures into functionals of arbitrary algebras of events is some useful
abstract tool in information theory (Gelfand et al., 1956; Dobrushin, 1959; Pinsker, 1964). This extension allows us to handle
entropy and information not only for discrete and continuous variables simultaneously but also for the tail and invariant
σ -fields of stochastic processes.
Unfortunately, the extension that is provided in the existing literature is neither fully general nor the simplest possible,

see Dobrushin (1959, Section 2) and Pinsker (1964, Chapters 1–3) for detailed accounts. The aim of this paper is to show
a simpler path to generalizing several information measures, including conditional Kullback–Leibler divergence.
For probability space (Ω,J, P) let A, B, and C be subfields of J. Fields are set algebras closed under finite operations,

whereas σ -fields are assumed to be closed also under denumerable sums and products. A field is called finite if it has finitely
many elements. The smallest (finite) field containing partition

{
Bj
}J
j=1 ofΩ , where Bi ∈ J, will be denoted by

[
B1, . . . , BJ

]
.

For any finite field B there is a unique partition
{
Bj
}J
j=1 such that B =

[
B1, . . . , BJ

]
. Thus we can define four Shannon

information measures for three finite fieldsA = [A1, . . . , AI ],B =
[
B1, . . . , BJ

]
, and C = [C1, . . . , CK ]:

• entropy H(A) := HP(A) := −
∑I
i=1 P(Ai) log P(Ai),

• mutual information

I(A;B) := IP(A;B) :=
I∑
i=1

J∑
j=1

P(Ai ∩ Bj) log
P(Ai ∩ Bj)
P(Ai)P(Bj)

,
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• conditional entropy H(A|C) :=
∑K
k=1 P(Ck)HP(·|Ck)(A), and

• conditional mutual information I(A;B|C) :=
∑K
k=1 P(Ck)IP(·|Ck)(A;B),

where the algebraic relation 0 log 0 = 0 is assumed.
The above formulaemirror standard definitions for finite-valued randomvariables (e.g., Cover and Thomas, 1991, Eqs. 2.1,

2.10, 2.28, 2.60). If fieldAi is the smallest field with respect to which variable Yi is measurable, then one puts I(Y1; Y2|Y3) :=
I(A1;A2|A3), I(Y1; Y2) := I(A1;A2), H(Y1|Y2) := H(A1|A2), and H(Y1) := H(A1). Similar conventions are followed for
other random variables once the information measures are extended to infinite fields (Pinsker, 1964, Translator’s Remarks
to Chapter 1).
It is easy to notice that η(A) ≥ η(A′) forA ⊃ A′ in each case of η(A) = H(A),H(A|C), I(A;B), I(A;B|C). Hence for

finiteA,B, and C we have

H(A) = supH(A′), I(A;B) = sup I(A′;B ′), (1)

H(A|C) = supH(A′|C), I(A;B|C) = sup I(A′;B ′|C), (2)

where the supremum is taken over finite fieldsA′ ⊂ A andB ′ ⊂ B. The above equalities can also be used as definitions for
infiniteA andB. Indeed, formulae (1) were discussed as definitions by Gelfand et al. (1956) and Pinsker (1964).1
Denote the expectation of the random variable Y as E Y =

∫
YdP . To resolve the problem of generalizing conditional

information measures to infinite C, it suffices to observe that for finiteA,B, and C we have also

H(A|C) = EH(A ‖ C), I(A;B|C) = E I(A;B ‖ C), (3)

where H(A ‖ C) := HP(·‖C)(A) and I(A;B ‖ C) := IP(·‖C)(A;B) are random variables and P(A ‖ C) is the conditional
probability of event A ∈ J w.r.t. the smallest σ -field containing C (cf. e.g. Billingsley, 1979, Section 33). Expressions (3)
remain sound for any field C. Thus we can generalize conditional information measures first to arbitrary C via (3) and then
to arbitraryA andB via (2).
Whereas the left expression in (3) is well known (Billingsley, 1965, Section 12), the analogical approach seems to have

never been investigated in depth for conditional mutual information. A rather cumbersome expression has been generally
adopted instead. The motivation came from the equality

I(A;B) = Ĩ(A;B) :=


∫
log

dPAB

dPA×B

dPAB PAB � PA×B,

∞ else,
(4)

(Gelfand et al., 1956, Theorem 4; Dobrushin, 1959, Section 2), where the ‘‘diagonal’’ measure PAB(A×B) := P(A∩B) and the
product measure PA×B(A× B) := P(A)P(B) are defined as measures on product σ -fieldA⊗ B via their unique extension
from Cartesian productA×B.
By analogy to (4), Dobrushin (1959, Eqs. 2.7.10–10’), followed by Pinsker (1964, Section 3.1), defined conditional mutual

information

Ĩ(A;B|C) :=


∫
log

dPABC

dPA×B|C

dPABC PABC � PA×B|C,

∞ else,
(5)

where PABC and PA×B|C are measures onA⊗B ⊗ C given by PABC(A× B× C) := P(A ∩ B ∩ C) and

