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Abstract

An extension of Dijkstra’s guarded command language is studied, including sequential com-
position, demonic choice and a backtrack operator. We consider three orderings on this
language: a refinement ordering defined by Back, a new deadlock ordering, and an approxi-
mation ordering of Nelson. The deadlock ordering is in between the two other orderings. All
operators are monotonic in Nelson’s ordering, but backtracking is not monotonic in Back’s
ordering and sequential composition is not monotonic for the deadlock ordering. At first
sight recursion can only be added using Nelson’s ordering. By extending the theory of fixed
points in partial orderings we show that, under certain circumstances, least fixed points for
non monotonic functions can be obtained by iteration from the least element. This permits
us the addition of recursion even using Back’s ordering or the deadlock ordering. In order
to give a semantic characterization of the three orderings that relates initial states to possi-
ble outcomes of the computation, the relations between predicate transformers and discrete
powerdomains is studied. Three powerdomains are considered: two versions of the Smyth
powerdomain and the Egli-Milner powerdomain. For each of them an isomorphism is proved
with a suitable domain of predicate transformers.
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1 Introduction

The weakest precondition calculus of Dijkstra identifies statements in the guarded command
language with weakest precondition predicate transformers (see [Dij76]).

The language was extended to use it as a vehicle for program refinement. Specification constructs
were added and a refinement ordering was defined. This approach was introduced in [Bac78,
Bac80] and is suited for refinement (see [BvW90, Bac90] and also [MRG88, Mor87]). This
ordering can be used to add recursion to the language, but not in a fully compositional way. For
example, for each set of guards there is a different conditional command.

An early treatment of recursion, depending on continuity, was given in [dR76], and a more
detailed treatment was given in [Heh79] and [Bak80]. Inspired by this last work, recursion was
added in a fully compositional way by Nelson in [Nel87]: the guarded command language was
embedded in a language with sequential composition, demonic choice and a backtrack operator
in which the operators can be used freely. An ordering is given for which the operators are
all monotonic. This ordering is an approximation ordering of the kind used in denotational
semantics and does not seem to be suited for refinement. It is defined with the additional notion
of weakest liberal preconditions.

A different approach for the addition of recursive procedures is to consider fixed point equations
over predicates instead of recursion over predicate transformers, (see a discussion in [Nel87]) but
this approach is not considered here.



Our starting point is the language of [Nel87]. In this language we also have a form of infinite
behaviour (a loop construct) and atomic actions that can deadlock (to initiate backtracking).
We guide the intuition by giving a compositional semantic model for this language that relates
initial states to possible outcomes and prove this model equivalent to the weakest precondition
model.

Then we consider three orderings; besides the orderings of Back and Nelson we define a new
ordering in between. This ordering was derived from an ordering which we used for refinement of
PROLOG programs. It is called deadlock ordering because it preserves deadlocks as can be seen
from the semantic characterization of the deadlock ordering. In terms of refinement: a normal
(non-miraculous) terminating statement is not refined by a miracle in the deadlock ordering.
Also, Back’s ordering is semantically characterized by relating it to the semantic model.

Only Nelson’s ordering is monotonic with respect to all three operators, in fact the backtrack
operator is not monotonic with respect to Back’s ordering and the sequential composition is not
monotonic for the deadlock ordering. At first sight only Nelson’s ordering seems to be suited to
add recursion to the full language. But the fact that for Nelson’s ordering all the operators are
monotonic implies that also recursion can be added with the other two orderings.

In order to show this we extend the fixed point theory. It is well known that a monotone and
continuous function from a complete partial order to itself has least fixed point that can be
obtained by iteration from the least element. This result was extended at first by Hitchcock
and Park [HP72] showing that for a function from a complete partial order to itself is enough
to be monotone in order to have a least fixed point. Then Apt and Ploktin [AP81],[AP86] have
shown that the least fixed point property can be transferred, via a commutative diagram, to
monotone functions from a partial order to itself. The use of commutative diagrams to transfer
fixed point properties from a domain to another has been explored in detail in Meyer [Mey85].
Finally, here we show that the least fixed point property can be transferred, via a commutative
diagram, also to functions (even non monotone) from a partial order to itself. This last result
implies that for both Back’s and the deadlock ordering the standard operator associated to a
declaration of recursive procedures has a least fixed point that can be obtained by iteration from
the least element. It also gives the correct result because it is related to the least fixed point
with respect to Nelson’s ordering.

Next we provide a semantic characterization of the three weakest precondition models based on
a denotational semantic model for the language that relates initial states to possible outcomes of
the computation. We start from the well known duality theory connecting the discrete version
of the Smyth powerdomain [Smy78| and the Dijkstra’s predicate transformers [Wan77, Plo79,
Smy83, Bes83, AP86]: there is an order isomorphism between functions from a set of states
to the Smyth powerdomain (ordered pointwise) and the predicate transformers (ordered by a
refinement order).

The presence of a backtrack operator in our language justifies the introduction of two different
versions of the Smyth powerdomain in which a constant representing the deadlock is added in
two different way. Thus, we extend the duality theory described above to these two versions of
the Smyth powerdomain giving in this way a semantic characterization for the Back and the
deadlock orderings. A similar result is also proved for the Egli-Milner powerdomain (extended
with the empty set too, in in order to treat deadlock) showing an isomorphism between the Egli
Milner state transformation and the Nelson’s predicate transformers like is done in [Nel87].



2 Language and Semantics

We first introduce the language. We use the notation (d €)Dom to introduce the domain Dom
and a typical element d of this domain. Composition of functions is denoted by the circle o,
while function application is denoted by . and associates to the left:

fgz=(f.9)=

We use the currying convention that a function with more than one argument is treated as a
function of the first argument which yields a function of the remaining arguments.

Let (v €) Var be a set of variables, let (¢ €)IEzp be a set of integer expressions, and let (b €)BEzp
be a set of boolean expressions. Then the set (S €)Stat is defined by

S = v:i=t|b— |loop| S1; S| 5105, | 518,.

This language has three operators: the sequential composition ; , the demonic choice O, and the
backtrack operator <.

The sequential composition execute the first component and then execute the second. The de-
monic choice executes the first or the second component while the backtrack operator backtracks
to its second component if its first component deadlocks. The only atomic action that can dead-
lock is b —: it deadlocks in a state in which the boolean expression b does not evaluate to true.
A form of infinite behaviour (the loop-statement) is added to the language to distinguish differ-
ent orderings on the language. A similar language is studied in [Nel87]: the only difference is
that we have split actions as in [Hes89] in the sense that we consider as atomic actions both the
assignment actions v := ¢ and the test actions 6 —. To guide the intuition about this language
we give an operational semantic model below that relates initial states with possible outcomes
of the computation.

Dijkstra’s guarded command language [Dij76] can be seen as a subset of this language, except for
the do—od-construct which will be handled when we add recursion. For example, the conditional
command if b — S10by — S, fi can be expressed as the statement (b — ; 510by — ; S2)loop.
More general derived statements are if S fi = Sloop, skip = true —, abort = loop, and
magic = false —.

Next we turn to the operational semantic model. The set of states (¢ €)X is given by the
function space ¥ = Var — N.

A state is a function that yields an integer for each variable in Var. We assume that we can
consider integer expressions ¢ as functions that given a state o yield an integer t.0. The same
applies to boolean expressions b.

We introduce a set of extended statements (m €)Stat to treat backtracking in a transition
system:

m = S| mA(my,0),
where S € Stat and o € . After the next definition we give some more explanation.

Definition 2.1 Let Conf = (Stat U{E}) x (2 U {d}) be a set of configurations, and define a
transition relation — C Conf x Conf to be the least relation satisfying the following azioms
and rules:



(v:i=t,0) — (E,olt.o/v])
(b—,0) — (E,0) ifbo

(b —,0) — (E,8) ifnotb.o
(loop, o) — (loop, o)

(m1,0) — (F, ) (mi,0) — (M| B, o)
<m1§m2a0> - <E76> <m1;m2,0> — <m{;m2|m2,0'>

(m1,0) — (E,8) N (mg,0) — (E,¥§)
(mOmy,0) — (F, )

(my,0) — (my|E, o) (my,0) — (my|E, o)
(m10mg,0) — (m!|E, o) (myOmy, ) — (m{|E,d’)

(m,0) — (E,8) N (my,0) — (E,0)
(m1Omy,0) — (K, 6)

<m170> - <E76> A <m270> - <mé|an'l> <m1a0> —_ <m{|E,a">
(mOmg, o) — (my|E, o) (m1Omg, o) — (miA(me,0)|E, 0)
(my,0) — (E,8) A (mg,0') — (E,§)
(mA(mg,0"),0) — (E,§)
(m1,0) — (E,6) A (my,0') — (m3|E, ") (m1,0) — (m| B, o')
(mA(mg,0"),0) — (m4|E, ") (m1A(mg, 0"),0) — (m]A(mq,0")|E, o)

In the definition above o[t.0/v] denotes the state

(a[t.o/v]).v' = { to ifv=r1'

o.v otherwise.

Furthermore (m;|FE, o) is an abbreviation for the two alternative configurations (m;, o) and
(E, o). Intuitively, (my, o) — (m], o’} states that one step of execution of the statement m; in
the state o leads to a state o’ with m| being the remainder of m; to be executed.

Definition 2.2 We say that m can diverge from o, denoted by (m,o) 1, if there ezists an
infinite sequence of configuration c; such that

(Vi>0 : ¢ — ciy1),

where cg = (m, o). We also say that m cannot diverge in o ( denoted by (m, o) |) if not (m,o) 1.
By ¢ —* ¢’ we denote that there exists a finite sequence

!
C—Cl " Cp —C.

For each statement in Stat we can now define its operational semantics:

Definition 2.3 Let the function Op : Stat — (X — P.XU X, )! defined by:

!5, denotes the set TU {1}



B ¥ ’Lf(S,O')T
Op.5.0= { {;’|<S,0> —*(E,0') } otherwise.

The definition of the function Op explains why O is called demonic choice: if there is the
possibility of infinite behaviour (S can diverge) then it will be chosen. Next we discuss the
backtrack operator <. If we execute the statement S;<.S; in a state o then we look if we can do
a step from S; (that possibly changes o say in 0') and we remember the starting state o changing
< in A. If this computation deadlocks at a later stage, then we still have the alternative Sy left
reinstalling the state o. For example, consider the statement (z :=1;2=0— ;2 :=2)Cz:=3
and let o € ¥ such that 0.z = 0. Then we have:

((z:=1,2=0—;2:=2)0z = 3,0) — ((z

where ¢’.z = 1, and also

(z
=0

= 0 —, ag
— T =
Therefore

(z:=2;2=0—;2:=2)02:=3,0) —* (E,0”).
To give some more feeling for this transition system we give the following examples of equalities
between statements (an equality S; =g, S2 between two statements denotes that S; and S; have
the same operational semantics, that is, Op.S1 = Op.S3): For all S € Stat we have

(false — OS) =g, (SOfalse —) =g, S, (loop0S) =0, (STloop) =0, loop,

(false — &S5) =0, S, (loop$S) =0y loop,

(false — ; S) =, false —, (true — ; S) =g, (5; true —) =g, S,

(loop; S) =0, loop.
As a second step we define the weakest precondition semantics and relate it to the model Op.

Let B = {tt, ff} be the boolean set and (P, Q €)Pred = ¥ — B be predicates. With every
predicate we can associate a set {o|P.o = {t}.

Definition 2.4 (weakest precondition) Let
wp : Stat — (Pred — Pred)
be defined as follows:

wp.b— . Q=0b0=Q



wp.v = t.Q = Q[t/v]
wp.loop.Q) = false
wp.S1; S2.Q = wp.S1.(wp.S52.Q)
wp.51085.Q = wp.S51.Q N\ wp.S2.Q
wp.51<°52.Q = wp.51.Q A (wp. S false = wp.S,.Q).
(In this definition Q[t/v] denotes syntactic substitution in @ of ¢ for v.) It is not difficult to

prove that for any statement S the predicate transformer wp.S is monotonic with respect to =:
we have that if P = @ then wp.5.P = wp.5.Q.

The following theorem relates the weakest precondition semantics with the operational semantics
as in [Bak80]; at first let us generalize predicates P from ¥ to (P.X U X, ) by P. L= false and
PX=(NoeX:P.o).

Theorem 2.5 Let S € Stat and P € Pred. Then

wp.S.P = {o|P.(Op.S.0)}.

The proof is given in the appendix. The theorem above gives us the following operational
characterizations of some interesting weakest preconditions:

Corollary 2.6 For all the statement S we have:
1. wp.S false = {¢|0p.5.0c = 0},
2. (—wp.S false A wp.S.true) = {¢|Op.S.c #L A Op.S.c # 0},
3. (~wp.S.true) = {o|Op.S.0 =1}.

