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Abstract This research intends to develop the classifiers for dealing with binary clas-

sification problems with interval data whose difficulty to be tackled has been well rec-

ognized, regardless of the field. The proposed classifiers involve using the ideas and

techniques of both quantiles and data envelopment analysis (DEA), and are thus referred to

as quantile–DEA classifiers. That is, the classifiers first use the concept of quantiles to

generate a desired number of exact-data sets from a training-data set comprising interval

data. Then, the classifiers adopt the concept and technique of an intersection-form pro-

duction possibility set in the DEA framework to construct acceptance domains with each

corresponding to an exact-data set and thus a quantile. Here, an intersection-form accep-

tance domain is actually represented by a linear inequality system, which enables the

quantile–DEA classifiers to efficiently discover the groups to which large volumes of data

belong. In addition, the quantile feature enables the proposed classifiers not only to help

reveal patterns, but also to tell the user the value or significance of these patterns.

Keywords Data envelopment analysis � Classifier � Quantile � Production

possibility set � Interval data

1 Introduction

Lack of data used to be a big challenging problem faced by large numbers of researchers

and practitioners in a great many domains. However, nowadays, they quite often face a
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new challenge of generating useful information from an explosive growth of data volume

due to the advanced technologies for generating and collecting data. Therefore, it has

become necessary to develop new technologies and tools to intelligently and rapidly

process massive amounts of data into useful information and knowledge, which has

resulted in data mining becoming increasingly important and receiving much attention in

many fields. Data mining involves the use of sophisticated data analysis tools such as

statistical models, mathematical algorithms, and machine learning methods to search for

valuable information in large volumes of data (Seifert 2004). To date, data mining has been

used for a variety of purposes in both the private and public sectors such as association,

sequence or path analysis, classification, clustering, and forecasting (see, e.g., Han and

Kamber 2007). In addition, as pointed out by Seifert (2004), data mining has not only been

used by different industries, e.g., banking, insurance, medicine, and retailing, to reduce

costs, enhance research, and increase sales, but has also been used in the public sector to

detect fraud and waste, and measure and improve program performance. However, there

are some limitations to the capability of data mining. For instance, data mining helps reveal

patterns and relationships, but it does not tell the user the value or significance of these

patterns; the user, therefore, still needs specialists to interpret the created output (Seifert

2004). That is, more user-friendly and efficient data mining tools are called for. It is

noteworthy that operations research methods have been shown to be promising for

improving data mining techniques (Corne et al. 2012).

As indicated above, data mining includes several main functions. This research focuses

on the function of classification that is to judge whether a piece of data belongs to a

particular group by evaluating a set of characteristic values. Of particular interest in this

study are binary classification problems, which are also referred to as two-group dis-

criminant analysis problems. The problems, in which a piece of data belongs to one of two

groups (more specifically, inside or outside an acceptance domain), has been applied to a

wide variety of fields such as economics, finance, insurance and risk for credit scoring,

bankruptcy prediction, insurance underwriting, management fraud detection and so on

(Sinha and Zhao 2008). Up to now, there have been a few popular algorithms for data

classification such as decision tree induction, Bayesian classification, rule-based classifi-

cation and support vector machines (see, e.g., Han and Kamber 2007). In addition, data

envelopment analysis-(DEA-)based approaches seem to have been receiving attention very

recently in academia; the relevant works, which show that DEA-based methods are quite

promising in practice, are reviewed as follows. It is well known that the function of

conventional DEA theories, models and methods is to evaluate the relative efficiency

among a given number of decision making units (DMUs) with multiple inputs and multiple

outputs (Cooper et al. 2006). Nonetheless, Troutt et al. (1996) have pioneered the use of

DEA models in binary classification (more precisely, by developing an acceptance

boundary); they propose a sample-based decision system to make a decision on whether or

not to accept or reject a credit risk based on samples predetermined by experts. Seiford and

Zhu (1998) extend the work to develop a DEA-type linear programming model to decide

whether a new case is acceptable; the model also determines the location of the case

corresponding to the previously classified samples. Pendharkar et al. (2000) apply the

method of Troutt et al. to discover the breast cancer pattern; their empirical results show

that the DEA-based approach outperforms statistically linear discriminant analysis. Instead

of determining the acceptability of a new case such as in Troutt et al. (1996) and Seiford

and Zhu (1998), Pendharkar (2002) deals with an inverse classification problem where the

objective is to find out how to change a DMU’s inputs so that it can be classified into

another class. Pendharkar (2011) integrates the DEA model with the radial basis function
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network (RBFN) to develop a hybrid RBFN–DEA neural network for a binary classifi-

cation problem with negative inputs and non-linearly separable classes. Pendharkar (2012)

uses DEA for fuzzy classification where the classification output is a fuzzy membership

function. He empirically shows that his DEA-based fuzzy classification system outper-

forms the adaptive neuro fuzzy inference system, fuzzy rule-based classification system

and logistic regression. However, it is noted that the research deals with exact data instead

of fuzzy or interval data. Finally, Yan and Wei (2011) propose a DEA classification

machine with exact data that includes an acceptance domain (i.e., a production possibility

set under the DEA framework) and a classification function. The acceptance domain is

constructed by an explicit system of linear inequalities, which makes the classification

process very efficient.

To our knowledge, the DEA-based methods for data classification proposed in the

literature assume that data are measured by exact values. However, as pointed out in

Cooper et al. (1999), it is quite common in many applications for some data to be known

only within specified intervals while other data may be known only in terms of ordinal

relations; such a data type is commonly referred to as ‘‘imprecise data.’’ So far, there have

been a few works that incorporate imprecise data into DEA models in the literature (see,

e.g., Cooper et al. 1999; Despotis and Smirlis 2002; Zhu 2003; Kao 2006). It is important

to note that the DEA models dealing with imprecise data in the literature are used to

evaluate the relative efficiency among DMUs, but not to perform data classification. That

is, there is no research, to our knowledge, working on developing DEA-based methods for

classifying imprecise data so far in the literature. Therefore, this research intends to pro-

pose DEA classifiers to deal with binary classification problems with classification data

that are known to have either exact values or values only within bounded intervals; note

that it is well recognized, regardless of the field, that it is difficult to tackle interval data.

The proposed classifiers involve using the concepts and techniques of both quantiles and

DEA, and are thus referred to as quantile–DEA classifiers. Here we briefly introduce the

proposed classifiers, and elaborate on the classifiers in the succeeding sections. It is well

known that the conventional way for dealing with a binary classification problem with

exact data is to construct the corresponding acceptance domain such that classification data

are either inside (i.e., accepted by) or outside (i.e., rejected by) the acceptance domain. A

classifier embedded with a single acceptance domain while efficient is usually unable to

provide the user with the degree of acceptance or rejection. In addition, due to the inherent

complexity of interval data, it seems to be necessary to construct the classifiers that are

embedded with multiple acceptance domains for handling binary classification problems

with interval data. Therefore, we adopt the idea of quantiles in statistics to tackle the issue

of multiple acceptance domains. That is, given n training interval data, we create n exact

data by specifying a quantile for each of the original interval data; it follows that, by

specifying t quantiles, we can obtain t exact-data sets with each containing n exact data.

Then, we construct t acceptance domains with each corresponding to one of the t exact-

data sets by applying the concept and technique of a production possibility set in the DEA

framework. Clearly, whether or not a classifier with multiple acceptance domains is effi-

cient and effective largely depends on the construction and presentation of the acceptance

domains. In this research, we first use the idea and technique of a conventional sum-form

production possibility set to construct the acceptance domains. Then, we adopt the tech-

niques proposed in Wei and Yan (2001) and Yan and Wei (2000) to transform the sum-

form acceptance domains into the ones with an intersection form that is a linear inequality

system. The intersection-form acceptance domain enables the quantile–DEA classifiers to

efficiently discover the groups to which a huge amount of classification data belong. In
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addition, the feature of quantiles makes the proposed classifiers not only able to reveal

patterns, but also able to tell the user the value or significance of these patterns.

The remainder of this paper is organized as follows: Sect. 2 shows how the acceptance

domains are constructed; Sect. 3 introduces the quantile–DEA classifier for dealing with

exact data; Sect. 4 elaborates the quantile–DEA classifier for tackling interval data; Sect. 5

extends the classifiers proposed in Sects. 3 and 4 to deal with general cases; and, finally,

Sect. 6 concludes the paper.