PA×B|C(A× B× C) :=
∫
C
P(A ‖ C)P(B ‖ C)dP. (6)

Measure PA×B|C exists and hence expression (5) is valid if conditional probability {P(E ‖ C)}E∈A is regular (Swart, 1996).
Thus expressions (4) and (5) open way to simple algebraic expressions for information measures of Gaussian variables
(Pinsker, 1964, Chapters 9–11; Cover and Thomas, 1991, Chapter 9). Nonetheless, expression (5) does not make sense in
certain other cases, when the function PA×B|C on the Cartesian productA×B×C fails to be even finitely additive (Sazonov,
1964). With regard to these questions see also the Translator’s remarks to the Chapter 3 of Pinsker (1964).2
In this paperwewill pursue the properties and applications of conditional information defined via (2) and (3). In Section 2,

we will show that this simpler definition is equivalent to (5) in the case of countably generated fields. Although the new
concept can be applied to any probability space, its general algebraic properties can be established more easily than for

1 This approach cannot be used to generalize non-Shannon information measures, such as triple mutual information, since they are not monotonic in
general (Yeung, 2002, Chapter 6 on I-measure). Some generalization of the I-measure to σ -fields might be useful, however.
2 The issue that PA×B|C need not be a measure seems to be first raised in the literature by A. Feinstein, the translator of Pinsker (1964). R. L. Dobrushin
forwarded his question to V. V. Sazonov,whoproduced a counterexample in his 1964 paper. In the footnote on page 55 of Pinsker (1964), Feinsteinmentions
that PA×B|C can fail to be a measure but gives no reference to Sazonov, whose article was published in the same year. A very similar counterexample was
given by Swart (1996), who was unaware of Sazonov’s construction.



Author's personal copy

1262 Ł. Dębowski / Statistics and Probability Letters 79 (2009) 1260–1268

the old one. An application will be presented in Section 3. The example concerns the ergodic decomposition of mutual
information between the past and future of a countably generated stationary process. Since the application is focused on
the additivity relation I(A;B) = H(C)+ I(A;B|C) forC ⊂ A∩B, we will reconsider some properties of self-information
H(C) := I(C;C) in Section 4.
The presented application features regular conditional probabilities. Thus using I(A;B) and I(A;B|C) rather than

Ĩ(A;B) and Ĩ(A;B|C) seems just a matter of taste. We feel, however, that the new definition of CMI is more natural
and useful for the following reasons: (i) We avoid discussing whether PABC is dominated by PA×B|C and consider one
Radon–Nikodym derivative less. (ii) We obtain in a rigorous way a more general additivity relation (chain rule) than
established so far. (iii) The new definition explicitly stimulates thinking about information in terms of sets of events rather
than in terms of random variables and densities.
These theoretical advantages are useful. The general additivity allows us to prove an impossibility result in coding theory

mentioned in Section 3. Thinking in terms of σ -fields helps us to demonstrate an elementary characterization of some
strongly nonergodic processes in Section 4. We hope that our paper provides a motivated and compact introduction to four
generalized Shannon information measures.

2. Properties of conditional information

LetA ∨B denote the intersection of all fields that containA andB. The newly proposed definition reads:

Definition 1. For finite fieldsA′ andB ′ on the event spaceΩ and a probabilitymeasure P onA′∨B ′, letmutual information
be

IP(A′;B ′) :=
I∑
i=1

J∑
j=1

P(Ai ∩ Bj) log
P(Ai ∩ Bj)
P(Ai)P(Bj)

,

where {Ai}Ii=1 and
{
Bj
}J
j=1 are the partitions ofΩ that satisfyA′ = [A1, . . . , AI ] andB ′ =

[
B1, . . . , BJ

]
.

Next, consider a probability space (Ω,J, P). For an arbitrary field C and finite fields A′ and B ′, where A′,B ′,C ⊂ J,
we define pointwise conditional mutual information

I(A′;B ′ ‖ C) := IP(·‖C)(A′;B ′),

where P(E ‖ C) is the conditional probability of event E ∈ J w.r.t. the smallest σ -field containing C.
The (average) conditionalmutual information (or shortly CMI) between arbitrary fieldsA andB given a fieldC is defined

as

I(A;B|C) := sup E I(A′;B ′ ‖ C), (7)

where the supremum is taken over all finite fieldsA′ ⊂ A andB ′ ⊂ B.
For this definition and the other informationmeasures discussed in the Introduction, we also have identities I(A1;A2) =

I(A1;A2| {∅,Ω}), H(A1|A2) = I(A1;A1|A2), and H(A1) = I(A1;A1) like in the case of finite fields.
The expression on the right-hand side of (7) is meaningful for allA,B, andC since conditional probabilities P( · ‖ C) are

J-measurable. No problems arisewhen the conditional probability is not regular (cf. Seidenfeld et al., 2001, Corollary 1) since
the conditional distribution (P(E ‖ C))E∈E restricted to a finite field E is almost surely a probability measure (Billingsley,
1979, Theorem 33.2).
Although CMI has usually been discussed for σ -fields, the new definition makes sense also for fields. This point of view

is convenient to prove continuity. We will write Bn ↑ B for a sequence (Bn)n∈N of fields such that B1 ⊂ B2 ⊂ · · · ⊂ B
and

⋃
n∈N Bn = B. (B need not be a σ -field.)

