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Abstract

The optimal representative set selection problem is defined thus: given a set of test requirements and a test suite that satisfies all test
requirements, find a subset of the test suite containing a minimum number of test cases that still satisfies all test requirements. Existing
methods for solving the representative set selection problem do not guarantee that obtained representative sets are optimal (i.e. minimal). The
enhanced zero—one optimal path set selection method [C.G. Chung, J.G. Lee, An enhanced zero—one optimal path set selection method
Journal of Systems and Software, 39(2) (1997) 145-164] solves the so-called optimal path set selection problem, and can be adapted to solve
the optimal representative set selection problem by considering paths as test cases and components to be covered (e.g. branches) as te
requirements© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction test suite and a set of requirements, find an optimal repre-
sentative set from the test suite. As mentioned in [2,8], the
In testing (hardware and software testing), testing objec- optimal representative set selection problem is NP-complete
tives must be defined first. A testing objective can be consid- [9], and as mentioned in [2] it is equivalent to solving the
ered a set of testing requirements (hereafter, referred to asset-covering problem [10].
requirements), and different testing objectives have different The greedy heuristic method [11] has conventionally
sets of requirements. Once a set of requirements is deterbeen used to solve the set-covering problem; therefore, it
mined, test cases are designed to satisfy the requirements. Aan be used to obtain a representative set. The greedy heur-
set of test cases that can collectively satisfy all requirementsistic method repeatedly selects a test case that satisfies the
is called a test suite [2]. A typical method of constructing a maximum number of unsatisfied requirements at a time until
test suite, which has been employed by most automated testll requirements have been satisfied by a set of selected test
case generators [3—7], is to construct a test case for eaclcases. Two other studies [2,8] also provide heuristic meth-
requirement. A test case designed specifically for a require-ods. However, these heuristic methods do not always obtain
ment may also satisfy other requirements. As a result, the optimal representative sets. That is, the optimal representa-
constructed test suite may contain redundancy becausdive set selection problem has not yet been solved.
some of its proper subsets may still satisfy all requirements. The optimal path set selection problem for structural
Since the costs of executing test cases and managing tesprogram testing is defined as: given a complete pattPset
suites may often be quite significant, a test suite subset that(P is defined as a set containing all paths) and a required
can still satisfy all requirements is desirable. Such a subset iscoverage criterion, select the subsePakith the minimum
known as a representative set [8]. Assuming that the cost ofnumber of paths needed to satisfy the required coverage
executing and managing each test case is the same, a repretiterion. A coverage criterion can be considered a set of
sentative set with a minimum number of test cases is desir-components to be covered (e.g. statements or branches), and
able and is called an optimal representative set. The optimaldifferent coverage criteria have different sets of components
representative set selection problem is defined as given ato be covered. The set of components to be covered in the
optimal path set selection problem can be considered the set
- _ o of requirements to be satisfied in the optimal representative
Og_scéﬁi‘éf’”d'”g author. Tel.+ 886-03-5712121-54768; fax:- 886- set selection problem. The paths and the complete path setin
E-mail addressesjglee@csie.nctu.edu.tw (J.G. Lee), cgchung@csie. the optimal path set selection problem can be considered the
nctu.edu.tw (C.G. Chung) test cases and the test suite in the optimal representative set
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Fig. 1. A program digraph and its complete path set.

selection problem, respectively. The coverage relationship one optimal path set selection method to solve the optimal
among paths and components in the optimal path set selectepresentative set selection problem, and how to apply this
tion problem can be considered the satisfaction relationshipmethod in testing and maintenance stages. Section 4
among test cases and requirements in the optimal represenprovides an example illustrating the use of this method in
tative set selection problem. Therefore, the optimal path settesting and maintenance stages. Section 5 gives the conclu-
selection problem in structural program testing is equivalent sion.

to optimal representative set selection problem, and because

of this equivalence, optimal path set selection methods can
be adapted to solve the optimal representative set selectio
problem.

