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ABSTRACT

For a network of spiking neurons that encodes information in the timing of individual spike-times, we derive

a supervised learning rule, SpikeProp, akin to traditional error-backpropagation and show how to overcome

the discontinuities introduced by thresholding. With this algorithm, we demonstrate how networks of spiking

neurons with biologically reasonable action potentials can perform complex non-linear classification in fast

temporal coding just as well as rate-coded networks. We perform experiments for the classical XOR-problem,

when posed in a temporal setting, as well as for a number of other benchmark datasets. Comparing the (implicit)

number of spiking neurons required for the encoding of the interpolated XOR problem, it is demonstrated that

temporal coding requires significantly less neurons than instantaneous rate-coding.

2000 Mathematics Subject Classification: 82C32, 68T05, 68T10, 68T30, 92B20.

1998 ACM Computing Classification System: C.1.3, F.1.1, I.2.6, I.5.1.

Keywords and Phrases: spiking neurons; temporal coding; error-backpropagation

Note: Work carried out under theme SEN4 “Evolutionary Systems and Applied Algorithmics”. This paper has

been submitted for publication, a short version has been presented at the European Symposium on Artificial

Neural Networks 2000 (ESANN’2000) in Bruge, Belgium.

1. Introduction

Due to its success in artificial neural networks, the sigmoidal neuron is reputed to be a suc-
cessful model of biological neuronal behavior. By modeling the rate at which a single biologi-
cal neuron discharges action potentials (spikes) as a monotonically increasing function of input-
match, many useful applications of artificial neural networks have been build [22; 7; 37; 34] and
substantial theoretical insights in the behavior of connectionist structures have been obtained [40;
27].

However, the spiking nature of biological neurons has recently led to explorations of the compu-
tational power associated with temporal information coding in single spikes [31; 21; 13; 26; 20; 17;
49]. In [32] it was proven that networks of spiking neurons can simulate arbitrary feedforward sigmoidal
neural nets and can thus approximate any continuous function. In fact, it has been shown theoretically
that spiking neural networks that convey information by individual spike times are computationally
more powerful than neurons with sigmoidal activation functions [29].

As spikes can be described by ‘event’ coordinates (place,time) and the number of active (spiking)
neurons is typically sparse, artificial spiking neural networks have been shown to allow for very efficient
implementations of large neural networks [48; 33]. Single-spike-time computing has also been suggested
as a new paradigm for VLSI neural network implementations [28] and would offer a drastic speed-up.

Network architectures based on spiking neurons that encode information in the individual spike
times have yielded, amongst others, a self-organizing map akin to Kohonen’s SOM [39] and a network
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for unsupervised clustering [35]. The principle of coding input intensity by relative firing time has also
been successfully applied to a network for character recognition [10]. For applications of temporally
encoded spiking neural networks however, no practical supervised algorithm has been developed so
far. Even in [10] the authors resort to traditional sigmoidal back-propagation to learn to discriminate
the histograms of different spike-time responses.

To enable useful supervised learning with the temporal coding paradigm, we develop a learning
algorithm for single spikes which leverages the aforementioned advantages of spiking neurons while
allowing for at least equally powerful learning as in sigmoidal neural networks. We derive an error-
backpropagation based supervised learning algorithm for networks of spiking neurons that transfer
the information in the timing of a single spike. The method we use is analogous to the derivation
by Rumelhart et al. [41]. To overcome the discontinuous nature of spiking neurons, we approximate
the thresholding function. We show that the algorithm is capable of learning complex non-linear
tasks in spiking neural networks with similar accuracy as traditional sigmoidal neural networks. This
is demonstrated experimentally for the classical XOR classification task, as well as for a number of
real-world datasets.

We believe that our results are also of interest to the broader connectionist community, as the possi-
bility of coding information in spike times has been receiving considerable attention. In particular, we
demonstrate empirically that networks of biologically reasonable spiking neurons can perform complex
non-linear classification in a fast temporal encoding just as well as rate-coded networks. Although
this paper primarily describes a learning rule applicable to a class of artificial neural networks, spiking
neurons are significantly closer to biological neurons then sigmoidal ones. Importantly, to compute
with a rate-code on a very short time-scale, it is generally believed that in biological neural systems
the responses of a large number of spiking neurons are pooled to obtain an instantaneous measure
of average firing-rate. When we compare such an instantaneous rate-code to temporal coding with
single spikes, we find that significantly less spiking neurons are required, as will be shown for the
XOR-problem.

