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ABSTRACT
We show that decomposing a class of signals with overcomplete dictionaries of functions and

combining multiresolution and independent component analysis allow for feature detection in

complex non-stationary high frequency time series. Computational learning techniques are

then designed through the Matching Pursuit algorithm, whose performance is monitored so to

extract relevant information about the structure of the volatility function. We refer to wavelet

and cosine packet dictionaries due to the fact that with intra-daily time series some features

of the underlying stochastic processes may remain undetected when standard volatility models

are applied to the observed data. Independent component analysis results are particularly

encouraging and suggest a better compromise between time and frequency resolutions, and

thus a more e�cient and accurate Matching Pursuit performance.
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1. Introduction

In this work we study latent variable systems endowed with complex dynamics, non-
gaussian and non-stationary behavior. One of the most recent directions of research
in various disciplines has been that of �nding relevant information from sparsely rep-
resented signals (Donoho, 1996; Lewicki & Sejnowski, 2000; Zibulevsky & Pearlmutter,
2001; Zibulevsky & Zeevi, 2001). Sparse signals require that a small number of expansion
coe�cients represent them so that the reconstruction quality can be near optimal given
the achieved compression power.
Sparsity reminds and refers to statistical parsimony in model building, as opposed to the
redundancy of information; one thus may aim to consider and exploit sparsity for infer-
ence or signal compression purposes.
Smoothness too is a related concept, both from the standpoint of a function space of
objects or signals and from the perspective of a sequence space of expansion coe�cients;
with a variable degree of smoothness, models are required to be both 
exible, in terms of
assumptions about probability distributions involved, thus resulting non-parametric, and
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adaptive, for dealing well with inhomogeneities of the series.
Given a stochastic process whose realizations might be represented through a certain
functional expansion, the idea of decomposing the observed structures in more statis-
tically independent components may be a key goal in applications. Depending on the
nature of the process, a more realistic objective could be a search for least dependent
components, which sometimes is proposed for dealing with strong forms of dependence
and non-stationarity. Wavelets indeed can play an important role in these last cases,
since they yield (Johnstone & Silverman, 1997; Abry, Flandrin, Takku & Veitch, 2000)
de-correlating and stationarizing e�ects on the computed coe�cient sequences; thus, sta-
tistical inference can be more e�ective in this projected domain.
With regard to �nancial time series analysis, in previous work (Capobianco, 1999) some
wavelet-based methodologies have been proposed and interesting empirical modelling re-
sults have been obtained with relevance for the structure and correlation aspects of volatil-
ity. In particular, algorithms like the Matching Pursuit (MP) have been seen as e�ectively
detecting features in high frequency �nancial time series.
Here we show that Independent Component Analysis (ICA) (Cardoso, 1989; Comon,
1994), or Blind Source Separation (Jutten & Herault, 1991), might be very conveniently
adopted in combination with the MP so to arti�cially learn the structure of a complex
class of signals.
We thus suggest a possible way to employ the bank of sources o�ered by the decomposed
signals obtained at di�erent resolution levels from the employed transforms, where each
level may give information on market activity with respect to various degrees of tempo-
rally aggregated trading horizons. A least dependent component analysis by ICA may
thus be combined with the sparsity of signal representation, achieved through wavelet
packet and cosine packet transforms (WPT and CPT, respectively) and related thresh-
olding estimation.
Source separation occurs in the sparse expansion coe�cients domain and the signal is
reconstructed from resolution levels selected as least dependent ones.
We represent volatility within the frame of latent variable systems where a Sparse Compo-
nent Analysis (SCA) (Donoho, 2000) can be implemented, as suggested by modern signal
processing and computational statistics techniques. By pursuing this approach we aim to
formulate an initial proposal for innovative views of volatility models.
The paper is organized as follows. Section 2 presents the frame for our modelling approach.
Section 3 introduces computational learning issues through wavelet-based techniques and
overcomplete dictionaries of functions. Sparsity is addressed together with de-noising and
non-linear estimation issues; some optimization algorithms are then described. Section
4 describes ICA and SCA concepts. Section 5 proposes a learning algorithm aimed to
improve the time and frequency resolution trade-o�. Section 6 reports an experimen-
tal analysis based on the approximation of the latent features of the volatility function
characterizing a stock returns index. Section 6 concludes the paper.

2. Latent Variable Systems

We start by casting the processes of interest in a very general frame so to represent their
dynamics; we thus describe the following linear system:

Yt = AtXt + �t (2.1)

Xt = Ct�t + �t (2.2)
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where Yt are observed �nancial returns
1, Xt are unknown system sources, At is an unknown

mixing matrix, �t � i:i:d:(0; ��;t) is a noise process. Note that vt = �2t can be considered the
volatility process, which in �nancial volatility models represents a latent process underlying
the returns dynamics.
The sources Xt have a possibly sparse decomposition through �t, a selected dictionary of
functions delivering either a basis or an overcomplete representation (Olshausen & Field,
1997; Lewicki & Sejnowski, 2000; Chen, Donoho & Saunders, 2001) for the signal under
investigation. The corresponding expansion coe�cients are here indicated by Ct, while �t
is an i.i.d process, with no constraints on the probability distributions2.
As far as concerns applications, such system is specialized to the case of studying �nancial
volatility in this work; nevertheless, it can be applied to other di�erent contexts, as shown
in other studies (Kisilev, Zibulevsky, Zeevi & Pearlmutter, 2000). Therefore, it may hold
as a quite general frame and thus suggests a sort of model-free approach for representing
the dynamics of the system of interest.
A special case (Zibulevsky & Pearlmutter, 2001) is when a dual system can be formed, i.e.
when a basis is obtained; in that case the system can change according to the transform
��1t = 	t; as a direct consequence, Xt	t = Ct�t	t + �t	t. This last expression can be
expressed equivalently as ~Xt = Ct+~�t, while at the observation level Yt = AtCt+At~�t+�t
or also Yt = AtCt + �t, with �t = At~�t + �t � At�t	t + �t.
To summarize, a new system is found:

~Xt = Ct + ~�t (2.3)

Yt = AtCt + �t (2.4)

If the signal-to-noise ratio (S/N) results high with regard to the sources stochastic
nature, then �t � 0 and �t = �t. Thus, the same volatility process initially described
is found. If instead S/N is low, the volatility becomes characterized by �t = Dt + ��;t,
where Dt = At��;t	t + ��;t. In the latter case, i.e. when an overcomplete dictionary is
available, the estimation procedure of the time inhomogeneous covariance matrix will be
conducted through computational learning tools which refer to di�erent techniques, and
thus represent an hybrid methodology.
As a result, we have the system (1-2) representing a volatility process; in this way we
might generalize the typical autoregressive form of dependence, depending on the struc-
ture of the �t matrix

3. We have the volatility structure expressed non-parametrically
and investigated by selected dictionaries of functions, wavelet packets (WP) and localized
cosines or cosine packets (CP).
We can also maintain, according to the representation adopted, an underlying well-known
hypothesis that a mixture basic law of information arrivals is governing the market dy-
namics.
As an alternative frame, we have the system (3-4), where the mixing At is now acting
on the computed transform expansion coe�cients Ct. In other words, one can work in a

1Stock returns are computed in the usual way, as rt = ln(pt=pt�1) � 100, where pt are the prices of
shares, indexes, commodities or other �nancial activities.

2Thus the fact that we don't require positivity means that we are not describing volatility through
equation (2), but simply sources of it.