Furthermore, we have the following relation between the operational semantics and the weakest
precondition semantics:

Corollary 2.7 Let 51,5, € Stat and P € Pred. Then

Op.51 = 0p.S2 & (VP : wp.51.P = wp.5,.P).

3 Orderings

In this section we introduce three relations on Stat; they are pre-orders, but using Corollary 2.7
they are partial orders when we identify statements with the same operational semantic Op.
We start by two orderings that can be defined by means of weakest preconditions. The first
ordering C g was proposed by Back [Bac78, Bac80] and is suited for refinement (see [Bac90] and
also [Mor87, MRG88|). The second ordering Cp is a new ordering which preserves deadlocks
(as we show below when we give a semantic characterization of the two orderings).



Definition 3.1 Let Cp,Cp be two orderings on Stat defined as follows:
e S51CpSeif (VQ:wp.51.Q = wp.5:.Q),

e S5 Cp Sy wp.Si.false = wp.5;.false A
(VQ : (wp.51.Q A ~wp.S; false) = (wp.S2.Q A —wp.Sy.false)).

For the third ordering we need the additional notion of weakest liberal precondition.
Definition 3.2 (weakest liberal precondition) Let

wlp : Stat — (Pred — Pred)
be defined by

wlp.b - .Q=5b6=Q

wlp.v :=t.Q = Q[t/v]

wlp.loop.Q) = true

wlp.S1; S2.Q = wip.S1.(wlp.S2.Q)

wlp.51055.Q = wlp.51.Q N wlp.S5.Q

wlp.51082.Q = wip.51.Q N (wp.S;.false = wlp.S5.Q).

Note that the weakest liberal precondition differs from the weakest precondition only in the

definition of wlp.loop and wilp.5,< 5. The next lemma relates wp and wip:

Lemma 3.3 Let S € Stat and Q € Pred. Then

wp.S.Q & (wp.S.true A wlp.5.Q).

Since wp is monotone we have wp.5.Q = wp.S.true, and hence by the theorem above also
wp.S.Q = wlp.5.Q. Now we can give a third ordering which was introduced by Nelson in

[Nel87].

Definition 3.4 Let Cy be the ordering on Stat defined as follows:
S1Cn Sy df (VQ:wp.51.Q = wp.52.Q A wlp.52.Q = wlp.51.Q).

The three orderings can be related as follows:

C C
Theorem 3.5 Cy # Cp # Cp.

Proof The inequalities follow from



e v:=1LCp (false —) but v:=1[p (false —),
e (v:=10v:=2)Cpov:=2 but (v:=10v:=2)Ly v :=2.

(Cy C Cp) Take two arbitrary statements S7, .Sy and a predicate Q. Assume that S; Cy Sy
and (wp.51.Q A —wp.S; .false). We prove (wp.S2.Q A —wp.S,.false):

(wp.51.Q A ~wp. 5 .false)

= { lemma 3.3, wp.5; .false = (wp.S;.true A wip.S5; .false) }
wp.51.Q A (—wp.S1.true V —wlp.S; false)

= { Monotonicity wp.S;, @ = true, wp.5;.Q = wp.S;.true }

wp.51.Q A (~wp.51.Q V ~wlp. 5 false)

(wp.51.Q N —~wp.51.Q) V (wp.51.Q N —wlp. 5 .false)

false vV (wp.51.Q A —wlp. 5 false)
= { (VP :false = P) }
(wp.51.Q N —wlp. 5 false)
= {51 En Sz}
wp.Se. Q. A ~wlp.Sy . false
= {(VS,Q : wp.5.Q = wlp.5.Q)}
wp.Ss. Q. A ~wp.Sy.false.

(Cp C Cp) Take two arbitrary statements S;, S; and a predicate (. Assume that S; Cp Sy
and wp.S1.Q. We are going to prove wp.S5s.Q.

wp.S1.Q

(wp.51.Q A wp.S; .false) V (wp.51.Q A —wp. S, .false)
= { Monotonicity wp.S;: wp.S;.false = wp.51.Q }
wp.S; .false V (wp.51.Q A —wp.S; .false)

= {5 Cp S5}



wp.Ss.false V (wp.S3.Q A —wp.Sy.false)
= { Monotonicity wp.Sy: wp.Ss.false = wp.5>.Q }

(wp.S2.Q N wp.S,.false) V (wp.S3.Q A —wp.Sy.false)

wp.Ss. Q.

We have the following problems with monotonicity of the orderings Cg and Cp:
(true —) Cp (false —) but (true —)Cv:=1[Zp (false —»)Ov =1,
(v:=100v:=2)Cpv:=2 but (v:=100v:=2);(v=1-)Ep v:=2;(v=1-).
Theorem 3.6 We have for all statements Sy, Sz, 5], S € Stat:

1. $1Cg S A S{Cp S5 = (Vop € {;,0}: S10pS] Cp S20pS3),
2. S1Cp SaANS{Cp Sy = (VYop € {O,O}: S10pS; Cp S20p853),

3. S1Cn SaAS] Cy S5 = (Yop € {;,0,0}: S10pS] Cy S20pSs).

Proof For the orderings Cp and Cy we refer to [BvyW90] and [Nel87], respectively. It remains
to prove the result for Cp:

e The operator O is monotone:
wp.S5;08] false
= {definition of wp}
wp. Sy .false A wp.S] .false
= {S1Cp Sz and S| Cp S}

wp. S, .false A wp.S;.false

wp.S», 08, false.
Moreover, we have:
wp.5105].Q A ~wp.5;08] false

= {definition of wp}

10



wp.51.Q A wp.S1.Q A (~wp.S; .false V ~wp. 5] .false)

(wp.51.Q A ~wp.S; false A wp.S;.Q) V (wp.S1.Q A wp.S].Q A ~wp. 5] .false)
= {5 CpSyand S5{Cp S;and CpCLp }

(wp.S2.Q A —wp.Sy.false A wp.5;.Q) V (wp.S2.Q A wp.S,5.Q A —wp.S;.false)

wp.S9.Q A wp.S5.Q A (~wp.S,.false V ~wp.S5.false)

wp.S2085.Q A ~wp.S»05,.false.
e The operator < is monotone:
wp.51< 5] false
= {definition of wp and =}
wp. Sy .false A ((wp. S .false A wp. 5] .false) V —wp.S; false)
= { calculation }
wp.S; .false A wp. 5] .false
= {S1Cp Syand S{Cp 53 }

wp.Sy.false A wp.S;.false

wp.Sy.false A ((wp.S2.false A wp.S;.false) V —wp.S,.false)

wp. 59 S, false.
Moreover, we have:
wp. 51 57.Q A ~wp. SO S false
= {definition of wp and =}
wp.51.Q A ((wp.S;.false A wp.S;.Q) V ~wp.S; .false)A

(~wp. S false V (wp.5; .false A ~wp. S .false))

11



= { calculation }
(wp.S1.Q A ~wp.S; false) V (wp.S1.Q A wp.S; .false A wp.S7.Q A —~wp.S] false)
= {S1CpSyand S{Cp S; and CpCLp }

(wp.S2.Q A ~wp.S.false) V (wp.Sz.Q A wp.Ss.false A wp.S;.Q A —~wp.S;.false)

wp.S9.Q A ((wp.Ss.false A wp.S;.Q) V ~wp.S,.false)A

(~wp.Sy.false V (wp.5,.false A ~wp.S;.false))

wp. 52 S5.Q A —wp. Sy S, false.

a

If we do not allow O as an operator in the set of statements then all statements .S’ are deterministic
(that is, Op.S.c € X U{L} or Op.S.0c = 0 for all states o). For this deterministic subset of
Stat the ordering Cp is monotone. This subset with sequential composition and the backtrack
operator has a close correspondence with the language PROLOG. The ordering Cp can be used
as a refinement relation for PROLOG programs and we hope to return to this connection in
future work.

4 Order Theory

In this section we provide the mathematical basis for the next section. We give some general re-
sults on fixed points and we show that under particular conditions they can be obtained (even by
iteration) also for non-monotonic functions. Moreover, we give some relationships between dis-
crete powerdomains and predicate transformers, generalizing ideas of [Wan77],[Plo79], [Bes83],
[Smy83], and[AP86]. Most of the standard notions on domain Theory can be found, for example,
in [Plo81].

Let P a partial order and A a nonempty subset of P. Then A is said to be directed if ev-
ery finite subset of A has an upper bound. P is a complete partial order (cpo) if there exist a
least element | and every directed subset A of P has least upper bound (lub) || A. Moreover,
we have that A is an antichain of P if and only if (Va, b€ A : a CbVDOLC a = a=0>); an
antichain A is an upper fringe of P if and only if (Vo € P\AVa € A : z C a); and an antichain
A is a lower fringe of P if and only if (Ve € P\AVa € A : aC z).

For example, for any set X, the flat complete partial order X, is the set X U {1} ordered
by 2 C y < z =L or ¢ = y. Then all the subsets of X, and {1} are antichains, the set X is
the only upper fringe and {L} is the only lower fringe.

Lemma 4.1 Let P be a partial order. If A is an upper (lower) fringe of P then it is unique.

12



Proof Assume B is another upper (lower) fringe of P different from A. Being A and B upper
(lower) fringes they are non-empty by definition, thus there are only two possibilities:

i) there is an element b € B but b ¢ A.
Take an @ € A. We have b C a(a C b) because A is an upper (lower) fringe. But also B
is an upper (lower) fringe thus either a € B and hence a = b because an upper fringe is
an antichain, or ¢ ¢ B and hence a C b that implies ¢ = b. But this contradicts b ¢ A.

ii) there is an element @ € A but a ¢ B.
As above.

a

Note that if the partial order P is finite then every antichain of P is finite too. Moreover,
if P has a top element z then clearly {z} is the finite upper fringe of P, and similarly if P has
a bottom element y then {y} is the finite lower fringe of P.

Let P, @ be two partial orders. A function f : P — @ is monotone if for all z,y € P with
z Cp y we have f.z Cg f.y. Moreover, f is continuous if for each directed subset A of P with
least upper bound | | A we have f.(|JA) = LI(f.A); f is strictif and only if f. Lp=1¢. If f is
onto and monotone then it is also strict. Let g: P — P, we denote by p.g the least fixed point
of g, that is, g.u.g = p.g and for every other z € P such that g.z = 2 then u.g C 2.

Lemma 4.2 Let P, Q be two partial orders and f : P — @ be a continuous function. Then f
is monotone.

Proof Let z Cp y. Then the set {z,y} is directed as every finite subset has upper bound.
Moreover, | |{z,y} = v, indeed, z Cp y and y Cp y, and for each other z € P such that z Cp z
and y Cp z then | [{z,y} = y Cp z. Hence f.y = f.| {z,y} = U{f-2,f.y} as f is continuous
and this implies f.z Cg f.y. O

Upper fringe, lower fringe and antichains have the following property:

Lemma 4.3 Let P be a partial order and f : P — P be a monotone function.

1. If P has finite upper fringe A then there exist an a € A and a natural number n > 0 such
that f™.a C a,

2. If P has finite lower fringe A then there exist an a € A and a natural number n > 0 such
that a C f".a,

3. If every antichain of P 1is finite then there exist an ¢ € P and a natural number n > 0
such that either ¢ C f™.¢ or f*.z C x.

Proof We will prove only the first item, the other two are left to the reader.

1. Let A be the upper fringe of P. Assume it is finite, say with cardinality equal to k for
k > 0 as A is nonempty. Take a € A and consider the set S = {f*.a|0 < n < k + 1}
(clearly nonempty). If SN(P\A) # 0 then there exists an f™.a € S such that f*.a € P\ A.
But A is the upper fringe of P and hence f*.a C a. Otherwise SN (P\A4) = 0, that is,
S C A, and hence the cardinality of S is less than k. But this means that there exist
m < n < k+1suchthat f".a = f".a € A, and hence f*"™.f™.a C f™.a.
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Let P, @ be two partial orders. Then P°? is a partial order with the reverse order (with respect
to P), P x Q is the cartesian product ordered coordinatewise and P — ) is the function space
ordered pointwise. Moreover, if f~1.y exist for y € Q and f : P — @ then the partial order
determined by f~'.y is the partial order that has for elements z € f 1.y C P ordered as in P,
that is, for each 1,2y € f 1.y, 2 C 2 < 2; Cp 2. If A is the upper (lower) fringe of P then
A is the lower (upper) fringe of P°?, while if A is an antichain of P then it is also an antichain
of PP,

4.1 Fixed Points

For any partial order P, function f : P — P and ordinal ), define f<*> € P by

f<)\> :f- |_| f<k>-

k<X

Of course f<*> need not to exist, since | |, f<¥> need not to exist. Note that f<0> = f. 1
when the least element | of P exists. If f<*> does not exist , then for any X’ > A f<*'> does not
exist, and if f is monotone then f<*> is monotone in A. We say (f<*>), stabilizes at k if when-
ever A > k then f<*> = f<¥>. the closure ordinal is the least ordinal ¥ by which the sequence
stabilizes. If f is monotone then f<¥> is the least (pre-)fixed point of f since f.f<F> = f<k+1>
and f.a C a implies f<*> C q for all X\. If P is a complete partial order and f is monotone then
f<*> always exists and moreover, (f<*>), stabilizes [HP72]. If additionally f is continuous then
it has closure ordinal < w.