Our results also support the prediction that the length of the rising segment of the post-synaptic
potential needs to be longer than the relevant temporal structure in order to allow for reliable temporal
computation [28]. For spiking neurons, the post-synaptic potential describes the dynamics of a spike
impinging onto a neuron, and is typically described as the difference of two exponentially decaying
functions [19]. The effective rise and decay time of such a function is modeled after the membrane-
potential time constants of biological neurons. As noted, from a computational point of view, our
findings support the theoretical predictions in [28]. From a biological perspective, these findings dispel
the notion among neuroscientists that fine temporal processing in spiking neural networks is prohibited
by the relatively long time constants of cortical neurons (as noted for example in [15]).

This paper is organized as follows: in section 2 the spiking neural network is formally defined. In
section 3, we derive the error-backpropagation equations. In section 4 we demonstrate the algorithm
on the classical example of XOR, and also study the learning behavior of the algorithm. Encoding
real-valued input-dimensions into a temporal code by means of receptive fields, we show results for a
number of other benchmark problems in section 5. These experimental results are discussed in section
6. In a separate section, we consider the relevance of our findings for biological systems. In particular,
we examine the currently available biological evidence that seems to point towards (at least) partial
use of the temporal dimension of spikes in biological neural systems.

2. A Network of Spiking Neurons

The network architecture used consists of a feedforward network of spiking neurons with multiple
delayed synaptic terminals (figure 1, as described by Natschläger & Ruf [35]). The neurons in the
network generate action potentials, or spikes, when the internal neuron state variable, designated
‘membrane potential’, crosses a threshold ϑ. The relationship between input spikes and the internal
state variable is described by the Spike Response Model (SRM), as introduced by Gerstner [18].
Depending on the choice of suitable spike-response functions, one can adapt this model to reflect the
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dynamics of a large variety of different spiking neurons.
Formally, a neuron j, having a set Γj of immediate predecessors (‘pre-synaptic neurons’), receives

a set of spikes with firing times ti, i ∈ Γj . Any neuron generates at most one spike during the
simulation interval, and fires when the internal state variable reaches a threshold ϑ. The dynamics
of the internal state variable xj(t) are determined by the impinging spikes, whose impact is described
by the spike-response function ε(t) weighted by the synaptic efficacy (“weight”) wij :

xj(t) =
∑

i∈Γj

wijε(t− ti) (2.1)

The spike-response function in (2.1) effectively models the unweighted post-synaptic potential (PSP)
of a single spike impinging on a neuron. The height of the PSP is modulated by the synaptic weight wij

to obtain the actual post-synaptic potential. The spike-response function as used in our experiments
is defined in (2.3).

Figure 1: A) Feedforward spiking neural network B) Connection consisting of multiple delayed synaptic
terminals.

In the network as introduced in [35], an individual connection consists of a fixed number of m
synaptic terminals, where each terminal serves as a sub-connection that is associated with a different
delay and weight (figure 1B). The delay dk of a synaptic terminal k is defined by the difference between
the firing time of the pre-synaptic neuron, and the time the post-synaptic potential starts rising (cf.
figure 2A). For the sake of the calculations, we describe a pre-synaptic spike at a synaptic terminal k
as a PSP of standard height with delay dk. In effect, we thus obtain the unweighted contribution of
a single synaptic terminal to the state variable:

yk
i (t) = ε(t− ti−dk), (2.2)

with ε(t) a spike-response function shaping a PSP, with ε(t) = 0 for t < 0. The time ti is the firing time
of pre-synaptic neuron i, and dk the delay associated with the synaptic terminal k. The spike-response
function describing a standard PSP is of the form:

ε(t) =
t

τ
e1−

t
τ , (2.3)

modeling a simple α-function for t > 0 (else 0), and τ models the membrane potential decay time
constant that determines the rise- and decay-time of the PSP.

Extending (2.1) to include multiple synapses per connection and inserting (2.2), the state variable
xj of neuron j receiving input from all neurons i can then be described as the weighted sum of the
pre-synaptic contributions:

xj(t) =
∑

i∈Γj

m
∑

k=1

wk
ijy

k
i (t), (2.4)
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Figure 2: Connections in a feedforward spiking neural network: A) single synaptic terminal: the delayed
pre-synaptic potential is weighted the synaptic efficacy to obtain the post-synaptic potential. B) Two multi-
synapse connections. Weighted input is summed at the target neuron.

where wk
ij denotes the weight associated with synaptic terminal k (cf. figure 2B). The firing time tj

of neuron j is determined as the first time when the state variable crosses the threshold ϑ: xj(t) ≥ ϑ.
Thus, the firing time tj is a non-linear function of the state-variable xj : tj = tj(xj). The threshold ϑ
is constant and equal for all neurons in the network.