2 Construction of acceptance domains

The technique of acceptance domains lies at the heart of the proposed classifiers. Hence,

this section introduces how we construct the acceptance domains by using n training

interval data. Assume that each of the training interval data denoted as interval DMU-�xj

(j = 1, …, n) is associated with m inputs. We consider the setting where all training data

are known only within specified bounds with values that are drawn from uniform distri-

butions. Denote the interval-DMUs as

�xj ¼ �x1j; �x2j; . . .; �xmj

� �
; j ¼ 1; . . .; n;

where

�xij 2 aij; bij

� �
; i ¼ 1; . . .;m; j ¼ 1; . . .; n:

That is,

�xj ¼ a1j; b1j

� �
; a2j; b2j

� �
; . . .; amj; bmj

� �� �
; j ¼ 1; . . .; n:

Define

aj ¼ a1j; a2j; . . .; amj

� �T
; j ¼ 1; . . .; n;

bj ¼ b1j; b2j; . . .; bmj

� �T
; j ¼ 1; . . .; n:

Furthermore, denote the training data set as

�T ¼ �xjjj ¼ 1; . . .; n
� �

:

Moreover, define

�xb
j ¼ �xb

1j; �xb
2j; . . .; �xb

mj

� 	
; j ¼ 1; . . .; n;

where

�xb
ij ¼ aij þ b bij � aij

� �
[ 0; i ¼ 1; . . .;m; j ¼ 1; . . .; n;

and b [ (L, ??) with

L ¼ max
1� i�m;1� j� n

�aij

bij � aij


 �
:

It is noted that, since the values of all training data are uniformly distributed within

specified bounds, then, theoretically, b [ [0, 1]. However, it is quite common in practice

that some of the classification data are positioned outside the range formed by the
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n training interval data. It follows that the acceptance domains formed by the n training

interval data based on the condition that b [ [0, 1] cannot classify those classification data.

Hence, we need to extend the value of b to construct the acceptance domains that can

handle the classification data with values spreading outside the range formed by the

n training interval data. In actual fact, since �xb
ij [ 0 8i; j; we can derive the lower bound of

b, i.e., L, which is obviously less than 0; however, there is no systematic way to confine b
from above, and thus the upper bound of b is defined as ??. The purpose and usefulness

of extending the value of b will become clearer later.

In addition, we make the following assumptions for formally defining the considered

binary classification problem. First, all training data �xj; j = 1, … , n in training data set �T

are accepted to, however, different degrees. Second, the bigger the values of the data, the

higher the probabilities that the data will be accepted, which is referred to as the condi-

tional monotonicity/non-satiety assumption by Pendharkar and Troutt (2011). We will

relax this assumption to deal with more general cases in Sect. 5. Third, �xb
ij [ 0; i = 1, … ,

m; j = 1, … , n for practical applications; it follows that b[ L. Fourth, if two data are

accepted (rejected), then a data that can be represented by the convex combination of the

two data is also accepted (rejected). As a result, let Tb represent the acceptance domain

constructed by x
b
j ¼ ðx

b
ij; x

b
2j; . . .; xb

mjÞ
T ; j ¼ 1; . . .; n given a specified b [ (L, ??) that

satisfies the above assumptions. It is easy to check that Tb satisfies the following postulates

(it is noted that an acceptance domain is uniquely determined by the system of postulates):

Postulate 1 (Ordinary postulate) the observed x
b
j [ Tb for all j = 1, …, n.

Postulate 2 (Convexity postulate) If x [ Tb, and x̂ 2 Tb; then kxþ ð1� kÞx̂ 2 Tb; for k [
[0, 1].

Postulate 3 (Monotonicity postulate) if x [ Tb, and x̂� x; then x̂ 2 Tb:

Postulate 4 (Minimum extrapolation postulate) Tb is the intersection set of all ~T satisfying

Postulates 1–3.

In actual fact, the acceptance domain that satisfies Postulates 1–4 defined above can be

represented as follows:

Tb ¼ x
Xn

j¼1

x
b
j kj� x;

Xn

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; n

�����

( )

:

Note that acceptance domain Tb has the same structure as the production possibility set

corresponding to the classical CCR model (Charnes et al. 1978) with reference set

{(x
b
j ; 1)|j = 1, … , n} in DEA research. Hence, in this study, the boundary of Tb is, for

convenience, also referred to as the frontier of Tb.

Definition 1 Let b [ (L, ??) and

Tb ¼ x
Xn

j¼1

x
b
j kj� x;

Xn

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; n

�����

( )

:

Tb is referred to as the acceptance domain with b-quantile.

Here, a piece of data on the frontier of Tb is regarded as acceptance if b C 0. The value

of b is referred to as the acceptance degree; the larger the value of b, the higher the

acceptance degree of the data. On the contrary, a piece of data on the frontier of Tb is
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considered to be a rejection if L \ b\ 0. The rationale for using b to represent the degree

of acceptance is as follows. Recall that �xb
ij ¼ aij þ bðbij � aijÞ[ 0; i ¼ 1; . . .;m; j ¼

1; . . .; n; and that the values within interval [aij, bij] are drawn from uniform distributions.

Therefore, for any b 2 ½0; 1�; b ¼ Prfaij� x̂ij� �xb
ijg ¼

�xb
ij
�aij

bij�aij
; which represents the proba-

bility that x̂ij falls into interval ½aij; �xb
ij�: It follows that, here, b can be naturally used to

represent the degree of acceptance. On the other hand, if b [ (L, 0) [ (1, ??), then b is

not associated with the above probability property. However, based on the assumption that

the bigger the values of the data, the higher the probability that the data are accepted (i.e.,

the monotonicity postulate), it is appropriate to extend the property of the b [ [0, 1] to the

b [ (L, ??). That is, b [ (0, ??) and |b| such that b [ (L, 0) can be used to represent

the degrees of acceptance and rejection, respectively.

Theorem 1 Let L\�b\b̂; and

T�b ¼ x
Xn

j¼1

x
�b
j kj� x;

Xn

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; n

�����

( )

;

and

Tb̂ ¼ x
Xn

j¼1

x
b̂
j kj� x;

Xn

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; n

�����

( )

:

Then,

(i) Tb̂ � T�b;

(ii) There is no intersection between the frontiers of Tb̂ and T �b:

Proof See Appendices 1 and 4 for the proofs of (i) and (ii), respectively.

Example 1 Consider a sample training-data set of �x1; �x2; �x3 and �x4 in which m = 2. Their

corresponding characteristic values are as follows:

�x1 ¼ ð½1; 6�; ½4; 7�Þ; �x2 ¼ ð½2; 6�; ½2; 9�Þ;
�x3 ¼ ð½4; 10�; ½1; 4�Þ; �x4 ¼ ð½4; 7�; ½4; 8�Þ:

It is easy to obtain that L = -0.2, and

�xb
11 ¼ 1þ 5b; �xb

21 ¼ 4þ 3b;

�xb
12 ¼ 2þ 4b; �xb

22 ¼ 2þ 7b;

�xb
13 ¼ 4þ 6b; �xb

23 ¼ 1þ 3b;

�xb
14 ¼ 4þ 3b; �xb

24 ¼ 4þ 4b:

The acceptance domain with b-quantile, Tb, is given as follows:

Tb ¼ x ¼ x1; x2ð Þ
X4

j¼1

x
b
1jkj;

X4

j¼1

x
b
2jkj

 !

� x1; x2ð Þ;
X4

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; 4

�����

( )

:
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Let the values of b be -0.1, 0, 0.5 and 1; the corresponding T-0.1, T0, T0.5 and T1 are

depicted in Fig. 1, which clearly shows that T-0.1 . T0 . T0.5 . T1, and that there is no

intersection between each pair of frontiers.

3 Quantile–DEA classifier with exact data

The focus of this study is on developing a quantile–DEA classifier for dealing with

binary classification problems with interval data. Here, however, we first introduce the

classifier for dealing with exact data for the following two reasons. First, we do not rule

out the possibility that some classification data may have crisp values. Second, the

methods for developing the classifier for handling exact data can be the building blocks

for developing the one for tackling interval data. Nonetheless, it is important to note that

the training data sets with respect to (wrt) both types of classifiers consist of only interval

data.

Denote an exact data x̂ as DMU-x̂; and consider the following linear program wrt DMU-

x̂ (i.e., data x̂ 2 T̂ ; a set of classification data) with a specified b [ (L, ??), where

T̂ � <m
þ:

ĥðbÞ ¼ min h;

Pb
� �

s.t.
Pn

j¼1

x
b
j kj� hx̂;

Pn

j¼1

kj� 1;

kj� 0; j ¼ 1; . . .; n:

In actual fact, ĥðbÞ; the optimal objective function value of problem (Pb) given a

specified value of b [ (L, ??), is a function of b. Here, the function is directly denoted

0   1   2       3   4   5   6   7   8   9 10 11 12

11
10

9
8
7
6
5
4
3
2
1  

1 jx

2 jx

0β =
0.5β =

1β =

0.1β = −

Fig. 1 Tb wrt different values of
b
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as ĥðbÞ and is referred to as the quantile function of DMU-x̂: It is not difficult to show that

ĥðbÞ[ 0; and that it is possible that ĥðbÞ[ 1 (see Lemma 2 and its proof in Appendix 2).