The following theorem, taken from [AP81, AP86], shows that under certain circumstances g<*>
always exists and stabilizes for a monotone function g : @ — @ even if @ is not a complete
partial order:

Theorem 4.4 Let (P,Cp) and (Q,Cq) be two partial orders, and f : P — P, g : Q — Q
be two monotone functions and h : P — @ be a strict and continuous function such that the
follounng diagram commutes:

P f P

h * h

Q Q
g

Then if f<*> eazists so does g<*>, and indeed g<*> = h.f<*>. In particular if u.f ezists (being
an f<*>) then so does y.g and p.g = h.u.f.

Several generalizations (always with monotone functions making the diagram above commutes)
and applications of the theorem above, often called transfer lemma, can be found in [Mey85].

The next theorem shows that we can drop the condition of g to be monotone provided that A
satisfies some extra conditions and P is a complete partial order:

14



Theorem 4.5 Let(P,Cp) be a complete partial order and (Q,Cg) partial order, andf : P — P
be a monotone function, g : Q@ — Q be a function and h : P — @ be an onto and continuous
function such that the following diagram commutes:

P f P

h * h

Q Q
g

Then ¢g<*> ewists, and indeed g<*> = h.f<*>. Moreover, if for each y € Q the partial order
determined by h™1.y has either

e the finite upper fringe or
e the finite lower fringe or

e only finite antichains,
then p.g exists and p.g = h.u.f.

Proof The proof contains part of the proof of the Theorem 4.4 [AP86]: suppose f<*> exists
(as P is a complete partial order f<*> is always defined for each ordinal \). First we prove
h.f<*> = g<*> for each ordinal A:

h.f<)\>
= { definition of f<*> }

h.f. |_|f<k>

k<X

= { commutativity of the diagram }

g.h. |_| f<k>

k<X

= { since h is continuous and strict (by lemma 4.2 h is monotone and as it is also onto then A
is strict) }

q. |_| h.f<k>

k<X

= { induction hypothesis }

g. |_| g<k>
k<X

15



= { definition of g<*> }

<A>
g .

Note that the continuity and strictness of h are essential for the existence of [_|k<>\g<k>.

Let now u.f = f<*” for some ordinal . We have
g<a> — h.f<a> — h.f<a+1> — h.f.f<a> — g.h.f<a> — g.g<a>'

So g<*~ is a fixed point of g. In [AP86] this is enough to prove that g<*”> = u.g because g is
monotone. In our case, we have to prove it.

Let y € @ such that g.y = y and consider the partial order generated by A~'.y. There are
three cases:

o h~l.y has the finite upper fringe A.
Then by lemma 4.3 there exist a € A and a natural number n > 0 such that f*.a C a.

By transfinite induction we prove f<*> C a for each ordinal A:
A=0) < =1Ca
A > 0) { induction hypothesis }
(VE < X : f<P> Ca)
= { definition of | | }
|_| F<E> g

k<X

= { f is monotone }

fUF* Cfa

k<X
= { definition of f<*> }
FO>Cfa
= { f is monotone and hence f<*> is monotone in A }
(VE< X : f<*> C fla)
= { definition of | | }
] F<*>Cfa

k<241

= { f is monotone }

f- |_| f<k> EfZ-a

k<241
= { definition of f<*1> }

FOC
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= { iterating this procedure }
f<A+n—1> Eﬁf”.a

= {f<)\> Ef<)\-|—n—1> }
f<>\> C fn.a

= {f"ala}

f<>\> E a.

Hence also f<*> C a and by monotonicity of A:
g =hf<* Cha=y.

Therefore g<*” = h.f<*> = h.u.f is the least fixed point of g.

e h7l.y has the finite lower fringe A

Then by lemma 4.3 there exists an @ € A and a natural number n > 0 such that a C f".a.
Define for each ordinal X, f<*> € P by

J?<A>:{a A=0

o Uier F<¥>  otherwise.

Note that f<*> is always defined since P is a complete partial order and {j‘<k> |k < A} is
a directed set, indeed by transfinite induction we have that f<*> C f<A+1>.

A=0) f<O> =qLC fra=f<>
A > 0) { induction hypothesis }
(Vk < A @ F<k> £ f<ke>)
= { | is monotone }

|_| }<k> C |_| J'é<k-l-1>

E<A k<A
F<k41> _ F<k
= { Urar F5 = Lhearsn 57 }

|_| ]'2<k> C |_| ]'2<k>
k<X k<241
= { f monotone implies f* monotone }
fn_ |_| f<k> Efn |_| ]'2<k>
k<X k<241
= { definition of f<*> }

JZ<>\> C f<>\-|—1>.
Using transfinite induction again, we prove now h.f<*> = y for each ordinal A:

A=0) Rf<®> =ha=y

A>0) hfH> )
= { definition of f<*> }

17



hfn |_| ]'Z<k>

k<X

h-f-fn_l- I—I }<k>

k<X
= { commutativity of the diagram }
n—1 F<k>
g.hf" . klzle
= { iterating n times the last step }
g || F<k>
k<A
= { h is continuous }
g". |_| h.f<F>
k<X
= { induction hypothesis }

" | ]y

k<X

9"y
= { y is a fixed point of g }
y.
Moreover, for each ordinal A we have f<*> C f<*>: by transfinite induction:
A=0) f<O> =1Ca=f<
A > 0) { induction hypothesis }
(Vk <A f<k> E}<k>)
= {| is monotone }

|_| f<k> C |_| }<k>
k<A k<A
= { f is monotone }
f‘ |_| f<k> Ef |_| }<k>
k<A k<X
= { definition of f<*> }
f<>\> Ef |_| jc'<k>
k<X
= { f monotone implies f<*> monotone in A }
(Vk <A f<k> Cf. |_| J’2<k>)
k<X
= { definition of | | }
|_| f<k> Ef |_| jc'<k>

kE<A+1 k<X

18



= { f is monotone }

f. |_| f<k> Ef2 |_| J'Z<k>
k<241 k<X

= { definition of f<*+1> }

f<>\+1> Ef2 |_| J'c'<k>
k<A

= { iterating the last 5 steps }

f<>\+n—1> C fn |_| ]'E<k>
k<A

= { definition of f<*> }
f<)\+n—1> C f<>\>

= { f monotone implies f<*> monotone in A }

f<>\> C }<)\>‘

Finally we have, applying this last result to the ordinal a:

f<a> C f<a>

= { h is monotone }

h.f<a> C hj<a>

= { definition of g<*~ }

g<a> C h‘]?<a>

> {hf> =y}

g Cy.

Therefore g<*” = h.f<*> = h.u.f is the least fixed point of g.

e Every antichain in A7 !.y is finite.

Then by lemma 4.3 there exists a € A~'.y and a natural number n > 0 such that f*.a C a
or a C f".a. In the first case the proof is as in the case when A ~'.y has the finite upper
fringe, otherwise is as in the case when A~!.y has the finite lower fringe.

Note that even if g is not monotone, the theorem above ensures the existence of a least fixed
point for g and moreover, it can be obtained by iteration, since for all ordinals A, g* exists. With
a similar proof we have that P need not to be a complete partial order and h to be continuous
for the existence of u.g if for all y € @ the upper fringe of A~1.y exists and is finite. This does
not holds in case the h~1.y has the finite lower fringe or only finite antichain because we need
both the completeness of P and the continuity of h to prove h.u.f be the least fixed point of g:
without these two conditions we can only prove h.u.f be a fixed point of g.
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Theorem 4.6 Let (P,Cp) and (Q,C¢q) be two partial orders, and f : P — P be a monotone
function, g : Q@ — Q be a function and h : P — @ be an onto and monotone function such that
for all y € Q the upper fringe of h~1.y ezists and is finite and the following diagram commutes:

P f P

h * h

Q Q
g

Then if p.f exists so does u.g, and indeed p.g = h.u.f. Moreover, if h is also continuous then
for each ordinal X if f<*> exists so does g<*>, and g<*> = h.f<*>.

Proof Assume p.f exists, then u.f = f<*> for some ordinal o. We have:
hf<®> = hf<ot> = b f <> = g h.f<*>,

So h.f<*> is a fixed point of g. Now it remains to prove that h.f<*> = u.g. Let y € Q such
that g.y = vy, as h™1.y as the upper fringe A, then there exists an a €¢ A C h™1.y C P and a
natural number n > 0 such that f*.a C a. Let us prove f*.a € A 1.y:

hffa=hff" la=ghf la=..=g"y=uy.

by commutativity of the diagram and as y is a fixed point for g.

Now we can prove by transfinite induction f<*> C a for each ordinal A in the same way as we
did in Theorem 4.5 in the case A~! has the finite upper fringe, obtaining that also f<*> C a
and hence by monotonicity of h:

hf<®> C h.a=y.

Therefore h.f<*> = h.u.f is the least fixed point of g.

Suppose now f<*> exists for some ordinal A and & is also continuous, then A.f<*> = g<*>

we have already proved in the first part of the Theorem 4.5. a

as

In the following we present a number of examples which show that the condition in the Theo-
rem 4.5 saying that the function & : P — (@ is onto, continuous and for each y € @ the partial
order determined by A~'.y has either the finite upper fringe or the finite lower fringe or only
finite antichains cannot be weakened in any obvious way. Of course when we consider a non-
onto function h we have to consider also a non-monotone function g : ¢ — @ according to the
theorem 4.4, while when we consider non-continuous but monotone functions & we have to take
only those such that for each y € @ the partial order determined by A~'.y has not the upper
fringe according to the Theorem 4.6

e Let P be the flat domain {z}, and @ be the flat domain {a,b},. Consider the following
three functions f : P —» P,g: Q — Q and h: P — @Q:

f.l=2 ¢g.1l=a h.1=1
fx=2z ga=a h.z=a.

gb=1"»
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Then f is monotone and has least fixed point z, h is monotone, strict, non-onto and for
each y € Q, h~ 1.y has the upper fringe, the lower fringe and every antichain finite, even
if g (non-monotone) makes the diagram of the theorem commutes, then g still has two
incomparable fixed points, ¢ and b.

o Let P = {z,y, L} be the complete partial order with LC z C y and let @ be the flat domain
{a7 b}J_
Consider the following functions f : P —» P,g: @ — Q and h: P — Q:

f.l=2 ¢g.1l=a h.1=1
fx=2z ga=a hz=a

fy=yv gb=0b hy=5b.

Then f is monotone and has least fixed point , h is strict, onto, non-monotone (z C y
but h.z = a [Z b = h.y), non-continuous (y = U{z, y} but h.y = a # | U{h.z, h.y}) and for
each z € Q, h™1.z has the finite upper fringe, the finite lower fringe and every antichain
is finite. Even if g (non-monotone) makes the diagram commutes then g still has two
different and incomparable fixed points, ¢ and b.

o Let P = {]i >0} U {a,} be the complete partial order ordered by:
(Vi<j :z;Caz) A (Vi>0 : ;Ca,) Az, C .

and let @ be the flat domain {a},. Consider the following functions f : P — P,g: Q — @
and h: P — Q:

fo =241 g.1l=1 ha =1
fax,=2, ga=a h.uz,=a.

Then f is monotone and has least fixed point z,, h is onto, monotone, non-continuous
(z, = U=z but h.z, = a #1= || L= ||h.z;) and for each z € Q, h™'.z has the finite
lower fringe and every antichain is finite. Even if g makes the diagram commutes then g
still has least fixed point | but p.g =1# a = h.z, = h.u.f. Note that there is no upper
fringe according to the Theorem 4.6.

o Let P={x|i >0} U {a,, zt1} U{wi|¢ > 0} be the complete partial order ordered by:

(Vi<j : & Cy A zCa),
(Vl > 0 : Llx, N a L Tw41 N Y L yz)7
Ty E Z, A Tw41 E Tw41 Az, E Tw41,

and let @ be the flat domain {a,b},. Consider the following three functions f : P —
P,g:Q > Qand h:P— Q:

fo =iy g.l=a haz =1

f9i = ¥ ga=a hy =5>

fxy, = Tyt gb=b huz,=1

fTpt1 = Ty h.2,41 = a.
Then f is monotone and has least fixed point z,1, h is onto, monotone and continuous
but A~1. L has not finite upper fringe, not finite lower fringe and not all the antichain

are finite. Even if g (non monotone) makes the diagram of the theorem commutes, then
g still has two incomparable fixed points, ¢ and b.
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We have seen that in Theorem 4.5 that the property of a monotone function f : P — P of
having a least fixed point is transferred to a a function g : @ — @, that in general need not
to be monotone (and hence continuous), via a function A : P — . This is important, since
the the existence of a ”computable” function that is not monotone, violates the Scott’s most
reasonable thesis that all computable function are continuous, and hence monotones. However,
the Theorem 4.5 shows that we can construct the least fixed point of the function g by iteration
from the least element, thus we have a good reason to say that every computable function g is
continuos in a subset of its co-domain which includes the set {g"|n € N} of all its iterations.The
next lemma determines on which subset of @, depending from P and h, the function g is

monotone:

Lemma 4.7 Let (P,Cp) and (Q,Cq) be two partial orders, and f : P — P be a monotone
function, g : Q@ — Q be a functions and h : P — () be an onto and monotone function such that
the following diagram commutes:

f
P P
h * h
Q Q
g
Then for all y1,y» € Q we have:
Loy A
A(Fz, p€P : ;peh™ iy, ;mmeh ™ty A 21 Cp )
= 9.5 L g.9.