There are two methods for solving the optimal path set
selection problem, the zero—one optimal path set selection
method [12] and the minimum flow method [13]. The
former is more powerful than the latter because it can be

applied to a large variety of constraints, cost functions, and 2.2 shows how to apply the five reduction rules to reduce

coverage criteria, but the latter can only be applied to all- . . .
o the long computation of zero—one optimal path set selection
statements and all-branches coverage criteria [14,15]. The . . .
. : . “method, and lists the steps in the enhanced zero—one opti-
major drawback of the zero—one optimal path set selection :
: o mal path set selection method.
method is that the computation is lengthy, and large
programs may take ten or more hours because it is exponen- 1. zero—one optimal path set selection method [12]
tially proportional to the number of candidate paths (i.e. the
paths in the complete path set) and proportional to the In structural program testing, the structure of the program
number of components to be covered. Five reduction rulesunder test is mapped to a program digra@h= (N, B),
have been proposed [1] to overcome this drawback. ThesewhereN andB represent the node and branch sets, respec-
five rules enhance the zero—one optimal path set selectiontively. A node is a code segment executed sequentially
method and make it applicable to large programs. This while a branch directs transfer of control flow. Without
paper introduces adaptation of the enhanced zero—one optiloss of generality, it may be assumed that only one source
mal path set selection method to solve the optimal represen-node and one terminal node exist in the digraph. A path,
tative set selection problem. starting at the source node and ending at the terminal node,
The rest of this paper is organized as follows. Section 2 is a sequence of nodes connected by branches. Using
introduces the enhanced zero—one optimal path set selectiometwork methodologies such as node reduction [16], matrix
method. Section 3 shows adaptation of the enhanced zero-self-multiplication [17], or linearly independent circuits

. Enhanced zero—one optimal path set selection method
1]

The enhanced zero—one optimal path set selection
method consists of zero—one optimal path set selection
method and five reduction rules. Section 2.1 introduces
the zero—one optimal path set selection method. Section
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Fig. 2. Branch-path coverage frequency matrix.

[18], the complete path s€of program digraplt can then Following the same argument, the complete set of
be constructed. For example, consider the program digraphconstraint inequations for all-branches coverage criterion
shown in Fig. 1(a), the corresponding complete patliPsst is set up as follows (the constraint inequations are listed
shown in Fig. 1(b). A program with loops may include an according to the order of branehto branchs):
extremely large number of paths. To this problem, the tester
can limit loop iterations to some constant number.
.Gi\./en a complete path. s& and a required coverage F XX+ 1XXg + 1X X0 + 1X Xgg + 1X Xgo
criterion, a corresponding component-path coverage
frequency matri¥ can be generated showing the coverage 4 1xx; + 1xx, = 1
frequency relationship among the paths and the compo-
nents. The rows ifr represent the paths iy, the columns Ixx =1
in F represent the components to be covefeld,j] repre- !
sents the coverage frequency of titlke path over thgth 1x% =1
component. For example, consider the complete patPR set
shown in Fig. 1(b). The coverage frequency matrix for the
all-branches coverage criterion is shown in Fig. 2.
To iIIustra_te t_he f:oncept of this met_hod, the aII-bran_ch_es +1X X+ 1X Xgo+ L X Xgq + LX Xgp + 1X Xg5
coverage criterion is used as the required coverage criterion
in all following discussions. Thus, the optimal path set +1xx,=1
selection problem can be defined as follows. In the complete
path setP, which paths must be selected to guarantee that 1y y 4+ 1xx, + 1xxg + 1X %, = 1
each branch i is covered at least once and the number of
selected paths is minimal? This is a decision problem 1
because a decision as to whether to select each path must
be made. In this example, since there are 14 patls e FAXX, =1
can define 14 decision variables,i € {1,2,...,14},%;
corresponds to _paqh,xi =1 if_ p: is selected; 0, otherwise. 1X %+ 1XXs + 1XXg + 1XXgy + 1X %5 = 1
We first consider the requirement that each branch must
be covered at least once. Take braaas an example. Since
this branch appears m1 P3, P4: Ps: Pe: P7: Pa: Po: P10 P11y Pa2s
P13, andpy, one or more of these paths must be selected.
This can be represented by the following constraint inequa-
tion:

