
ON COMPUTING STABLE LAGRANGIAN SUBSPACES OF
HAMILTONIAN MATRICES AND SYMPLECTIC PENCILS∗

WEN-WEI LIN† AND CHERN-SHUH WANG‡

SIAM J. MATRIX ANAL. APPL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 3, pp. 590–614, July 1997 005

Abstract. This paper presents algorithms for computing stable Lagrangian invariant subspaces
of a Hamiltonian matrix and a symplectic pencil, respectively, having purely imaginary and unimodu-
lar eigenvalues. The problems often arise in solving continuous- or discrete-time H∞-optimal control,
linear-quadratic control and filtering theory, etc. The main approach of our algorithms is to determine
an isotropic Jordan subbasis corresponding to purely imaginary (unimodular) eigenvalues by using
the associated Jordan basis of the square of the Hamiltonian matrix (the S +S−1-transformation of
the symplectic pencil). The algorithms preserve structures and are numerically efficient and reliable
in that they employ only orthogonal transformations in the continuous case.
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1. Introduction. A matrix M ∈ R2n×2n is said to be Hamiltonian if JM =
(JM)T , where J ≡ Jn = [ On−In

In
On

]. Here In is the n × n identity matrix and On is

the n × n zero matrix. A matrix S ∈ R2n×2n is symplectic if STJS = J . A linear
pencil N − λL with N,L ∈ R2n×2n is said to be symplectic if NJNT = LJLT . If we
partition a Hamiltonian matrix M and a symplectic pencil N − λL comfortably with
J , respectively, then we have

M =

[
A G
H −AT

]
, G = GT , H = HT ,(1.1)

and

N =

[
A O
−H I

]
, L =

[
I G
O AT

]
, G = GT , H = HT .(1.2)

Our interest in the Hamiltonian matrix M in (1.1) and the symplectic pencil
N − λL in (1.2), respectively, stems from the fact that if[

A G
H −AT

] [
Ω1

Ω2

]
=

[
Ω1

Ω2

]
W, Ω1, Ω2, W ∈ Rn×n,(1.3)

then X = −Ω2Ω−1
1 (if Ω−1

1 exists) solves the continuous-time algebraic Riccati equa-
tion (CARE)

−XGX +XA+ATX +H = 0,(1.4)
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 591

and if [
A O
−H I

] [
Ω1

Ω2

]
=

[
I G
O AT

] [
Ω1

Ω2

]
W,(1.5)

then X = −Ω2Ω−1
1 (if Ω−1

1 exists) solves the discrete-time algebraic Riccati equation
(DARE)

ATXA−X −ATXG(I +XG)−1XA+H = 0.(1.6)

In fact, the Hamiltonian matrix and the symplectic pencil are often derived from
continuous- and discrete-time optimal control problems, respectively, e.g., [5, 6, 8,
10, 11, 13, 14]. To obtain an optimizer, especially a stabilizing optimizer, of optimal
control problems, one must compute a particular invariant subspace satisfying (1.3) or
(1.5). This particular invariant subspace is usually referred to as a stable Lagrangian
subspace.

Definition 1.1. A subspace S ⊂ R2n is isotropic if

xTJy = 0 for all x, y ∈ S.

Definition 1.2. A subspace Y ⊂ R2n is called an M-stable isotropic subspace
if Y satisfies that (i) MY ⊂ Y, (ii) Y is isotropic, and (iii) Re(λ(M |Y)) ≤ 0. Here
λ(M |Y) denotes an eigenvalue of M restricted in Y.

Definition 1.3. A subspace W ⊂ R2n is called an (N,L)-stable isotropic sub-
space if (i) W is invariant under (N,L) [25]; i.e., there is a subspace V such that
NW, LW ⊂ V; (ii) W is isotropic; and (iii) |λ((N,L)|W)| ≤ 1.

Definition 1.4. If YL ⊂ R2n is an M -stable isotropic subspace with dim(YL) =
n, then YL is called an M -stable Lagrangian subspace.

Definition 1.5. If WL ⊂ R2n is an (N,L)-stable isotropic subspace with
dim(WL) = n, then WL is called an (N,L)-stable Lagrangian subspace.