Figure 2 demonstrates an example in which 0\ĥð0Þ\1 and ĥð1Þ[ 1: It is noted that, in

Fig. 2, the acceptance domain between T0 and T1 (including the boundaries corresponding

to T0 and T1) can be represented by the set fxjx 2 T0; x 62 Int T1g: The following theorem

defines the properties of ĥðbÞ:

Theorem 2 Let x̂ 2 T̂ \ Int xj
Pn

j¼1 xL
j kj� x;

Pn
j¼1 kj� 1; kj� 0; j ¼ 1; . . .; n

n o
; and

ĥðbÞ be the quantile function of DMU-x̂: Then,

(i) ĥðbÞ is a continuous function defined over (L, ??).

(ii) ĥðbÞ is a strictly monotonically decreasing function over (L, ??).

Proof See Appendix 2. h

Definition 2 Let x̂ 2 T̂ \ Int fxj
Pn

j¼1 xL
j kj� x;

Pn
j¼1 kj� 1; kj� 0; j ¼ 1; . . .; ng; and

ĥ bð Þ be the quantile function of DMU-x̂: The b* [ (L, ??) that satisfies ĥðb�Þ ¼ 1 is

referred to as the quantile of DMU-x̂ (the existence and uniqueness of b* are shown in

Appendices 3 and 4, respectively); to facilitate subsequent discussion, the quantile of

DMU-x̂ is further represented as b�ðx̂Þ:

The quantile here actually denotes the degree of acceptance. For instance, in Fig. 2, the

quantile of DMU-x̂ is 0.5, which also indicates that the degree of acceptance corresponding

to DMU-x̂ is 0.5. Likewise, if the quantile of a DMU is on the boundary of the acceptance

domain wrt T0(T1), then the degree of acceptance corresponding to the DMU is 0(1). It is

clear that there is an infinite possible number of acceptance degrees that a DMU might take

since b * [ (L, ??). It follows that, to determine the acceptance domain Tb� corre-

sponding to DMU- x̂; we may need to solve, according to Theorem 2, an infinite number of

0 1 jx

2 jx
0β = 0.5β = 1β =

11a 12a

21a

22a

11b 12b

21b

22b

1̂x

2x̂
ˆDMU x−

Fig. 2 Quantile function of
DMU-x̂
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linear programs (Pb) with one corresponding to a b [ (L, ??). Fortunately, in practice, it

may not be necessary to find the exact value of b*; that is, a close value to b* is usually

sufficient. Therefore, we consider only t, instead of an infinite number of, different values

of b, i.e., b ¼ b1; b2; . . .; bt0�1; bt0 ; . . .; bt00�1; bt00 ; . . .; bt�1; bt; such that

L\b1\b2\ � � �\bt0�1\bt0\ � � �\bt00�1\bt00\ � � �\bt�1\bt; bt0 ¼ 0 and bt00 ¼ 1:
However, it is noted that the larger the value of t, the stronger is the classification power of

the classifiers and the more operation time that is needed.

Example 2 Consider an example in which there is only one training data with m = 2, i.e.,

�x1 ¼ ð½3; 5�; ½3; 5�Þ; and thus �xb
11 ¼ 3þ 2b; �xb

21 ¼ 3þ 2b; and L ¼ �3
2
: In addition, let

t = 5, t0 = 2, and t00 = 4, and assume b1 ¼ �1
2
; b2 = 0, b3 ¼ 1

2
; b4 = 1 and b5 ¼ 3

2
: Thus,

�x
b1

1 ¼ �x
b1

11; �x
b1

21

� 	
¼ ð2; 2Þ;

�x
b2

1 ¼ �x
b2

11; �x
b2

21

� 	
¼ ð3; 3Þ;

�x
b3

1 ¼ �x
b3

11; �x
b3

21

� 	
¼ ð4; 4Þ;

�x
b4

1 ¼ �x
b4

11; �x
b4

21

� 	
¼ ð5; 5Þ;

�x
b5

1 ¼ �x
b5

11; �x
b5

21

� 	
¼ ð6; 6Þ:

In addition,

Tb ¼ x
Xn

j¼1

x
b
j kj� x;

Xn

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; n

�����

( )

¼ x
3þ 2b

3þ 2b


 �
k1� x; k1� 1

����

 �
:

Hence, if the value of b is taken as b1, b2, b 3, b4, and b5, then

Tb1
¼

x1

x2


 �����x1� 2; x2� 2

 �
;

Tb2
¼

x1

x2


 �����x1� 3; x2� 3

 �
;

Tb3
¼

x1

x2


 �����x1� 4; x2� 4

 �
;

Tb4
¼

x1

x2


 �����x1� 5; x2� 5

 �
;

Tb5
¼

x1

x2


 �����x1� 6; x2� 6

 �
:

Figure 3 graphically demonstrates Tb1
; Tb2

; . . .; Tb5
:

Now, consider a classification data set

T̂ ¼ x̂jx̂ 2 <m
þ

� �
;

and define the following approximate quantile of DMU-x̂ :
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b��ðx̂Þ ¼

b1; if x̂ 62 Tb1
;

bi; if x̂ is located on the frontier of Tbi
; 1� i� t;

biþbi�1

2
; if x̂ 2 Int Tbi�1

� �
nTbi

; 2� i� t;
bt; if x̂ 2 Int Tbt

:

8
>><

>>:

Here, if b��ðx̂Þ\0; then b��ðx̂Þ represents the rejection degree wrt DMU-x̂; otherwise,

b��ðx̂Þ denotes the acceptance degree wrt DMU-x̂:
It is clear that, to implement the above defined approximate quantile b��ðx̂Þ; we need to

repeatedly check the following four classification conditions, which could be quite time-

consuming: (a) x̂ 62 Tb1
; (b) x̂ is located on the frontier of Tbi

; 1� i� t;

(c) x̂ 2 ðInt Tbi�1
ÞnTbi

; 1� i� t; and (d) x̂ 2 Int Tbt
: Hence, to efficiently classify the data

included in the classification data set T̂ by using conditions (a)–(d), we transform the sum-

form acceptance domain into the intersection-form one. The transformation method is

detailed in Wei and Yan (2001) and Yan and Wei (2000). Recall that sum-form acceptance

domain Tb is as follows:

Tb ¼ x
Xn

j¼1

x
b
j kj� x;

Xn

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; n

�����

( )

:

On the other hand, intersection-form acceptance domain Tb is as follows:

Tb ¼ x xk
b

� 	T

x� lk
b� 0; k ¼ 1; . . .; lb

����

 �
;

where xk
b� 0; xk

b 6¼ 0; lk
b� 0; k = 1, …, lb. Note that, in both types of acceptance

domain, b = b1,…,bt-1, bt. It follows that Int Tb ¼ fxjðxk
bÞ

T
x� lk

b [ 0; k ¼ 1; . . .; lbg:
Furthermore, it is noticed that intersection-form acceptance domain Tb is actually a linear

inequality system, and that the number of linear inequalities is less than or equal to m 9 n,

which happens when all n DMUs are extreme points of Tb such that each extreme point is

the single intersection point of m (the number of inputs associated with the DMUs) hyper-

planes in <m. It follows that in practical applications, it takes a reasonable amount time to

perform the procedure of transforming the sum-form acceptance domain into the

0   1   2       3   4   5   6   7  

7
6
5
4
3
2
1  

1 jx

2 jx

3
1 / 2β =
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1
1 / 2β = −

4
1β =

5
3 / 2β =

Fig. 3 Tb1
; Tb2

; . . .;Tb5
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intersection-form one because the main task of the transformation procedure is to search

for the linear inequalities. Moreover, it is important to note that the classification power of

the proposed classifiers that are described below and in the next section is not affected by

the values of both m and n. That is, once the intersection-form acceptance domains Tbi
;

i = 1, …, t are constructed, the classification data can be efficiently and effectively

classified. In short, the values of both m and n affect the time needed to transform the sum-

form acceptance domains into the intersection-form ones, but do not affect the classifi-

cation power of the quantile–DEA classifiers.

The quantile–DEA classifier with exact data can be formally described as follows:

Step 1 Select training data set �T ¼ f½aj; bj�; j ¼ 1; . . .; ng;where aj = (a1j, a2j,

…,amj)
T, j = 1, …, n and bj = (b1j, b2j,…,bmj)

T, j = 1, …, n.