IXX, +1XX3+1XX+1XXs+1XXg+ 1XXy

IXX3+1XX+1XX+1XXs+1XX;+ 1XXg

XXg+ 1XXg+ 1XX;+1XXg+ 1X X9+ 1X X5

1XX4+1XX7+1XX9+1XX12+1XX1421
IXXs+1XX0=1

IXX3+1xx=1

Xo + Xg + Xq + X5 + Xg + X7 + Xg + Xg + Xq0 + X11 + Xq2

+ X+ X4 = 1, Or IXXg+1XX;+1XX1+1XX0o=1

IXX +1XX3+1XX+1XXs+1XXs+ 1XXy IXXg+1XXg+ +1XX3+1XX=1
+ 1XXg+ 1XXg+ 1X X9+ 1X X1 + 1XXqo IXXe+ 1XXs +1XXp +1XXp=1

+1XX13+1XX1421 1XX8+1XX9+1XX13+1XX1421
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IXXs + 1XXg+ 1X X+ 1XXg + 1XXg + 1 X X0+ 1 Note that the first matrix on the left-hand side is the
branch-path coverage frequency matrix shown in Fig. 2.
XX+ 1IXX+ 1XX3+1XX0=1 We next consider the requirement that the number of
selected paths must be minimal. Since the value of the
1X X0+ 1X Xgg + L XX+ LX Xgg + 1X X4 = 1 objective functiorz = x; + X, + X3 + X4 + X5+ Xg + X7 +
Xg + Xg + X190 + X171 + X2 + X453 + X14 IS the number of
IXXs + 1X X+ 1XX; + 1XXg + 1XXg = 1 paths in the selected path sefis the minimization target.
Combining the objective function and constraint, the opti-
IXXg+ 1IXXq+1IXXo+1IXX3+1IXXa=1 mal path set selection problem is formulated as the follow-

ing zero—one integer programming problem.

IXXs+1XXg+1XX;+1XXg+1XXg+1XX9+1 14

min (minimize) z= " x;,

XX11+1XX12+1XX13+1XX1421 -

The above inequalities can be summarizeJ &4 fix = st. (subject to
1, Vj=12,..,19 wheref; is the element of the branch-
path coverage frequency matrix at thie row and thejth 0 1 00 10000O0O0O0O0O0O0GO OO0
column. It can also be represented in the followingmatrix |1 o0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 b
form: 100110100100000000Fp
0100 1000000O0O0O0O0OGO0O0O0TF 10011101010000000GO0SFp
1010100000000O0O0OO0OTO0GO0S¢§ 100101001000001010¢
1001101001000000O0O0O0F¢§ 1001001000101 01010¢
10011101010000000O0F¢ 1001010100101 011010°¢
100101001000001010§[ 100100100001 0110100¢§
1001001000101010101% 100101010001 011010°¢§
1001010100101010101% 100101001001 0111001¢§
100100100001011010°% 1001001000101 011001¢
100101010001011010¢ 1001010100101 011001¢
100101001001011101€§[ 1001001000010111001%§
1001001000101 01101F%[ |1 0010101000101 110014
1001010100101 01101F%[ BN
100100100001011101€§ . 1
1
|1 001 0101000101110 014 « 1
_ : 1
1 X3 1
[ X1 ] 1 X 1
1
Xo X5 1
! 1
X3 1 X6
« 1
X L X721
X5 1 Xg 1
Xe 1 X9 1
X L X 1
X721 10 1
Xg 1 X11
X X: 1
9 1 12 1
X10 1 X13 1
X11 1 L X144 1
1
X 1
12 1 L~
X13 1
[ x4 1 x0orli€{1,2..,14}.
1