For the continuous-time case, it is known that an M -stable Lagrangian subspace
is closely related to an internally stabilizing controller of an H∞-control system [5, 8].
In linear-quadratic control problems in which (A,G) is stabilizable with G positive
semidefinite, we can obtain the unique “weak” stabilizing symmetric solution of CARE
(1.4), and therefore an optimal controller by computing the unique M -stable La-
grangian subspace [14, 28]. In addition, several applications in Wiener filtering theory
[26] and network synthesis [1] also need to compute an M -stable Lagrangian subspace.
This is the reason why we are interested in computing an M -stable Lagrangian sub-
space. Unfortunately, an M -stable Lagrangian subspace does not always exist, while
some nonzero purely imaginary eigenvalues of M have odd partial multiplicities. A
counterexample can be found in [21].

To guarantee the existence of an M -stable Lagrangian subspace, M must satisfy
the following assumption.

(A1) The partial multiplicities of all purely imaginary eigenvalues are all even.

If we require that

(R1) the M -stable Lagrangian subspace YL have the lowest Jordan degree (that is,
there is no other M -stable Lagrangian subspace having total Jordan degree smaller than
that of YL), then the desired M -stable Lagrangian subspace YL is unique determined.

We will discuss the details of this result in the next section.
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592 WEN-WEI LIN AND CHERN-SHUH WANG

The first purpose of this paper is to propose an efficient, reliable, and structure-
preserving algorithm for computing the M -stable Lagrangian subspace satisfying (R1)
under the assumption (A1). For Hamiltonian matrices with purely imaginary eigen-
values, Clements and Glover [5] proposed an eigenvector deflation technique that
guarantees that the eigenvalues appear with the correct pairing. This is certainly
an advantage over the general QR or QZ method [12, 15, 24], but this method still
ignores the structure in part during the process. In another recent paper, Ammar and
Mehrmann [2] proposed an elegant method, only using symplectic orthogonal trans-
formations to compute the M -stable Lagrangian subspace. Combining the method
with at least one step of defect correction is highly advisable. But, there are still
numerical difficulties in convergence of deflation steps if purely imaginary eigenvalues
occur [20, section 18, p. 143].

To avoid the numerical difficulties mentioned above, we shall develop a stable and
structure-preserving algorithm as a preprocessing step to deflate all purely imaginary
eigenvalues and to get a reduced Hamiltonian matrix having no purely imaginary
eigenvalues. Then the rest of the M -stable Lagrangian subspace corresponding to
stable eigenvalues with negative real parts can be computed by some reliable algo-
rithms, such as in [2, 23, 29]. In our algorithm, we first compute the skew-Hamiltonian
Schur decomposition of M2 by using the numerically stable square reduced algorithm
of Van Loan [27]. Then, we apply the algorithm proposed in [3] or [17] to the skew-
Hamiltonian Schur matrix to determine the Jordan subbasis corresponding to the
nonpositive eigenvalues of M2. These algorithms are numerically reliable and need
only O(n2) flops if the number of nonpositive eigenvalues of M2 is of order O(1).
Based on elementary linear algebra theory, we can determine an associated Jordan
subbasis Y corresponding to purely imaginary eigenvalues of M by using the Jordan
subbasis corresponding to nonpositive eigenvalues of M2. Under the assumption (A1)
that each purely imaginary eigenvalue has even partial multiplicities, by applying an
isotropicity requirement, we can separate an isotropic Jordan subbasis Υ correspond-
ing to each first half of Jordan blocks of purely imaginary eigenvalues from Y . Indeed,
the subspace span{Υ} lies on the M -stable Lagrangian subspace. Consequently, we
deflate the isotropic subbasis Υ from M by using symplectic orthogonal transforma-
tions and get a reduced Hamiltonian matrix having no purely imaginary eigenvalues.