Theorem 1. Let A,B ,Bn, and C be subfields of J.
(i) I(A;B|C) = I(B;A|C);
(ii) I(A;B|C) ≥ 0 with the equality if and only if P(A ∩ B ‖ C) = P(A ‖ C)P(B ‖ C) almost surely for all A ∈ A and B ∈ B;
(iii) I(A;B|C) ≤ min(H(A|C),H(B|C));
(iv) I(A;B1|C) ≤ I(A;B2|C) if B1 ⊂ B2;
(v) I(A;Bn|C) ↑ I(A;B|C) for Bn ↑ B .

Remark. Properties (i) and (ii) were established for definition (5) by Pinsker (1964) in Section 3.2, whereas (iv) and (v) are
analogues of his Theorem 3.10.1.
Proof. Properties (i), (ii), (iii), and (iv) follow directly from the same properties for finite fields (Cover and Thomas,
1991, Eqs. 2.46, 2.91, 2.40, 2.122). Property (v) holds since every partition of B =

⋃
n∈N Bn is a partition of Bm for almost

allm. �

An important property of definition (7) is that the value of CMI does not changewhen the fields are extended to complete
σ -fields (or any intermediate fields). A field is called complete if it contains all sets of outer P-measure 0. Let σ(A) denote
the intersection of all complete σ -fields containingA. The unique extension of measure P from J to σ(J)will be written as
P , as well.
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Lemma 1. Let A andB be finite fields and let C be any field. For each n ∈ N, let a finite field Cn ⊂ C satisfy

{ω ∈ Ω : (i− 1)/n < P(E ‖ C) ≤ i/n} ∈ Cn for i = 1, . . . , n and E ∈ A ∨B. (8)

Then limn I(A;B|Cn) = I(A;B|C).

Remark. Such finite fields Cn exist since P(E ‖ C) are C-measurable.
Proof. Condition (8) implies |P(E ‖ Cn)− P(E ‖ C)| ≤ 1/n almost surely. Thus

lim
n→∞

I(A;B ‖ Cn) = I(A;B ‖ C) almost surely (9)

by the continuity of IP(A;B) as a function of P (Yeung, 2002, Section 2.3). ForA = [A1, . . . , AI ] andB =
[
B1, . . . , BJ

]
, we

also have I(A;B|Cn) =
∫
I(A;B ‖ Cn)dP , I(A;B|C) =

∫
I(A;B ‖ C)dP and 0 ≤ I(A;B ‖ C) ≤ logmin {I, J} almost

surely. Hence the thesis follows from (9) by the Lebesgue dominated convergence theorem. �

With Lemma 1, we can demonstrate a proposition, the first part of which has been mentioned.

Theorem 2. Let A,B , C, andD be subfields of J.
(i) I(A;B|C) = I(A; σ(B)|C)
and I(A;B|C) = I(A;B|σ(C));

(ii) I(A;B ∨ C|D) = I(A;C|D)+ I(A;B|C ∨D).

Remark. The analogue of (i) for I(A; ·) was proved by Dobrushin (1959, Section 2.2). Additivity (ii), often called the chain
rule, is well known for finite-valued variables. For example, it implies H(X) = I(X; Y ) + H(X |Y ). The analogue of (ii) for
the other definition of CMI was also treated by Dobrushin (1959, Eqs. 2.7.1 and 2.7.9) for D = {∅,Ω} and by Pinsker
(1964, Theorem 3.6.2 and Eq. 3.6.6) for a generalD . The assertion made by Pinsker covered all cases of measure dominance
and singularity but assumed implicitly that the conditional product measures exist. After a discussion with Dobrushin,
the translator of Pinsker’s book showed in his remarks to Chapter 3 that the special case (11) holds if PABC � PA×(BC).
This assumption implies also that PA×B|C exists, PABC � PA×B|C , and PAC � PA×C . By the way, there are misprints in
Eqs. 3.6.1–3 of Pinsker (1964), which correspond to (11) with I(B;C) substituted for I(A;C).