L Consider the general form of program digrapls= (N, B)
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and its complete path sBt= {p4, p», ..., Pm} . Define a deci- reduced. We first consider every path’s test cost to be the
sion variable array X(mx1) = [(x)],i €{1,2,...,m}, same and then different paths having different test costs.
wherex; = 1 if p; is selected; 0, otherwise. LéB| denote To reduce the number of candidate paths and the number
the total number of branches in program digraphand of components that must be covered, we have the following
F(mx|B|) the branch-path coverage frequency matrix. observations: (1) if a component does not have to be
The optimal path set selection problem is formulated as covered, it can be ignored during path selection; (2) if a
the following zero—one integer programming problem: component must be covered and is covered by only one
m path, the path that covers the component must be selected;
min z = in (3) if every path covering a component, say,also covers
i=1 another component, sag, the requirement that; and g
must be covered at least once can be reduced toust
StFTX=1,x=00rl i€ (1,2,...m}, 1(B/x1) be covered at least once; and (4) if a path, saycovers
all the components covered by another path, ggyand
=[1..1". some additional components, thgrcan be ignored during
path selection due to the existence ppf Based on these
From the above discussion we know that the zero—one observations, five reduction rules to reduce both the number
integer programming method can be applied to all-branchesof candidate paths and the number of components to be
coverage criterion. As shown in [12,14,15], this method can covered were proposed [1]. The following notation is
be applied to any structural program testing coverage criter- defined to illustrate the five reduction rules formally:
ion and an optimal solution is guaranteed.
This method can be extended [12,14,15] to handle the

Symbol Representation

. . . . F(mxn) = [(fj)] Coverage frequency matrix
following two cases: (1) different paths have different test gy 1) — (1, Coverage requirement array,= 0 or 1
costs; and (2) only critical components need to be coveredRow ith row matrix ofF
by selected paths. For the first case, we define a cost arraycol jth column matrix ofF _
C = [(c)] wherec; represents the test cost of pathThen, \RO‘{V'I = >k i Summation of's ith row non-zero entries
[Colj| = Y7L fi Summation ofF's jth column non-zero entries

change the objective function o= CX =Y, cix. For
the second case, define a coverage requirement Rreay ] ] ]
[(r))] wherer; = 1 if theith component must be covered; 0,  The five reduction rules are described below.

otherwise. Thus, the general optimal path set selection Rule 1 Surely Satisfied Constraint: If a component does
problem can be modeled as: not have to be covered at least once, its corresponding

constraint is surely satisfied and can thus be ignored. This

m
. rule can be expressed formally as follows:
minz=CX= Y cx P y
“

Ifrp,=0,i{1,2,...,n}, then(a) delete Cql

st FIX=R x=0o0rl i €{1,2,...,m}. (b) delete théth row of R (i.e. ;).

The problem definitely has a solution because the
program under test is assumed to be well-formed Xned
[11..1]" is a solution in the worst case. Many effective
algorithms are available to find a solution of the problem
[19,20]. Among them, the Balas’ zero—one additive algo-
rithm [19] is considered to be the fastest. The complexity of
the zero—one integer programming method is proportional
to (2P x |Componenty where |Path$ represents the
number of candidate paths an@omponentsrepresents
the number of components to be covered. The computation j < (1,2 ... n}, then(a) setx, = 1;
time is exponentially proportional tfPath$ which is the
major drawback of this method. (b) delete Cqland corresponding, Vfi; = 1,

Rule 2 Essential Path: A path is essential if and only if it
alone covers one or more components. After an essential
path, say,p,, has been selected, the components covered
by px can be ignored during subsequent computation
because they have been covered by the selectedpath
This rule can be expressed formally as follows:

If |Col| = fiyandf; = 1, k€ {1,2,...m},

2.2. Reducing zero—one optimal path set selection method ! € {1,2....n}; and(c) delete Row.

computation _ _
Rule 3 Dominant Component/Dominant Column:

The computation time required by the zero—one optimal Component; dominates componey if and only if every
path set selection method can be reduced if the size of thepath covering:; also covers. In this situation, the require-
coverage frequency matrix (i.e. the number of candidate ment thatc; must be covered at least once can be ignored
paths and the number of components to be covered) isbecause; must be covered at least once. This rule can be
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The five reduction rules can be combined with the zero—

Component 1 |Component2  |Component 3 [Test cost
L ] ] 100 one optimal path set selection method to obtain an enhanced
p. |1 1 0 10 zero—one optimal path set selection method. The steps in the
: (1) ? } ;g enhanced zero—one optimal path set selection method are
listed as follows:
Fig. 3. Coverage frequency matrix and path test costs. Step 1:Generate a component-path coverage frequency
matrix F, define a coverage requirement arRyand define
expressed formally as follows: a cost arrayC.
Step 2:Apply the five reduction rules to reduce the size of
If |Col| > 0, |Colj| > 0, andfy; = f, F. If the reduced component-path coverage frequency

matrix is empty (i.e. all columns have been deleted), stop;
otherwise, go to step 3.