Proof Let y1, 3, € Q and assume there exist z; € A~1.y; and 2z, € A~ 1.y such that z; Cp .
Then we have:

. Lp
= { f is monotone }
f.z1 Cp f.z
= { h is monotone }
h.f.zi Cg h.f.z
= { commutativity of the diagram }
g.h.zi Cg g.h.zy
= {ho =y and h.zg =y }
9.1 Cq 9.%.
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A similar result holds also for the transfer of the continuity property from f to g:

Lemma 4.8 Let (P,Cp) be a complete partial order, (Q,Cq) be partial order, and f : P — P
be a continuous function, g : Q@ — @ be a functions and h : P — @ be an onto and continuous
function such that the following diagram commutes:

P f P

h * h

Q Q
g

Then for all {y;|t € I} C Q such that

{yi|i € I} is directed A
AViel:3z,€P : z;€h~ty; A {z]i € I} C P is directed),

we have g.| {yi|e € I} = U{g.%:lé € I}.

Proof Let {y;|¢ € I} C Q be directed and assume that also {z;|i € I} C P is directed, where
z; € h™l.y; for each ¢ € I. As f is continuous and P is a complete partial order we have:

f| {ailie 1} = | [{f.ali € I}

hf.| {aili € I} = b| |{f.ali € I}

= { h is continuous }

hf.| fzili € I} = | [{hf.2ili € T}

= { commutativity of the diagram }

g.h.|_|{$¢|i €el}= |_|{g.h.$¢|i eI}

= { h is continuous }

g|_|{hzz|z €el}= |_|{gh$1|l eI}

= {ha,=y foralliel}

g9-| Kwili € 1} = | {g.wils € I}.
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4.2 Predicate Transformers and Discrete Powerdomains

Let ¥ be a nonempty set of states, fixed for the rest of this section, and assume, in order to
avoid degenerate cases, its cardinality be greater than 1. Recall that a predicate is a function
from states to the boolean set B = {itt, ff}. With every predicate P € Pred we can associate
the set {o| P.o = tt} C ¥ while with every set A we can associate the function in Pred,
P(A) = Ao € X.(if o € A then tt else ff). If A is a subset of £ then A = {¢| P(4).c = {t} and
conversely, if P is a predicate then P = P({o| P.o = tt}).

A predicate transformer is a function in Pred — Pred which satisfies some properties. There
are different definitions of predicate transformers in the literature that differs in the sets of
properties. Next we give a list of possible requirements on the function space Pred — Pred that
are used in various definitions of predicate transformers:

1. ¥ is countable,

2. w.false = false (exclusion of miracles),

3. 7« is monotone with respect to the = order

4. 7 is continuous with respect to the = order,

5. n(PANQ)=7.PA7.Qforall P,Q € Pred (finite multiplicativity),

6. 7. Anens Pn = Apen, ™. Pn where N is the set of natural numbers greater than 0 and
P, € Pred for all n € Ny (countable multiplicativity),

7. . Nier Pi = Aicy 7. P; where I is an index set of the same cardinality as ¥ and P; € Pred
for all ¢ € I (X-multiplicativity),

8. 7. Nicr Pi = Nicy .P; where I # () is an index set and P; € Pred for all i € I (multiplica-
tivity).

In [Dij76] a predicate transformer ©# € Pred — Pred satisfies the properties 1. - 5.; in [Wan77,
Plo79] it satisfies the properties 1., 2., 4. and 5.; in [Bes83] the properties 1., 2. and 8.; in
[AP86] the properties 1., 2. and 6.; and finally in [BvW90] only the property 3. Next we are
going to relate these conditions. In order to do this we need the following lemma which is a
slight variation of the stability lemma in [AP86]:

Lemma 4.9 Let # € PTran satisfying the X-multiplicativity law, and let ¢ € X such that
w.true.c. Then there is a set min(w,0) C ¥ such that

(VQ : 7.Q.0c & min(w,0) C {o'|Q.0'}).

Proof Let (5 €)J be an index set of the same cardinality as £ and for all j € J let p; be those
elements of ¥ such that there is a predicate Q with Q.p; = ff but 7.Q.0 = tt (If there are none we
can take min(w,0) = X). Let now for all j € J, @, be a family of predicate such that Q;.p; = ff
but 7.Q;.0 = tt. Define min(w,0) = N;c;{o'| Q;.0' = tt}. Since 7 is a predicate transformer
and for all j € J is 7.Q;.0 = {t, it follows from the ¥-multiplicativity law that 7. A\;c; Qj.0 =
tt. But \;c;Q; = {o'|(Vj € J : Q.0 = tt)} = Nje 40| Q.0 = tt}

= mun(w,o), thus
m.min(w,0).0c = it (considering min(w, o) as a predicate). So if min(w,0) C {o'|Q.0' = tt}

24



then min(7,0) = @, and hence 7.min(w,0) = =.Q as 7 is monotone. But we have seen that
w.man(7,0).0 = tt, hence also 7.Q.0 = tt.

Conversely, suppose that 7.Q.0 = ¢t but that, for sake of contradiction, min(n, o) € {¢'|Q.0’ =
tt}. Then there is some p in min(w,o) but Q.p = ff, and so p must be a p; for some j € J,
and then p € {d'| Q;.0" = tt} 2 N;c;{0'| @Q;.0' = tt} = min(7, o), contradicting p € min(~, 7).

O

Note that if a predicate transformer 7 satisfies the law of excluded miracles, then for all the
o € X the set min(7, o) is non-empty.

Theorem 4.10 Let ¥ be a countable set of states with cardinality greater than 1 and let 1. - 8.
be the list of properties defined above. Then we have

4. A b.= 6. 7. 8. = 3.
Proof

4. A 5.=8.) A proofis given in [Bes83].

8. = 6. = 7.) Clearly multiplicativity implies countable multiplicativity, and this implies the
Y-multiplicativity since X is countable.

7.=8.) Let {P; € Pred|i € I} be a set of predicates on ¥ where I # 0 (but possibly, I
is uncountable) and let © be a predicate transformer satisfying the X-multiplicativity
law. It suffices to prove A;c;7.P; = 7. \;cr Pi since the other direction is trivial (if the
cardinality of ¥ is greater than 1). Let ¢ € ¥ such that A, ;7.P;.0, then 7.P;.0 for
each ¢ € I and hence by lemma 4.9 it is min(r,0) C {o'|P;.c’} for each i € I. But
then min(r,0) C ;c;{0’|P;.c'} and hence applying again the lemma 4.9 but in the other
direction we obtain 7. A;c; P;.0 = tt. Therefore A;c;7.P; = 7. A\;c; Pi.

8. & 6. & 7.) By the two item above we have 8. = 6. = 7. = 8..

8. = 3.) Let P, Q € Pred such that P = (). Then PAQ = P and as 7 is a predicate transformer
satisfying the multiplicativity law we have:

7. P=7n(PANQ)=7.PAT.Q

that is, 7.P = 7.Q.

In a similar way we can prove that if ¥ is uncountable then 8. & 7. = 6. = 3.

From now on, we will consider the following definition of predicate transformers:

Definition 4.11 A predicate transformer s any function ©# € PTran — Pred — Pred which
satisfies the multiplicativity law.

The previous lemma together with the lemma 4.2 show that predicate transformers as defined
in [Dij76] are the same predicate transformers in the sense of [Wan77, Plo79], and these are
predicate transformers as defined in [Bes83]. The predicate transformers as defined in [Bes83]
are the same predicate transformers defined in [AP86] and the predicate transformers in this
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last one are also predicate transformers in the sense of our definition 4.11. Finally predicate
transformers in the sense of our definition 4.11 are also predicate transformers in the sense of

[BvW90].

Thus our definition 4.11 generalize the definitions of [WanT77, Plo79, Bes83, AP86] and we will
generalize some of their results. As far as we know similar results do not hold for the definition
of predicate transformers of [BvyW90] and this forces us to not consider angelic non-determinism
that violates properties 5., 6., 7., and 8..

Next we are going to relate predicate transformers with powerdomains. We generalize the
relationship between the Smyth powerdomain and the predicate transformers [Wan77, Plo79,
Bes83, AP86, Smy83| to new versions of the Smyth powerdomains. Moreover, we will introduce
a relationship between the Egli-Milner powerdomain and pair of predicate transformers like is
done in [Nel87]. For future reference, we give the following commuting diagram that summarizes
all the relationships between predicate transformers and discrete powerdomains that are dealt
with the next three subsections:

~

PTrany %ETmn@ =z —¢%3))
b * es ._
PTr'anD %»STmné = (% ;{"Sé.EJ_)
1dp Tran * ds ._
PTr'anB %STmnm = (X —'*SQ.EJ_)

All the arrows of the diagram above are monotone functions (we are working in the category
PO of partial orders with monotone functions as morphisms).

4.2.1 Smyth powerdomain with empty set

Definition 4.12 Let X, be a flat domain. Then the Smyth powerdomain of X, (with empty
set), is defined as the partial order

S'x, ={A] AC X}u{X,}
ordered by the superset order, that is

AC B & ADB.

This definition differs from the original definition of Smyth’s powerdomain [Smy78] because we
add the empty set as a top element. Moreover we have no restriction on the cardinality of X.

The partial order SQ.XJ_ is also complete, {X,} is the least element and if F C SQ.XJ_ is a
directed family then (| F is its least upper bound. Moreover, it is also closed under arbitrary
union and intersection.
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A meaning of a statement will be a function in the Smyth State- Transformers domain, denoted
by STran®, that is, the complete partial order ¥ — S®.3,, ordered pointwise. Elements of
S%.% | denote resulting computations. All the computations that are possibly non terminating
are identified with the element {¥, }; the empty set is interpreted as a deadlock.

Next we show the relationship between Smyth state transformers and predicate transformers.
Take PTrang to be the set of predicate transformers PTran ordered pointwise as follows

n Cpp 7 if (VQ € Pred : 7.Q = 7.Q).

Note that the order Cpp is just the lifting of Cp to PTran.

To relate STran® and PTrang, we define for m € STran® and Q € Pred the function w :
STran® — PTrang by

w.m.Q = {o|Q.m.c}.

If m.oc = X, then w.m.Q.c = ff for all the predicate ), because Q. L= ff.
Lemma 4.13 Let m € STran®. Then the function w.m € PTrang.

Proof Let P = @ and w.m.P.c = tt. Then P.m.oc = it and as P = @ also Q.m.oc = tt. Thus
w.m.Q.oc = tt, that is, w.m.P = w.m.. Multiplicativity is clear. a

Lemma 4.14 The function w is monotone.

Proof Let m C m' and w.m.P.c = tt. Then m'.c C m.c and as P.m.oc = tt then P.m'.c = tt.
O

The function w has an inverse. Define for a predicate transformer # € PTrang and o € X the
function w™! : PTrang — STran® by:

-1 min(w,o) if v.true.o
w hwo = .
YL otherwise

1

Lemma 4.15 The function w™" is monotone.

lr.0 C wln'.o. Otherwise

1

Proof Let r Cp 7' and 0 € . f w™l.mr.0c = ¥ then clearly w™
7' true.c because 7.true = 7'.true. So w™l.7.0 = min(r,0) and also w™l.7'.0c = min(n', ).
Since w.min(7,0) = «'.min(7,0) and 7.min(7,0).0c = tt we have also 7’.min(r,0).0c = tt.
Hence applying the stability lemma 4.9 to 7’ we obtain min(r’,0) C min(r,0)i.e. w l.r.o C

wlrleo. m|

Finally we have:

Theorem 4.16 The function w : STran® — PTrang is an isomorphism of partial orders with

inverse w!.

Proof The previous two lemmas showed that w and w™! are monotone, so it remains to prove
that they form an isomorphism:
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wow ! = idemnB) Let # € PTrang and P be a predicate; we have

w.(w tx).P

= { definition of w }
{o|P.(wt.7).0}

={ definition of w™! }
{o|7r.true.c A P.min(7,0)}

= { stability lemma 4.9 }
{o|7.true.c A w.P.oc = tt}

={ P = true}

{o|x.P.oc = tt}

x.P

wlow = idgp,0) Let m € STran® and o € B. There are two cases:

If m.c = ¥, then w.m.true.c = ff. So if m.c = | we have w™!.(w.m).c =%, = m.o.