Step 2 Set first the value of t (t C 1) and then the value of b such that

b1\b2\ � � �\bt0\ � � �\bt00\ � � �\bt�1\bt; t0 ¼ 0; and t00 = 1. Compute

x
bi

j ¼ aj þ biðbj � ajÞ; i ¼ 1; . . .; t; j ¼ 1; . . .; n:

Step 3 Construct intersection-form acceptance domains Tbi
¼ fxjðxk

bi
ÞT x� lk

bi0
� 0; k ¼

1; . . .; lbi
g; and Int Tbi

¼ fxjðxk
bi
ÞTx� lk

bi0
[ 0; k ¼ 1; . . .; lbi

g; where i = 1, …,

t.

Step 4 Implement the approximate quantile b��ðx̂Þ defined above to classify (accept or

reject) and at the same time give the corresponding degree of every piece of data

x̂ 2 T̂ :

Example 3 Consider again the training data set given in Example 1; that is, the training

data set �T ¼ f�x1; �x2; �x3; �x4g: Set t = 4, and let b1 = -0.1, b2 = 0, b3 = 0.5 and b4 = 1.

Based on the values of x
b
ij; i = 1, 2; j = 1, 2, 3, 4 (see Example 1), we can construct

Tb1
; Tb2

; Tb3
and Tb4

in both sum and intersection forms.

(i) b1 = -0.1:

Tb1
¼

x1

x2


 �����
0:5

3:7


 �
k1 þ

1:6

1:3


 �
k2 þ

3:4

0:7


 �
k3 þ

3:7

3:6


 �
k4�

x1

x2


 �
;

P4

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; 4

8
>>><

>>>:

9
>>>=

>>>;

ðsum-formÞ

¼
x1

x2


 �����
240x1 þ 110x2 � 527� 0; x1� 0:5;

2x1 þ 6x2 � 11� 0; x2� 0:7

 �
ðintersection-formÞ:

(ii) b2 = 0:

Tb2
¼

x1

x2


 �����
1

2


 �
k1 þ

2

2


 �
k2 þ

4

1


 �
k3 þ

4

4


 �
k4�

x1

x2


 �
;

P4

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; 4

8
>>><

>>>:

9
>>>=

>>>;

ðsum-formÞ

¼
x1

x2


 �����
2x1 þ x2 � 6� 0; x1� 1;

x1 þ 2x2 � 6� 0; x2� 1

 �
ðintersection-formÞ:

(iii) b3 = 0.5:
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Tb3
¼

x1

x2


 �����
3:5

5:5


 �
k1 þ

4

5:5


 �
k2 þ

7

2:5


 �
k3 þ

5:5

6


 �
k4�

x1

x2


 �
;

P4

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; 4

8
>>><

>>>:

9
>>>=

>>>;

ðsum-formÞ

¼
x1

x2


 �����
12x1 þ 14x2 � 119� 0;

x1 � 3:5� 0; x2 � 2:5� 0

 �
ðintersection-formÞ:

(iv) b4 = 1:

Tb4
¼

x1

x2


 �����
6

7


 �
k1 þ

6

9


 �
k2 þ

10

4


 �
k3 þ

7

8


 �
k4�

x1

x2


 �
;

P4

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; 4

8
>>><

>>>:

9
>>>=

>>>;

ðsum-formÞ

¼
x1

x2


 �����
3x1 þ 4x2 � 46� 0;

x1 � 6� 0; x2 � 7� 0

 �
ðintersection-formÞ:

Let classification data set T̂ ¼ fx̂1; x̂2; x̂3; x̂4; x̂5; x̂6; x̂7g; where

x̂1 ¼
x̂11

x̂21


 �
¼

1

2


 �
; x̂2 ¼

x̂12

x̂22


 �
¼

1

6


 �
; x̂3 ¼

x̂13

x̂23


 �
¼

2

10


 �
;

x̂4 ¼
x̂14

x̂24


 �
¼

3:5

8


 �
; x̂5 ¼

x̂15

x̂25


 �
¼

6

6


 �
; x̂6 ¼

x̂16

x̂26


 �
¼

12

4


 �
;

x̂7 ¼
x̂17

x̂27


 �
¼

10

10


 �
:

The resulting classification wrt each element in T̂ is as follows:

(1) x̂1 : since 240x̂11 þ 110x̂21 � 527\0; x̂1 62 Tb1
and thus b��ðx̂1Þ ¼ �0:1:

(2) x̂2 : since 2x̂12 þ x̂22 � 6 [ 0; x̂12 þ 2x̂22 � 6 [ 0; x̂12 ¼ 1 and x̂22 [ 1; x̂2 is located

on the frontier of Tb2
and thus b��ðx̂2Þ ¼ 0:

(3) x̂3 : since 2x̂13 þ x̂23 � 6 [ 0; x̂13 þ 2x̂23 � 6 [ 0; x̂13 [ 1 and x̂23 [ 1; x̂3 2 Int Tb2
:

In addition, since x̂13 � 3:5\0; x̂3 62 Tb3
: Hence, b��ðx̂3Þ ¼ b2þb3

2
¼ 0:25:

(4) x̂4; x̂5; x̂6 : similar to the analysis in (1)–(3), we can obtain that

x̂4 is located on the frontier of Tb1
and thus b�� x̂4ð Þ ¼ 0:5;

x̂5 2 Int Tb1
; b�� x̂5ð Þ ¼

b1 þ b2

2
¼ 0:75;

x̂6 is located on the frontier of Tb2
and thus b�� x̂6ð Þ ¼ 1:

(5) x̂7 : since 2x̂17 þ x̂27 � 6 [ 0; x̂17 þ 2x̂27 � 6 [ 0; x̂17 [ 1 and x̂27 [ 1; x̂7 2 Int Tb2
:

Furthermore, since 12x̂17 þ 14x̂27 � 119 [ 0; x̂17 � 3:5 [ 0 and x̂27 � 2:5 [ 0; x̂7 2
Int Tb1

: Moreover, since 3x̂17 þ 4x̂27 � 46 [ 0; x̂17 � 6 [ 0 and x̂17 � 7 [ 0; x̂7 2
Int Tb3

: As a consequence, b��ðx̂7Þ ¼ 1:

Figure 4 graphically shows the resulting classification wrt each element in T̂ :
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4 Quantile–DEA classifier with interval data

This section introduces the quantile–DEA classifier with interval data (interval DMUs) that

is mainly built on the methods proposed in the preceding section for developing the

classifier for handling exact data. Let interval DMU-x̂ 2 <m
þ; where

x̂ ¼ â1; b̂1

� �
; â2; b̂2

� �
; . . .; âm; b̂m

� �� �
;

â ¼ â1; â2; . . .; âmð ÞT ;

b̂ ¼ b̂1; b̂2; . . .; b̂m

� �T
:

Recall that the training data set, �T ; that is used to construct acceptance domains is

defined as �T ¼ f½aj; bj�; j ¼ 1; . . .; ng; where aj = (a1j, a2j,…,amj)
T, j = 1, …, n and

bj = (b1j, b2j,…,bmj)
T, j = 1, …, n. Here, we consider t different values of b [ (L, ??)

such that L\b1\b2\ � � �\bt0�1\bt0\ � � �\bt00�1\bt00\ � � �\bt�1\bt; bt0 ¼ 0 and

bt00 ¼ 1: The corresponding approximate quantiles of â and b̂; i.e., b��ðâÞ and b��ðb̂Þ;
respectively, can be calculated by applying the following formula, which is defined in the

preceding section.

b��ðâ ðor b̂ÞÞ ¼

b1; if â ðor b̂Þ 62 Tb1
;

bi; if â ðor b̂Þ is located on the frontier of Tbi
; 1� i� t;

biþbi�1

2
; if â ðor b̂Þ 2 Int Tbi�1

� �
nTbi

; 2� i� t;

bt; if â ðor b̂Þ 2 Int Tbt
:

8
>>><

>>>:

It is noted that the frontier of T0, i.e., b = 0, is constructed by the minimums of [a1j,

a2j,…,amj], j = 1, …, n in �T ; therefore, if x̂ is located outside T0, then we can confidently

consider x̂ as being ‘‘rejected’’. By contrast, the frontier of T1, i.e., b = 1, is constructed by

the minimums of [b1j, b2j,…,bmj], j = 1, …, n in �T ; hence, if x̂ is located inside T1, then we

can be confident of considering x̂ as being ‘‘accepted’’. However, if x̂ is located inside T0

and outside T1, then we can only consider x̂ as being ‘‘accepted with risk’’. It follows that

we can divide <m
þ based on T0 and T1 into three regions, i.e., ‘‘rejection region’’ I, ‘‘risky

0   1   2       3   4   5   6   7   8   9 10 11 12

11
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7
6
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1  
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4 1β =

1̂x

2x̂

4x̂
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7x̂3x̂

1 0.1β = −

Fig. 4 Resulting classification
with respect to each piece of data
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acceptance region’’ II and ‘‘acceptance region’’ III, which are graphically demonstrated in

Fig. 5. As a result, we can classify each interval DMU-x̂ by the three degrees of ‘‘rejec-

tion’’, ‘‘risky acceptance’’ and ‘‘acceptance’’ that are represented by ẑ1ðx̂Þ; ẑ2ðx̂Þ and ẑ3ðx̂Þ;
respectively. In what follows, we consider six possible scenarios corresponding to interval

DMU-x̂; and show the formulas that are used to calculate its ẑ1ðx̂Þ; ẑ2ðx̂Þ and ẑ3ðx̂Þ wrt each

scenario.