Rule 4 Dominant Path/Dominant Row: Pathdominates Step 3:Translate the reduced component-path coverage
pa‘[th if and On|y if p; covers all the Components covered by frequency matrix into constraint inequations (eaCh column
p;. In this situationp, can be ignored due to the existence of corresponding to a constraint inequation) and define the

Vk e {1,2,...,m}, then delete Cgq| deleter;.

p. This rule can be expressed forma"y as follows: objective function that excludes decision variables with
known values (i.e. 0 or 1).
If fix = fii, Vke {1,2,...,n}, then(a) setx; = 0; Step 4:Solve the zero—one integer programming problem

formulated in step 3 using an available software package
(for examplerinpo [21]).

Rule 5 Zero Path/Zero Row: Pafh is a zero path if and The output of this method is the_union of the essential
only if it does not cover any component. This situation Paths selected by reduction rule 2 in step 2 and the paths
happens after Rule 2 has been applied and the essentiaf€€cted by the software package used in step 4. Examples
path is dominant over another path. In this case the zero'”l“'s”atlng how to apply the enhanced zero—one optimal
path can be directly deleted without affecting the problem Path set selection method can be found in [1].
solution. This rule can be expressed formally as follows:

(b) delete Row

It f =0, V] €{1.2,....n}, then(a) delete Row 3. Adapting the enhanced zero—one optimal path set

(b) setx; = 0. select@on method to solve the optimal representative set
selection problem

Among the five reduction rules, rule one should be
applied first because it simplifies computation by removing  T0 an optimal representative set selection problem,
unnecessary constraint inequations. Then, the other fourassume that the given test suifecontainsm test cases,
reduction rules can be applied repeatedly to reduce therequirement seR containsn requirements, and each test
size of the coverage frequency matrix until none are applic- case inT satisfies one or more requirementsRnAn m
able. A formal algorithm demonstrating application of the by n satisfaction matrixS can be generated to represent
five reduction rules can be found in [1]. the satisfaction relationship among the test caseE amd

I different paths have different test costs, reduction rule 4 the requirements iR. The rows ofSrepresent the test cases
can not be directly applied. For example, consider the cover-in T, the columns ofS represent the requirements R
age frequency matrix and each path’s test cost shown in Fig. Si.j1 = 1 if test caset; € T satisfies requirement; €
3. If reduction rule 4 is appliedy, will be selected and the R0, otherwise. Since each test caseTiis either selected
total test cost will be 100. However, the optimal path set Of not selected, we define a decision variable arkayn x
should be Py, ps}, {P,. Pa} or { ps, pa} because the total test 1) = [(X)]. 1 € {1,2,...,m}, wherex; = 1if t; is selected, O,
cost would then be 20. Therefore, if different paths have otherwise. Since the cost of each test case may be different,
different test costs reduction rule 4 should be modified as We define a cost array; = [(ci)], wherec; represents the
follows: cost of test casg € T. The optimal representative set selec-

Rule 4 . Dominant Path/Dominant Row: Pafh domi- tion problem is formulated as the following zero—one inte-
nates pathp, if and only if p; covers all the components ~ger programming problem:
covered byp; and the test cost gf; is less than or equal to m
that of p;. In this situation,p; can be ignored due to the minz=Cx= ZCiXi
existence ofp;.. Let Cos{(x) be a function returning the i=1
cost of pattx, this rule can be expressed formally as follows:

If fye = i, VK€ {1,2,...,n} and Costp;) st SX=1, x=00r1 i €{1,2,...m}, I(nx1)