Otherwise w™!.(w.m).c = min(w.m, ). Now for a predicate P we have by definition of w
that w.m.P.o = tt if and only if P.m.o = tt; hence when m.oc # ¥, we can consider m.o
as a predicate and hence w.m.(m.o).c = tt. Since w.m.(m.c) = {o|(m.0).m.c} = m.c we
have by stability lemma 4.9 min(w.m, o) = m.o. Therefore w™'.(w.m).0c = m.c

4.2.2 Smyth powerdomain with deadlock

Definition 4.17 Let X, be a flat domain. Then the Smyth’s powerdomain with deadlock of
X, is defined as the partial order

SSX, ={A|ACX A A#DP}U{X, }U {8}
ordered by

ACB & (A=X,)vV(A=6 N B=§)V(AD B).

This definition differs from both the original definition of the Smyth powerdomain [Smy78] and
the definition above of Smyth’s powerdomain with empty set because we have no empty set and
moreover we add an extra element § (interpreted as deadlock) that is comparable only with itself
and the bottom. This makes that in general S°. X is not a complete partial order, for example
consider in 8%.N, the following directed set which has no upper bound:
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N € M\{0} C M\{0,1}C ..,

(this example is from [AP86]).

The Smyth powerdomain with deadlock and Smyth powerdomain with empty set are related by
a function dy : 8%.X, — S%.X, defined by

dX‘A:{ A ifA#6S

0 otherwise
as is shown in the following lemma:

Lemma 4.18 The function dx : S°. X, — 8%.X| is onto, continuous, and for each A € §°. X,
the upper fringe and the lower fringe of d)El A exist and they are finite. Moreover, each antichain

of d)zl.A is finite.
Proof It follows directly from the observation that dil.A consists of only one element (that is

hence at the same time the top, the bottom and the unique nonempty antichain). O

We will also use this lemma later in order to apply the Theorem 4.5. The next lemma is useful
to apply the lemma 4.7:

Lemma 4.19 Let y1, 3o € S°.X,. Then:
NEp A (p=0=>yu=3, V y=0) = Ancdi'n, ncdi'p : & C ).

Proof Let 3 C yy. If y» # 0 then also 4 # 0 because y; T v, thus 3 € d)zl.yl and
Ys € dil.yz. Take z; = y; and 29 = v, and as y; C y, we have z; C z,. If y» = () then by
hypothesis y; = X, V 7y, = 0. Hence take z; = § € dil.yz and take z; either ¥, or é € dgl.yl.
In both the cases z; C 5. a

The Smyth State- Transformers respecting deadlock, are all the functions ¥ — 8%.% |, ordered
pointwise. We denote this partial order STran®.

Next we show how STran? is related to the predicate transformers. Take Ptranp as the set of

predicate transformers PTran ordered as follows

w Cpp # if w.false = #.false A
(VQ € Pred : (7.Q A —w.false) = (#.Q A —7.false)).
The order Cpp is the lifting of Cp to PTran.

In order to relate STran® and PTranp, we define for m € STran® and Q € Pred the function
v : STran® — PTranp by

y.m.Q = {o|Q.m.c} U {o|m.c = §}.
Lemma 4.20 Let m € STran®. Then the function y.m € PTranp.

Proof Let P = @ and y.m.P.c = tt. Then either m.c = § and hence y.m.Q.c = it or
P.m.oc = tt and as P = @ also Q.m.c = tt. Thus y.m.Q.oc = i, that is, y.m.P = y.m.Q.
Multiplicativity is clear. a

Remark: if we would not consider the set {o|m.c = §} in the definition of y.m.Q for m € STran®
and ) € Pred then the function v.m would not be multiplicative.
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Lemma 4.21 The function vy s monotone.

Proof Let m C m'. If y.m.false.c = #t. then m.c = § and hence also m'.c = §, thus
v.m.false = y.m'.false. Let now v.m.P.c = {t and y.m.false.c = ff Then m.c # ¥, and
m.oc # §. Hence also m'.c # § and moreover m'.c C m.oc. Hence P.m.c = it implies also
P.m'.c = tt and (y.m.P.oc A ~y.m.false.c) implies (y.m'.P.c A —y.m/' false.o) o

The function ¥ has an inverse. Define for a predicate transformer # € PTranp and o € X the
function v~ : PTranp — STran® by:

min(n,0) if m.true.c A -7 .false.o
vy lro={ 6§ if r.false.c
Y otherwise.

1

Lemma 4.22 The function v~ is monotone.

1 1

Proof Let 7t Cp 7' and 0 € . If y7'.7r.0 = ¥ then clearly y .r.0 C vy l.7'.0.

If y~'.x.0c = § then =.false.c = tt. But v.false = ='.false and hence =’.false.c = #t. Hence
vy~ laxlo=6.

Otherwise w.true.oc and —r.false.c. As # Cp 7’ we have also n’.true.c and —7'.false.oc. Thus
y~l7.0c = min(w,0) and also y~l.x'.c = min(n’,0). Since m.min(w,0) = «'.min(x,0) and
n.min(w,0).0 = it we have also 7’.min(x,0).0c = it. Hence applying the stability lemma 4.9 to
«' we obtain min(n’, o) C min(x, o).

1

Therefore in each case v l.r.0c C vy .70, m

Also in this case we have an order-isomorphism:

Theorem 4.23 The function v : STran® — PTranp is an isomorphism of partial orders with

inverse Yy~ 1.

1

Proof The previous two lemmas showed that 4 and y~' are monotone, so it remains to prove

that they form an isomorphism:
yoy~l= tdpTran;,) Let m € PTranp and and P be a predicate; we have
v.(y 1.7).P
= { definition of v }
{o|P.(y '.7).a}U{c|(y '.7).0 = &}
={ definition of 771 }
{o|7r.true.c A —r.false.c A P.min(n,0)}U {o|r.false.c}
= { stability lemma 4.9 }

{o|7r.true.c A —rw.false.c A w.P.oc = tt} U {o|r.false.o}
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={ P = true}

{o|r.P.o=tt N —r.false.c} U {o|r.false.c}

w.P.

Y Yoy = idgrans) Let m € STran® and ¢ € . We have three cases: If m.c = 2, then
y.m.true.c = ff. Thus y7!.(y.m).oc = £, = m.o.

If m.c = § then y.m.false.oc = tt. Thus w™!.(w.m).c = § = m.o.

Otherwise y71.(y.m).c = min(y.m, o). Now for a predicate P we have by definition of v
that y.m.P.oc = ¢t if and only if P.m.o = tt (note that m.o # §); hence when m.oc # ¥
we can consider m.o as a predicate and thus by stability lemma 4.9 min(y.m, o) = m.o.
Therefore v~ 1.(y.m).c = m.o.

4.2.3 Egli-Milner powerdomain with empty set

Definition 4.24 Let X, be a flat domain. Then the Egli-Milner powerdomain with empty set
of X1, denoted by E°. X, is the partial order with elements all the subsets of X, ordered as
follows:

ACB & (LA N A=B) Vv (Le A N A\{L} CB).

Note that this differs from the usual definition of the Egli-Milner powerdomain because we add

the empty set. It is considered as an element added by means of a smash product following the
ideas of [HP79, MM79, Plo81, Abr91], that is, we have for all A C X :

(ACO) & A={1} v A=0)andalso (C A< A=0).

The partial order £% X, isalso complete: {1} is the least element and if F C E%.X | is a directed
family then | |[F = (UF\{L}DU{L (VA€ F : Le A)}.

The Egli-Milner powerdomain with empty set and the Smith powerdomain with deadlock are
related by the function ey : E%. X, — 8%.X, defined by

A if LgANA£D
ex.A={ § ifA=0

X, otherwise

as is shown in the following lemma:

Lemma 4.25 The function ex : E°.X, — 8%.X| is onto, continuous, and for each B € 8%.X |
the upper fringe and the lower fringe of e‘,_(l.B exist and they are finite.
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Proof It is easily proved that dil.B has the finite upper fringe since it has the top element
either B itself if B # § or ) otherwise. Moreover, it has also the finite lower fringe since it has
the bottom element, that is, § if B = §, 1L if B = X, or B itself otherwise. a

We also have the following lemma that relates the Egli-Milner powerdomain with the Smyth
powerdomain with empty set:

Lemma 4.26 The function dx o ex : . X, — 8. X, is onto, continuous. Moreover, for each
B € 8. X, the upper fringe and the lower fringe of (dx.ex)™'.B ezist and they are finite.

We will also use later these lemmas in order to apply the Theorem 4.5. The next two lemmas
are useful to apply the lemma 4.7:

Lemma 4.27 Let y1,ys € S4.X,. Then:
hWClyp AN(n=21 V yn=1)=> (32 € 6)_(1-3/1, @y € 6)_(1-3/2 D Coa).

Proof Let y; C y5. If 4y = ¥, then take @; =1, hence @; € e)_(l.yl and for all =, € dil.yz we
have z; C z,. If instead y; = vy, then take z; = 2, € e)_(l.yl so that z; C 5. a

Lemma 4.28 Let y1, 1y, € S®.X,. Then:
WClyp AN(n=21 V yn=1w))=>xnc (dX-eX)_l-yh @y € (dX-GX)_l-yz D Coa).

Proof Similar as the proof of the previous lemma. a

The Egli-Milner State- Transformers are all the functions ¥ — £2.3, ordered pointwise. We will
denote them by ETran®. Note that in this case the non-terminating computation are represented
by the element | in the set of all the possible computations. The empty set is interpreted as a
deadlock.

The Egli-Milner State-Transformers are in the following relation with the so-called Nelson pred-
icate transformers [Nel87|, that are introduced in the next definition:

Definition 4.29 Define the Nelson’s predicate transformers PTrany to be the set of all the
functions # € Pred — Pred X Pred such that:

1. |1 .w € PTran,
2. |a .m € PTran,
3. (VQ € Pred :|; .mtrue A |5 .7.Q &1 .71.Q),

4. |2 .wtrue = true,
where |;: PTrany — PTran is a projection operator defined by
li #xP=P, & x.P= (Pl,Pz)

for each P € Pred and i € {1,2}. The functions are ordered as follows
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#Cpy 7 if (VQ @ |1 7. Q=]1 7.Q N |2.7.Q =2 .7.Q).

By definition of Nelson’s predicate transformers we have that |: PTrany — PTran is onto,
since for each 7; € PTran the function 7 : Pred — Pred x Pred defined by 7.Q = (71.Q,72.Q)
is in PTrany, where

t if Q =t
Wz-Q:{ rue if Q) rue

w1.() otherwise

for all @ € Pred.

Moreover, |; is also monotone and continuous if we consider |; as a function from PTrany to
PTranp. Notice that the identity function on PTran is also a monotone and continuous function
from PTranp to PTrang (while this is not true in the other direction), thus |; is also a monotone
and continuous function from PTrany to PTrang.

For any statement S the pair (wp.S, wlp.S) defined in the definitions 2.4 and 3.2 is a Nelson’s
predicate transformer while the order Cppy is the lifting of Cy to PTrany.

Lemma 4.30 Let w,p € PTrany and define their composition by

(mop).Q=(l1.7 ]1.0.Q,]l2.7. |2.0.Q)

for all Q € Pred. Then wop € PTrany.

Proof Clearly |1 .7. |1 .p and |5 .7. |5 .p are predicate transformers since they are composition
of predicate transformers. Let now @ € Pred, then we have:

l1 (mop)true A |5 .(m0p).Q

= { definition of (7 o0 p) }

l1 7@ |1 .ptrue A |5 .. |9 .p.Q

={]1.7.P =]y .wtrue A |, .7.P since # € PTrany }

(l1 .wtrue A |2 7. |1 .ptrue) A |2 7. |2 .p.Q

l1 wtrue A (l2 7. |1 .ptrue A |5 7. 2 .0.Q)

={ls7€ PTran }

l1 wtrue A |2 7|1 .ptrue A |5 .p.Q)

={]1.ptrue A |5 .p.P =], .p.P since p € PTrany }

l1 wtrue A |2 .7.(l1.0.Q)
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={ ], mtrue A |, .w.P =], .7.P since * € PTrany }

b7 (l1.0.Q)

I (795).Q.
Moreover, we have:
L2 (w0 p).true

= { definition of (7 o0 p) }

la .m. | .p.true
={p€ PTrany }
ls .w.true
= {x € PTrany }
true.

a

Now we can show the relationship between the Egli-Milner powerdomain and the Nelson Pred-
icate Transformers: define for m € ETran® and P € Pred the function 5 : ETran® — PTrany
by

n.m.P = ({o|P.m.c},{o|P.(m.c\{L})}).