For the discrete-time case, an (N,L)-stable Lagrangian subspace also play an im-
portant role for H∞-optimal or linear-quadratic control problems. In linear-quadratic
control problems in which (A,G) is stabilizable with G positive semidefinite, the
unique “weak” stabilizing symmetric solution of DARE (1.6) can be obtained by
computing the (N,L)-stable Lagrangian subspace [13]. For the H∞-control problem
a detailed treatment of the suboptimal controller versus the H∞-optimal control is
not available. The suboptimal case is treated in detail in [10, 11]. Although a fac-
torization theory similar to [5] has not been developed for the discrete-time case,
we still consider computing the (N,L)-stable Lagrangian subspace of N − λL from
a theoretical point of view. To ensure the existence and uniqueness of the desired
(N,L)-stable Lagrangian subspace with lowest Jordan degree, a related assumption
and requirement as in the continuous-time case are listed as follows.

(A2) The partial multiplicities of all unimodular eigenvalues of N − λL are even.

(R2) The (N,L)-stable Lagrangian subspace WL has the lowest Jordan degree. (That
is, there is no other (N,L)-stable Lagrangian subspace having total Jordan degree
smaller than that of WL.)
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 593

As in a continuous-time case, we can also develop a reliable and structure-preserving
algorithm as a preprocessing step to deflate all unimodular eigenvalues and get a re-
duced symplectic pencil having no unimodular eigenvalues. Then the rest of the
(N,L)-stable Lagrangian subspace can be computed by algorithms of [19] or [29]. In
our algorithm we consider the S+S−1-transformation of the symplectic pencil N−λL
[18], i.e.,

Γ− λ∆ ≡
[(
NJLT + LJNT

)
− λLJLT

]
JT ,(1.7)

and then we compute the skew-Hamiltonian Schur pencil form of Γ − λ∆ by using
the numerically stable algorithm proposed in [22]. As in the continuous-time case,
we first compute a Jordan subbasis corresponding to eigenvalues of Γ − λ∆ with
magnitudes between −2 and 2 by algorithms of [3] or [17] and then use it to deter-
mine an isotropic Jordan subbasis corresponding to each first half of Jordan blocks
of unimodular eigenvalues of N − λL. Further, we deflate this subbasis of N − λL by
symplectic transformations and get a reduced symplectic pencil having no unimodular
eigenvalues.

For convenience, we list some notation which are adopted in this paper.
Zp denotes an orthonormal matrix which forms an orthonormal subbasis of
M2 corresponding to the zero eigenvalue with the Jordan degree of p; i.e., for
any nonzero vector v ∈ span{Zp},

(M2)pv = 0 and (M2)p−1 6= 0.

Z̃p denotes the matrix [Z1, . . . , Zp].
Yp denotes an orthonormal matrix which forms an orthonormal subbasis of
M corresponding to the zero eigenvalue with the Jordan degree of p; i.e., for
any nonzero vector v ∈ span{Yp},

Mpv = 0 and Mp−1 6= 0.

Ỹp denotes the matrix [Y1, . . . , Yp].
Υs denotes an orthonormal matrix which forms an orthonormal subbasis of
the maximal M -stable isotropic subspace corresponding to each first half of
Jordan blocks of zero eigenvalue.
J (`)(λ) denotes an `× ` elementary Jordan matrix corresponding to λ; i.e.,

J (`)(λ) =


λ 1

. . .
. . .

1
λ


`×`

.

Λ(`)(0) denotes an `× ` matrix with

Λ(`)(0) =

[
O`−1

δ`

]
, δ` = 1 or 0.

ej ≡ e(n)
j is the jth column vector of n× n identity matrix In.

N (A) denotes the null space of matrix A.
All script (calligraphic) capital letters, e.g., Y, W, etc. denote vector sub-
spaces.
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594 WEN-WEI LIN AND CHERN-SHUH WANG

This paper is organized as follows. In section 2 we summarize some preliminary
results. In sections 3 and 4 we develop numerically reliable algorithms to compute
the desired isotropic subspaces of a Hamiltonian matrix and a symplectic pencil, re-
spectively, corresponding to purely imaginary and unimodular eigenvalues. In section
5, we show some numerical results to illustrate the numerical reliability of our algo-
rithms.

2. Preliminary. In this section, we review some important properties of a real
Hamiltonian matrix and a real symplectic pencil which have been developed and
exploited for several years. First, we state a theorem of [16] which gives a canonical
form of a Hamiltonian matrix.