3. Error-backpropagation

We derive error-backpropagation, analogous to the derivation by Rumelhart et al. [41]. Equations
are derived for a fully connected feedforward network with layers labeled H(input), I(hidden) and
J(output), where the resulting algorithm applies equally well to networks with more hidden layers.

The target of the algorithm is to learn a set of target firing times, denoted {tdj}, at the output
neurons j ∈ J for a given set of input patterns {P [t1..th]}, where P [t1..th] defines a single input
pattern described by single spike-times for each neuron h ∈ H. We choose as the error-function the
least mean squares error function, but other choices like entropy are also possible. Given desired spike
times {tdj} and actual firing times {taj }, this error-function is defined by:

E =
1

2

∑

j∈J

(taj − tdj )
2. (3.1)

For error-backpropagation, we treat each synaptic terminal as a separate connection k with weight
wk

ij . Hence, for a backprop-rule, we need to calculate:

∆wk
ij = −η

∂E

∂wk
ij

(3.2)

with η the learning rate and wk
ij the weight of connection k from neuron i to neuron j. As tj is a

function of xj , which depends on the weights wk
ij , the derivative in the right hand part of (3.2) can

be expanded to:



3. Error-backpropagation 5

∂E

∂wk
ij

=
∂E

∂tj
(taj )

∂tj
∂wk

ij

(taj ) =
∂E

∂tj
(taj )

∂tj
∂xj(t)

(taj )
∂xj(t)

∂wk
ij

(taj ). (3.3)

In the last two right-handed factors, we express tj as a function of the thresholded post-synaptic input
xj(t) around t = taj . We assume here that for a small enough region around t = taj , the function xj

can be approximated by a linear function of t, as depicted in figure 3. For such a small region, we
approximate the threshold function as δtj(xj) = −δxj(tj)/α, with

∂tj
∂xj(t)

the derivative of the inverse

function of xj(t). The value α equals the local derivative of xj(t) with respect to t: α =
∂xj(t)

∂t
(taj ).

Figure 3: Relationship between δxj and δtj for an ε space around tj .

The second right-hand factor in (3.3) then evaluates to:

∂tj
∂xj(t)

(taj ) =
∂tj(xj)

∂xj(t)

∣

∣

∣

∣

xj=ϑ

=
−1

α
=

−1
∂xj(t)

∂t
(taj )

=
−1

∑

i,l w
l
ij

∂yli(t)

∂t
(taj )

. (3.4)

In further calculations, we will write terms like
∂xj(t)

∂t
(taj ) as

∂xj(t
a
j )

∂taj
. We want to remark that this

approximation implies that for large learning rates the algorithm might be less effective. We will
consider this issue in the application of the algorithm in section 4.1.

The first factor in the right hand of (3.3), the derivative of E with respect to tj , is simply:

∂E(taj )

∂taj
= (taj − tdj ). (3.5)

We also have:

∂xj(t
a
j )

∂wk
ij

=
∂{

∑

n∈Γj

∑

l w
l
njy

l
n(t

a
j )}

∂wk
ij

= yk
i (t

a
j ). (3.6)

When we combine these results, (3.2) evaluates to:
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∆wk
ij(t

a
j ) = −η

yk
i (t

a
j ) · (t

d
j − taj )

∑

i∈Γj

∑

l w
l
ij

∂yli(t
a
j )

∂taj

. (3.7)

For convenience, we define δj :

δj ≡
∂E

∂taj

∂taj
∂xj(taj )

=
(tdj − taj )

∑

i∈Γj

∑

l w
l
ij

∂yli(t
a
j )

∂taj

, (3.8)

and (3.3) can now be expressed as:

∂E

∂wk
ij

= yk
i (t

a
j )

∂E

∂taj

∂taj
∂xj(taj )

= yk
i (t

a
j )δj , (3.9)

yielding:

∆wk
ij = −ηyk

i (t
a
j )δj . (3.10)

Equations (3.8) and (3.10) yield the basic weight adaptation function for neurons in the output
layer.

We continue with the hidden layers: for error-backpropagation in other layers than the output layer,
the generalized delta error in layer I is defined for i ∈ I with actual firing times tai :

δi ≡
∂tai

∂xi(tai )

∂E

∂tai

=
∂tai

∂xi(tai )

∑

j∈Γi

∂E

∂taj

∂taj
∂xj(taj )

∂xj(t
a
j )

∂tai

=
∂tai

∂xi(tai )

∑

j∈Γi

δj

∂xj(t
a
j )

∂tai
, (3.11)

where Γi denotes the set of immediate neural successors in layer J connected to neuron i.