3We might also design a state-space structure for representing the system dynamics.
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signal or sequence space, of functions or coe�cients, respectively, depending on criteria
such as sparsity of representation and statistical independence of the coordinates.
Since the sources are unobservable, estimating them and the mixing matrix is quite
complicated; we can either build an optimization system with a regularized objective
function through some smoothness priors, so to estimate the parameters involved, or
we can proceed more recursively in the mean square sense, through iterations of the
MP processing the observed returns with the WP and CP libraries, and looking at
Yt � Pt�t + �t = AtCt�t + �t, where the noise is including an approximation error from
the system equation and residual measurement e�ects �t.
The MP algorithm works on a sparse Pt by the means of overcomplete representations
and a denoising step, but remains unable to disentangle the components composing the
operator Pt. It will be left to an ICA step dealing with this aspect.
Thus, if At accounts for modulating the dependence structure of the latent volatility
sources, the packet expansion coe�cients become the inputs for the ICA step that fol-
lows.
The nature of the resolution-wise detail time series is such that ICA naturally �ts well,
since the series result non-Gaussian and stationary, in the projected sequence space of de-
tail signals too; they are indeed stationarized, as an e�ect of the wavelet packet transform.
There is still inhomogeneity at the detail levels, since they maintain heteroscedastic and
thus time-varying features, but this last aspect can be controlled in part by the means of
an underlying semi-stationarity hypothesis holding for a segmented version of the initial
return process.
With a complete dictionary operating in the new system and obtained by changing the
basis allows for the same optimization criteria to apply as well, and one may thus prefer
to work with it, i.e. in these new coordinates. From our perspective, the coe�cients are
now sparsely represented and investigated in separated sources of volatility information
through ICA; the original returns have a new decomposition through (4), where the oper-
ator At enters directly the system dynamics and the sources have changed in (3) from the
initial latent volatility components to the transformed and scaled volatilities, embedded
in detail signals. The compression and decorrelation properties of wavelet transforms can
be better supported with a more e�ective search for least dependent components via ICA.
Our experiments with high frequency �nancial time series suggest that very good results
are obtained through the MP procedure based on WP and CP decomposition dictionaries.
Return data may be analysed in two steps, where the �rst one is a �ltering procedure re-
moving all the hidden periodicities, and thus de-seasonalizing the volatility process. The
WPT and CPT deliver decomposition tables where one observes how the information
is distributed among high and low frequency components, and form the ground for the
Matching Pursuit algorithm runs.
The second step is played by ICA which �nds what resolution levels appear to have infor-
mative content, based on the independent contribution coming from each detail signal to
the global signal structure. The MP algorithm yields residuals with autocorrelation and
long memory structure, i.e. short and long range dependencies; with ICA these features
may thus result more usefully separated from the pure volatility process, which can then
be handled with ad hoc de-volatilization models.
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3. Computational Learning

3.1 Wavelets and Multiresolution Analysis
Given a scaling function or father wavelet �, such that its dilates and translates constitute
orthonormal bases for all the Vj subspaces obtained as scaled versions of the subspace V0
to which � belongs, and given a mother wavelet  together with the terms indicated with
 jk and generated by j-dilations and k-translations, such that  jk(x) = 2

j
2 (2jx � k),

we obtain di�erences among approximations computed at successively coarser resolution
levels and can form (Daubechies, 1992) a Multiresolution Analysis (MRA), i.e. a sequence
of closed subspaces4 satisfying : : : ; V2 � V1 � V0 � V�1 � V�2 � : : : , with �[j2ZVj =
L2(R), \j2ZVj = f0g and the additional condition f 2 Vj () f(2j:) 2 V0.
The last condition is a necessary requirement for identifying the MRA, meaning that
all the spaces are scaled versions of a central space, V0. An MRA approximates L2[0; 1]
through Vj generated by orthonormal scaling functions �jk, where k = 0; : : : ; 2j�1. These
functions allow also for the sequence of 2j wavelets  jk, k = 0 : : : ; 2j � 1 to represent an
orthonormal basis of L2[0; 1].
Signal decompositions with the MRA property have also near-optimal properties in a quite
wide range of inhomogeneous function spaces (Daubechies, 1992; Meyer, 1993; Hardle,
Kerkyacharian, Picard & Tsybakov, 1998). The set of shifted scaling functions f�0(t �
k); k 2 Zg is an unconditional Riesz basis for V0, i.e. linearly independent functions,
even if not necessarily orthogonal, are obtained. The scaled and shifted functions �jk(t)
are Riesz bases for the scaling spaces Vj. On these spaces the signal is projected such
that PVjX(t) =

P
k cx(j; k)�j;k(t) and Dj(t) = PVj�1

X(t)�PVjX(t), or otherwise directly
Dj(t) = PWj

X(t) =
P

k dx(j; k) j;k(t), with Wj the wavelet subspace.
The de-correlation e�ect of the wavelet coe�cients is one of the main properties that
wavelet transforms bring in the analysis (Johnstone & Silverman, 1997; Abry, Veitch
& Flandrin, 1998; Johnstone, 1999). Wavelets characterize function spaces5, as stated
in Daubechies (1992, x9:2; pp:298), \since the  jk constitute an unconditional basis for
Lp(R), there exists a characterization for functions f 2 Lp(R) using only the absolute
values of the wavelet coe�cients of f", thus becoming j< f;  jk >j the term to look at so
to decide whether f 2 Lp.
From Donoho (1996, x4; pp:390), \when an orthogonal basis is an unconditional basis
for a function space F, it means that there is an equivalent norm for the space, kfkF ,
such that the ball F(C) = f: kfkF � Cg corresponds to a set of coe�cient sequence
�(C) = f�(f) : f 2 F(C)g which is solid and orthosymmetric", which means that if
� 2 � and j �

0

i j�j �i j; 8i, then �
0

2 �. As a consequence, an unconditional basis
diagonalizes a functional class and retains optimal sparsity.
Generally speaking, with a Discrete Wavelet Transform (DWT) a map f ! w from the
signal domain to the wavelet coe�cient domain is obtained, i.e. one applies, through a
bank of quadrature mirror �lters, the transformationw =Wf , so to get the coe�cients for
high scales (high frequency information) and for low scales (low frequency information).
A sequence of smoothed signals and of details giving information at �ner resolution levels
is found from the wavelet signal decomposition and may be used to represent a signal
expansion:

4Here expressed in nesting order as in a ladder of Sobolev spaces, with the more negative the index
the larger the space.

5This same property can be extended to many function spaces, i.e. Sobolev, Holder, for instance, and
in general all Besov and Triebel spaces.
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f(x) =
X
k

cj0;k�j0;k(x) +
X
j>j0

X
k

dj;k j;k(x) (3.1)

where �j0;k is associated with the corresponding coarse resolution coe�cients cj0;k and
dj;k are the detail coe�cients, i.e. cj;k =

R
f(x)�jk(x)dx and djk =

R
f(x) jk(x)dx. In

short, the �rst term of the right hand side of (3) is the projection of f onto the coarse
approximating space Vj0 while the second term represents the cumulated details. We

may de�ne empirical estimates ĉj;k =
1
n

Pn

i=1 �j;k(xi) and d̂j;k =
1
n

Pn

i=1  j;k(xi) and con-
sider the advantages of an orthogonal wavelet expansion, which under standard normal-
ity assumptions implies �nding independent coordinates in the decomposition domain of
wavelet expansion coe�cients, even in the presence of correlation.

3.2 Wavelet De-noising
In the wavelet-based representations of signals sparsity inspires strategies that eliminate
redundant information, not distinguishable from noise; this can be done in the wavelet
coe�cients domain, given the relation between true and empirical coe�cients, ~djk =
djk+�t. The wavelet shrinkage principle (Donoho & Johnstone, 1994, 1995, 1998) applies a
thresholding strategy which yields de-noising of the observed data; it operates by shrinking
wavelets coe�cients toward zero so that a limited number of them will be considered for
reconstructing the signal.
Given that a better reconstruction might be crucial for �nancial time series in order to
capture the underlying volatility structure and hidden dependence, de-noising can be
usefully employed for these spatially heterogeneous signals. The following well-known
algorithm is usually implemented:

� The wavelet transform is applied to the data, so to get empirical wavelet coe�cients;

� The empirical wavelet coe�cients are shrunken toward zero by setting a thresholding
rule re
ecting the nature of the data and by using suitable and possibly optimal
statistical estimation criteria;

� The inverse DWT is applied to the thresholded coe�cients so to reconstruct the
signal in a sparse way.