Theorem 2.1 (see [16]). Let M ∈ R2n×2n be a Hamiltonian matrix. Then there
is a symplectic matrix S ∈ R2n×2n such that

S−1MS =

[
diag{J0, 0, T1, J

T
ν } diag{Λ0, Eµ, T2, Dν}

diag{0, E−µ, 0,−Dν} diag{−JT0 , 0,−TT1 ,−Jν}

]
,(2.1)

where µ = (µ1, . . . , µk2)T ∈ Rk2 , T1 ∈ Rk3×k3 with Re(λ(T1)) < 0, ν = (ν1, . . . , νk4)T ∈
Rk4 , and

J0 = diag{J (m1)(0), . . . , J (mk1 )(0)},
Λ0 = diag{Λ(m1)(0), . . . ,Λ(mk1 )(0)},
Eµ = diag{E(n1)(µ1), . . . , E(nk2 )(µk2)},
E−µ = diag{E(n1)(−µ1), . . . , E(nk2 )(−µk2)}

with (nj an even integer),

E(nj)(µj) =


0 µj

µj 1
· −1

µj ·
µj 1 0


nj×nj

,

E(nj)(−µj) =


0 −1 −µj

· −µj
1 ·

−1 −µj
−µj 0


nj×nj

,

Jν = diag{J (`1)(0), . . . , J (`k4 )(0)},
Dν = diag{D(`1)(ν1), . . . , D(`k4 )(νk4)}

with (`j an odd integer)

D(`j)(νj) =


0 −νj

νj
·

·
−νj 0


`j×`j
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 595

and

n =

k1∑
j=1

mj +

k2∑
j=1

nj + k3 +

k4∑
j=1

`j .

By Theorem 2.1, we see that the Hamiltonian matrix M contains zero eigenvalues
and purely imaginary eigenvalues ±iµj for j = 1, . . . , k2 and ±iνj for j = 1, . . . , k4.

Under assumption (A1), the canonical form (2.1) becomes a simpler form,

S−1MS =

[
diag{J0, 0, T1} diag{Λ0, Eµ, T2}
diag{0, E−µ, 0} diag{−JT0 , 0,−TT1 , }

]
,(2.2)

where µ, T1, J0,Λ0, Eµ, E−µ are given in (2.1) with n =
∑k1
j=1mj +

∑k2
j=1 nj + k3.

Partition the symplectic matrix S = [S1, S2, S3, Ŝ1, Ŝ2, Ŝ3] with the block type
(2.2). Furthermore, we partition

S1 = [S
(1)
1 , . . . , S

(k1)
1 ] and Ŝ1 = [Ŝ

(1)
1 , . . . , Ŝ

(k1)
1 ]

comfortably with block type of J0 and write S
(j)
1 and Ŝ

(j)
1 in the column vector forms

S
(j)
1 = [s

(1,j)
1 , . . . , s(1,j)

mj ] and Ŝ
(j)
1 = [ŝ

(1,j)
1 , . . . , ŝ(1,j)

mj ]

for j = 1, . . . , k1. If δj = 1 (the (mj ,mj)th element of Λ(mj)(0)) for some j ∈
{1, . . . , k1}, then the maximal M -stable isotropic subspace with lowest Jordan degree

of span{S(j)
1 , Ŝ

(j)
1 } is

S(j)
1 = span{S(j)

1 }.(2.3)

If δj = 0 for some j ∈ {1, . . . , k1} (here mj must be even), then the maximal M -stable

isotropic subspace with lowest Jordan degree of span{S(j)
1 , Ŝ

(j)
1 } is

S(j)
1 = span{s(1,j)

1 , . . . , s
(1,j)
mj/2

, ŝ
(1,j)
mj/2

, . . . , ŝ(1,j)
mj }.(2.4)

Partition

S2 = [S
(1)
2 , . . . , S

(k2)
2 ] and Ŝ2 = [Ŝ

(1)
2 , . . . , Ŝ

(k2)
2 ]

with the block type Eµ and write S
(j)
2 and Ŝ

(j)
2 in the column vector forms

S
(j)
2 = [s

(2,j)
1 , . . . , s(2,j)

nj ] and Ŝ
(j)
2 = [ŝ

(2,j)
1 , . . . , ŝ(2,j)

nj ]

for j = 1, . . . , k2. The maximal M -stable isotropic subspace with lowest Jordan degree

of span{S(j)
2 , Ŝ

(j)
2 } is

S(j)
2 = span{s(2,j)

nj/2
, . . . , s(2,j)

nj , ŝ
(2,j)
1 , . . . , ŝ

(2,j)
nj/2
}.