In the following proofs, we use symmetric difference A4B := A \ B ∩ B \ A.
Proof. (i) Equality I(A;B|C) = I(A;B|σ(C)) is obvious in view of the almost sure equality P(E ‖ C) = P(E ‖ σ(C)).
It remains to justify I(A;B|C) = I(A; σ(B)|C). We will adapt the proof for case C = {∅,Ω} given by Dobrushin (1959,
Section 2.2).
Fix a finite field A1 and ε > 0. Consider σ0(B) ⊃ B defined as the intersection of all σ -fields containing B (not

necessarily complete ones). According to Dobrushin (1959, Eq. 2.2.10), for any finite field B2 ⊂ σ0(B) there exists a finite
field B1 ⊂ B such that I(A1;B1) ≥ I(A1;B2) − ε. In fact, the proposition remains true also for any B2 ⊂ σ(B). (Since
there exists a finite fieldB ′2 ⊂ σ0(B) and a mapping f : B2 → B ′2 such that P(B4f (B)) = 0 for all B ∈ B2.)
Now let us extend this result toC 6= {∅,Ω}. Consider a finite fieldCn ⊂ C satisfying (8). By Dobrushin’s result, for almost

every ω ∈ Ω there exists a finite fieldBω ⊂ B such that I(A1;Bω ‖ Cn)(ω) ≥ I(A1;B2 ‖ Cn)(ω)− ε. For some version of
conditional probability andBω , random variable ω 7→ Bω is Cn-measurable and thenB1 :=

∨
ω∈Ω Bω is a finite field with

B1 ⊂ B. By Theorem 2(iv), B1 satisfies I(A1;B1 ‖ Cn) ≥ I(A1;Bω ‖ Cn) ≥ I(A1;B2 ‖ Cn) − ε for almost every ω and
thus I(A1;B1|Cn) ≥ I(A1;B2|Cn)− ε.
Recall that limn I(A1;B|Cn) = I(A1;B|C) by Lemma 1. Thus we have

∀δ>0 ∀B2⊂σ(B) ∃B1⊂B I(A1;B1|C) ≥ I(A1;B2|C)− δ, (10)

where B1 and B2 are assumed to be finite fields. For arbitrary δ and B2, a suitable B1 is given by the construction in the
previous paragraph for a sufficiently large n and a sufficiently small ε. Equality I(A;B|C) = I(A; σ(B)|C) follows from
(10) and the inequality I(A;B|C) ≤ I(A; σ(B)|C).
(ii) LetA andB be finite fields and let C be any field. Subsequently, let Cn ⊂ C be finite fields satisfying I(A;B ∨ C)−

I(A;B∨Cn) ≤ 1/n, I(A;C)− I(A;Cn) ≤ 1/n, and (8). The latter requirement implies limn I(A;B|Cn) = I(A;B|C). Thus,
the well-known equalities I(A;B∨Cn) = I(A;Cn)+ I(A;B|Cn) for finiteA,B, andCn (Cover and Thomas, 1991, Eq. 2.60)
imply

I(A;B ∨ C) = I(A;C)+ I(A;B|C). (11)

By Theorems 1(v) and 2(i), we may extend (11) to anyA,B, and C. Assume finiteA again. By (11) we also have

0 = [I(A;B ∨ C ∨D)− I(A;D)− I(A;B ∨ C|D)]− [I(A;C ∨D)− I(A;D)− I(A;C|D)]
− [I(A;B ∨ C ∨D)− I(A;C ∨D)− I(A;B|C ∨D)]

= I(A;C|D)+ I(A;B|C ∨D)− I(A;B ∨ C|D),

where all expressions are finite. Having established the claim for finiteA, we generalize it to infiniteA, using Theorems 1(v)
and 2(i) again. �
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Theorems 1(v) and 2(i) conjoined with the following lemma allow us to prove easily the partial equivalence of the two
definitions of CMI.

Lemma 2. Consider σ -fieldsAn ↑ A′,A = σ(A′),Bn ↑ B ′,B = σ(B ′), and C. If there exists measure PA×B|C then

Ĩ(A;B|C) = lim
n→∞

Ĩ(An;Bn|C). (12)

Proof. Denote S = PA×B|C + PABC . By the existence of PA×B|C , measure PF×G|C exists also for F ⊂ A and G ⊂ B. Both
cases of (5) can be written as

Ĩ(F ;G|C) =
∫
κ
(
dPF GC/dS

)
dS,

where κ(x) := x log x− x log(1− x)−2x+1. We have the martingale convergence limn dPAnBnC/dS = dPABC/dS S-almost
surely. Since function κ is continuous and nonnegative, we have Ĩ(A;B|C) ≤ lim infn Ĩ(An;Bn|C) by the Fatou lemma. On
the other hand, κ is convex so Ĩ(An;Bn|C) ≤ Ĩ(A;B|C) by the Jensen inequality. Thus (12) must be satisfied. �

Theorem 3. Let A, B , and C be subfields of J, whereA and B are countably generated, i.e., A = σ(A′) and B = σ(B ′) for
some countable fieldsA′ andB ′. Then we have

Ĩ(A;B ‖ C) = I(A;B ‖ C). (13)