The shrinkage rule and the threshold value are selected among several possible choices,
and given the noisy nature of observed �nancial time series, an adaptive procedure might
be preferred.
The soft shrinkage rule selected is �s( ~djk; �) = sgn( ~djk)(j ~djk j ��)+, when j ~djk j> �,
or otherwise �s( ~djk; �) = 0. It thus keeps or shrinks values, compared to the keep-or-kill
solution o�ered by the hard rule, where �h( ~djk; �) = ~djkI(j ~djk j� �).
Inhomogeneous function classes characterization, diagonalization and sparsity thus yield,
together with the multiresolution property, a powerful justi�cation for selecting wavelets
as an approximation and estimation instrument. In representing a function belonging to
a general space, space-time resolution combined with frequency resolution are pursued
by respectively using contracted (high frequency) and dilated (low frequency) versions of
wavelets. Therefore, an increased localization power yields advantages in terms of spatial
adaptivity, which might be very useful for handling �nancial time series.
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3.3 Overcomplete Dictionaries
Function dictionaries are collections of parameterized waveforms (Chen, Donoho & Saun-
ders, 2001); they are available for many classes of functions, formed directly from a par-
ticular family, like wavelets, or from merging two or more dictionary classes. Particularly
in the latter case an overcomplete dictionary is composed, with linear combinations of
elements that may serve to represent remaining dictionary structures, thus originating a
non-unique signal decomposition.
An example of overcomplete representations is o�ered by WPs, which represent an exten-
sion of the wavelet transform to a richer class of building block functions and allow for
a better adaptation due to an oscillation index f related to a periodic behaviour in the
series which delivers a richer combination of functions.
Given the admissibility condition

R +1
�1 W0(t)dt = 1, 8(j; k) 2 Z2 we have from (Krim &

Pesquet, 1995):

2�
1

2W2f (
t

2
� k) =

1X
i=�1

hi�2kWf (t� i) (3.2)

where f relates to the frequency and h to the low-pass impulse response of a quadrature
mirror �lter, and

2�
1

2W2f+1(
t

2
� k) =

1X
n=�1

gn�2kWf(t� n) (3.3)

where g is an high pass impulse response. For compactly supported wave-like func-
tions Wf(t), �nite impulse response �lters of a certain length L can be used, and by
P-partitioning in (j,f)-dependent intervals Ij;f one �nds an orthonormal basis of L2(R)

(i.e. a wavelet packet) through f2�
j
2Wf(2

�jt� k); k 2 Z; (j; f) j Ij;f 2 Pg.
A better domain, compared to simple wavelets, is obtained for selecting a basis to repre-
sent the signal and an orthogonal wavelet transform can always be selected by changing
the partition P and de�ning w0 = �(t) and Wf =  , from the so-called WPT we can thus
choose combinations of wavelets and other functions re
ecting the features of the signal
at hand, or search the best basis able to represent the signal with particular sub-sets of
coe�cients.
The WP representation generalizes other periodic models, like (Li & Xie, 1997) where
y(t) =

Pq

k=1 �kexp(it�k) + �(t), with �(t) a stationary zero-mean time series, �k random
variables uncorrelated to each other and w.r.t. �(t), and �k the q unknown hidden periodic
components. We need to specify a stochastic or probabilistic version of f(t) and allow
for the systematic terms to represent the sum of the periodic components of the model,
where �k are the packet coe�cients and the exponentials are the dictionary atoms.
With a CPT system we have instead excellent bases as far as concerns compression power,
as shown by (Donoho, Mallat & von Sachs, 1996 and 1998), thus getting sparsity of repre-
sentations through them. Furthermore, in (Mallat, Papanicolaou & Zhang, 1998) CP are
shown to be optimal bases for dealing with non-stationary processes with time-varying
covariance operators. The building blocks in CP are localized cosine functions, i.e. local-
ized in time and forming smooth basis functions. They are almost eigenvectors of locally
stationary processes, and thus constitute almost diagonal operators used to approximate
the covariance function.
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Figure 1: CP table (A) and WP table (B) with signal segmentation level-by-level.

A sequence of stochastic processes Xt;T , t = 1; : : : ; T is called locally stationary if there
exists a representation Xt;T = �( t

T
)+
R �
�� A(

t
T
; �)exp(iwt)d�(w) such that generalizes the

Cramer representation of stationary stochastic processes, with �(w) mean zero, orthonor-
mal increments process on [��; �] (Dahlhaus, 1993; Neumann & von Sachs, 1995, x3.2.2.,
Def. 3.1).
It is common to represent a signal from WP dictionaries as f(t) =

P
jok wj;o;kWj;o;k(t) and

of CP ones as f(t) =
P

jok cj;o;kCj;o;k(t).
The CPT has an advantage over the classic Discrete Cosine Transform (DCT); the lat-
ter de�nes an orthogonal transformation and thus maps a signal from the time to the
frequency domain, but it is not localized in time and thus is not able to adapt well to
non-stationary signals.
Depending on the taper functions we select, the cosine packets decay to zero within the
interval where they are de�ned and in general determine functions adapted to overcome
the limitations of DCT. A DCT-II transform is de�ned as:

gk =

r
2

n
sk

n�1X
i=0

fi+1cos(
(2i+ 1)k�

2n
) (3.4)

for k = 0; 1; : : : ; n� 1, and scaling factor sk resulting 11 if k 6= 0 or n, and 1p
2
if k = 0 or

n.
The within-block coe�cients of the WP and CP formulations describe their contribution in
representing the signal features under a varying oscillation index. The WP table presents
crystals, i.e. sets of coe�cients, stored in sequency order, according to increasing oscil-
lation index. The CP table presents instead blocks ordered by time and the coe�cients
within the blocks are ordered by frequency. Figure 1 describes these properties.
The way these plots should be read and interpreted suggests that in WP tables the

blocks are ordered by frequency, and within blocks wavelet coe�cients are ordered by
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time; thus, the low frequency information in the signal is expected to be concentrated on
the left side and the high frequency information on the right side of the table6. For CP
tables, the high frequency part of the signal is now expected on the left side, while the
low frequency behavior appears from the right side.

3.4 The Matching Pursuit learning algorithm
The design of optimal algorithms is strictly dependent on the adoption of adaptive signal
approximation techniques, built on sparse representations. Sparsity refers to the possibil-
ity of considering only few elements of a dictionary of approximating functions selected
among a redundant set. The MP algorithm (Mallat & Zhang, 1993) is a good example,
and it has been successfully implemented in many studies for its simple structure and
e�ectiveness. A signal is decomposed as a sum of atomic waveforms, taken from families
such as Gabor functions, Gaussians, wavelets, wavelet and cosine packets, among others.
We focus on the WP and CP tables, whose signal representations are given by:

WP (t) =
P

jfk wj;f;kWj;f;k(t) + resn(t)

and

CP (t) =
P

jfk cj;f;kCj;f;k(t) + resn(t)

This choice o�ers some advantages, which we summarize as follows:

� the approximating kernels are 
exible with regard to the type of functions used, i.e.
localized cosine functions and variably oscillating wavelets;

� the mixtures of functions employed work in space/time and scale/frequency dimen-
sions, thus yielding better spatial adaptivity and localization power;

� a priori or signal-dependent knowledge may be accounted for, by selecting indexed
functions or by reducing the problem dimension through the use of a restricted
sub-set of functions in the analysis.

The Procedure In summary, the MP algorithm approximates a function with a sum of n
elements, called atoms or atomic waveforms, which are indicated with H
i and belong to a
dictionary � of functions whose form should ideally adapt to the characteristics of the sig-
nal at hand. The MP decomposition exists in orthogonal or redundant version and refers
to a greedy algorithm which at successive steps decomposes the residual term left from a
projection of the signal onto the elements of a selected dictionary, in the direction of that
one allowing for the best �t. At each time step the following decomposition is computed,
yielding the coe�cients hi which represent the projections, and the residual component,
which will be then re-examined and in case iteratively re-decomposed according to:

f(t) =
nX
i=1

hiH
i(t) + resn(t) (3.5)

1. inizialize with res0(t) = f(t), at i=1;

2. compute at each atom H
 the projection �
;i =
R
resi�1(t)H
(t)dt;

6The oscillation index goes from 0 to 2J � 1, going rightwise.
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3. �nd in the dictionary the index with the maximum projection,


i = argmin
2� jj resi�1(t)� �
;iH
(t) jj,

which equals from the energy conservation equation argmax
2� j �
;i j;

4. with the nth MP coe�cient hn (or �
n;n) and atom H
n the computation of the
updated nth residual is given by:

resn(t) = resn�1(t)� hnH
n(t);

5. repeat the procedure from step 2, with n = n+ 1 and until i � n.