Let S3 ≡ span{S3} denote a maximal M -stable isotropic subspace of span{S3, Ŝ3}.
Since S(j)

1 , j = 1, . . . , k1, S(j)
2 , j = 1, . . . , k2, and S3 are uniquely determined with

lowest Jordan degree by collecting these M -stable isotropic subspaces and letting

YL =

 k1⊕
j=1

S(j)
1

⊕
 k2⊕
j=1

S(j)
2

⊕ S3,
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596 WEN-WEI LIN AND CHERN-SHUH WANG

we get that YL is the M -stable Lagrangian subspace satisfying (R1).
From the above discussion, we see that the desired Lagrangian subspace YL is

spanned by the Jordan vectors corresponding to each first half of Jordan blocks of
purely imaginary eigenvalue and the Jordan vectors corresponding to eigenvalues with
negative real parts.

Assumption (A1) is necessary for the uniqueness of (R1). If we relax (A1) in that
some partial multiplicities of zero eigenvalues of M are permitted to be odd, then the
M -stable Lagrangian subspace still exists, but the uniqueness of (R1) does not hold.
For example, let M = diag{J (3)(0), −J (3)(0)T }. Then M has zero eigenvalue with
partial multiplicities 3, 3. It is easily seen that {e1, e6, e5}, {e1, e2, e6}, {e6, e5, e4},
and {e1, e2, e3} are four distinct M -stable Lagrangian subspaces, but the first two
have the same lowest Jordan degrees. As mentioned in section 1, if some nonzero
eigenvalue has odd partial multiplicities, then the existence of M -stable Lagrangian
subspace can fail. Let M = [ 0

−1
1
0 ]. Then M has eigenvalues ±i associated with

eigenvectors [ 1
i ] and [ 1

−i ], respectively. It is easy to verify that M has no M -stable
Lagrangian subspace.

The following theorem of [14] states an important result from linear-quadratic
control problems.

Theorem 2.2. Let M be a Hamiltonian matrix as in (1.1). Let G be positive
semidefinite and (A,G) be stabilizable. Assume (A1) holds. Then there exists a sym-
plectic matrix S such that Λ(mj)(0) in (2.2) has zeros everywhere except one in the
(mj ,mj)th entry. Furthermore,

(i) there exists a unique M -stable Lagrangian subspace YL,
(ii) there exists a unique symmetric solution X ∈ Rn×n of CARE in (1.4) such

that Re(λ(A+GX)) ≤ 0 and span{[ IX ]} = YL.
Remark. For the case of Theorem 2.2, the only possible M -stable isotropic sub-

space corresponding to zero eigenvalues must have the form (2.3). The M -stable
Lagrangian subspace YL is then uniquely determined. Thus, requirement (R1) for YL
here is automatically satisfied.

For the symplectic pencil N − λL, we want to find the (N,L)-stable Lagrangian
subspace WL. By a skillful transformation of [20, p. 120], we can deflate zero and
infinity eigenvalues of N −λL simultaneously and obtain a reduced symplectic pencil
N̂ − λL̂ having only nonzero finite eigenvalues. Thus, computing the (N,L)-stable
Lagrangian subspace is equivalent to computing the stable Lagrangian subspace of
the symplectic matrix B = L̂−1N̂ . It is easily seen that the Cayley transformation
matrix

M = (I +B)(I −B)−1(2.5)

is Hamiltonian. Furthermore, since the transformation (2.5) is rational and M , B are
commuted, an M -stable Lagrangian subspace must be a stable Lagrangian subspace
of B. Similar to the continuous-time case, we can conclude that the (N,L)-stable
Lagrangian subspace WL is unique determined if (A2) and (R2) are satisfied.

Hereafter, for brevity, M -stable and (N,L)-stable Lagrangian subspaces mean
the M -stable and the (N,L)-stable Lagrangian subspaces with lowest Jordan degrees,
respectively.