Proof. Let us notice that both sides of (13) equal
∫
I(A;B ‖ C)dP whenA andB are finite. Thus the continuity properties

expressed in Theorems 1(v) and 2(i) and Lemma 2 imply that (13) holds also whenA andB are countably generated. �

3. An application to ergodic decomposition

As an example, we will apply themachinery developed in Section 2 to the ergodic decomposition of a stationary process.
Consider a process (Xk)k∈Z on (Ω,J, P), where Xi : (Ω,J)→ (X,X). Set Gm:n ⊂ J as the smallest σ -fields against which
blocks Xm:n := (Xk)m≤k≤n are measurable, assuming Gi := Gi:i. Let G−∞ :=

⋂
n<0 G−∞:n and G∞ :=

⋂
n>0 Gn:∞ be the tail

σ -fields. For any field F ⊂ σ(G−∞) ∩ σ(G∞), we have

H(G1|G−∞:0) = H(G1|G−∞:0 ∨ F ), (14)

I(G−∞:0;G1:∞) = I(G−∞:0;G1:∞ ∨ F )
= I(G−∞:0;F )+ I(G−∞:0;G1:∞|F )
= H(F )+ I(G−∞:0;G1:∞|F ) (15)

in view of Theorems 1(iii–iv) and 2(i–ii).
Assume that (Xk)k∈Z is stationary. Then
E := I(G−∞:0;G1:∞) = lim

n→∞
I(X−n:0; X1:n) (16)

is called excess entropy (Crutchfield and Feldman, 2003), cf. Theorems 1(iv) and 2(i). Moreover, if the variable range X is
finite then H(G1|G−∞:0) equals entropy rate

h := lim
n→∞

H(X1|X−n:0) = lim
n→∞

H(X1:n)/n, (17)

cf. Yeung (2002, Section 2.9) and Theorems 1(iv) and 8(iii) in the next section. We shall interpret the right-hand sides of
Eqs. (14) and (15) likewise using ergodic decomposition.
Consider themeasurable space of doubly-infinite sequences (U,U) = ×k∈Z(X,X), whereX is countably generated. For

shift transformation T : U 3 (xk)k∈Z 7→ (xk+1)k∈Z ∈ U, where xk ∈ X, define invariant σ -field I := {A ∈ U : TA = A}. Let
(S, S) be themeasurable space of stationary probabilitymeasures on (U,U) (i.e.,µ◦T = µ forµ ∈ S) and let (E, E) ⊂ (S, S)
be the subspace of ergodic measures (i.e., µ(A) ∈ {0, 1} for µ ∈ E and A ∈ I). Precisely, S and E are defined as the smallest
σ -fields containing all cylinder sets {µ ∈ S : µ(A) ≤ r} and {µ ∈ E : µ(A) ≤ r}, A ∈ U, r ∈ R, respectively. Since U is
countably generated, all respective singletons {µ} belong to S and E . The ergodic decomposition theorem can be stated as
follows:

Theorem 4. Consider a stationary measure µ ∈ S.
(i) (Shields, 1996, Theorem I.4.10; Kallenberg, 1997, Theorem 9.10) There exists a version of conditional distributionµ(· ‖ I) :

U× U→ R such that µ(· ‖ I)(u) ∈ E for all u ∈ U.
(ii) (Kallenberg, 1997, Theorem 9.12) Measure

ν(W ) := µ({u ∈ U : µ(· ‖ I)(u) ∈ W }), W ∈ E,

is the only measure on E that satisfies

µ =

∫
µ(· ‖ I)dµ =

∫
σ(·)dν(σ ), σ ∈ E. (18)
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It is convenient to leave the space of doubly-infinite sequences and apply Theorem 4 to the countably generated process
(Xk)k∈Z with distribution µ = P((Xk)k∈Z ∈ ·) ∈ S, on a possibly richer space (Ω,J, P). Set GI := (Xk)−1k∈Z(I) and define the
random ergodic measure

F := µ(· ‖ I)((Xk)k∈Z).

The distribution of the latter is P(F ∈ W ) = ν(W ). Let F ⊂ J be the smallest σ -field against which F is measurable.
The following lemma asserts that F is a field that we need.

Lemma 3. We have σ(F ) = σ(GI) ⊂ σ(G−∞) ∩ σ(G∞).

This is a simple fact in ergodic theory. Since we have not come across an explicit proof of the lemma, we sketch it for
completeness.