= Costp,), then(a) setx; = 0, (b) delete Row =[1..1"
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N, o T Ty Te (e 1Ty Ty [To Tyo Ty Ty 103 [Ty M |Tye [Typ (T Ty
t, (1 qr {r j1r jo 1 jo 1 1 10 0 _j0 {0 0o o [0 {0 |0
t, 1 1 1 {1 1 41 jo 1 jo |1 1 0 |1 1 10 0 [0 |0 |0
t, (1 1 {1t j1r o 1 j0 |0 |0 j0 |1 1 1 1 1 10 |1 1 |0
tg, |1 I 1 1 0 |1 0 |0 |0 [0 10 {1 Jo |0 |l 1 1 1 1
te 1 1 41 1 1 10 j0 1 0 {1 |0 0 0 0 0 0 |0 0o o
te 1 1 41 J1 (0 {1 0 0 [0 [0 [0 {1 J0 0 0o 1 [0 [0 |1
t, 1 1 1 1 41 {0 1 j0 I 1 |0 0 0 0o 1 0o [0 |0 |oO
t. |1 |1 (1 J1 [0 [1 0 j0 j0 [0 |1 |I 1 1 {0 I 0o j0o |1
te 1 41 1 41 1 |1 0 1 j0o 1 0o |1 0 j0 J1 o |1 1 |0
to (1 1 {1 {1 1 1 1 j0 {1 |1 I 10 11 1 10 [0 0 0o |0
ty 1 1 41 1 1 10 {0 1 0 (1 [0 {0 0 0 [0 [0 [0 [0 |0
to, (1 1 {1 {1 {1 1 1 jo 1 1 0o 1 j0o Jjo |1 Jjo |1 1 |0

Fig. 4. Satisfaction matrix

Thus, we can apply the enhanced zero—one optimal pathetc. The corresponding satisfaction matrix is shown in Fig.
set selection method to find an optimal representative set. 4.

The optimal representative set selection method can be During testing, we want to find a minimal representative
used in both the testing and maintenance stages. In the testset that satisfies the 19 requirements. Assuming the execu-
ing stage, a set of requiremenRss defined first and then a  tion costs of all 12 test cases are the same, the objective is
test suiteT is generated to satisfy all the requirement®in  then to minimizez=x; + X, + X3 + ---+ X35. The five
The satisfaction relationship among the test casésand reduction rules are applied to reduce the satisfaction matrix
the requirements iR is analyzed and represented in a satis- size. Since requirement dominates the requirements in
faction matrix. If different paths have different costs, we {r,,rs,rs}, rs dominates §{;, o}, r; dominates £z, rq}, r1;
define a cost arrayC = [(¢;)], wherec; represents the cost dominates £g, 13,14}, 16 dominates £, r1g}, and ry7
of pathp,. The optimal representative set selection method dominates {5, r1g}, reduction rule 3 can be applied. As a
can then be applied to obtain an optimal representative setresult, the columns corresponding to the requirements in

In the maintenance stage, requirements may be added ofr, r3, r4, 1, F10, I's, F9, I'ss F13s 14, F12, 19, 15, F1g} are
deleted due to program modifications. Existing test casesdeleted and the reduced satisfaction matrix is as shown in
may not satisfy all new requirements after new requirements Fig. 5. Since test cade dominates the test case it} t,
are added, and new test cases may have to be added. Sonwominates{s, t;1}, t dominates {}, andt;o dominates {;},
existing test cases may not satisfy any requirement afterreduction rule 4 can be applied and the reduced satisfaction
some existing requirements are deleted, so these test casawatrix is then as shown in Fig. 6. Since ho more reduction
will have to be deleted. The satisfaction mat@xust then rules can be applied, the problem is reduced to:
be updated to represent the satisfaction relationship amon
the test cases in the new test sditand the requirements in
the new requirement s&

Programs should be re-tested after modification. If the
modification only relates to some requirementsRnwe
can define a coverage requirement ariays [(r;)], where
r; = liftheith requirement is modification related, 0, other-
wise [22,23]. We may then apply the optimal representative
set selection method to find a minimal representative set to

%inZ:XZ+X3+X4+X8+X9+X10+X12
St.Xjg+Xp=1
Xo + X =1

Xo+ X3+ Xg+Xp=1

+xg=1
rerun. X4 T X
X3+ X4+ X+ X =1
4. Example TheLiNDo software package is used to solve the reduced

problem, and yieldst, tg, t15}, which means the obtained
In this section, an example is used to illustrate application optimal representative set i${tg, t1,}.