Scenario 1. Let b̂ 62 IntT0 (see Fig. 6), and thus b��ðâÞ\0 and b��ðb̂Þ� 0: Then, define

ẑ1ðx̂Þ ¼ jb��ðâÞj þ jb��ðb̂Þj;
ẑ2ðx̂Þ ¼ 0;

ẑ3ðx̂Þ ¼ 0:

Scenario 2. Let â 2 T1 (see Fig. 7), and thus b��ðâÞ� 1 and b��ðb̂Þ[ 1: Then, define

ẑ1ðx̂Þ ¼ 0;

ẑ2ðx̂Þ ¼ 0;

ẑ3ðx̂Þ ¼ b��ðâÞ þ b��ðb̂Þ:
Scenario 3. Let â 2 T0 and b̂ 62 Int T1 (see Fig. 8), and thus b��ðâÞ� 0 and

b��ðâÞ\b��ðb̂Þ� 1: Then, define

ẑ1ðx̂Þ ¼ 0;

ẑ2ðx̂Þ ¼ b��ðâÞ þ b��ðb̂Þ;
ẑ3ðx̂Þ ¼ 0:

Scenario 4. Let â 62 T0 and b̂ 2 ðInt T0\T1 (see Fig. 9), and thus b��ðâÞ\0 and

0\b��ðb̂Þ\1: It follows that the line segment connecting points â and b̂ intersects the

efficient frontier of T0 (see Fig. 9); note that the point on the above defined line segment

can be denoted as

x̂a ¼ ð1� aÞâþ ab̂; a 2 ½0; 1�:

0      1x

2x
0β = 1β =

I

II

III

Fig. 5 Three classification
regions separated by T0 and T1
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Let x̂a� represent the intersection point; thus, b��ðx̂a�Þ ¼ 0: In addition, define

ẑ1ðx̂Þ ¼ jb��ðâÞj þ b�� x̂a�ð Þ ¼ jb��ðâÞj;
ẑ2ðx̂Þ ¼ b�� x̂a�ð Þ þ b��ðb̂Þ ¼ b��ðb̂Þ;
ẑ3ðx̂Þ ¼ 0:

Scenario 5. Let â 2 ðInt T0Þ\T1 and b̂ 2 Int T1 (see Fig. 10), and thus 0\b��ðâÞ\1 and

b��ðb̂Þ[ 1: It follows that the line segment connecting points â and b̂ intersects the

efficient frontier of T1 (see Fig. 10).

Let x̂a�� represent the intersection point; thus, b��ðx̂a�� Þ ¼ 1: Define

0      1x

2x
0β = 1β =

1â
2â

1̂b

2̂b
b̂

â

I II III

Fig. 6 Scenario 1 wrt interval
DMU-x̂

0      1x

2x
0β = 1β =

1â

2â

1̂b

2̂b
b̂

â

I II III

Fig. 7 Scenario 2 wrt interval
DMU-x̂
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ẑ1ðx̂Þ ¼ 0;

ẑ2ðx̂Þ ¼ b��ðâÞ þ b�� x̂a��ð Þ ¼ b��ðâÞ þ 1;

ẑ3ðx̂Þ ¼ b�� x̂a��ð Þ þ b��ðb̂Þ ¼ 1þ b��ðb̂Þ:

Scenario 6. Let â 62 T0 and b̂ 2 Int T1 (see Fig. 11), and thus b��ðâÞ\0 and b��ðb̂Þ[ 1:

It follows that the line segment connecting points â and b̂ intersects both the efficient

frontier of T0 and the efficient frontier of T1 (see Fig. 11). Let x̂a� and x̂a�� represent the

intersection points wrt T0 and T1, respectively; we thus have b��ðx̂a� Þ ¼ 0 and b��ðx̂a�� Þ ¼
1: Define

0      1x

2x
0β = 1β =

1â

2â

1̂b

2̂b
b̂

â

I II III

Fig. 8 Scenario 3 wrt interval
DMU-x̂
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Fig. 9 Scenario 4 wrt interval
DMU-x̂
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ẑ1ðx̂Þ ¼ jb��ðâÞj þ b�� x̂a�ð Þ ¼ jb��ðâÞj;
ẑ2ðx̂Þ ¼ b�� x̂a�ð Þ þ b�� x̂a��ð Þ ¼ 1;

ẑ3ðx̂Þ ¼ b�� x̂a��ð Þ þ b��ðb̂Þ ¼ 1þ b��ðb̂Þ:
Note that it is easy to check, according to the formulas of ẑ1; ẑ2 and ẑ3 in scenarios 1–6,

that ẑ1ðx̂Þ 2 ð0; 2jLjÞ; ẑ2ðx̂Þ 2 ð0; 2Þ and ẑ3ðx̂Þ 2 ð2; 1Þ; it is defined that the larger the

value of ẑ1ðx̂Þ; ẑ2ðx̂Þ and ẑ3ðx̂Þ; the higher the degree of rejection, risky acceptance, and

acceptance, respectively. However, due to that, as indicated above, only the b that belongs

to [0, 1] is associated with a well-defined probability property, ẑ1ðx̂Þ; ẑ2ðx̂Þ and ẑ3ðx̂Þ;
which are respectively derived from b 2 ðL; 0Þ; b 2 ½0; 1� and b 2 ð1; þ1Þ; can be

compared only to themselves, but not to each other.

Based on the six scenarios and their corresponding formulas for calculating the quantile

(degree) of classification data x̂ that are described above, we can formally define the

quantile–DEA classifier with interval data as follows:

Step 1 Select training data set �T ¼ f�xjjj ¼ 1; . . .; ng; where �xj ¼ ð½a1j; b1j�; ½a2j; b2j�;
. . .; ½amj; bmj�Þ; j ¼ 1; . . .; n; aj ¼ ða1j; a2j; . . .; amjÞT ; j ¼ 1; . . .; n; and bj = (b1j,

b2j,…,bmj)
T, j = 1, …, n.

Step 2 Set first the value of t (t C 1), and then the value of b such that

L\b1\b2\ � � �\bt0\ � � �\bt00\ � � �\bt�1\bt; t0 ¼ 0; and t00 = 1. Compute

x
bi

j ¼ aj þ biðbj � ajÞ; i ¼ 1; . . .; t; j ¼ 1; . . .; n:

Step 3 Construct intersection-form acceptance domains Tbi
¼ fxjðxk

bi
ÞT x� lk

bi0
� 0; k ¼

1; . . .; lbi
g; and Int Tbi

¼ fxjðxk
bi
ÞT x� lk

bi0
[ 0; k ¼ 1; . . .; lbi

g; where i = 1, …,

t.

Step 4 Check the corresponding scenario wrt classification data x̂ 2 T̂ :
Step 5 Implement the approximate quantile b��ðx̂Þ to calculate ẑ1; the ‘‘rejection degree’’,

ẑ2; the ‘‘risky acceptance degree’’, and ẑ3; the ‘‘acceptance degree’’ by using the

formulas corresponding to the scenario that x̂ is involved.