Lemma 4.31 Let m € ETran®. Then the function n.m € PTrany.

Proof We have to prove the following four properties:

1. |1 .p.m € PTran.
Let P = @ and |; .n.m.P.c = tt. Then P.m.c = tt and as P = @ also Q.m.oc = {t.
Thus |1 .p.m.Q.c = it, that is, |1 .p.m.P = |1 .7.m.Q. Multiplicativity is clear.

2. |2 .p.m € PTran.

As above.

3. (VP € Pred : |1 .m.m.trueA | .n.m.P &y .p.m.P).

Let |; .p.m.P.c = tt. Then P.m.c = tt and hence also P.(m.o\{L}) = ¢. Thus |,
.n.m.P.c = tt and of course |; .n.m.true.c = tt. On the other hand let |, .n.m.P.o = it
and |; .p.m.true.c = t{. Then P.(m.c\{L}) = ¢t and L ¢ m.oc. Thus P.m.c = {t and
hence |; .p.m.P.oc = it.
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4. |5 .n.m.true = true.

Clear.

Lemma 4.32 The function n is monotone.

Proof Let m C m/, P € Pred. Take o € ¥ such that |; .n.m.P.c = t{. Then L¢ m.oc and
P.m.c = tt. But m.c = m'.o thus also P.m'.c = it and by definition of 5, |; .n.m'.P.o = tt,
that is |; .p.m.P =], .p.m'.P.

Take now o € ¥ such that |, .p.m'.P.c = tt and hence P.(m'.c\{L}) = t¢t (note that now we
consider m'). If L ¢ m.o then m.oc = m'.c and hence also P.(m.oc\{L}) = #¢ and by definition
of n, |2 .n.m.P.oc = tt.

Otherwise 1€ m.oc and hence m.c C m'.c. Thus P.(m.o\{L}) = ¢t and by definition of 7,
la ;om.P.o=tt.

Therefore |3 .p.m'.P = |y .n.m.P. O

The function n has an inverse. Define for a predicate transformer # € PTrany and o € X the
function n~! : PTrany — ETran® by:

-1 ) min(lsy .7,0) if |1 .w.true.c
o= min(ly .w,0)U{L} otherwise

Lemma 4.33 The function n~! is monotone.

Proof Let # Cy 7' and o € ¥. We have two cases:

o I 7}_1.71'.0) Then |; .m.true.c = #t by definition of 77! and as # Ty 7' we have also
l1 .7’ true.oc = tt. Thus n=t.r.0c = min(ls .7,0) and also 7 L.x".0 = min(|s .7’,0). But
l1 .w.true.oc = tt and |5 .7x.min(|2 .7, 0).0 = it thus as 7 is a Nelson predicate transformer
we have |1 .m.min(ls .7,0).0 = tt. Moreover, |1 .w.min(ls .7,0) = |1 7'.min(ls .7,0)
because 7 Cy 7', and since 7' is a Nelson predicate transformer we have also |; .7'.min(],
w,0) =]o w'min(ly 7w, 0). Thus |5 .7'.min(|2 .7,0).0 = ¢, and hence by lemma 4.9
applied to |5 .7’ we obtain min(|ls .7',0) C min(|s .7, 0).

But |, .#'.min(ly 7',0) =]y w.min(ly 7' 0) and |, & .min(|y 7' 0).0 = tt thus
also |2 .w.min(l2 .7',0).0 = tt, and by lemma 4.9 applied this time to |, .7 we obtain
min(ls .7,0) C min(ls .7, 0).

Therefore if 1 ¢ n71.7.0 we have

n .m0 = min(ly .7,0) = min(ly 7', 0) =5 .70

e lentxm.o) As |, .7’ is a predicate transformer we have |, .1".min(|, .7',0).0 = tt, and
as 7 Cy 7' we have also | .#'.min(ly .7',0) = |2 .x.min(l2 .7',0). Thus |5 .w.min(]l,
x',0).0 = tt and hence by lemma 4.9 applied to |5 .7 we have min(ls .7,0) C min(],

!
o).

Therefore if 1€ n~!.w.0 we have
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ntr.o\{L} = min(ls .7, 0) C min(l; .7',0) Cn ta’o.

Finally we have:

Theorem 4.34 The function n : ETran® — PTrany is an isomorphism of partial orders with

inverse n~ L.

1

Proof The previous two lemmas showed that n and ™" are monotone, so it remains to prove

that they form an isomorphism:

non?

= idemnN) Let # € PTrany and and P be a predicate; we have
n.(n"'.7).P
= { definition of 7 }
({olP.(n~".7).0}, {o|P.(n"".7).0\{L}) })
={ definition of 7! }
({e] |1 .7.true.c A P.min(|y .7,0)}U
U{e|= |1 .m.true.c A P.(min(ly .7,0)U{L}) },
{o]| |1 m.true.c A P.(min(l2 .7,0)\{L})}U
U{o|= |1 .mtrue.c A P.(min(ls 7w, o)U{L}\{L})})
={ L1L¢Z min(ly .7,0) and P. L= false }
({o] |1 .7.true.c A P.min(ls .7,0)},
{o| |1 7.true.c A P.min(|z .7,0)}U
U{o|- |1 .w.true.c A P.min(|y .w,0) })
= { stability lemma 4.9 and |, .7.true = true}
({o] |1 .7.true.c A |5 .7.P.o = tt},
{o]| |1 w.true.c A |; .wtruec =1t A |, .w.P.o={t}U
U{e|= |1 .m.true.c A |y .mtruesc =it A |5 .7.P.o = tt})

={ |1 .m.true.oc and |5 .x.P.oif and only if |; .x.P.c }

({o] |1 ®.P.o=tt}, {o] |2 . mtrue.c = tt A |, .w.P.o = it})

(ll .W.P,lz 7Z'P)

w.P.
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Nt on = idgge.e) Let m € ETran® and 0 € £. If L€ m.o then - |; .p.m.true.c. Thus
n~t.(n.m).c = min(la .n.m,o) U {L}. Now for a predicate P we have by definition of
n that |2 .p.m.P.oc = tt if and only if P.(m.oc\{L}) = t¢ thus by stability lemma 4.9
min(lz .m.m,0) = m.oc\{L}. Therefore if L€ m.c we have n~1.(5.m).c = m.o.

Otherwise L ¢ m.o and hence |; .p.m.true.c = tt. Thus n~'.(n.m).c = min(l2 .n.m,0).

Now for a predicate P we have by definition of n that |, .p.m.P.c = t¢ if and only if
P.(m.oc\{L}) = tt if and only if P.m.c = tt because L¢ m.o. Thus by stability lemma 4.9
min(ly .m.m,0) = m.c and hence 1 ¢ m.c we have n71.(n.m).c = m.o.

5 Recursion
In this section we add recursion to the language. Let (z €)PVar be a nonempty set of procedure

variables. We remove loop from and add procedure variables to the set of statements Stat: it is
now given by

S = $|’U:It|b—> |Sl;52|51‘]52|51<>52.

For the semantics we introduce the set of environments Env = (PVar — PTran), that is, an
environment gives a predicate transformer for each procedure variable.

Next we give the extension of wp and wip to the new set of statements:
Definition 5.1 (Eztension of wp) Let

wp : Stat — (Env — PTran)
for £ € Env be defined by

wp.b — £.Q =b= Q

wp.v = t.£.Q = Q[t/v]

wp.S1; 52.£.Q = wp.S1.£.(wp.52.£.Q)

wp.51085.£.Q = wp.51.£.Q N wp.S2.£.Q

wp.5152.£.Q = wp.51.£.Q N (wp.51.€ false = wp.S5.£.Q).
Definition 5.2 (Eztension of wlp) Let

wlp : Stat — (Env — PTran)

for £ € Env be defined by
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wip.b— £.Q=0b= Q

wip.z.£.Q = £.2.Q

wlp.v = t.£.Q = Q[t/v]

wlp.S1; $2.6.Q = wip.S;.£.(wlp.55.£.Q)

wlp.$1085.£.Q = wip.51.£.Q A wip.S5.£.Q

wlp. 510 55.£.Q = wip.51.£.Q A (wp.Sy.£ false = wip.Sy.£.Q).

Take a fixed declaration d € Decl : Pvar — Stat. Sometimes we denote d.z = S by z < S.
A declaration assigns to each procedure variable a statement, possibly containing procedure
variables. The idea is to associate with a declaration an environment by means of a fixed point
construction.

We add simultaneous recursion to our language (as opposed to adding for example p-recursion
as it is done in [BvW90, vW90]). Our motivation for having simultaneous recursion is that we
developed the original theory for PROLOG programs that have this form of recursion, but we
do not expect problems when we add p-recursion.

First we show how familiar constructions can be defined in a declaration, for example the do-
loop do S od can be defined by the statement z < (S5; )>(true —), the conditional if S fi
by y < 5y, and loop by z < z.

Remark: our language has only bounded nondeterminism, and therefore all the ordinals we
will encounter below are never bigger than w. However, if we would add unbounded choice
(O:¢ € I:8;) then the theory still applies since we have already seen that multiplicativity is
equivalent to X-multiplicativity.

Define ¢ : Decl — (Env — Env), for £ € Env, by

¢.d.L.x=wp.(d.z)t.

We would like to show that (¢.d) has a (least) fixed point (for any declaration d) that can be
obtained by iteration, such that we can take this fixed point as the meaning of the declaration.

In order to do this we lift Fnv to the partial orders (Envg, Cgg), (Envp, Cgp ) and (Envy, Cgy)
defined, respectively, by

e Envg = (PVar — PTrang),
e Envp = (PVar — PTranp),

o Envy = (PVar — PTrany),
and ordered pointwise, that is

o (&4 CEp & of (Ve € PVar : &.2 Cpp éa.2),

o {1 Cgp &2 of (V2 € PVar : §1.2 Cpp &a.2),
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o {1 Cpn & of (Vo € PVar : &.2 Cpy &2.2).

Theorem 5.3 (Envy,Cgy) is a complete partial ordering.

For k € {B,D,N} and & € Enw lift the definition above of ¢ to ¢ : Decl — (Envy — Enuy)
by

wp.(d.z).& if k € {B,D}

frotbis = { (wp-(d-2). 11 &k, wlp.(d.2). Lo &) if k=N

The main problem is that for a fixed declaration d the function (¢p.d) is in general not monotone
for Cgp while the function (¢p.d) is in general not monotone for Cgp. Take, for example, for
C g a declaration that contains

t < (200 :=1),
and for Cgp a declaration with
t<z;(v=1-),

and adapt the examples before Theorem 3.6.

However, using Theorem 4.2 we can define two functions hyp : Envy — FEnvp and hyp :
Envy — Envp by:

(V£ € Envy : hyp.£ = hyp.£ =1 f)

Both hAyp and hyp are onto, monotone and continuous functions. Moreover, for every £ € Envg
there is a unique top element in h;,};{ ; and similarly for every £ € Envp there is a unique top
element in h;,é. .

Hence we can apply the Theorem 4.5:

Theorem 5.4 The function (¢r.d) defined above has for a fized declaration d a least fized point
p.(¢r.d) both with respect to Cgp, Cgp and Cgy that can be obtained by iteration as follows:
define £<°> the environment such that for all z and Q

£<°> 2.Q = false
and define for each ordinal X > 0
E<>\> = ¢p.d. |_| €<o¢>

a<A

then there is an ordinal X such that p.(¢r.d) = £<*>.
Finally we can give the following three weakest precondition semantics:

Definition 5.5 Let S € Stat, d € Decl and k € {B,D,N}. We define the following three
weakest precondition semantics Wy, : Stat — (Decl — PTran) by:

o Wg.5.d = wp.S.(u.(¢p.d)),
°» Wp.S.d = wp.S.(u.(¢p.d)),
o Wy.S.d = (wp.S. |1 (p-(¢n.d)), wlp.S. |2 (p-(dn.d))).
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6 Deriving Semantics by Domain Transformations

In the previous section we have given three different semantics for a language including recursion.
Now we want to translate this results to semantics based on state transformations. Since we have
isomorphisms between the domains of predicate transformers and those of state transformers
the semantics can be easily derived, but we want to do it in a more general context using the
results of section 4. We give a tecnique to derive a compositional semantics a least fixed point
semantics using a domain transformation.

6.1 Compositional Semantics

We start by giving some general definitions (see [GTWW77], [EM85] and reference there). A
signature S = (F, r) consists of a set (f €)F of function names, and a rank functionr : F — N,
indicating for each function symbol its arity. Function names with arity 0 are called constants.
In the sequel we will use f € S instead of f € F for the signature S = (F, r). Furthermore, we

will not use the curry notations for functions with more than one argument. The set of (closed)
terms (s,t €)T(S) built from S is defined as

= f(tl, veey t'r(f))

For example, the set of statements Stat as defined in section 2 is a set of terms over a signature
Ssiqt in which function names with rank two are ; ,0, and <. No function symbol has rank
more than two.