3. Computing the stable Lagrangian subspace of a Hamiltonian matrix
having purely imaginary eigenvalues. Let M be the Hamiltonian matrix as in
(1.1). Assume (A1) holds; i.e., the partial multiplicities of purely imaginary eigenval-
ues of M are all even. In this section, we shall develop a reliable algorithm to compute
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 597

the M -stable isotropic subspace Y corresponding to each first half of Jordan blocks
of all purely imaginary eigenvalues and get a reduced Hamiltonian matrix having no
purely imaginary eigenvalue. Combining Y with the isotropic subspace corresponding
to the strictly stable eigenvalues of M , we obtain the desired M -stable Lagrangian
subspace YL.

The main idea of our algorithm to determine Y is that we first compute a Jordan
basis corresponding to nonpositive eigenvalues of M2 and then use it to determine a
Jordan basis corresponding to purely imaginary eigenvalues of M and to determine
an isotropic basis Υ of Y.

We now consider the case of nonzero purely imaginary eigenvalues. Assume that
the conjugate eigenvalue pair ±iω of M have the Jordan blocks {J (2m1)(iω), . . . ,
J (2mk)(iω)} and {J (2m1)(−iω), . . . , J (2mk)(−iω)} with even orders, respectively. It is
easily seen that the negative eigenvalue−ω2 ofM2 has the Jordan blocks {J (2mj)(−ω2),
J (2mj)(−ω2)}kj=1. Hence, the eigenspace of M corresponding to each first half of

Jordan blocks {J (mj)(±iω)}kj=1 is just the eigenspace of M2 corresponding to each

first half of Jordan blocks {J (mj)(−ω2), J (mj)(−ω2)}kj=1. Thus, the desired M -stable

isotropic subspace can be determined directly from the associated eigenspace of M2.
The case of zero purely imaginary eigenvalue is more complicated than the case of
nonzero purely imaginary eigenvalue. In the following we shall discuss this case care-
fully.

Let {2m1, . . . , 2mk} with m1 ≤ · · · ≤ mk be the partial multiplicities of the zero

eigenvalues of M and n0 = 2
∑k
j=1mj be the algebraic multiplicity of zero eigenvalues.

Let

Y =
[
Y

(0)
1 , . . . , Y

(k−1)
2mk

]
,(3.1a)

be an orthonormal basis of the subspace spanned by the associated Jordan vectors,

where the submatrix Y
(j)
p for p = 1, . . . , 2mk is a 2n× (k − j) orthonormal matrix of

degree p and j ≡ j(p) ∈ {0, . . . , k − 1} is an integer function in p such that

2mj < p ≤ 2mj+1 (m0 = 0).(3.1b)

Remark. (i) A matrix Yp is of degree p if any nonzero vector v ∈ span{Yp} satisfies
Mpv = 0 and Mp−1v 6= 0. (ii) Since the mutually orthogonal subspaces spanned by

{Y (j)
p } are unique (p = 1, . . . , 2mk), for convenience we identify any two orthonormal

bases of span{Y (j)
p }.

Furthermore, we define

Ỹ (j)
p =

[
Y

(0)
1 , . . . , Y (j)

p

]
(3.2)

as the submatrix of Y of degree less than or equal to p. From elementary al-
gebra theory, we see that the partial multiplicities of zero eigenvalues of M2 are
{m1,m1, . . . ,mk,mk}. Let

Z =
[
Z

(0)
1 , . . . , Z(k−1)

mk

]
(3.3a)

be an orthonormal basis of the associated Jordan vectors, where the submatrix Z
(j)
p

for p = 1, . . . ,mk is a 2n × 2(k − j) orthonormal matrix of degree p and j ≡ j(p) ∈
{0, . . . , k − 1} is an integer function in p such that

mj < p ≤ mj+1 (m0 = 0).(3.3b)
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598 WEN-WEI LIN AND CHERN-SHUH WANG

We also define

Z̃(j)
p =

[
Z

(0)
1 , . . . , Z(j)

p

]
(3.4)

as the submatrix of Z of degree less than or equal to p. Let Υs be an orthonormal
isotropic subbasis corresponding to each first half of Jordan blocks of zero eigenvalues.
In fact, Υs here is an orthonormal basis of the maximal isotropic subspace correspond-
ing to zero eigenvalues and span{Υs} ⊂ YL. The approach of our algorithm is that
we use Z to determine Y and then use Y to compute Υs.