With H as an Hilbert Space, a function f 2 H is decomposed in this frame as f =<
f; g
0 > g
0 + Rf , with f approximated in the g
0 direction, orthogonal to Rf , such that
kfk2 =j< f; g
0 >j

2 +kRfk2. Thus, the minimization of the kRfk term requires a choice
of g
0 in the dictionary such that the inner product term is maximized (up to a certain
optimality factor). The selection of these atoms from the D dictionary is made by an
index 
0 based on a choice function conditioned on a set of indexes �0 2 � (see Mallat &
Zhang, 1993, for further details).

Algorithmic Features and Limitations The main aspect of interest for the computational
learning power of the MP algorithm has appeared in our study like in many others, and
refers to how is capable of dealing e�ciently with the so-called (Davis, Mallat & Avel-
laneda, 1997), coherent structures compared to the dictionary noise components. The
terminology is used for stressing the importance of learning the most informative struc-
tures by the means of the atoms in the dictionaries; this usually happens e�ciently at
the beginning of the MP operations but only up to a certain iteration time, when the
algorithm �nds noise structures instead of relevant signal features.
This aspect has been deeply investigated in the mentioned work, and in our application
has been controlled by looking at the behaviour of the residue term after n approximation
steps; the residue absolute and squared values allow for the autocorrelation functions to
give information about the conditional variance, and thus are of direct interest for the
volatility modelling aspects.
There is also the risk of learning non-features, or that the algorithm over�ts, and thus
learns noise (Jaggi, Karl, Mallat & Willsky, 1998). In our case we found that a solution
is to modify the range of application of the MP algorithm, thus making it more orthogo-
nalized.
The MP decomposition is nonlinear, but maintains, along its operations:

kRnfk2 = j< Rnf � Rn+1f >j2 + kRn+1fk2 (3.6)

an energy conservation law of the following form:

kfk2 =
m�1X
n=0

j< Rnf; g
n >j
2 + kRmfk2 (3.7)
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A. B.

Figure 2: WPT Best Basis Tree Plot (A), and a correspondent plot for CPT (B).

equivalently as for linear orthogonal decompositions.
There is (Davis, Mallat & Zhang, 1994) a version of MP that selects several vectors from
the dictionary at every iteration step, and projects the residue over the space spanned by
these vectors; it is an orthogonal MP and for every selected vector computes an orthog-
onalization step through a Gram-Schmidt algorithm. Despite its faster residue decrease
and its convergence in a �nite number of steps M, compared to the �nite vector dimen-
sion N, it presents a relevant implementation cost and also possible numerical instability
problems due to ill-conditioning of the basis functions fg
ng0�n<M . The strategy we have
chosen is explained later and �ts with other objectives pursued in the study.

3.5 The Best Basis Algorithm
The Best Orthogonal Basis (BOB) algorithm (Coifman &Wickerhauser, 1992) is employed
here as an alternative to the MP optimization method, with the goal of minimizing an
additive7 cost function computed within a library of orthonormal basis representations
generated by the WP transform and through the correspondent expansion coe�cients
wjf .
The procedure adaptively picks the best orthogonal basis among those which can be
formed as sub-collections of WP or CP dictionaries. The BB algorithm thus represents a
global optimizer which computes the transform by searching for the minimum of a cost
function E(C) =

P
j;f E(wj;f) in O(LN) operations, with L = log2N the number of levels

of the binary tree and N is the signal length (this compared to the O(MLN) cost of the
MP, with M packets selected).
In particular, the BOB steps �nd a minimum entropy transform from the dictionary at
hand, since the above objective function corresponds to min [entr f(B)] j B 2 �, where
B is an orthobasis in the selected dictionary � and f(B) are a vector of coe�cients in the
same basis.
In terms of the entropy, commonly used in statistics for estimation and compression
problems, the cost function holds as Eent

j;f =
P

k ŵ
2
j;f;k log ŵ

2
j;f;k, for ŵj;f;k = wj;f;k � (jj

w0;0 jj2)
�1. The algorithm is known to deliver near-optimal sparsity representations, but

not in the presence of non-orthogonal contexts.
Figure 2 reports the tree plots visualizing the relative entropy content of the packet
coe�cients, where the arcs represent entropy savings in going from the parent to the child
node; the longer ones suggest advantages in adopting the relative wavelet transform.

7Non-additive cost functions and near-best bases can be considered too.
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In the WP tree the best basis is concentrated in the three highest resolution levels,
indicating an homogeneous entropy reduction among levels. With the CP tree the best
basis results much more spread among the resolution levels and shows a superior entropy
reduction. The total energy is given by E =

Pn

k=1 f
2
n, which in turn corresponds to

decomposing the energy among details and approximations, i.e. Es
j +
PJ

j=1E
d
j , where

Es
j =

1
E

P n

2J

k=1 s
2
j;k and E

d
j =

1
E

P n

2J

k=1 d
2
j;k, for j = 1; : : : ; J .

Thus, the CP crystals (i.e. sub-sets of coe�cients) are from a wider basis across the
resolution levels and form the building blocks selected with a di�erent energy distribution
compared to the WP case.
In (Saito, 1998; Saito, Larson & Benichou, 2000) there is a proposal of an alternative
view of the BOB scheme with modi�cations addressing the search for least statistically
dependent bases. An operator called feature extractor acts for reducing the dimensions of
the problem and allows for a change of coordinates, and thus of basis, in the signal domain
followed by a selection of m coordinates. The following functional summarizes the scheme,
by seeking the best coordinates B� measuring the e�ciency of the bases B spanning
x 2 Fm, given the training set � and the set of all such bases L, B

� = argmaxB2LF (B j �).
In Figure 3 we report the top-100 largest coe�cients approximation with the BB and the
MP algorithms after running on WP and CP dictionaries. We show the BB on the WP
table in (A), and on the CP table in (B), while for the MP algorithm we refer respectively
to (C) and (D).
The locations of the high energy spots indicate di�erent costs in terms of the computed

entropy for the two dictionaries, depending on which frequency information is captured
by the related transforms. A low frequency concentration of energy appears in the WP
cost table, while the CP cost table suggests that wider ranges of frequencies, including
higher frequencies, are captured.
The plots suggest that BB doesn't work optimally for the non-stationary signal, while MP
works more e�ciently; this is due to its greedy nature, and it results more e�ective for a
better ability to capture the local features, both in time and in frequency. The MP scheme
exploits the correlation power inherent to the collection of waveforms available through
the WP and CP dictionaries, and it does so throughout more scales and by extending the
basis which represents the signal.