Let V be a set, and define the set of interpretations (I €)Ints v of a signature S = (F,r) as
the set of all functions

I:F— U(V(k) - V),
k
where V(¥) is the k-product of V. An interpretation I induces for every term ¢ € T(S) a function
t!: Vv(¥) - ¥V that is given, inductively, by
Flt, o tep)t = I, - 1)

We often write f for I(f). We can now give a general definition of semantics:

Definition 6.1 A semantic function is a function D : T(S) — Dom where T(S) is the set of
terms over a signature S and Dom is some (structured) set called semantic domain.

For example, the function Op defined in definition 2.3 is a semantic function according to this
definition.

Every interpretation I € Ints pom induces a semantic function Dy : T(S) — Dom defined by
Di(t) = t!. This semantics is called compositional because for every term ¢ = flu, ..., ur(f)) €

T(S) we have:

Dr(f(ur, s to(y) = F(D1(w1), ..., Drlr(sy))-

We use the following definition of compositionality:

40



Definition 6.2 A semantic function D : T(S) — Dom is compositional (or denotational) if
there exists an interpretation I € Ints pom such that D = Dj.

For example, we can interpret the function symbols ; ,0 and <& of the signature Sg;q; as the
following functions from PTrany X PTrany to PTrany. Using this interpretation is not hard to
see that the semantics Wy : Stat — (Decl — PTrany), defined in definition5.5, is compositional.

Definition 6.3 Let 71,7y € PTrany and P € Pred. Define:
o ; x:PTrany X PTrany — PTrany by
(m1; N72).P = (|1 .71. |1 .72.P, 2 .71, |2 . W2 P),
e Oy : PTrany X PTrany — PTrany by

(71'1DN71'2).P = ((ll .7!'1/\ ll .71'2).P,(l2 .71'1/\ l2 .71'2.P)),
o Oy : PTlrany X PTrany — PTrany by

(71'1<>N7Z'2).P = (ll 71.PA (ll .71 .false :>l1 .71'2.P),
l2 .m.P A (l1 .7 false = |5 .75 . P)).

Often compositionality is expressed as a congruence for the signature 5, that is, an equivalence
relation =C T(S) x T'(S) such that for all f € S and (closed) term w1, .., Up(5), V1, ..., Vp(p)

(V]- < 1 < ’I’(f) U = = f(ula 7ur(f)) = f(vla 7’07‘(]‘)))

The following lemma is standard, see for example [EM85]:

Lemma 6.4 LetD : T(S) — Dom be a semantic function, and let =pC T(S)x T(S) be defined
by s =p t & D(s) = D(t). Then D is compositional if and only of =p ts a congruence.

If we have a compositional semantics D : T(S) — Dom and a function h : Dom — Dom' we can
compose them to obtain another semantics D’ which is compositional if and only if there exist
two interpretations I € Ints pom and I' € Intg pon such that h makes the following diagram

commutes for every f € S:
I

Dom("(H)) Dom

Rr(f) % h

Dom'"F)) . Dom

i
The above fact in itself is simple if the semantics D and the function A are onto.
Theorem 6.5 Let D : T(S) — Dom a compositional semantic function and h : Dom — Dom/
be a function. Then D' = hoD : Stat — Dom' is a compositional semantic function if and only

if there exists an interpretation I € Ints pom such that
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1. D =Dy, and

5 (VF €S (1< <r(f): h(a) = h(el) = h(F (o1, mtoiry)) = (T (el 2l )
where z;,z] € Dom for all 1 < j < r(f).
Proof

<) Let f € S and let u;,v; € T(S) such that w; =p v; for all 1 < ¢ < r(f), that is,
D'(u;) = D'(v;) or, equivalently, h(D(u;)) = h(D(v;)). We have :

D'(f(ur, ..y Un(p))
= { definition of D' }
h(’D(f(ul, ,ur(f))
R(f (wr, s trr)T)
= { definition of interpretation }
A(FH(D(w), -, D(ur(py)))
= { by hypothesis 2., fI(D(ul), ...,D(ur(f))) = fI(D(vl), ...,D(vr(f))) }
(I (D(v1), -, D(vy(p)))
= { by hypothesis 1., D = D; }
h(D(f(’Ul, ...,’l]r(f))
= { definition of D' }
D'(f(vl, ...,’l]r(f)).

Hence =p: is a congruence or, equivalently, D’ is compositional.

=) Let D' = hoD be a compositional semantic function, say D' = Dy for some interpretation
I' € Intg pom'. Because D is also compositional we have D = D; for some interpretation

I € Ints pom. We have to prove that there exists an interpretation Ie Ints pom such that
1. and 2. hold. For every f € .S, define

I z.(p))) = { Fl(a1, ooy zop) i (V1 <6 < r(f) 1 (34 € T(S) : D() = 7))

UUCTES T otherwise,

for an arbitrary ¢ € A=1(f'(h(z1), s M(z(p)))) if it is non-empty, otherwise for a fixed
z € Dom. By induction we can prove 1.:
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D(f(tr, - to(p))

={D=D;}
F(D(t), ..., D(tp))

= { definition of T }

FI(D(t), ..., Dltn(y)))

= { induction hypothesis }

Dj(f(tla ey t'r(f)))

Now we are going to prove 2.. Let h(z;) = h(z]) for all 1 < ¢ < r(f). Note that if

R (R(m), .., h(z,(5)))) is empty then also A~ (FU' (h(zl), ..., h(zi(f)))) is empty because
h(z;) = h(z]) for all 1 < ¢ < r(f). Moreover, if not for each 1 < ¢ < 7(f) there exists a
t; € T(S) such that D(t;) = =;, then also not for each 1 < ¢ < r(f) there existsa t; € T(S)
such that D(¢;) = z/, because if we assume that (V1 < ¢ < »(f) : (3¢; € T(S) : D(¢;) = =),
then we get a contradction:

R(F1(D(1), -, D(tr(p)))
h(D(f(t, s r(p)))
D'(f(t1, s b))
FE(R(D(1)), ... (D (tp))))

FU(A(1), o, B(2o(p))).

This contradicts that A= (f' (h(y), ..., h(z,(s)))) is empty. Therefore in this case we have:

B(fT (a1, 20(s))) = B(2) = B(F (3], ., L)),

where # € Dom. There remain two cases to prove. We will show only h(fj(zl, . zr(f))) =

fII((h(zi),...,h(zi"(f))) because the proof offIl(h(z{),...,h(z;(f))) = h(fj(zl',...,z;(f))) is

similar.
If (VI<¢<r(f):(3t € T(S) : D(t) = 2;)) then we have:

h(f (21, s Top)))

43



= { definition of I }
R(F1(D(1), ., D(ty())
= {D=D;}
D (f(tr, -, tr(p)))
={D'=hoD}
D'(f(t1, - to(g)))
={D' =Dy}
FED(1), - D (tp))
={D'=hoD}
FE((D(1)), - B(D (t(5))))
= {D(t;) =z forall1<i<r(f)}
U (h(1), oo ()
= { h(z;) = h(z!) for all 1 < & < r(f) }
P (R(2]), ... (3] 5))-

if—(Vl <i<r(f): (3 € T(S): D(t;) = 2;)) and h_l(fp(h(zl),...,h($r(f)))) £ 0, we

h(F (21, s 2op))

= { definition of T }
h(z)

= {z ek (fI (A1), -, h(2n(p)) }
U (h(21), s B(20())

= { h(z;) = h(a!) for all 1 < i < r(f) }
I (R(al), s h(a](p))-

In a similar way one can prove fI'(h(${),...,h(z;(f))) = h(fj(z{,..,zi(f))). Finally we
obtain

R(FH (21, s 20()) = BUF (a1, -, 27 p))-
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Remark: if k is injective then the theorem 6.5 holds trivially.

Applying theorem 6.5 we have that the semantic function Wp : Stat — (Decl — PTranp),
defined in definition 5.5, is compositional because Wy is compositional, and the following fact

holds:

Theorem 6.6 Let w1, 72, 7], and 7y € PTrany and let op € {; n,0n,On}. Then
lhmi=lim A L =l .m = |1 (m dp m) =11 (7 dp 7y)

In a similar way we can prove Wg : Stat — (Decl — PTrang) is a compositional semantic
function. Hence we can define an interpretation in PTranp and PTranp of the function symbols
; ,0 and < of the signature Stat of the previous section, starting from their interpretation in
PTrany. Moreover, because the function w,~y,n defined in the previous sections are injective
theorem 6.5 holds, and hence we can give an interpretation of ; ,0 and < on ETran®, STran?,
and STran? starting from the interpretation in PTrany. In the next definition we give this
interpretation on ETran® and then we prove its correctness with respect to PTrany:

Definition 6.7 Let m;, my € ETran® and o € X, define

® ETrend ETran® x ETran® — ETran® by:

L f m.o=1
(ml y ETran® 77?,2),0' = @ 'Lf mp.0 :@
Umz.(m1.o\{L})U

U{L | LE my.0c} otherwise.
o Ogpon0: ETran® x ETran® — ETran® is defined by:
(m1 Ogpygne M2).0 = my.0 U my.o.
o Cppane : ETran® x ETran® — ETran® is defined by:

my.c tfm.oc=10
my.0c otherwise.

(ml <>ETra.n“ ’ITL2).0' = {

Theorem 6.8 Let my, my € ETran®. Then
U-(ml ) ETran® m2) = (7] om ;N MO 1712)
U-(ml DET’mn@ 77’L2) = (770 my Oy no 77’L2)
n.(m1 Cppane m2) = (nomy Oy nomy)

Proof

i TI(ml ) ETran® 77’L2)P

= { definition of 7 }
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({o|P.(m1 5 pryene m2).0},
{o|P.((m1; proane m2)-o\{L1})})

= { definition of m; ; gr,.,0 M2. (We only give the case that my #1 and m; # 0) }

({e|P.(Umz.(my.0\{L}) U {L ]| LE my.0})},
{o|P.(Uma.(mi.o\{L}) U {L|LEm.o})\{L})})

({o] L& my.c A P (Umy.(m1.0\ L)},
{o|P.(Umg.(m1.o\{L})\{1})})

({o| L& m1.0 A (Vo' € my.0: P.my.o')},

{o|(Vo' € (m1.o\{1}): P.(ma.0"\{1}))})

({o] L& my.c0 A my.0c C {o'|P.me.0'}},

{ol(m1.0\{L}) € {o'|P.(m2.0"\{1})}})
— { definition of 7 and considering m; .o as a predicate }
({ol(l1 .n.my.P).mi.0}, {o|(l1 .7.m2.P).(m1.0\{L})})
= { definition of 7 }
(I1 - m-m1.(l1 .7.ma.P), |2 .m.m1.(l2 .77.m2.P))
= { definition of ; y }
(n.m1 ; N m.m2).P
o 7.(m Oppgne m2).P
= { definition of 7 }

({o|P.(m1 Ogpgne ma).0},
{o|P.((m1 Oggane m2).0\{L})})

= { definition of my Ogyp,0 M2 }

({e|P.(my.0 Umy.0)},

{o|P.((m1.o Umy.o)\{1})})

({o|P.my.0 A P.my.c},

{o|P.((m1.o\{L}) A P.(my.0\{1})})
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(ll nmlP/\ ll .n.m2.P,l2 nmlP/\ l2 T]77’L2P)

(n.my Oy 1.my).P
o U(ml <>ET'ra'n,0 m2)P
= { definition of 7 }

({oP.(m1 Cgrpene m2).0},
{o|P.((m1 Cprane m2).0\{L1})})

= { definition of m; < gpune M2 }

({o|P.my.c N my.0 =0} U {o|P.my.c A my.0 # 0},
{o|P.(my.0c\{L}) A my.c =0}U{c|P.(m.o\{L}) A my.o#0})

= { definition of 7 }

((l1 .p.me.P A |1 .m.my false)V (|1 .n.my.P A = |1 .m.my.false),
(l2 .m.ma.P A |1 .p.my false) V (|2 .p.m;.P A = |1 .7p.m;.false))

(l1 . mm1.P N (|1 .p.my.false =|; .n.my.P),
la mmi. P A (|1 .p.m; false = |5 .p.my.P))

= { definition of Oy }
(n.my On n.my).P

a

Next we give the definition of the interpretation of ; ,0,< in STran®, and next we prove its
correctness with respect to PTranp and ETran®:

Definition 6.9 Let m;, my € STran® and o € ¥, define
® ; sTans : STran® x STran® — STran® by:
EJ_ ’Lf m.0 = EJ_
(ml ) STran® m2).a' = ] Zf my.0 = é
Ums.my.0c  otherwise.
L] DSTrmﬂ : STmn5 X STmn5 — STran6 by
my.0 ifm.oc=4

(ml DSTran5 m2).o' = m.o Zf mMy.0 = )
my.0 U my.0c  otherwise.
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o Ogpans - STran® x STran® — STran® by:

me.oc fm.o=19§
my < 5§ My).0 = .
(m1 Csrrans ma2) { my.0 otherwise.