As in [7], in (3.11) we expand the local error
∂E(tai )

∂tai
in term of the weighted error contributed to

the subsequent layer J . For the expansion, the same chain rule as in (3.3) is used under the same
restrictions, albeit for t = ti.

The term
∂tai

∂xi(tai )
has been calculated in (3.4), while for

∂xj(t
a
j )

∂tai
:

∂xj(t
a
j )

∂tai
=

∂
∑

l∈I

∑

k wk
ljy

k
l (t

a
j )

∂tai

=
∑

k

wk
ij

∂yk
i (t

a
j )

∂tai
. (3.12)

Hence,

δi =

∑

j∈Γi δj{
∑

k wk
ij

∂yki (t
a
j )

∂tai
}

∑

h ∈ Γi

∑

l w
l
hi

∂yl
h
(tai )

∂tai

. (3.13)
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Thus, for a hidden layer and by (3.10),(3.11),(3.12) and (3.13), the weight adaptation rule compounds
to:

∆wk
hi = −ηyk

h(t
a
i )δi = −η

yk
h(t

a
i )

∑

j{δj

∑

k wk
ij

∂yki (t
a
j )

∂tai
}

∑

n∈Γi

∑

l w
l
ni

∂yln(t
a
i )

∂tai

. (3.14)

Analogous to traditional error-backpropagation algorithms, the weight adaptation rule (3.14) above
generalizes to a network with multiple hidden layers I numbered J − 1 . . . 2 by calculating the delta-
error at layer i from the delta-error in layer i+ 1, in effect back-propagating the error.

The algorithm derived above, termed SpikeProp, is summarized in the following table:

SpikeProp Algorithm

Calculate δj for all outputs according to (3.8)
For each subsequent layer I = J − 1 . . . 2

Calculate δi for all neurons in I according to (3.13)
For output layer J , adapt wk

ij by ∆wk
ij = −ηyk

i (tj)δj (3.10)
For each subsequent layer I = J − 1 . . . 2

Adapt wk
hi by ∆wk

ij = −ηyk
h(ti)δi (3.14)

4. The XOR-problem

In this section, we consider learning the exclusive-or (XOR) function as an elementary test of the
algorithm derived in section 3. The XOR function is a classical example of a non-linear problem that
requires hidden units to transform the input into the desired output.

To encode the XOR-function in spike-time patterns, we substitute a 0 with a “late” firing time and
a 1 with an “early” firing time. With specific values 0 and 6 for the respective input times, we use
the following temporally encoded XOR:

Input Patterns Output Patterns

0 0 → 16
0 6 → 10
6 0 → 10
6 6 → 16

The numbers in the table represent spike times, which we will denote in milliseconds for clarity. We
use a third (bias) input neuron in our network that always fired at t = 0 to designate the reference start
time (otherwise the problem becomes trivial). We define the difference between the times equivalent
with “0” and “1” as the coding interval ∆T , which in this example corresponds to 6ms.

For the network we used the feed-forward network described in section 2. The connections have a
delay interval of 15 ms; hence the available synaptic delays are 1− 16 ms. The PSP is defined by an
α function as in (2.3) with a decay time τ = 7 ms. We want to remark that larger values up to at
least 15 ms resulted in similar learning (see also section 4.1).

The network was composed of three input neurons (2 coding and 1 reference neuron), 5 hidden
neurons (of which one inhibitory neuron generating only negative sign PSP’s) and 1 output neuron.
Only positive weights were allowed. The results with this configuration are as follows: the network
reliably learned the XOR pattern within 250 cycles with η = 0.01, see also subsection 4.1. Note that
in order to “learn” XOR, some 16 x 3 x 5 + 16 x 5 x 1 = 320 individual weights had to be adjusted.

While testing the algorithm, we found that it was necessary to explicitly incorporate inhibitory and
excitatory neurons, with inhibitory and excitatory neurons defined by generating respectively negative
and positive PSP’s while maintaining positive weights. In fact, the Spikeprop algorithm would not
converge if the connections were allowed to contain a mix of both positive and negative weights. We
suspect that the cause of this problem lies in the fact that in the case of mixed weights, the effect
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of a single connection onto the target neuron is no longer a monotonically increasing function (as it
is for sufficiently large time-constants, see also the discussion in section 4.1). We remark that the
introduction of inhibitory and excitatory neurons is not a limitation on the Spikeprop algorithm: by
expanding the network in such a way that each excitatory neuron has an inhibitory counterpart, in
effect a mixed sign connection is implemented. In the experiments though, the inclusion of one or two
inhibitory neurons was sufficient to enable learning.