4. Independent and Sparse Component Analysis

4.1 Searching Independent Components
The goal of searching for statistically independent coordinates characterizing certain ob-
jects and signals, or otherwise for least dependent coordinates, due to a strong dependence
in the nature of the stochastic processes observed by the structure of the data, leads to
ICA or to least dependent best basis algorithms. The combination of these goals with
that of searching for sparse signal representations suggests hybrid forms of SCA.
We present the results obtained with ICA, whose role has gained relevance to applica-
tions in many �elds, particularly signal processing and neural networks. There are still
relatively few ICA applications in the domain of �nance. Statistically independent com-
ponents may o�er a possible interpretation of the main driving forces behind �nancial
time series, in line with other decomposition techniques such as structural time series
analysis or factor models, involving multivariate time series, optimal investment portfo-
lios, component extraction and separation of noise from true prices (Back & Weigend,
1997; Wu & Moody, 1996).
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Figure 3: Signal approximation with the 100 largest coe�cients for BB run on CP (A)
and WP (B), and for MP run on CP (C) and WP (D).
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The independent components can be e�ciently computed by ad-hoc algorithms such as
JadeR (Cardoso & Souloumiac, 1993) or fastICA (Hyvarinen & Oja, 1997; Hyvarinen,
1999). For Gaussian signals, the Independent Components are exactly the known Prin-
cipal Components; with non-Gaussian signals ICA delivers superior performance, due to
the fact that it relies on high order statistical independence information.
With SCA one attempts to combine the advantages delivered by sparsity of signal repre-
sentation, which transfer to better compression power and estimation in minimax sense.
Now the expansion coe�cients represent sparse vectors, those few large coe�cients able
to reconstruct the original signal features. The goal is to optimize sparsity so the get
optimal recontruction.
ICA is related to linear and nonlinear mixture models, including the case of convolutive
mixing, and refers to noise-free or noisy data applications. In studies based on time se-
ries, one might �nd more convenient to work with innovation processes (Hyvarinen, 1998)
derived from conditional values of observation processes and usually more independent
and non-Gaussian then the original ones.
Likewise, temporal correlation and convolutive mixing (Amari, 1998; Attias, 1998 and
1999) a�ect the data and their dependence features, such that more elaborated schemes
are needed so to account for these aspects too.
As said, ICA generalizes the well-known Principal Component Analysis, but unlike the
latter which uses statistical information coming from the �rst two moments of the in-
volved probability distributions, it decorrelates the data by using statistical information
of higher order and thus becomes suitable for non-Gaussian contexts. Therefore, ICA is
a latent variable statistical model where linear or non-linear transforms of non-Gaussian
and independent variables deliver the observed data.
By assuming that the sensor outputs are indicated by xi; i = 1; : : : ; n and represent a
combination of independent, non-Gaussian and unknown sources si; i = 1; : : : ; m, a non-
linear system Y = f(X) could be approximated by a linear one AS, where X = AS.
Instead of computing f(X) one may now work for estimating the sources S together with
the m�m mixing matrix A, where usually m << n, with n the number of sensor signals,
but with m = n holding in many cases too.
The Joint Approximate Diagonalization of Eigenmatrices for Real signals (i.e. JadeR)
algorithm is the of algorithms implementing ICA that we have applied. It delivers an
estimate for the separating or de-mixing matrix B, obtained from Y = BX, such that
when B = A�1 a perfect separation would be obtained. This in general cannot happen,
being just an ideal setting, and thus solutions hold approximately up to permutation and
scaling. De-correlation and rotation steps are implemented so to deal with these aspects,
and a set of approximately m independent components is obtained.
The approach of combining MRA and ICA that we have adopted here is di�erent from
other cases of study; wavelet signal decomposition and ICA for �nancial data analysis has
also been suggested by (Wu & Moody, 1996), but with a di�erent goal, i.e. decomposing
the stock price series into independent components so to extract the true price from the
noisy series. More recent work has been proposed by (Kisilev, Zibulevsky, Zeevi & Pearl-
mutter , 2000) with applications to musical sounds and images.
We start from considering the detail signals obtained through WP and CP transforms:
the series of scaled signals bring a di�erent degree of resolution and refer to speci�c infor-
mation obtained by the transforms while switching between resolution levels. Then, we
combine an ICA step with the MP algorithm operating on WP and CP tables; through
such a joint search for sparsity and statistical independence we are basically adopting
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an hybrid SCA solution, since we aim to optimize sparsity through the choice of ad hoc
function dictionaries, like localized cosines and orthonormal wavelet bases, and because
we adopt thresholding estimators. Furthermore, we want to operate through least depen-
dent coordinates such that an almost diagonal covariance operator is achieved, helping
the interpretation of latent volatility features.

Searching sparse decompositions From (Donoho, 1996) functions represented as f �P1
i=1 �i�i have sparsity in their expansion coe�cients �i which can be measured by appro-

priate norms targeted to achieve bounds on the performance of compression and de-noising
schemes. In this signal representation, both the coe�cients �i and the basis components
�j have to be computed; searching for the best basis is combined with the requirement of
sparsity.
Dictionaries which are overcomplete deliver non-unique signal decompositions; when in-
stead a basis may be selected, the dictionary will result complete. In our applications the
hybrid method we have designed requires that the least dependent resolution levels are
to be selected by ICA and used for calibrating the MP algorithm, thus achieving a better
detection power for the dependence structure in the series.
More independent coordinates along which to apply the algorithmic steps allow the MP
to be more orthogonalized and thus work more e�ciently in retrieving the coherent struc-
tures; the algorithm learns more e�ectively, working progressively toward obtaining a �nal
residue whose absolute and squared transforms might reveal only pure volatility features.
Alternative models can be designed, and following (Zibulevsky & Pearlmutter, 2001), the
elements A and C can be computed from the following optimization problem:

minA;C
1

2�2
jj AC��X jj2F +

X
j;k

�jh(cj;k) (4.1)

or following (Girosi, 1998; Poggio & Girosi, 1998) a connection to Support Vector Ma-
chines and sparse representations can be made by changing the norm in the previous
equation.
With h(.) representing a prior distribution on the dictionary expansion coe�cients, or
otherwise an empirical probability distribution function that could be computed from
the estimated wavelet coe�cients, this functional generalizes other similar structures like
the Method of Frames, the Basis Pursuit or the equivalent Linear Programming problem
representations, perturbed or not depending from the fact that one is considering a noisy
observation system or not (Chen, Donoho & Saunders, 2001).
The term AC� can be replaced, with a number of sensors equal to the number of sources,
and the inverse mixing or de-mixing matrix indicated by B = A�1. Thus, it follows that
S � BX and the term within the norm of the objective function becomes jj C��BX jj2F .

5. Approximating Stock Index Volatility

5.1 The General Setting
Wavelet orthogonal bases are unconditional bases for certain classes of functions, gener-
ally belonging to inhomogeneous function spaces; as such they represent almost diagonal
covariance operators, as shown by (Mallat, Papanicolaou & Zhang, 1998). They deliver
optimal de-noising and compression ability (Donoho, Mallat & von Sachs, 1996 and 1998).
Certain classes of processes, like locally stationary processes, address the fact that non-
stationarity behaviour occurs in some periods of time depending on the presence of regime
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shifts or shocks or even other independent factors, and then a switch to a more stationary
regime is observed for the variables of interest.
The dependence structure in high frequency �nancial time series can be detected by select-
ing ad hoc function dictionaries, like WP and CP, whose good time-frequency resolution
trade-o� allows for an excellent representation of non-stationary or time inhomogeneous
series. Since the signal transformed in the wavelet coe�cient domain is heteroscedastic
and non-Gaussian, the same two properties transfer to the expansion coe�cient domain
too; stationarity and decorrelation take place even if some weak dependence structure
remains.
We refer to the Nikkei stock return index and choose the series of 1990, among several
years of available market activity, with observations collected at high frequencies, i.e.
every minute (1m). The total sample has 35,463 observations, with intra- daily trading
prices covering the working week, holidays and weekends excluded. We then form a tem-
porally aggregated time series of correspondent �ve-minute (5m) data from the original
one; thus, they are simply given by the average of components sampled at the time inter-
val of one minute. The aggregated sample consists of 7092 observations8.
Model design tasks involve the representation of features such as short and long range
dependence, hidden periodicities, external shocks, surprise variable e�ects and other fac-
tors with impact on prices and returns (Andersen & Bollerslev, 1997). Together with
the volatility persistence observed from the absolute and squared returns autocorrela-
tion functions, long range dependence seems a typical feature which is often indicated as
present in high frequency �nancial series. It is very likely that this form of dependence
might be mixed with other forms of hidden dependence in the data like, for instance,
periodicities (see Figure 4). These last components are usually not easy to interpret, and
may prevent the researcher from detecting and evaluating the underlying low frequency
dynamics, as also suggested by the presence of non-stationarity through the evidence of
spurious features in the data.
We adopt a strategy which aims to pre-process the return series with ad-hoc �ltering, i.e.

targeted to deal with the hidden periodic components. The goal is that of getting residual
returns where the only dynamics left are those strictly related to the volatility process. In
practical terms, we have in mind a two-stage process where the battery of wavelet-based
techniques and the classes of functions available through the selected dictionaries may
enable a de-seasonalization step followed by a de-volatilization step. Here we cope mainly
with the former aspect, while the latter should require speci�c volatility modelling too,
not proposed here.

5.2 Non-parametric Estimation
We keep this setting of underlying conditions, and thus consider our setting inherently
non-stationary; as such, we want to design a method explicitly accounting for these condi-
tions. Thus, after having segmented appropriately the data we run experiments which are
based on the methods already introduced. We have tested the MP approximation power,
and let the algorithm work with 50, 100, 200 and 500 atoms from the selected WP and
CP function dictionaries, so to verify whether its computed residue might be interpreted
as noise and might indicate how e�cient is learning.
We apply de-noising to the tables so to let the shrinkage principle operate via thresholding
and verify whether the MP performance is in
uenced by the presence of noisy wavelet
crystals. We combine the advantage of using dictionaries which are e�ective in detecting

8The experiments were conducted with S+Wavelets (Bruce & Gao, 1994).
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Figure 4: Absolute (indexed by a) and squared (indexed by s) raw 1m and 5m returns.
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the latent periodic structure with that of removing the noise characterizing the �nest de-
tails. In this way we want to reach a better sparsity of coe�cients. Thus, the procedure
we adopted is described as follows:

� Step 1.