0      1x

2x
0β = 1β =

1â

2â

1̂b

2̂b
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â
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Fig. 10 Scenario 5 wrt interval
DMU-x̂
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Example 4 Consider the intersection-form acceptance domains Tb1
; . . .; Tb5

that are

constructed in Example 2, where b1 ¼ �1
2
; b2 ¼ 0; b3 ¼ 1

2
; b4 ¼ 1; and b5 ¼ 3

2
: Let

classification data set

T̂ ¼ x̂1; x̂2; x̂3; x̂4; x̂5; x̂6f g;

where interval DMU-x̂i; i = 1, …, 6 are as follows:

x̂1 ¼ â11; b̂11

� �
; â21; b̂21

� �� �
¼ ð½1; 2�; ½1; 2�Þ; â1 ¼ ð1; 1ÞT ; b̂1 ¼ ð2; 2ÞT ;

x̂2 ¼ â12; b̂12

� �
; â22; b̂22

� �� �
¼ ð½6; 7�; ½6; 7�Þ; â2 ¼ ð6; 6ÞT ; b̂2 ¼ ð7; 7ÞT ;

x̂3 ¼ â13; b̂13

� �
; â23; b̂23

� �� �
¼ ð½4; 4:5�; ½4; 4:5�Þ; â3 ¼ ð4; 4ÞT ; b̂3 ¼ ð4:5; 4:5ÞT ;

x̂4 ¼ â14; b̂14

� �
; â24; b̂24

� �� �
¼ ð½2; 4�; ½2; 4�Þ; â4 ¼ ð2; 2ÞT ; b̂4 ¼ ð4; 4ÞT ;

x̂5 ¼ â15; b̂15

� �
; â25; b̂25

� �� �
¼ ð½4; 6�; ½4; 6�Þ; â5 ¼ ð4; 4ÞT ; b̂5 ¼ ð6; 6ÞT ;

x̂6 ¼ â16; b̂16

� �
; â26; b̂26

� �� �
¼ ð½2; 7�; ½2; 7�Þ; â6 ¼ ð2; 2ÞT ; b̂6 ¼ ð7; 7ÞT :

The positions of âi; b̂i; i ¼ 1; . . .; 7 corresponding to bi; i ¼ 1; . . .; 5 are graphically

shown in Fig. 12.

In what follows, we calculate the values of ẑ1ðx̂Þ; ẑ2ðx̂Þ and ẑ3ðx̂Þ wrt each classification

data x̂ 2 T̂ in sequence.

(i) The condition of x̂1 satisfies scenario 1. Its corresponding ẑ1ðx̂1Þ; ẑ2ðx̂1Þ and ẑ3ðx̂1Þ are

as follows:

ẑ1 x̂1ð Þ ¼ b�� â1ð Þj j þ b�� b̂1

� ��� �� ¼ b1j j þ b1j j ¼ 1;

ẑ2 x̂1ð Þ ¼ 0;

ẑ3 x̂1ð Þ ¼ 0:

0      1x
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0β = 1β =
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Fig. 11 Scenario 6 wrt interval
DMU-x̂
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Hence, interval DMU-x̂1 can obviously be classified as ‘‘rejection’’ with degree 1.

(ii) The condition of x̂2 satisfies scenario 2. Its corresponding ẑ1ðx̂2Þ; ẑ2ðx̂2Þ and ẑ3ðx̂2Þ
are as follows:

ẑ1 x̂2ð Þ ¼ 0;

ẑ2 x̂2ð Þ ¼ 0;

ẑ3 x̂2ð Þ ¼ b�� â2ð Þ þ b�� b̂2

� �
¼ b5 þ b5 ¼ 3:

Hence, interval DMU-x̂2 can evidently be classified as ‘‘acceptance’’ with degree 3.

(iii) The condition of x̂3 satisfies scenario 3. Its corresponding ẑ1ðx̂3Þ; ẑ2ðx̂3Þ and ẑ3ðx̂3Þ
are as follows:

ẑ1 x̂3ð Þ ¼ 0;

ẑ2 x̂3ð Þ ¼ b�� â3ð Þ þ b�� b̂3

� �
¼ b3 þ

1

2
b4 þ b3ð Þ ¼ 5

4
;

ẑ3 x̂3ð Þ ¼ 0:

Hence, interval DMU-x̂3 can be classified as ‘‘risky acceptance’’ with degree 5
4
:

(iv) The condition of x̂4 satisfies scenario 4. Its corresponding ẑ1ðx̂4Þ; ẑ2ðx̂4Þ and ẑ3ðx̂4Þ
are as follows:

ẑ1 x̂4ð Þ ¼ b�� â4ð Þj j ¼ b1j j ¼
1

2
;

ẑ2 x̂4ð Þ ¼ b�� b̂4

� �
¼ b3 ¼

1

2
;

ẑ3 x̂4ð Þ ¼ 0:

0    1    2       3    4   5    6   7   8 1 jx
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3
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T
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2 5
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Fig. 12 Positions of

âi; b̂i; i ¼ 1; . . .; 7
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Since interval DMU-x̂4 crosses over conflicting regions of ‘‘rejection’’ and ‘‘risky

acceptance’’, a classification on x̂4 may inevitably result in a ‘‘Type I’’ or ‘‘Type II’’ error.

Hence, we do not provide the user with a definite classification, but rather provide the user

with both the ‘‘rejection’’ and ‘‘risky acceptance’’ degrees, i.e., ẑ1ðx̂4Þ and ẑ2ðx̂4Þ; for his/

her reference.

(v) The condition of x̂5 satisfies scenario 5. Its corresponding ẑ1ðx̂5Þ; ẑ2ðx̂5Þ and ẑ3ðx̂5Þ are

as follows:

ẑ1 x̂5ð Þ ¼ 0;

ẑ2 x̂5ð Þ ¼ b�� â5ð Þ þ 1 ¼ b3 þ 1 ¼ 3

2
;

ẑ3 x̂5ð Þ ¼ 1þ b�� b̂5

� �
¼ 1þ b5 ¼

5

2
:

The range associated with interval DMU-x̂5 crosses over two regions, which may cause

difficulty in classifying it. However, since the two of them are ‘‘risky acceptance’’ and

‘‘acceptance’’ regions, we should have confidence in classifying interval DMU-x̂5 as

‘‘acceptance with low risk’’.

(vi) The condition of x̂6 satisfies scenario 6. Its corresponding ẑ1ðx̂6Þ; ẑ2ðx̂6Þ and ẑ3ðx̂6Þ
are as follows:

ẑ1 x̂6ð Þ ¼ b�� â6ð Þ ¼ b1j j ¼
1

2
;

ẑ2 x̂6ð Þ ¼ 1;

ẑ3 x̂6ð Þ ¼ 1þ b�� b̂6

� �
¼ 1þ b5 ¼

5

2
:

In actual fact, an interval data with a range crossing over three regions as shown in

scenario 6 is unusual if not impossible. Here we consider such an interval data, e.g.,

interval DMU-x̂6; to be un-classifiable due to the inherently uninformative values of

ẑ1ðx̂6Þ; ẑ2ðx̂6Þ and ẑ3ðx̂6Þ; and suggest that the user should re-check the data.

5 Extensions

Recall that in Sect. 2, we assumed that each training interval data denoted as interval

DMU-�xj (j = 1, …, n) is solely associated with m inputs, and that the bigger the values of

the data, the higher the probability that the data are accepted. Based on the above setting,

we construct acceptance domain Tb in both sum-form and intersection-form. In this sec-

tion, we consider two new settings: (1) each interval DMU-�yj (j = 1, …, n) is solely

associated with s outputs, and (2) each interval DMU-ð�xj; �yjÞ (j = 1, …, n) is associated

with both m inputs and s outputs. Accordingly, we construct acceptance domain Tb in both

sum-form and intersection-form wrt each new setting.

First, consider the setting in which each interval DMU-�yj (j = 1, …, n) is associated

with s outputs, and the smaller the values of the data, the higher the probability that the

data will be accepted. Denote the interval-DMUs as
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�yj ¼ �y1j; �y2j; . . .; �ysj

� �
; j ¼ 1; . . .; n;

where

�yrj 2 crj; drj

� �
; r ¼ 1; . . .; s; j ¼ 1; . . .; n;

and

drj [ crj [ 0; r ¼ 1; . . .; s; j ¼ 1; . . .; n:

In addition, denote the training data set as

�T ¼ �yjjj ¼ 1; . . .; n
� �

;

and define

�yb
j ¼ �yb

1j; �yb
2j; . . .; �yb

sj

� 	
; j ¼ 1; . . .; n;

where

�yb
rj ¼ drj � b drj � crj

� �
[ 0; r ¼ 1; . . .; s; j ¼ 1; . . .; n;

and b 2 ð�1; RÞ with

R ¼ min
1� r� s;1� j� n

drj

drj � crj


 �
[ 1:

Let Tb represent the acceptance domain constructed by y
b
j ¼ ðy

b
1j; y

b
2j; . . .; yb

sjÞ
T ; j ¼

1; . . .; n given a specified b 2 ð�1; RÞ: It follows that that Tb satisfies the following

postulates:

Postulate 1 (Ordinary postulate) the observed y
b
j 2 Tb for all j = 1, …, n.

Postulate 2 (Convexity postulate) if y [ Tb and ŷ 2 Tb; then kyþ ð1� kÞŷ 2 Tb; for k [
[0, 1].

Postulate 3 (Monotonicity postulate) if y [ Tb, and ŷ� y; then ŷ [ Tb.