Proof. By Theorem 4(ii) and I-measurability of µ(A ‖ I) for any A ∈ U, F(A) is σ(GI)-measurable. Hence F ⊂ σ(GI). On
the other hand, µ(A ‖ I) = IA µ-almost surely for any A ∈ I so, by Theorem 4(ii), (Xk)−1k∈Z(A) is an element of the smallest
complete σ -field w.r.t. which F(A) is measurable. Hence GI ⊂ σ(F ).
Let A ∈ U− := (Xk)k∈Z(G−∞:0). By the ergodic theorem (e.g. Shields, 1996, Theorem I.3.1), variable F(A) is

σ(G−∞)-measurable. This result may be extended to any A ∈ U using the stationarity assumption and approximation
theorems (Billingsley, 1979, Theorem 11.4 and 13.4). Thus F ⊂ σ(G−∞) and, by analogy, F ⊂ σ(G∞). �

It is convenient to consider information measures for the subfields of G−∞:∞ as functions of the process distribution. For
an arbitrary distribution µ = P((Xk)k∈Z ∈ ·) ∈ S, notice that P(A) = µ((Xk)k∈Z(A)) for any A ∈ G−∞:∞. Thus we may
introduce an explicit parametrization Iµ(A,B) := I(A,B) forA, B ⊂ G−∞:∞, hµ := h, and Eµ := E.
Let us substitute the random ergodic measure F is for µ. Since F(A) equals P((Xk)k∈Z ∈ A ‖ F ) almost surely then

IF (A;B) is measurable for finite fieldsA andB and

E IF (A;B) = I(A;B|F ). (19)

By the monotone convergence theorem and by Theorems 1(v) and 2(i), Eq. (19) may be generalized to any countably
generated σ -fieldsA andB. Hence there follows an ergodic decomposition of entropy rate and excess entropy:

Theorem 5. For a countably generated stationary process (Xk)k∈Z,

h = E hF if the variable range X is finite, (20)
E = H(F )+ E EF . (21)

Proof. Variables hF and EF are measurable since they are limits of measurable variables by (16) and (17). Eq. (20), proved
also by Gray and Davisson (1974, Theorem 5.1), can be established in the following way. For D being the cardinality of the
range of X, set K := logD so that K − H(X1) ≥ 0. By the monotone convergence theorem and (14),

E [K − hF ] = E
[
K − lim

n→∞
HF (X1|X−n:0)

]
= lim
n→∞

E [K − HF (X1|X−n:0)]

= lim
n→∞

[K − H(G1|G−n:0 ∨ F )] = [K − H(G1|G−∞:0)] = K − h.

Hence Eq. (20) follows. On the other hand, Eq. (21) follows directly from Lemma 3, (15), and (19) for A = G−∞:0 and
B = G1:∞. �

Establishing the general additivity (11) has some application in coding theory. Namely, the simultaneous presence of E,
H(F ), and E EF in formula (21) is crucial to obtain such an impossibility result:

Theorem 6. Let C : X+ → X+ be a uniquely decodable code over a finite alphabet X = {0, 1, . . . ,D− 1}, i.e., its extension
C∗ : (u1, . . . , uk) 7→ C(u1) · · · C(uk) into finite tuples of strings ui ∈ X∗ is an injection. For the code length |C(·)| consider the
normalized expectation of its excess

ECµ(n) := E (|C(X1:n)| + |C(Xn+1:2n)| − |C(X1:2n)|) logD,

taken with respect to a stationary measureµ = P((Xk)k∈Z ∈ ·) ∈ S. Let NC (K) be the number of distinct ergodic measuresµ ∈ E
such that lim supn ECµ(n) ≤ K, K ∈ R. If the code is universal, i.e., limn n−1E |C(X1:n)| logD = h, then

logNC (K) ≤ K

for K ≥ 0 whereas NC (K) = 0 for K < 0.

Theorem 6 states that there cannot be too good codes among the asymptotically optimal ones. Our proof relies on
additional lemmas and will be published elsewhere.
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4. Entropy as self-information

Eq. (15) illustrates that the concept of entropy as self-information H(A) := I(A;A) arises naturally when the additivity
of conditional information is considered. For a real variable Y , however, H(Y ) should not be confused with the differential
entropy defined h(Y ) = −

∫
p(y) log p(y)dλ(y), where λ is the Lebesgue measure and p = dP(Y ∈ ·)/dλ. Although the

appropriate difference of differential entropies for two real variables equals mutual information by equality (4), usually
h(Y ) 6= H(Y ). For instance, h(Y ) <∞ for a Gaussian variable Y (Cover and Thomas, 1991, Theorem 9.4.1). In the same case,
H(Y ) = ∞ according to a known result, stated here in a slightly stronger form.

Theorem 7. H(A) = ∞ unlessA is purely atomic.

Remark. A less formal proof of a weaker statement is given by Pinsker (1964, Section 2.4), viz. the Translator’s Remarks on
pp. 25–27. We say that a field B is purely atomic if there exists an atom E ⊂ B for every B ∈ B such that P(B) > 0. On the
other hand,B is called nonatomic if it has no atoms. Set E is called an atom with respect toB and P if E ∈ B, P(E) > 0, and
for every F ∈ B we have P(E ∩ F) = 0 or P(E \ F) = 0.