Wavelet/Cosine Packets Segmentation: the initial sample is split into segments.
This has been done according to systematic rules, variable according to (Gao,
1997; Mallat, Papanicolaou & Zhang, 1998; Serroukh, Walden & Percival, 2000;
von Sachs & MacGibbon, 2000) while here the procedure re
ects the sample split-
ting rule which restricts the partition choice to sample sizes divisible by 2J in the
wavelet/cosine packet analysis.
We keep the rule at its simplest level, by just considering two sub-samples, with
observations ranging from 1 to 3328 and then from 3329 to 7040, for the 5m series.
Together with a certain computational advantage, one gets an improved local �t
power for estimating the variance by looking more speci�cally at the data dynamics
belonging to less non-stationary segments, which may correspond to separate mar-
ket phases.

� Step 2.

The Thresholding Algorithm:

{ The WP and CP transforms are applied to the returns and the empirical wavelet
crystals (i.e. sets of coe�cients) are computed;

{ The empirical coe�cients are shrunken toward zero by a thresholding step,
which works according to a series of rules re
ecting the nature of the data and
following optimal statistical estimation criteria;

{ The inverse transforms are applied to the thresholded coe�cients so to recon-
struct the signal in a sparse way.

A widely employed threshold which adapts to each resolution level is obtained
through the principle of minimizing levelwise the Stein Unbiased Risk Estimator, or
SURE. The resulting estimator is quoted in the literature as SURE-Shrink. There-
fore one gets:

�j = argmint�0SURE(dj; t) (5.1)

and through the following functional:

SURE(dj; t) = K � 2
KX
k=1

I[jdj;kj�t�j ] +
KX
k=1

min[(
dj;k
�j

)2; t2] (5.2)

can �nd a function estimator like:
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f̂(x) =
X
k

ĉj0�j0;k(x) +
X
j>j0

X
k

sgn(d̂j;k)(j ^dj;k j ��)+ j;k(x) (5.3)

The shrinkage function depends also on the estimate of the scale of the noise, which
in our application represents a very important aspect. One may use all the coef-
�cients to yield the estimate, or just those ones belonging to each resolution level.
A di�erent bias-variance ratio naturally follows in the applied smoothing. We used
the estimate from all the crystals, not to lose e�ciency and because we rely on a
certain dependence structure among resolution levels; thus, we adopted the MAD
function, de�ned by median(j x�median(x) j)=0:6745, which eliminates the noise
and delivers a robust variance estimate.

� Step 3.

The MP Algorithm: we apply it to the sub-tables, i.e. to the sampled segments
previously computed and run MP with an increasing approximation power, in both
the original and the de-noised sub-tables.

� Step 4.

The Energy Distribution: we compare it among series decomposed by resolution
levels, and for each sub-table, so to verify which of them are more or less informa-
tive and up to what degree the presence of noise gives a contribution to the observed
data features. We thus check how the approximation power of the MP algorithm
is a�ected by the noise, and look at the usual diagnostic autocorrelation function
(ACF) plots for absolute and squared residuals, which are very informative about
the structure of dependence in the volatility process. Ideally, coherent structures
should be removed and the algorithm should be stopped when dictionary noise is
encountered. When no structure is found in the residue it means that the MP
worked e�ciently; this fact should also be interpreted as the evidence that only
pure volatility aspects are left in the residual series.

We observe from Table 1 that in the �rst sub-sample of the WP table level 0 increases
with T (the number of approximating structures or atoms in the dictionary) and level 6
becomes dominant with de-noised crystals; the latter is followed by level 4, with both the
levels decreasing in energy percentage with T, and by level 2, increasing instead with T.
The second sub-sample has still level 0, which increases with T, followed by level 3,
decreasing with T; this segment concentrates most of the energy from the MP runs on the
original noisy WP table, while the waveshrunken crystals indicate level 3 as the one with
the largest energy, decreasing with T, followed by level 2, 4 and 6, all pretty much stable
in their energy distribution, according to the approximation power employed by the MP
algorithm.
In short and as expected, we have observed a shift from �ne resolution levels to low
and to mid-coarse ones, respectively in the �rst and second WP table sub-sample, when
de-noising is applied through the SURE-SHRINK thresholding (see Figure 5).
In Table 2, in the CP dictionary, we observe that with the original crystals the MP

computations suggest levels 0 and 3 together with levels 0 and 1 as dominant, respectively
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T = # of Atoms 50 100 200 500 w50 w100 w200 w500

n=1-3328
level 0 0:578 0:7 0:78 0:821 0:0 0:0 0:0 0:0
level 1 0:139 0:155 0:116 0:1 0:004 0:011 0:019 0:056
level 2 0:032 0:034 0:026 0:032 0:084 0:192 0:231 0:26
level 3 0:087 0:032 0:03 0:018 0:105 0:079 0:112 0:123
level 4 0:038 0:026 0:019 0:015 0:226 0:206 0:179 0:172
level 5 0:032 0:017 0:01 0:006 0:04 0:05 0:042 0:048
level 6 0:094 0:037 0:019 0:008 0:541 0:463 0:415 0:341
n=3329-7040
level 0 0:383 0:361 0:479 0:578 0:0 0:0 0:0 0:0
level 1 0:203 0:292 0:243 0:207 0:012 0:011 0:018 0:026
level 2 0:069 0:096 0:098 0:09 0:253 0:335 0:301 0:321
level 3 0:253 0:18 0:118 0:083 0:532 0:425 0:398 0:338
level 4 0:062 0:048 0:042 0:027 0:079 0:092 0:114 0:126
level 5 0:006 0:007 0:008 0:008 0:022 0:046 0:073 0:078
level 6 0:024 0:016 0:012 0:008 0:102 0:093 0:096 0:11

Table 1: Energy percentage distribution among resolution levels for sub-sampled residual 5m

series transformed via WPT and computed via MP algorithm at di�erent degrees of approxi-

mation power, i.e. with 50, 100, 200 and 500 atoms. MP runs with the original (left part of the

table) and de-noised crystals.

in the �rst and second sub-samples, even if with a di�erent degree of in
uence of the
approximation power employed by MP, while the de-noised crystals suggest that the
energy remains pretty much concentrated in the same levels, 0, 1 and 3 in the �rst
segment and 0, 1 and 2 in the second one.
Thus, the �nest resolution levels are those with most of the energy and de-noising doesn't
really lead to a shift of energy among the scales in the CP tables, compared to the WP
tables. This indicates that the CP table is already sparsely representing the signal.
As a �nal check and so to understand how the approximation power transfers to ad-

vantages in feature detection ability, we look at the ACFs computed on the absolute and
squared transformed residuals, obtained from the WP/CP tables and their de-noised ver-
sions. From the plots in Figure 6 and 7, for the absolute returns ACFs, and in Figure 8
and 9 for the squared values ACFs, we notice that the residual autocorrelation and the
persistence remain visible features, particularly with the absolute values, and regardless
the approximation power considered, due to either the undetected structure or the al-
gorithm sub-optimal performance (adaptation to non-features, noise over�tting, lack of
e�ciency as possible causes).
The ACFs computed over the de-noised residuals indicate that with the WP tables these
features are less evident while with the CP tables they appear even more emphasized,
thus suggesting that the noise, somehow spuriously, contributes to the structure shown
by the WP/CP tables. From the squared transforms the e�ects of de-noising are more
visible when looking at the power of detecting the hidden periodicities, since they are
strongly highlighted in the WP case and, at a less degree, with the CP tables too.
In summary, the noise seems to hide periodic components and its removal allows for a

better detection of them, and this suggests that non-stationarity is very likely responsible
for the presence of spurious features. While the CP transform suggests a good low and
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Figure 5: MP progressive approximation power. For each block of plots, 50 (top left), 100

(top right), 200 (bottom left) and 500 atoms used, the �rst and second sub-samples of the

original and de-noised WP tables are indicated, respectively, by A-B (1st segment) and C-D