of the optimal representative set selection method to testing The satisfaction matrix shown in Fig. 4 may also be
and maintenance stages. A system (either hardware or softconsidered an updated satisfaction matrix for the mainte-
ware) has been designed to satisfy 19 requirements, and 1Zance stage. Assume that modification relates only to the
test cases have been designed to test for satisfaction of theseequirements in €, r;, rg, ro, r10, 11, r12}. Thus, a
requirements. The 19 requirements can be considered funccoverage requirement array is defined aR=
tional testing requirements that must be satisfied for soft- [0000011111110000000 The five reduction rules are
ware integration or functional testing requirements for applied to reduce the satisfaction matrix size. Since the
hardware such as CPUs, hard disks, RAMs, floppy disks, requirements in gy, r,, r3, r4, I's, F13, 14, 15, F16, F17: M18s
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Fig. 5. Reduced satisfaction matrix (after applying reduction rule 3).
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Fig. 6. Reduced satisfaction matrix (after applying reduction rule 4).

T |ry rg fre |re |ry rp
t [0 1 o1 1 Jo Jo
vt 1 o1 ot 1 Jo
L 1 Jo Jo o Jo 1 |
t, 1 Jo Jo [0 Jo Jo [
t. [0 0 1 o 1 Jo Jo
t |1 0 [0 o Jo [0 |1
L [0 1 Jo 1 |1 Jo Jo
t, 1 Jo Jo [0 [o |1 [
L, 1 Jo [1 Jo 1 Jo |
e 1L Jo 1 1 1 o
w10 Jo 1 Jo 1_Jo Jo
., 1 1 Jo 1 |1 Jo [

Fig. 7. Reduced satisfaction matrix (after applying reduction rule 1).

I, rg ry (T
t, [1 Jo [o o
t, [0 [1 |1 0
t, |0 [0 (1 |1
t, [0 [0 |0 |1
t. [0 [1 Jo o
t, 10 [0 [0 |1
t, (1 Jo [o o
t, [0 Jo [1 1
t, 10 [1 Jo |1
te (1 0 J1 |0
t, [0 [1 Jo o
1, |1 Jo Jo |

Fig. 8. Reduced satisfaction matrix (after applying reduction rule 3).

r, rg ir, r,
L, 0 1 [1 Jo
L 0 Jo [T |1
R
to 1 J0 1 Jo
t, 1 _J0 Jo |1

Fig. 9. Reduced satisfaction matrix (after applying reduction rule 4).

rig} need not be satisfied, reduction rule 1 can be applied
and the reduced satisfaction matrix is then as shown in Fig.
7. Since requirement; dominates the requirements in
{rg,r10} and ry; dominates {g}, reduction rule 3 can be
applied and the reduced satisfaction matrix is then as
shown in Fig. 8. Since test casedominates the test case
in {t7}, t, dominates {s, 1}, ts dominates {,, ts, tg} , andtyo
dominates {;}, reduction rule 4 can be applied and the
reduced satisfaction matrix is then as shown in Fig. 9.
Since no more reduction rules can be applied, the problem
is reduced to:

Minz= X, + X3 + Xg + Xgg + Xq

St.Xgt+X%Xp=1

X+ X =1

X+ X3+ Xo=1

X3+ Xg + Xp = 1.

TheLinpo software package may then be used to obtain
{t5, 112}, which indicates that only the test caseds, {;}
need to be rerun to verify the correctness of the modifica-
tion.

5. Conclusion

The optimal representative set selection problem and the
optimal path set selection problem both involve finding a
minimum subset from a given set that satisfies given
requirements, so they can be classified as set-covering
problems. This means the enhanced zero—one optimal
path set selection method, used in structural program test-
ing, can be adapted to solve the optimal representative set
selection problem. The proposed method can be applied in
testing and maintenance stages. The proposed method can
be applied even when different test cases have different test
costs. A program based on the proposed method that can be
executed on IBM compatible PC has been implemented.
The optimal representative set can be obtained automati-
cally within a reasonable time after the satisfaction matrix
and objective function have been inputted.
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