Proof. Any measure P on A can be written as the sum of a purely atomic measure and a nonatomic measure, supported
on disjoint sets Ωa,Ωn ∈ A respectively (Johnson, 1970, Theorem 2.1). Moreover, Ωn can be partitioned into sets
A1, A2, . . . , Ak ∈ A such that P(Ai) = P(Ωn)/k for each k ∈ N (cf. Billingsley, 1979, Exercise 2.17(d)). Hence H(A) ≥
H([Ωa, A1, . . . , Ak]) = −P(Ωa) log P(Ωa)−

∑
i P(Ai) log P(Ai) ≥ P(Ωn) log k. IfA is not purely atomic then P(Ωn) > 0 and

thus H(A) = ∞.—This proof is due to Richard Bradley, private communication. �

Theorem 7 corresponds to a clear intuition, namely that the binary expansion of a random real variable Y =
∑
∞

k=1 2
−kZk,

uniformly distributed on [0, 1], is a sequence of independent uniformly distributed randombinary digits Zk. Hencewe obtain
that H(Y ) =

∑
∞

k=1 H(Zk|Z1:k−1) =
∑
∞

k=1 H(Zk) =
∑
∞

k=1 log 2 = ∞ by additivity and continuity of conditional information.
Treating a continuous real variable as a sequence of independent bits is very natural when the probability space is

generated by a discrete stochastic process. In the following final example, the term ‘fair-coin process’ will stand for a binary
process (Zk)k∈N ∼ IID with P(Zk = 0) = P(Zk = 1) = 1/2.

Definition 2. A process (Xi)i∈Z is called an uncountable description process (UDP) if there exist functions (fnk)n,k∈N and a fair-
coin process (Zk)k∈N such that limn P(fnk(Xp+1:p+n) = Zk) = 1 for all p ∈ Z.

For instance, let Xi := (Ki, ZKi) assume values in N × {0, 1}, where variables (Zk)k∈N are probabilistically independent
from (Ki)i∈Z ∼ IID and P(Ki = k) > 0 for all k ∈ N. If we let

fnk(x1:n) :=

{0 if xi = (k, 0) for some i ∈ {1, . . . , n} ,
1 if xi = (k, 1) for some i ∈ {1, . . . , n} ,
2 else,

then P(fnk(Xp+1:p+n) = Zk) = 1− [1− P(Ki = k)]n. Thus (Xi)i∈Z is a UDP.
It seems intuitive that limn I(X−n:0; X1:n) = ∞ for any UDP since an infinite sequence of bits (Zk)k∈N can be learned

given either the past or the future of (Xi)i∈Z. The proof of this proposition that we give below uses the generalized Shannon
information measures and connects Definition 2 with nonatomicity of a shift-invariant sub-σ -field.
Let us recompile an entropic analogue of Theorem 1. By symmetry to Bn ↑ B, we shall use notation Bn ↓ B for

B1 ⊃ B2 ⊃ · · · ⊃ B and
⋂
n∈N Bn = B.

Theorem 8. Let A,B , andBn be subfields of J.

(i) H(A) = 0 if and only if A is trivial , i.e, if P(A) ∈ {0, 1} for all A ∈ A;
(ii) H(A|B1) ≥ H(A|B2) if B1 ⊂ B2;
(iii) H(A|Bn) ↓ H(A|B) for Bn ↑ B and finiteA;
(iv) H(A|Bn) ↑ H(A|B) for Bn ↓ B;
(v) H(A|B) = 0 if and only if A ⊂ σ(B).

Proof. Property (i) follows trivially from the analogical property for finite fields. Property (ii) was proved by Billingsley
(1965, Identity (C 3̇) in Section 12) for finiteA and it can be extended to infiniteA immediately, as well.
Whereas property (iii) was proved by Billingsley (1965, Theorem 12.1) using themartingale and dominated convergence

theorems, (iv) can be established for finiteA likewise through the martingale convergence in the opposite direction (Doob,
1953, Chapter 8, Theorem 4.3). In the following, (iv) may be generalized to infinite A by noticing that there always exist
such finite fieldsAn ↑ A′ ⊂ A that H(An|Bn) ↑ H(A|B) and H(An|Bn) ≤ H(A|Bn) ≤ H(A|B).
It remains to prove (v). Equality H(A|B) = 0 is equivalent to P(A ‖ B) ∈ {0, 1} almost surely for all A ∈ A. On the other

hand, it is straightforward that P(A ‖ B) ∈ {0, 1} holds if and only if A ∈ σ(B). Firstly, notice that P(A ‖ B) for A ∈ σ(B)
equals almost surely the indicator function of set A. To prove the converse, construct set B := {ω ∈ Ω : P(A ‖ B) = 1} ∈ B.
By the definition of conditional probability and that of B, probabilities P(A), P(A∩B), and P(B) equal all

∫
B P(A ‖ B)dP . Thus

P(A4B) = 0 and hence A ∈ σ(B). �
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Via the properties (iii) and (v), we can link the convergence of finitely-valued random variables with inclusion of fields:

Lemma 4. Let X be a finite-valued variable. Consider fields Yn ↑ Y. The following statements are equivalent:
(i) limn P(X = Xn) = 1 for some Yn-measurable finite-valued variables Xn;
(ii) limn H(X |Yn) = 0;
(iii) H(X |Y) = 0;
(iv) X is σ(Y)-measurable;

Remark. The assumption that X assumes finitely many values is important. Consider an X that takes values in natural
numbers and has H(X) = ∞. Let Yk = 1 for X ≥ k and Yk = 0 else. We have H(X |Y1:n) = ∞ since H(X) =
H(X |Y1:n)+ H(Y1:n) and H(Y1:n) ≤ n log 2. Nevertheless, H(X |(Yn)n∈N) = 0.

Proof. Statements (ii) and (iii) are equivalent by Theorem 8(iii), whereas (iii) and (iv) are equivalent by Theorem 8(v). It
remains to prove that (i) is equivalent to (ii). Without loss of generality, let X assume values in {1, 2, . . . ,N}.
It is obvious that condition (ii) follows from (i) by the Fano inequalityH(X |Yn) ≤ H(X |Xn) ≤ η(P(X = Xn))+[1−P(X =

Xn)] log(N − 1) (Yeung, 2002, Theorem 2.47), where η is given by

η(p) = −p log p− (1− p) log(1− p), p ∈ (0, 1)

and η(0) = η(1) = 0 to assure continuity. To prove the converse, define the value of random variable Xn as the smallest x
such that P(X = x ‖ Yn) ≥ P(X = x′ ‖ Yn) for x′ = 1, 2, . . . ,N . We have P(X = Xn ‖ Yn) ≥ 1/N . By concavity of η,

η(p) ≥ η(q)
1− p
1− q

+ η(1)
p− q
1− q

= η(q)
1− p
1− q

for p ∈ [q, 1]. In particular,

H(X |Yn) = H(X, Xn|Yn) ≥ E [η(P(X = Xn ‖ Yn))]

≥
η(1/N)
1− 1/N

· [1− P(X = Xn)].

Thus (ii) implies (i). �

Hence uncountable description processes enjoy such a characterization:

Theorem 9. Let F be the shift-invariant σ -field defined in Section 3. A stationary process (Xi)i∈Z is a UDP if and only if σ(F )
contains a nonatomic sub-σ -field. Moreover, in the case of a UDP, variables Zk are σ(F )-measurable.

Proof. Assume first that (Xi)i∈Z is a UDP. By Lemma 4, each variable Zk is σ(G∞:∞)-measurable and thus there exists
a function gk measurable U such that gk((Xk)k∈Z) = Zk almost surely. Consider the distribution µ = P((Xk)k∈Z ∈ ·) and
functions gnk((xk)k∈Z) = fnk(x1:n). By the definition of a UDP, limn µ(T ignk = gk) = 1, i ∈ Z, and hence limn µ(gnk =
T−igk) = 1 by stationarity of (Xi)i∈Z. The latter implies gk = T−igk µ-almost everywhere and thus Zk are σ(F )-measurable
for all k. Construct the σ(F )-measurable variable Y =

∑
k∈N 2

−kZk. The distribution of Y is Lebesgue measure on [0, 1]. The
Lebesgue measure is nonatomic so σ(F ) contains a nonatomic sub-σ -field.
As for the converse, take (Xi)i∈Z with a nonatomicF0 ⊂ σ(F ). For any A ∈ F0 and x ∈ [0, P(A)] there exists B ∈ F0 such

that B ⊂ A and P(B) = x. Obviously, this property can be used to define a family of nested sets Aw ∈ F0 indexed by binary
wordsw ∈ {0, 1}∗ such that Aλ = Ω for the empty word λ, Awa ⊂ Aw , and P(Aw0) = P(Aw1) = P(Aw)/2. For each k ∈ N de-
fine Zk as the characteristic function of set Bk =

⋃
w∈{0,1}k Aw0. Sequence (Zk)k∈N is a fair-coin process. By Lemma3, Zk are also

σ(G1:∞)-measurable. Hence, by Lemma 4, limn P(fnk(X1:n) = Zk) = 1 for some functions fnk. Finally, stationarity of (Xi)i∈Z
and σ(F )-measurability of Zk imply that the probabilities P(fnk(Xp+1:p+n) = Zk) do not depend on p. So (Xi)i∈Z is a UDP. �

By Theorems 1(iv), 7 and 9, we have H(F ) = ∞ for every UDP. As a consequence, the excess entropy is E =
I(G−∞:0;G1:∞) ≥ H(F ) = ∞. The proof of Theorem 9 may be easily adjusted to show directly that E = ∞ also in the
nonstationary case. Uncountable description processes can be contrasted with ergodic processes, which satisfy H(F ) = 0
by Theorem 8(i).
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