Theorem 6.10 Let m;, my € STran®. We have:

1. 7(m1 ) §Trant mZ) = (7 omp ;p Yo mZ)
7‘(m1 DST’mn5 m2) = (7 om; Up yo mZ)
7‘(m1 <>5Tran5 m2) = (7 o my <>D 70 m2)

62.(77?,1 ) ETran® 77?,2) = (6)] O M1 5 §Trant €X O ’ITL2)

62.(77?,1 DETran“ ’ITL2) = (62 om DST’mnE €x O ’ITL2)
6):.(1711 <>ET'ra'n,0 m2) = (62 om <>5Trcm5 €x © mz)

Finally we give the definition of the interpretation of ; ,0,< in STran?, and next we prove its
correctness with respect to PTrang and STran’:

Definition 6.11 Let my, my € STran® and o € &, define

®  STran® i S Tran® x STran® — STran® by:

EJ_ ’Lf my .0 = EJ_
(ml ) STran® ’ITL2).0' = @ ’Lf m .0 = @

Ums.my.0c  otherwise.
L] DSTmn“ : STmnm X STranm — STranQ) by;
(m1 Ogppne M2).0 = my.o U my.0.

o Ogpans : STran® x STran® — STran® by:

my.c ifm.o=10
my; < my).0 = .
( 1 STran® 2) { mp.0 otherwise.

Theorem 6.12 Let my, my € STran®. Then

1. wmy ; grpgne M2) = (wWomy ; B womy)
w.(my Ogppne Me) = (womy Op womy)
w.(m Cgpne M2) = (womy Op womy)

2. dz'(ml ) §Trant m2) = (d2 O M1 5 §Tran® dz ° m2)
d):'(ml DSTran5 mz) = (d): om DST’ra.n‘a dE ° mz)
dz'(ml <>5Tran5 77’L2) = (d2 om <>5Trcmﬂ dz ° m2)
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6.2 Fixed point Semantics

Recursion can be added to a language by means of a set of constants (z €)P Var, called procedure
variables that is added to a signature S (as we have done in the previous section). Let Sy, =
S U Puvar be the new signature, the meaning of procedure variables is then given by means of a
fixed point of a function associated to a declaration d : Pvar — Stat. Given a semantic function
D : T(Srec) = Dom we denote by Dy : T(S) — Dom its restriction to terms without procedure
variables. The set of environments is given by (£ €)Env : Pvar — Dom. Every compositional
semantics D : T(S) — Dom induces a compositional semantics D : T(Sy.) — (Env — Dom)
using the environments; it is defined by

7;(@(5) = () ) ) for each z € PVar
Df b1y ) )€) = FHD(0)(E), - Dty (1))(€)) for each f € T(S) and & € T(5ree),

where I € Ints pom such that D = D;. Using this semantics we can define the function ¢4 :
Env — Env by

$5(€)(z) = D(d(2))(€).

Let fiz.¢5 denote the set (possibly empty) of its fixed points. Elements of this set are used for
giving meaning to procedure variables.

Definition 6.13 A semantic function D : T(S;.) — Dom is a fized point semantics if the
semantics Do : T(5) — Dom is compositional and D(t) = Do(t)(€), where € fix.¢p . Fur-
thermore, D : T(Srec) — Dom is a least fized point semantics if Dom is a partial order and

£=pdp,-

For example, the semantic function Wy is a least fixed point semantics because it is composi-
tional and, for each & € Pvar, we have

Wy.z.d

(wp.z. |1 (p-(¢n.d)), wip.z. |5 (p.(¢n.d)))

(I1 (p-(on.d)).z, |2 (p.(¢n.d)).2)

(p-¢n.d).z,

where ¢y .d.£.x = (wp.(d.2).(l1 .£), wlp.(d.2).(]2 .£)) (as defined in the previous section).

The following property is useful to transfer the property of being a fixed point semantics to
another semantics using a domain transformation:
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Lemma 6.14 For a signature S and a set of constants PVar let S,.c = S U PVar be a new
signature. Let D : T(S) — Dom be a compositional semantics and h : Dom — Dom' be a
function such that D' = hoD : T(S) — Dom' is a compositional semantics. Then for every
t €S and £ € Env we have

D'(t)(h o €) = h(D(t)(€))

where D' : T(Syee) — (Env' — Dom') and D : T(S,.) — (Env — Dom) are the semantics
induced by D' and D, respectively, and Env' = Pvar — Dom'.

Proof By theorem 6.5 there are two interpretations I € Ints pom and I’ € Ints pom: such that
for every f € S the following diagram commutes:

Dom/("(f) Dom

Rr(f) * h

Dom'"F) ___, Dom.

i

We prove the lemma by inductions on the rank of Sy:
r(f)=0) If f € PVar then
D'(f)(h o £) = h(£(f)) = R(D(f)(£)-
If, instead, f € S then
D'(f)(k 0 €) = D'(f) = h(D(f)) = (D(f)(£))-

r(f) > 0) Then we have:

D'(f(ul, ceey ur(f))(h ] f)

={D'=Dp}

FH(D (w)(h o), ..., D(us))(h 0 £))

= { induction hypothesis }

FI(R(D() (), -y A(D(ur(1))(£)))

= { commutativity of the diagram above }

50



a

As a consequence of this theorem, we have that the following diagram commutes, for ¢.5(£)(z) =

D(d(2))(€) and ¢5.()() = D'(d())(€):

Env Env
ho_ * ho_
Env' Env'.

Indeed, we have

$5:(h o €)(z) = D'(d(2))((h o €) = h(D(d(2))(€)) = h(¢3(£)(2))

Finally, applying the transfer lemmas 4.4, 4.5, and 4.6 we can prove the following theorem that
can be seen as a generalization of the Mezei-Wright theorem on w-complete algebras [Wec92]:

Theorem 6.15 Let S,.. be a signature union of a signature S and a set of constant PVar.
Let, also, D : T(Syc) — Dom be a least fizred points semantics, Dy : T(S) — Dom be its
restriction to terms without procedure variables and h : Dom — Dom' be a function such that
Dy =hoDg: T(S)— Dom' is a compositional semantics. If Dom is a complete partial order
and if ¢750 is monotone and if the commuting diagram

b5,

Env Env
ho_ * ho_
Env' Env'.
¢ﬁ6

satisfies one of the following points

1. h is strict and continuos, and ¢, is monotone,
0

2. h is onto, continuous and for all the y € Dom' either the lower fringe of h=1.y exists and
it is finite, or every antichain of h™1.y is finite,

3. h is onto, monotone and for all the y € Dom' the upper fringe of h=1.y exists and it is
finite,

then also D' = hoD : T(Srec) — Dom' is a least fized point semantics.

If the function h : Dom — Dom' is an isomorphism, then theorem 6.15 holds trivially, thus
we can derive easily three least fixed point semantics based on state transformations from the
weakest precondition semantics of definition 5.5:
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Definition 6.16 Let S € Stat and d € Decl. We define the following semantics functions based
on state transformations

o Dy =n~' oWy : Stat — (Decl — ETran®),
e Dp ="t oWp : Stat — (Decl — STran®) and

o Dp =w ' oWp: Stat — (Decl — STran?).

7 Conclusions and future work

At least four different, but in some way related, topics have been treated in this paper:

1. We proposed an extension of the Dijkstra’s Weakest Precondition Calculus in order to treat
recursion in a fully compositional way with respect to three different orders: a refinement
order as introduced in [Bac78], a new refinement order that respects deadlock, and an
approximation order as introduced in [Nel87].

2. We showed that (under certain circumstances), least fixed points of functions (even non-
monotone) between partial orders exist and that they can be obtained by iteration from
the least element.

3. We gave three isomorphisms between domains of predicate transformers and three domain
of state transformations: two differents versions of the (flat) Smyth state transformers and
the Egli-Milner state transformers.

4. We showed that a semantic function can be derived from another semantic function by a
domain transformation, preserving proprieties like compositionality and least fixed points.

We like to consider further extensions of the language, like arbitrary parallelism and angelic
choice.

Also, we think that applications of the transfer techniques used in the present paper for obtaining
the least fixed points of function, can be successfull in the area of logic programming and
concurrent systems.

Finally, further investigations are needed on the relationships between predicate transformers
and state transformers, considering also non-trivial information systems.
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Appendix

In this appendix we give a proof of Theorem 2.5:

Proof Structural induction on S € Stat:

{o|P.Op.(v:=t).0}

= { definition of Op, P. L= false}
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{o|PAd'|(v:=t,0) —* (E,0') A (v:i=t,0)]|}}
= {definition of — }

{o|P.o[t.c/v]}

{ because P[t/v].c = P.o[t.c/v]}

{o|P[t/v].0}

Plt/v]

wp.v .= t.P.

e b—) {o|P.Op.(b—).0}
= { definition of Op, P. L= false }

{o|P{o'|(b —,0) —* (E,0') A (b—,0)1}}=
= { definition of — }

{o|(b.c A P.o)V (-b.oc A P.D)}
= { because P.) = true }

{o|(b.c A P.o)V —b.o}

{o|b.c = P.o}

b=> P

wp.b — .P

e loop) {o|P.Op.loop.c}
= {definition of Op }

{c|P.2,}
={ P. L= false }
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false

wp.loop.P.

e 51; 52) {o|P.0p.51; S2.0)}
= { definition of Op, P. L= false }

{o|P.{d'|(S1; S2,0) —* (E,a') A (S1;S2,0)1}}
= { definition of — }

{o|P{c|((S1,0) —" (B,0") A (S1,0) 1) A ({S2,0") —" (B, 0') A (S2,0") |)}}
= { definition of Op }

{o|P.{d'|c" € Op.S1.0 A (S2,0"y —* (E,d') A (S2,0") |}}

{o|(Vo" € Op.S1.0 : P{d'|(Ss,d") —* (E, 0’y A (S2,0") [})}

= { definition of Op }

{o|(Vo" € Op.S1.0 : P.0p.Ss.0c")}

{o|{c"|P.0p.S2.0"}.0p.51.0}

{ induction }
wp.S1.{c"|P.0p.Ss.0"}

{ induction }

wp.S1.(wp.S2. P).

[ 51‘352) {0’|P.Op.51‘j52.0'}
= { definition of Op, P. L= false }

{o|P.{d'|(5:08,,0) —* (E,d') A (510Ss,0) |}}
= { definition of — }

{o|P.{d'|(S1,0) —* (E,0') V (S3,0) —* (E,0') A (5108,,0) |}}
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{o|P{c'|((S1,0) —" (B, 0") V (S3,0)—"(E,0")) A ((S1,0) | A (52,0) 1)}}
= {definition of Op }

{o|(P.Op.S1.0 A (S3,0)]) N (P.Op.S2.0 A (S1,0) )}

{o|P.Op.S1.0 A P.Op.S».0}

{ induction }

wp.S1.P N wp.Sy. P

wp.S5108,.

L Sl<>S2) {0’|P.Op.51<>52.0'}
= { definition of Op, P. L= false }

{o|P{0"|(5,08s,0) —* (E, 0"} A (5:0Sy,0) |}}
= { definition of — }

{o|P{o"|((S1,0) — (E,0") V ($1A(Ss,0),0) —* (E,0")) A (5105, 0) |}}
= { definition of — }

{o|P{o'|((S1,0) — (E,0") V (S1,0) —* (E,0') A ~(S1,0) —* (E,8)) V

V ((S1,0) —* (B,8) A (Sy,0) —* (E,0")) A (5,08s,0) 11}

{o|P{d'|((S1,0) —* (E,d') A =(S1,0) —* (E,§)) V

V ((S1,0) —* (B,8) A (Sy,0) —* (E,0")) A (5,08s,0) |1}

{o|P.{d'|((S1,0) —* (E,d') A =(S1,0) —* (E,§) A (S1,0) )V
V ((S1,0) —7(B,8) A (Sy,0) —"(E,0) A (51,0) 1 A(5,0)1)}}
= { definition of Op }

{o|P.{d'|(¢' € Op.S1.0 N Op.S1.0 £0)V
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V (0p.S1.0 =0 A o' € 0p.Sy.0)}}

{o|P.Op.S1.0 A Op.S1.0 #0} U {o|0p.S1.0 =0 A P.Op.Ss.0}

{ using induction on corollary 2.6 }

(wp.S1.P A ~wp. 5 .false) V (wp.S; .false A wp.S,.P)

{ because wp.S;.false = wp.S;.P }

(wp.S1.P A ~wp.S; .false) V (wp.S51.P A wp.S; .false A wp.S,.P)

wp.S1.P A (~wp. S .false V (wp.S; .false A wp.S3.P))

wp.S1.P A (wp.S; .false = wp.S;.P)
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