(2nd segment).
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Figure 6: ACF of absolute 5m residuals from MP with 200 (A-B) and 500 (C-D) atoms on the

WP dictionary for respectively original (left) and de-noised (right) tables.
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Figure 7: ACF of absolute 5m residuals from MP with 200 (A-B) and 500 (C-D) atoms on the

CP dcitionary for respectively original (left) and de-noised (right) tables.
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Figure 8: ACF of squared 5m residuals from MP with 200 (A-B) and 500 (C-D) atoms on the

WP dictionary for respectively original (left) and de-noised (right) tables.
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Figure 9: ACF of squared 5m residuals from MP with 200 (A-B) and 500 (C-D) atoms on the

CP dicitonary for respectively original (left) and de-noised (right) tables.
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T = # of Atoms 50 100 200 500 w50 w100 w200 w500

n=1-3328
level 0 0:662 0:733 0:743 0:699 0:21 0:633 0:657 0:672
level 1 0:065 0:055 0:06 0:119 0:268 0:024 0:017 0:176
level 2 0:005 0:036 0:059 0:078 0:018 0:032 0:09 0:037
level 3 0:177 0:1 0:079 0:056 0:284 0:19 0:13 0:061
level 4 0:045 0:029 0:022 0:018 0:143 0:032 0:024 0:025
level 5 0:017 0:02 0:018 0:014 0:026 0:014 0:019 0:016
level 6 0:028 0:029 0:02 0:015 0:051 0:075 0:063 0:012
n=3329-7040
level 0 0:275 0:516 0:696 0:74 0:528 0:314 0:327 0:607
level 1 0:581 0:353 0:226 0:185 0:079 0:151 0:178 0:112
level 2 0:033 0:033 0:027 0:028 0:203 0:005 0:029 0:136
level 3 0:009 0:013 0:008 0:014 0:092 0:054 0:088 0:081
level 4 0:028 0:025 0:011 0:01 0:072 0:055 0:081 0:034
level 5 0:009 0:019 0:013 0:01 0:012 0:136 0:105 0:015
level 6 0:064 0:041 0:019 0:013 0:015 0:285 0:192 0:005

Table 2: Energy percentage distribution among resolution levels for sub-sampled residual 5m

series transformed via CPT and computed via MP algorithm at di�erent degrees of approxima-

tion power, i.e. with 50, 100, 200 and 500 atoms. MP runs with the original (left part of the

table) and de-noised crystals.

high frequency resolution, somehow regardless the presence of noise, the WP transform
seems to require a pre-processing stage of de-noising so to remove the spurious e�ects of
the noise, mostly visible at the �nest scales, and thus improving the detection power of
the low frequency informative content of the signal in the forms of strong dependencies
and periodicities.

5.3 Time and Frequency Resolution Pursuit.
Together with the risk of �nding spurious components for the non-stationary nature on
the data, the masking e�ects of noise has been indicated as a further di�culty in dealing
with high frequency �nancial time series. These factors should be considered combined
with possible over�tting e�ects when the MP optimization procedure is run; the algorithm
could learn too much and adapt even to non-features. De-noising through thresholding
with the SURE-Shrink estimator alone may not be su�cient for optimally dealing with
all these aspects. An important aspect concerns the structure of the algorithm itself, and
its pursuit activity throughout the resolution levels.
An algorithm known as High Resolution Pursuit (HRP) (Jaggi, Karl, Mallat & Willsky,
1998) has been proposed so to improve the local �t power compared to that of MP; the way
to do so is by using information just from the highest scales. One can imagine to address
each atom of a dictionary through a set of indices, I
(k) including functions g
 each
formed by averaging elements at �ner scale j+k, i.e. g
 =

Pm

i=1 �igj+k;ti
9. Examples are

o�ered for atoms from B-Spline and WP dictionaries. This new algorithm performs very
well compared to MP and Basis Pursuit (Chen, Donoho & Saunders, 2001) and presents

9A new locally sensitive similarity measure has been introduced with the aim of selecting the most
informative atoms to be used by the pursuit algorithm, whenever the atoms belonging to low scales can
be represented as averages of �ner resolution atoms.
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clear advantages in some cases, but has limitations as well. It is not fully adaptive with
regard to the speci�c scale selection, thus left to heuristic rules, and to the stopping rule,
which is set to avoid over�tting problems, is application or case dependent.
We don't modify or adapt the algorithm itself, but consider HRP as a good premise
for understanding how to optimize the selection of information coming from the detail
signals obtained by the MRA, with regard to both its time and frequency content. Thus,
we investigate the performance of the MP algorithm when is applied on a restricted and
ad hoc selected range of resolution levels, i.e. the �nest resolution levels of the WP and
CP tables, which are obtained through ICA in the WP and in the CP cases. We adopt the
same 
exible degree of approximation power of 50, 100, 200 and 500 atoms and compare
the energy percentage distribution obtained after the MP runs.
In Table 3 below reported we have the two estimated mixing matrices A, where the
observed sensor signals are those computed at each resolution levels by the WP and the
CP transforms. These already de-seasonalized signals are now passed through the ICA
algorithm for the extraction of "m" possible sources which we set equal to the number of
sensors10.
For a possible interpretation of how these level dependent ICs may relate to �nancial
market dynamics, activities and operations, one might consider that relevant work has
been recently proposed by researchers addressing the hypotesis that �nancial markets
operate under conditions driven by dynamics which are di�erent according to the time
horizons considered for evaluating returns from the invested resources; an example is
o�ered by comparing speculative (short term) and longer term forms of investments, from
day-by-day trading to mutual funds or balanced portfolio strategies.

Resol. lev. 0 1 2 3 4 5 6

WP-A
level 0 0:2218 0:0028 0:0085 0:0047 0:0023 0:0069 0:0085
level 1 0:0002 0:1951 �0:0013 0:0001 �0:0189 �0:0035 �0:0037
level 2 0:0068 0:0003 �0:167 0:0015 0:0007 0:0019 �0:001
level 3 0:0031 �0:0057 �0:0008 �0:1438 �0:0019 �0:0045 0:0059
level 4 0:0012 �0:0125 0:0017 0:0028 �0:1318 0:0117 0:0
level 5 0:0032 �0:0023 0:0014 �0:0045 0:0008 �0:0011 �0:1147
level 6 0:0023 �0:0009 �0:0018 0:0047 �0:0082 �0:121 0:0017
CP-A
level 0 0:0029 0:0062 0:008 0:0031 0:0021 0:1261 0:0033
level 1 0:0012 0:0033 0:0013 0:0013 0:0041 0:0039 �0:1204
level 2 �0:0089 �0:0023 �0:0031 �0:1712 0:0031 0:0057 �0:0006
level 3 0:1868 �0:0008 �0:0038 �0:0114 �0:0057 �0:0031 0:006
level 4 �0:0022 0:1832 0:0011 �0:0002 �0:0191 �0:0083 0:0053
level 5 0:006 0:0142 �0:0059 0:002 0:1482 �0:0053 0:0035
level 6 0:0014 0:0046 0:1748 �0:0021 0:0036 �0:0052 0:002

Table 3: Weights of the estimated ICA mixing matrix distributed across resolution levels for

residual 5m series obtained in WP/CP tables.

Since our sensor signals are obtained from a multi-resolution decomposition of the

10This choice is done just for convenience, and not because we want to pre-select their number according
to some assumption or a-priori knowledge coming fom the market context.



28

signal, instead of measuring each IC's contribution to the individual returns we extract
from each detail level an approximate value suggesting its contribution to the signal
features independently from the other levels. The highest values computed suggest what
are the dominant ICs on a scale-dependent basis, without identifying their speci�c nature
or the underlying economic factors, being them system dynamics or pure shocks.
From the WP estimated mixing matrix A we note a strong within-level factor always
dominating apart from levels 5 and 6, where a mutual cross-in
uence appears to dominate.
From the CP extimated mixing matrix A things change substantially, since each level
depends mainly from out-of-level factors, i.e. the independent components found are not
in a diagonal form but belong instead to other resolution levels, remaining only negligibly
in
uenced by within-level factors.
Considering the results obtained with the ICA application, we may refer back to the
performance of the MP algorithm with a restricted domain of application, given by the
four �nest resolution levels of the WP and CP tables, and �nd a possible explanation or
at least some help for how to interpret those �ndings (see Table 4). The ICA experiment
simply works as a test procedure which clearly suggests the goodness of the previous
strategy more with the WP table than with the CP table.