We also tested the network on an interpolated XOR function mapping f(x1, x2) : [0, 1]2 → [0, 1],
like in [30]. We encode this function temporally as f(t1, t2) : [0, 6]

2 → t3 : [10, 16], with times t1, t2
and t3 in milliseconds (figure 4A). Using 3 input, 5 hidden and 1 output neurons, 961 data-points from
this function were presented to the network. The result of learning with Spikeprop by the network is
shown in figure 4B. The network proved to be capable of learning the presented input with accuracy
of the order of the internal integration time-step of the Spikeprop algorithm: 0.1 ms (for the target
sum squared error of 50.0 the average error per instance was 0.2ms).

Figure 4: Interpolated XOR function f(t1, t2) : [0, 6]
2
→ [10, 16]. A) Target function. B) Network output

after training. The network reached the sum squared error-criterion of 50.0 after learning 12996 randomly
drawn examples from the 961 data-points.

In the interpolated XOR experiment with a spiking neural network, 9 spiking neurons are sufficient
for encoding the function. This in contrast to the observation in [30] where it was demonstrated that
in order to encode an interpolated XOR-function by rate-code within 10ms, a pool of some 200 spiking
neurons was required. A rate-code can be obtained within 10ms from sparsely spiking neurons (say
40Hz) by counting the number of spikes within a pool of neurons during the 10ms time-window (also
referred to as the instantaneous firing-rate).

4.1 Error gradient and learning rate

In this section, we consider the influence of the learning rate η and the time-constant τ on the learning
capabilities of the Spikeprop algorithm in a network of spiking neurons.

As noted in section 3, the approximation of the dependence of the firing time taj on the post-synaptic
input xj is only valid for a small region around taj . We found indeed that for larger learning rates
the probability of convergence decreased, although for learning rates up to 0.01, larger learning rates
were associated with faster learning times. This can be seen in figure 5, where the average number of
learning iterations required for the XOR function are plotted for a number of time-constants τ .
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Figure 5: Learning XOR: Average number of required learning iterations to reach the sum squared error
target (SSE) of 1.0. The average was calculated for those runs that converged.

In figure 6, the reliability of learning for different values of the time-constant τ is plotted. The
plot shows that for optimal convergence, the most reliable results are obtained for values of the time-
constant that are (somewhat) larger than the time interval ∆T in which the XOR-problem is encoded
(here: ∆T = 6).

The convergence graphs for different values of the coding interval ∆T are plotted in figure 7A-B and
show the same pattern. These results confirm the results as obtained by Maass in [28], where it was
shown theoretically that the time-constant τ needs to be larger than the relevant coding interval ∆T.
This observation with regard to parameter choice was also made for the benchmark results presented
in section 5: a substantial speedup and somewhat better results were obtained if the time constant τ
was slightly larger than the coding interval.

5. Other Benchmark Problems

In this section, we perform experiments with the SpikeProp algorithm on a number of standard
benchmark problems, notably the Iris-dataset, the Wisconsin breast-cancer dataset and the Statlog
Landsat dataset.

First however, we introduce a formal method for encoding input-variables into temporal spike-time
patterns by population coding. Although our simple and elegant, we are not aware of any previous
encoding methods for transforming real-world data into spike-time patterns and describe the method
in detail.
Encoding continuous input-variables in spike-times

When using larger datasets, a critical factor becomes the encoding of the input: as the coding interval
∆T is restricted to a fixed interval of the order of τ , the full range of the input can be encoded by either
using increasingly small temporal differences or alternatively by distributing the input over multiple
neurons. In our network simulation, the network state is iterated with a fixed time-step. Hence an
increased temporal resolution for some input-values imposes a computational penalty on the entire
network. Keeping to the biologically inspired approach, we also remark that cortical spike-times are
believed to be inherently noisy as they exhibit a ‘jitter’ in their spike times of the order of 1-2ms [31].
Hence an encoding that requires single spikes to have a higher temporal precision is implausible.