Postulate 4 (Minimum extrapolation postulate) Tb is the intersection set of all ~T satisfying

Postulates 1–3.

The sum-form acceptance domain that satisfies Postulates 1–4 defined above can be

represented as follows:

Tb ¼ y
Xn

j¼1

y
b
j kj� y;

Xn

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; n

�����

( )

:

Note that sum-form acceptance domain Tb has the same structure as the production pos-

sibility set corresponding to the classical CCR model with reference set fð1; y
b
j Þjj ¼

1; . . .; ng in DEA research. In addition, intersection-form acceptance domain Tb is as

follows:

Tb ¼ y xk
b � lk

b

� 	T

y� 0; k ¼ 1; . . .; lb

����

 �
;
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where xk
b� 0; lk

b� 0; lk
b 6¼ 0; k = 1, …, lb. Denote an exact classification data ŷ as

DMU-ŷ; and consider the following linear program wrt DMU-ŷ with a specified b [ (-?,

R).

ûðbÞ ¼ max u;

Pb
� �

s.t.
Pn

j¼1

y
b
j kj�uŷ;

Pn

j¼1

kj� 1;

kj� 0; j ¼ 1; . . .; n:

Second, consider the setting in which each interval DMU-ð�xj; �yjÞ (j = 1, …, n) is

associated with both m inputs and s outputs. Denote the interval-DMUs as

�xj ¼ �x1j; �x2j; . . .; �xmj

� �
; j ¼ 1; . . .; n;

�yj ¼ �y1j; �y2j; . . .; �ysj

� �
; j ¼ 1; . . .; n;

where

�xij 2 aij; bij

� �
; i ¼ 1; . . .;m; j ¼ 1; . . .; n;

�yrj 2 crj; drj

� �
; r ¼ 1; . . .; s; j ¼ 1; . . .; n:

Note that the smaller the values of the outputs and the larger the values of the inputs, the

higher the probability that the data will be accepted. In addition, define

�xb
j ¼ �xb

1j; �xb
2j; . . .; �xb

mj

� 	
; j ¼ 1; . . .; n;

�yb
j ¼ �yb

1j; �yb
2j; . . .; �yb

sj

� 	
; j ¼ 1; . . .; n;

where

�xb
ij ¼ aij þ b bij � aij

� �
[ 0; i ¼ 1; . . .;m; j ¼ 1; . . .; n;

�yb
rj ¼ drj � b drj � crj

� �
[ 0; r ¼ 1; . . .; s; j ¼ 1; . . .; n:

and b [ (L, R) with

L ¼ max
1� i�m;1� j� n

�aij

bij � aij


 �
\0;

R ¼ min
1� r� s;1� j� n

drj

drj � crj


 �
[ 1:

Let Tb represent the acceptance domain constructed by ðxb
j ; y

b
j Þ; j = 1, …, n given a

specified b [ (L, R). It follows that that Tb satisfies the following postulates:

Postulate 1 (Ordinary postulate) the observed ðxb
j ; y

b
j Þ 2 Tb for all j = 1, …, n.

Postulate 2 (Convexity postulate) if (x, y) [ Tb, and ðx̂; ŷÞ 2 Tb; then kðx; yÞ þ ð1�
kÞðx̂; ŷÞ 2 Tb; for k [ [0, 1].

Postulate 3 (Monotonicity postulate) if (x, y) [ Tb, x̂� x and ŷ� y; then ðx̂; ŷÞ 2 Tb:

Postulate 4 (Ray unbounded postulate) if (x, y) [ Tb, then aðx̂; ŷÞ 2 Tb for all a C 0.
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Postulate 5 (Minimum extrapolation postulate) Tb is the intersection set of all ~T
satisfying Postulates 1–4.

The sum-form acceptance domain that satisfies Postulates 1–5 defined above can be

represented as follows:

Tb ¼ ðx; yÞ
Xn

j¼1

x
b
j kj� x;

Xn

j¼1

y
b
j kj� y; kj� 0; j ¼ 1; . . .; n

�����

( )

:

Note that sum-form acceptance domain Tb has the same structure as the production pos-

sibility set corresponding to the classical CCR model with reference set fðxb
j ; y

b
j Þjj ¼

1; . . .; ng in DEA research. In addition, intersection-form acceptance domain Tb is as

follows:

Tb ¼ ðx; yÞ xk
b

� 	T

x� lk
b

� 	T

y� 0; k ¼ 1; . . .; lb

����

 �
;

where
xk

lk


 �
� 0;

xk

lk


 �
6¼ 0: Denote an exact classification data ðx̂; ŷÞ as DMU-ðx̂; ŷÞ;

and consider the following linear program wrt DMU-ðx̂; ŷÞ with a specified b [ (L, R).

ĥðbÞ ¼ min h;

Pb
� �

s.t.
Pn

j¼1

x
b
j kj� hx̂;

Pn

j¼1

y
b
j kj� ŷ;

kj� 0; j ¼ 1; . . .; n:

It is easy to check that once the intersection-form acceptance domains Tb corresponding

to the two new settings are constructed, the quantile–DEA classifiers introduced in Sects. 3

and 4 can be directly used to discover the groups to which a huge amount of classification

data belong. That is, the proposed quantile–DEA classifiers can deal with the settings in

which each interval DMU-�xj; (j = 1, …, n) is associated with solely inputs, solely outputs,

and both inputs and outputs.

6 Conclusions

This research proposes, to our knowledge, the first DEA-based classifiers, quantile–DEA

classifiers, for dealing with binary classification problems with classification data that are

known to have either exact values or values only within bounded intervals. The technique

of multiple acceptance domains that is derived from the ideas and methods of both

quantiles in statistics and the intersection-form production possibility set in the DEA

framework enables the quantile–DEA classifiers not only to promptly classify a large

volume of data, but also to provide the degrees associated with the patterns. It is note-

worthy that the proposed classifier simply classifies an exact piece of data into ‘‘accep-

tance’’ or ‘‘rejection’’ with a corresponding degree. However, due to the inherent

complexity of interval data, the proposed classifier outputs three types of degrees asso-

ciated with classification data: the ‘‘rejection’’, ‘‘risky acceptance’’, and ‘‘acceptance’’

degrees.

Ann Oper Res (2014) 217:535–563 557

123



In addition, it is worth mentioning that, in the proposed quantile–DEA classifiers, it is

assumed that the m characteristic values are equally important. However, in practice, the

decision makers may value them differently. Hence, there are proposed DEA models in the

literature that apply the preference cone to reflect the different importance of the char-

acteristic values (see, e.g., Charnes et al. 1989; Yu et al. 1996; Wei and Yu 1997). In

actual fact, by applying the ideas in the articles, it is not difficult to construct the pref-

erence-cone restricted quantile–DEA classifiers that can deal with the classification

problems with different weighted characteristic values.

In short, this study sheds some light in extending the function of traditional DEA

models from evaluating to classifying. The proposed quantile–DEA classifiers are both

efficient and quite user-friendly in terms of detailed output information. Therefore, they

have great potential in practical applications and can thus be effective complementary

approaches for data mining.
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Appendix 1: Proof of Theorem 1(i)

Theorem 1 Let L\�b\b̂; and

T�b ¼ x
Xn

j¼1

x
�b
j kj� x;

Xn

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; n

�����

( )

;

and

Tb̂ ¼ x
Xn

j¼1

x
b̂
j kj� x;

Xn

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; n

�����

( )

:

Then, Tb̂ � T�b:

Proof Since bj [ aj, j = 1, …, n, if L\�b\b̂; then

x
�b
j ¼ aj þ �b bj � aj

� �
\aj þ b̂ bj � aj

� �
¼ x

b̂
j ; j ¼ 1; . . .; n:

It follows that if
Pn

j¼1 kj� 1; kj� 0; j ¼ 1; . . .; n; then

Xn

j¼1

x
�b
j kj\

Xn

j¼1

x
b̂
j kj:

Thus, if x 2 Tb̂; then x 2 T�b; that is, Tb̂ � T�b: h

Appendix 2: Proof of Theorem 2

To prove Theorem 2, we first present the following two lemmas:
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Lemma 1 If L\�b\b̂; and ~x 2 Tb̂ ¼ x
Pn

j¼1 x
b̂
j kj� x;

Pn
j¼1 kj� 1; kj� 0; j ¼ 1;

���
n

. . .; n:g; then the optimal objective function value of the following linear program is less

than one; i.e., ĥð�bÞ\1:
ĥð�bÞ ¼ min h;

P�b

� 	
s.t.