T = # of Atoms 50 100 200 500

WP table
level 0 0:228 0:268 0:339 0:472
level 1 0:139 0:088 0:135 0:120
level 2 0:1 0:146 0:125 0:126
level 3 0:533 0:497 0:401 0:282
CP table
level 0 0:819 0:637 0:704 0:722
level 1 0:021 0:135 0:145 0:150
level 2 0:081 0:127 0:084 0:068
level 3 0:079 0:101 0:067 0:060

Table 4: Energy percentage distribution among the 3 �nest resolution levels for residual 5m

series obtained in WP/CP tables and computed via the MP algorithm at the approximation

power of 50,100,200 and 500 atoms.

We notice that with the WP table level 0 increseas with T and level 3 decreases with T,
and they gradually exchange the relative contribution to the total energy, while the other
two levels are pretty much similar. For the CP table level 1 increases with T, the other
being stable, while level 0 remains the one capturing the biggest percentage of energy. In
the next �gures we repeat the diagnostic ACF plots already shown before, based on the
new residuals; Figure 10 and Figure 11 report the absolute and the squared ACFs for the
residuals from the WP and the CP tables.

5.4 Interpreting the Results
In the CP case, levels 4, 5 and 6 mostly depend, respectively, from the speci�c infor-
mation content of levels 1, 4 and 2; thus, by including only levels 0-3 in the MP range
of application, we reduce the frequency information loss coming from excluding the low
scales, and even if still sub-optimally, we obtain a better compromise with regard to the
trade-o� of time and frequency resolution with which we let MP operate.
As said before, MP bene�ts because working with least dependent coordinates allow to



5. Approximating Stock Index Volatility 29

Lag

A
C

F

0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : ahfc200

A.
Lag

A
C

F

0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : shfc200

B.

Lag

A
C

F

0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : ahfc500

C.
Lag

A
C

F

0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : shfc500

D.

Figure 10: ACF of absolute (A-C) and squared (B-D) 5m residuals from MP with 200 and 500

atoms on the CP dictionary at the �nest four resolution levels.
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Figure 11: ACF of absolute (A-C) and squared (B-D) 5m residuals from MP with 200 and 500

atoms on the WP dictionary at the �nest four resolution levels.
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learn faster and better, due to a more orthogonalized algorithm.
We then observe that with the WP table the dependencies left in the ACF plots are less
evident than before, particularly with regard to the long memory component, while the
initial autocorrelation decreases with T. For the CP table the picture suggests even a
better ability of MP to capture and remove these dependencies, thus suggesting that the
feature detection power improves qualitatively and with computational savings by simply
concentrating the MP activity only on the �nest resolution levels.
This fact indirectly addresses the power of the HRP algorithm compared to the MP, when
the latter is active on the whole resolutions domain, but our procedure also suggests that
one can follow simple strategies instead of modifying the algorithm. In fact, the MP may
still be highly successful by just limiting its activity to the �nest resolution levels, and
particularly in the WP case, by exploiting the information content of high-scale signals
compared to the low-scale ones (Jaggi, Karl, Mallat & Willsky, 1998).
The advantages of working with band-pass �ltered detail signals in terms of temporal
aggregation e�ects are known (Abry, Veitch & Flandrin, 1998); they are stationarized
and decorrelated by wavelets, as seen, in the sense of being almost uncorrelated along in-
dividual scales and almost independent across scales. We support our results with other
arguments too, as explained below, which explain that the selection of details re
ects the
selection provided by ICA on the wavelet expansion coe�cients, justi�ed on the grounds
that the least dependent components lead to more orthogonalized MP and thus better
e�ciency.
Figure 12 is about the performance of the MP algorithm when examined through the
residues obtained at varying approximation power employed. For the case under study,
we consider the L2 and L1 errors, from respectively squared and absolute transformed
residual terms, and compare them with the number of MP approximating, possibly co-
herent, structures employed, up to 500, which corresponds to the L0 norm of the expansion
coe�cients, i.e. a measure of sparsity.
We note that with CP tables the MP has an excellent performance, but in both cases,

L2 and L1 norms, the �rst turning point is at approximately 100 structures, while the
second one is at approximately 200 structures, and while for the for the L2 norm is
smooth, for the L1 norm is slightly steeper in the decrease toward the approach to the
new minimum at approximately 500. For the WP case instead, the minimum seems
reached at approximately 100, and there is no reverting behaviour afterwards, even if
with di�erent slopes starting from 200 structures. The plots look very similar for the two
norms.
We note that in both cases we don't have a guarantee that if the algorithm is run for more
than 500 structures, it will go in one direction or another, due to the risk of over�tting.
But while for the CP case we can see that after 200 iterations it stabilizes its pattern
and reverts toward the limit reached by 100 structures, and thus we can accept this last
number as a good indicator for when to stop for observing the dynamics of the volatility
process and control the related unstabilities of MP, for WP instead we should de�nitely
stay with 100 structures so to avoid over�tting and conclude that further iterations would
allow for dictionary noise to be encountered in both norms.

5.5 Conclusive Remarks
By looking at the results obtained with the high frequency time series application and
with the use of WP and CP libraries, various considerations could be advanced. ICA
applied to WP based detail signals yields results that best match the search for a com-
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Figure 12: L2 error vs number of approximating structures, for WP (A) and CP (C); L1 vs L0

norm for WP (B) and CP (D).
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promise between achieving a sparse representation together with a set of least dependent
components.
The selection of high scale signals eliminates redundant information by keeping highly
localized time resolution power without simultaneously losing too much frequency resolu-
tion, due to the fact that low scale information can be reproduced by averaging high scale
one. The denoising step too, here applied, permits to improve the S/N ratio considerably,
and thus delivers a sparser signal representation.
The independent components need not to exist, particularly with non-stationary and de-
pendent signals; one must turn to other devices, or combine ICA with wavelet-based signal
decomposition and de-noising, so to form a sort of SCA.
For non-Gaussian data one �nds that wavelet-represented signals result the least depen-
dent components selected, where the detail sequences are obtained by sequential appli-
cation of WPT/CPT and ICA. These sequences are sparse, for the choice of ad hoc
dictionary selection and for the packet coe�cient thresholding stage.
When ICA is applied to a CP library, it doesn't really build a sparse representation, since
the CP coordinates are already naturally endowed with that property; from one aspect it
depends on the time domain segmentation operated according to the degree on disconti-
nuity revealed by the data. Thus, for a certain time interval, the size of the local cosine
windows might correspond well to that representing an approximate stationary behavior
for the process at hand.
From (Mallat, Papanicolaou & Zhang, 1998) we know that local cosine vectors might
be approximate eigenvectors of the covariance operators and that an orthogonal basis of
them yields a sparse matrix with fast o�-diagonal elements decay when a locally station-
ary process is observed. This sparse matrix should be estimated and ideally might be
assumed to be a band or near diagonal matrix; one solution is BOB, but we have already
seen that for our time series is sub-optimal compared to the greedy MP.
Thus, the least dependent levels and the source separation steps enabled by ICA based on
the CP decomposition, now form an hybrid procedure and deliver a mix of components
which unlike with WP are not concentrated at the �nest resolutions. As far as concerns
the independence among resolution levels, there isn't a precise selection order, but instead
low and high frequency information content collected at various degree of resolution. In
terms of decomposing the signal, the advantage of using a CP transform is thus in the
inherent diagonalization power with respect to the covariance operator.
Furthermore, our �ndings address indirectly the power of HRP compared to MP; how-
ever, due to our simple ICA-based procedure of pre-selecting the resolution levels over
which MP runs, it also suggests a simple strategy aimed to bypass the use of modi�ed
algorithms bringing limitations and contraints into the analysis.
The MP algorithm may be very e�ective by just limiting its range of activity, in this
case the domain of resolution levels obtained from a signal decomposition. Exploiting
the independent information content of MRA signals, as indicated by the ICA stage, may
represent an e�cient procedure and a near-optimal way of tuning the resolution pursuit.
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