These arguments favor population coding, and we employed an encoding based on arrays of receptive
fields. This enables the representation of continuously valued input-variables by a population of
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Figure 6: Learning XOR: Number of runs out of 10 that converged.

neurons with graded and overlapping sensitivity profiles, such as gaussian activation functions (the
receptive fields, RF’s). This encoding constitutes a biologically plausible and well studied method for
representing real valued parameters [17; 4; 51; 52; 45; 44]. To encode values into a temporal pattern, it
is sufficient to associate highly stimulated neurons with early firing times and less stimulated neurons
with later (or non) firing times, the extension to temporal coding is straightforward

We independently encode the respective input variables: each input-dimension is encoded by an
array of 1-dimensional receptive fields. Improved representation accuracy for a particular variable can
then be obtained by sharpening the receptive fields and increasing the number of neurons [52]. Such
an encoding has been shown to be statistically bias-free [4] and in the context of spike-time patterns
it has been applied successfully to unsupervised learning problems [8].

In our experiments, we determined the input ranges of the data, and encoded each input variable
with neurons covering the whole data-range. For a range [In

min . . . In
max] of a variable n, m neurons were

used with gaussian receptive fields. For a neuron i its center was set to In
min+i ·

{Inmax−Inmin}
m−2 and width

σ = β
{Inmax−Inmin}

m−2 . For β, values between 1.0 and 2.0 were tried, and for the reported experiments a
value of 1.5 was used as it produced the best results. For each input pattern, the response values of
the neurons encoding the respective variables were calculated, yielding n x m values between 0 and
1. These values were then converted to delay times, associating t = 0 with a 1, and increasingly later
times up to t = 10 with lower responses. The resulting spike-time were rounded to the nearest internal
time-step, and neurons with responses larger than t = 9 were coded to not fire, as they are considered
to be insufficiently excited. The encoding of a single input-value a by receptive field population coding
is depicted in figure 8.

Output classification was encoded according to a winner-take-all paradigm where the neuron coding
for the respective class was designated an early firing time, and all others a considerably later one,
thus setting the effective coding interval ∆T . A classification was deemed correct if the neuron that
fired earliest corresponded to the neuron required to fire first. To obtain a winner in the case where
multiple neurons fired at the same time step, a first-order approximation to the real-value firing time
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Figure 7: Number of runs out of 10 that converged for different values of τ . A) For a coding interval t = 0 . . . 3,
[0, 3]2 → [7, 10]. Target was an SSE of 0.7. B) For a coding interval t = 0 . . . 10, [0, 10]2 → [15, 25]. Target
was an SSE of 3.0.

was performed based on the current and previous membrane-potentials.
The temporal encoding of input-variables thus obtained has two important properties: by assigning

firing times to only a small set of significantly activated neurons we achieve a sparse coding, allowing for
an efficient event-based network simulation as in [14]. Also, by encoding each variable independently,
we achieve a coarse coding where each variable can be encoded by an optimal number of neurons.

We tested our framework on several benchmark problems. The temporal encoding introduced above
is used for the conversion of the datasets to translate them into temporal patterns of discrete spikes.
Iris dataset

The Iris data-set is considered to be a reasonably simple classification problem. It contains three
classes of which two are not linearly separable. As such, it provides a basic test of applicability of
our framework. The dataset contains 150 cases, where each case has 4 input-variables. Each input
variable was encoded by 12 neurons with gaussian receptive fields. The data was divided in two sets
and classified using two-fold cross-validation. The results are presented in table 5. We also obtained
results on the same dataset from a sigmoidal neural network as implemented in Matlab v5.3. As
the input is preprocessed in the same way, both error back-propagation methods can be compared
directly. The results are highly comparable, as they are also for the other benchmark datasets.
Wisconsin Breast Cancer data-set

The breast cancer diagnosis problem is described in [50]. The data is from the University of Wisconsin
Hospitals and contains 699 case entries, divided over benign and malignant cases. Each case has nine
measurements, and each measurement is assigned an integer between 1 and 10, with larger numbers
indicating a greater likelihood of malignancy. A small number of cases (16) contain missing data. In
these cases, the neurons coding for the missing variable did not fire at all. For our experiment, we
encoded each measurement with 7 equally spaced neurons covering the input range. The dataset was
divided in two equal parts, and we used two-fold cross-validation. The results are summarized in table
5. The results as we obtained them are comparable with values reported in literature for BP learning
on this dataset: for instance, in a benchmark study by Roy, Govil and Miranda [38] on an earlier
version of this dataset containing 608 cases an error-rate of 2.96% was obtained on the test-set, using
a multi-layer-perceptron with standard error-backpropagation learning.
Landsat data-set
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Figure 8: Input value a encoded by 8 broadly tuned activation functions. The resulting encoding is
marked by the black dots for a number of input neurons (Ti).