Pn

j¼1

x
�b
j kj� h~x;

Pn

j¼1

kj� 1;

kj� 0; j ¼ 1; . . .; n:

Proof Let T�b ¼ x
Pn

j¼1 x
�b
j kj� x;

Pn
j¼1 kj� 1; kj� 0; j ¼ 1; . . .; n

���
n o

: Since ~x 2 Tb̂; there

exist ~k1; ~k2; . . .; ~kn that satisfy
Xn

j¼1

x
b̂
j
~kj� ~x;

Xn

j¼1

~kj� 1;

~kj� 0; j ¼ 1; . . .; n:

Furthermore, since
Pn

j¼1
~kj� 1; ð~k1; ~k2; . . .; ~knÞ 6¼ 0: Moreover, since aj\bj; 0 \x

�b
j

\x
b̂
j ; j = 1, …, n. In summary, Xn

j¼1

x
�b
j
~kj\

Xn

j¼1

x
b̂
j
~kj� ~x:

It follows that there exist solutions to the following system of inequalities:

Xn

j¼1

x
�b
j kj\~x;

Xn

j¼1

kj� 1;

kj� 0; j ¼ 1; . . .; n:

As a result, ĥð�bÞ\1 (i.e., the optimal objective function value of ðP�bÞ is less than

one). h

Lemma 2 If L\�b; x̂ [ 0 and x̂ 62 Tb; then the optimal objective function value of the

following linear program is greater than one; i.e., ĥðbÞ[ 1:

ĥðbÞ ¼ min h;

Pb
� �

s.t.
Pn

j¼1

x
b
j kj� hx̂;

Pn

j¼1

kj� 1;

kj� 0; j ¼ 1; . . .; n:

Ann Oper Res (2014) 217:535–563 559

123



Proof Let k̂1; k̂2; . . .; k̂n denote the optimal solution to ðPbÞ and ĥðbÞ ¼ ĥ: If ĥðbÞ ¼
ĥ� 1; then

Xn

j¼1

x
b
j k̂j� ĥx̂� x̂;

Xn

j¼1

k̂j� 1;

k̂j� 0; j ¼ 1; . . .; n:

That is, x̂ 2 Tb; which is a contradiction. h

In what follows, we give the proof to Theorem 2, first to (i) and then to (ii).

Theorem 2 Let x̂ 2 T̂ \ Int xj
Pn

j¼1 xL
j kj� x;

Pn
j¼1 kj� 1; kj� 0; j ¼ 1; . . .; n

n o
; and

ĥðbÞ be the quantile function of DMU-x̂: Then,

(i) ĥðbÞ is a continuous function defined over (L, ??).

(ii) ĥðbÞ is a strictly monotonically decreasing function over (L, ??).

Proof

(i) Consider the following linear program ðPbÞ :

ĥðbÞ ¼ min h;

Pb
� �

s.t.
Pn

j¼1

x
b
j kj� hx̂;

Pn

j¼1

kj� 1;

kj� 0; j ¼ 1; . . .; n:

Equivalently,

ĥðbÞ ¼ min h;

Pb
� �

s.t.
Pn

j¼1

aj þ b bj � aj

� �� �
kj� hx̂;

Pn

j¼1

kj� 1;

kj� 0; j ¼ 1; . . .; n:

According to the stability of linear programming (Ying et al. 1975), the optimal objective

function value of (Pb), ĥðbÞ; is a continuous function defined over (L, ??).

(ii) Let L\�b\b̂; and consider the following problem ðPb̂Þ :

ĥðb̂Þ ¼ min h;

Pb̂

� 	
s.t.

Pn

j¼1

x
b̂
j kj� hx̂;

Pn

j¼1

kj� 1;

kj� 0; j ¼ 1; . . .; n:
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It is clear that ĥðb̂Þx̂ 2 Tb̂: Consider also the following problem ð~P�bÞ :

ĥð�bÞ ¼ min h;

~P�b

� 	
s.t.

Pn

j¼1

x
�b
j kj� hðĥðb̂Þx̂Þ;

Pn

j¼1

kj� 1;

kj� 0; j ¼ 1; . . .; n:

Let ~h; ~k1; ~k2; . . .; ~kn denote the optimal solution to ð~P�bÞ: It is easy to check that ~h[ 0:

Furthermore, since ĥðb̂Þx̂ 2 Tb̂ and L\�b\b̂; from Lemma 1, ~h\1: Moreover, since ĥð�bÞ
is the optimal objective function value of ð~P�bÞ; ĥð�bÞ� ~hĥðb̂Þ\ĥðb̂Þ: h

Appendix 3: Existence of b*

The following Theorem 3 shows the existence of b*.

Theorem 3 Let x̂ 2 T̂ \ Int xj
Pn

j¼1 xL
j kj� x;

Pn
j¼1 kj� 1; kj� 0; j ¼ 1; . . .; n

n o
; and

ĥðbÞ be the quantile function of DMU-x̂: Then, there exists b* [ (L, ??) such that

the optimal objective function value of the following problem (Pb) is equal to one; i.e.,

ĥðb�Þ ¼ 1:

ĥðbÞ ¼ min h;

Pb
� �

s.t.
Pn

j¼1

x
b
j kj� hx̂;

Pn

j¼1

kj� 1;

kj� 0; j ¼ 1; . . .; n:

Proof

(i) If x̂ is located on the frontier of T1, then ĥð1Þ ¼ 1; i.e., b* = 1.

(ii) If x̂ is not located on the frontier of T1, and x̂ 2 Int T1; then there exist k0
j � 0; j ¼

1; . . .; n;
Pn

j¼1 k0
j � 1 such that

Xn

j¼1

aj þ 1	 bj � aj

� �� �
k0

j ¼
Xn

j¼1

bjk
0
j \x̂; ð1Þ

and ĥð1Þ\1: Let
b̂ [ max max

1� i�m;1� j� n
x̂ij � aij

� �
= bij � aij

� �� �
; L

 �
:

Then,
aj þ b̂ bj � aj

� �
[ x̂; j ¼ 1; . . .; n:
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Therefore, for any kj� 0; j ¼ 1; . . .; n;
Pn

j¼1 kj� 1; we have

Xn

j¼1

x
b̂
j kj [ x̂: ð2Þ

From (2), x̂ 62 Tb̂; and from Lemma 2, ĥðb̂Þ[ 1: As a result, since ĥð1Þ\1; ĥðb̂Þ[ 1; b̂ 2
ðL; þ1Þ; from Theorem 2(i), ĥðbÞ is a continuous function defined over (L, ??). It

follows that there exists b� 2 ðL; þ1Þ such that ĥðb�Þ ¼ 1:

(iii) If x̂ 62 T1; from Lemma 2, ĥð1Þ[ 1: In addition, since

x̂ 2 Int xj
Xn

j¼1

xL
j kj� x;

Xn

j¼1

kj� 1; kj� 0; j ¼ 1; . . .; n

( )

;

there exist k0
j � 0; j ¼ 1; . . .; n;

Pn
j¼1 k0

j � 1 such that

Xn

j¼1

aj þ L	 bj � aj

� �� �
k0

j ¼
Xn

j¼1

xL
j k

0
j \x̂:

Therefore, there exists b̂ that satisfies b̂ [ L such that

Xn

j¼1

x
b̂
j k

0
j \x̂:

That is, x̂ 2 Int Tb̂; and thus ĥðb̂Þ\1: Consequently, since ĥð1Þ[ 1; ĥðb̂Þ\1; b̂ 2
ðL; þ1Þ; from Theorem 2(i), ĥðbÞ is a continuous function defined over (L, ??). It

follows that there exists b* [ (L, ??) such that ĥðb�Þ ¼ 1: h

Appendix 4: Uniqueness of b*

The following Theorem 4 shows the uniqueness of b*.

Theorem 4 Let bj [ aj; j ¼ 1; . . .; n; L\�b\b̂; and x̂ 2 T̂ : Then

(i) There is no intersection between the frontiers of Tb̂ and T �b:

(ii) The quantile of DMU-x̂; i.e., b*, is uniquely determined.

Proof The proof to (i) is achieved by contradiction. If there exists x0 2 <m
þ; and x0 is

located on the frontiers of both Tb̂ and T�b; then, from Theorem 2, 1 ¼ ĥð�bÞ\ĥðb̂Þ ¼ 1;

which is a contradiction. That is, there is no intersection between the frontiers of Tb̂ and T �b:

The proof to (ii) is also achieved by contradiction. Assume that there exist two quantiles

of DMU-x̂; i.e., b�1 and b�2: Without loss of generality, assume that L\b�1\b�2: Since both
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b�1 and b�2 are the quantiles of DMU-x̂; ĥðb�1Þ ¼ ĥðb�2Þ ¼ 1: However, from Theorem 2,

ĥðb�1Þ\ĥðb�2Þ: That is, there is a contradiction. It follows that b* is uniquely determined. h
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