To test the algorithm’s performance on a larger data-set, we investigated the Landsat dataset as
described in the StatLog survey of machine learning algorithms [34]. This dataset consists of a
training set of 4435 cases and a test set of 2000 cases and contains 6 ground cover-types (classes).
For classification of a single pixel, each case contains the values of a 3x3-pixel patch, with each pixel
described by 4 spectral bands, totaling 36 inputs per case. For the classification of the central pixel,
we averaged the respective spectral bands in the 3x3 patch and then encoded each separate band with
25 neurons. Results are shown in table 5. The results obtained by the Statlog survey are summarized
in table 2.

Again, the results with SpikeProp are similar to the Matlab BP results, though even for twice the
number of iterations, the Matlab BP results are somewhat worse. Compared to the best machine
learning methods as reported in [34], the SpikeProp results are nearly identical to those reported for
traditional BP, even though we reduced the input-space 9-fold by taking as input the average of 3x3
pixel environment. Note though that in [34] the Multi-Layer-Perceptron BP results lag other ML
methods for this particular classification problem. After extended learning however, the traditional
BP method as implemented in Matlab produces results that are significantly better than the reported
values in [34] for MLP-BP learning. Such extended learning was not feasible for the SpikeProp
algorithm due to time-constraints, although the results showed increasing classification accuracy with
extended learning.

From the results shown, we conclude that the application of the SpikeProp algorithm on temporally
encoded versions of benchmark problems yielded very similar results as compared to those obtained
from traditional BP on sigmoidal neural networks. Typically, less learning epochs were required with
SpikeProp, however, in single epoch 16 times more weights were modified offsetting this advantage.
The results reported for the default Matlab BP routine were comparable or better as compared to
those reported in literature, validating the generality of this conclusion.

6. Discussion

Computational Implications

The results obtained for the XOR-problem show that our SpikeProp algorithm works reliably when
used with smaller learning rates and time constants that are larger than the coding interval. The results
hence demonstrate that in order to reliably learn patterns of temporal width ∆T, the time-constant
used to define the PSP is critical: as predicted on theoretical grounds in [28], this time-constant has
to be larger than the pattern that is being learnt.
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Iris dataset
algorithm inputs hidden outputs iterations training-set error testset
SpikeProp 50 10 3 1,000 97.4% ± 0.1 96.1% ± 0.1
Matlab BP 50 10 3 3,750 99.0% ± 0.1 95.7% ± 0.1

Wisconsin Breast Cancer dataset
algorithm inputs hidden outputs iterations training-set error testset
SpikeProp 64 15 2 1500 97.6% ± 0.2 97.0% ± 0.6
Matlab BP 64 15 2 3,500 97.7% ± 0.3 96.7% ± 0.6

Statlog Landsat set
algorithm inputs hidden outputs iterations training-set test-set
SpikeProp 101 25 6 60,000 87.0% ± 0.5 85.3% ± 0.3
Matlab BP 101 25 6 110,078 83.6% ± 1.3 82.0% ± 1.5
Matlab BP 101 25 6 1,108,750 91.2% ± 0.5 88.0% ± 0.1

Table 1: The Iris data set was split into two sets of 75 items each for cross-validation. The Matlab BP
routine was run for 50 epochs, or 1500 iterations. The Wisconsin Breast Cancer dataset was split in two for
cross-validation. The Matlab BP routine was run for 10 epochs, or 3500 iterations. For the Statlog Landsat,
the Matlab BP routine was run for 25 epochs, or 100,00+ iterations as well as for 250 epochs, or 1,000,000+
iterations. All results are averaged from 10 runs on each cross-validation set, with the exception of the Landsat
database where no cross-validation was used (as in the original Statlog experiment). The experiments were run
with a coding interval of 4ms and a time constant τ of 7ms in order to reduce learning time. The learning rate η
was set to 0.0075. Error-backpropagation in a 3-layer MLP was simulated with the Matlab v5.3 “TRAINLM”
routine.

Statlog data
method error training-set error test-set
BackProp 88.8% 86.1%

RBF 88.9% 87.9%
k-NN 91.11% 90.06%

Table 2: Benchmark results on Landsat database from literature. The k-Nearest Neighbor algorithm is
mentioned as it provided the best classification of all methods examined in the Statlog survey.
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For machine learning purposes, the event nature of spikes allows for very efficient implementations
of spiking neural networks (e.g. [14; 33]), especially in the case of sparse activity as achieved by
the channel encoding (section 5). Our current implementation of the algorithm is computationally
somewhat intensive as we simulate the temporal evolution of the system with a large number of (small)
time-steps. Switching to an event based system however should enhance system performance.

The number of learning iterations used in our simulation was comparable to those required in BP
learning in Multi-Layer-Perceptrons (MLP) of the same pre-processed datasets. It has to be noted that
we also did not exhaustively consider this issue in terms of parameter tuning. The time for a single
learning iteration was clearly longer, as in the simulations each connection consisted of 16 delayed
terminals each with their own weight. Hence the number of weights that needed to be tuned in any of
the experiment was quite large. Qualitatively we remark that convergence in our network seemed to
be more reliable as compared to BP: in experiments with spiking neural networks on the real-world
datasets, we experienced no convergence failures of the SpikeProp algorithm, whereas the comparative
BP-MLP experiments occasionally did (<10%). Research along the lines of optimal parameters would
be a logical step for future investigations.

Given the explicit use of the time domain for calculations, we believe that a network of spiking
neurons is intrinsically more suited for learning and evaluating temporal patterns than sigmoidal
networks, as the spiking neural network is virtually time-invariant in the absence of reference spikes.
Applications of this type will be the subject of future research; a first application of the SpikeProp

algorithm using this feature has been implemented in a handwritten-character recognition task. In
this task, the spiking neural network was able to get better recognition rates for a subset of characters
as compared to simple statistical methods [36].

Biological Implications

Within the broader connectionist community, the real-valued output of a neuron is generally assumed
to be its average firing-rate. In spite of the success of this paradigm in neural network modeling and
the substantial electrophysiological support, there has been an increasing number of reports where
the actual timing of action potentials (spikes) carries significant information (e.g., in the bat [25],
the barn owl [12] and the electric fish [23]). Indeed, a respectable amount of neurophysiological evi-
dence suggests that such neuronal activation with millisecond precision could be linked with dynamic
neurocognitive information processing [1; 3; 24; 11; 16].

Besides the reports of remarkably precise firing times of individual neurons, the actual number of
spikes available for neuronal processing has been calculated to be rather small in some cases: psy-
chophysical experiments by Thorpe, Fize and Marlot [47] suggest that complex neuronal information
processing can be achieved in under 10ms per synaptic stage, or less than one spike per neuron.

Given these considerations, attention has been given to the possibility of (additional) information
coding in the timing of individual action potentials [6; 46; 1]. This could more easily achieve fast
information transfer [48; 32] and would be cheaper in terms of neuron count. Biological evidence is
emerging that suggests that delay-based temporal coding is actively employed in the cortex, e.g. [2;
26; 5; 9].

Against the coding of information with a temporal code on very short time-scales, it has been argued
that this is unlikely due to the relatively long time constants of cortical neurons. The theoretical work
by Maass [28] already refuted this notion (as also argued in [15]), but the results presented here
clearly demonstrate that networks of spiking neurons with biologically plausible (relatively long) time
constants are capable of performing complex non-linear classification for spike times encompassing a
temporal coding intervals up to this time-constant. Indeed, the XOR results suggest that short time
constants impede the integration of information over time-periods longer than this value.

In the case of fast processing of information, we have demonstrated that delay-based temporal
coding can be an order of magnitude more efficient than rate coding in terms of spiking neurons
required, as demonstrated in the interpolated XOR example. Due to the all-or-none nature of the
action potentials generated by individual neurons, a rate-code on a time scale of 10ms is only available
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to downstream neurons by deriving the instantaneous firing rate from a population of neurons activated
by the same stimulus. This is problematic to achieve, as it has been noted that a reliable estimation of
the instantaneous firing rate on a time-scale of 10 ms requires on the order of 100 pooled neurons [30;
42], whereas it has also been reported that pooling the activity of more than 100 neurons does not
increase accuracy due to correlated input noise [43]. Especially in cases where quick responses are
vital and neurons come at a premium, the neural economy of temporal coding would constitute an
important advantage.

7. Conclusion

In this paper, we derived a learning rule for feedforward spiking neural networks by back-propagating
the temporal error at the output. By linearizing the relationship between the post-synaptic input and
the resultant spiking time, we were able to circumvent the discontinuity associated with thresholding.
The result is a learning rule that works well for smaller learning rates and for time-constants of
the post-synaptic potential larger than the maximal temporal coding range. This latter result is in
agreement with the theoretical predictions.

The algorithm also demonstrates in a direct way that networks of spiking neurons can carry out
complex, non-linear tasks in a temporal code. As the experiments indicate, the SpikeProp algorithm
is able to perform correct classification on non-linearly separable datasets with accuracy comparable
to traditional sigmoidal networks, albeit with potential room for improvement.
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