We now develop a reliable algorithm to compute the matrix Z described in
(3.3a,b). For convenience hereafter, we assume that the only purely imaginary eigen-
value of M is zero.

Algorithm 3.1. This algorithm computes an orthonormal subbasis Z = [Z
(0)
1 , . . . ,

Z
(k−1)
mk ] of M2 corresponding to zero eigenvalues.

Step 1: Reduce M2 to a Hessenberg matrix by using the squared reduced algo-
rithm of [27]. That is, find a 2n × 2n symplectic orthogonal matrix Q so
that

QTM2Q = H ≡
[
H1 K1

O HT
1

]
,

where H1 is upper Hessenberg and K1 is skew-symmetric.
Step 2: Reduce H1 to a real Schur form by the QR algorithm, e.g., [9, p. 228].

That is, find an n× n orthogonal matrix Q1 so that

QT1 H1Q1 = R1, QT1 K1Q1 = S1,

where R1 is quasi-upper triangular.
Let n0 = the algebraic multiplicity of zero eigenvalues of M2.
Let

H :=

[
I O

O Î

] [
R1 S1

O RT1

] [
I O

O Î

]
(quasi-upper triangular),

Q :=

[
Q1 O
O Q1

] [
I O

O Î

]
, where Î =


0 1

·
·

1 0

 .
Set E := I2n, j = 0, q = 1, and m0 = 0.

Step 3: Repeat:
3.1 Find an orthonormal basis B̂0 of null space of H by applying an RRQR

factorization of [4]. That is, find a permutation Π1 and an orthogonal
matrix V1 such that

Π1HV1 =

(
O X

O Ĥ

)
,

where Ĥ is quasi-upper triangular. Let γH be the nullity of H.
Set B̂0 = V1[ IγH

0
].

Comment: An RRQR factorization of a quasi-upper triangular H needs
only O(n2) flops if n0 � n.
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 599

• If q = 1, then

k =
γH
2
, γ∗ = γH , Jump = 0, B0 = B̂0,

else

γ = γH , Jump = γ∗ − γ, B0 =

[
0

B̂0

]
∈ R2n×γH

• If Jump 6= 0, then for ` = j + 1, . . . , j + Jump
2 , set m` = q − 1 and

update j = j + Jump
2 , γ∗ = γ.

• Set Z
(j)
q = QB0.

• If j = k, then stop.
3.2 Find two orthogonal matrices U2 and V2 by using Algorithm 3.1.1 pro-

posed by Beelen and Van Dooren [3] such that

UT2 (Π1HV1)V2 =

[
0 H12

0 H22

]
, UT2 (Π1EV1)V2 =

[
E11 E12

0 E22

]
.

Comment: (i) Here the matrix H22 is preserved to be quasi-upper tri-
angular and E11 is nonsingular. Algorithm 3.1.1 of [3] used in Step 3.2
needs only O(n2) flops. (ii) This substep determines the partial multi-
plicities and an orthonormal basis for the associated Jordan vectors [3].

3.3 Update (deflation step):
• H := H22 (dimension reduced).
• E := E22 (dimension reduced).
• If q = 1, then set Q = Q(V1V2),

else set Q = Q

[
I 0
0 V1V2

]
∈ R2n×2n.

• Set q = q + 1, go to Repeat.
Remark. (i) Instead of Step 3.2, one can also use a nonequivalence transforma-

tion to deflate the zero eigenvalues of the pencil H − λE [17]. The algorithm uses
nonunitary transformations but needs only about one-fourth flops of Algorithm 3.1.1
of [3]. (ii) If M2 has a negative eigenvalue −ω2, then we replace the matrix H in Step
3 by H + ω2I and perform the same process to compute an associated Jordan basis
corresponding to −ω2. (iii) This algorithm uses only orthogonal transformations. The
accuracy of the computed orthonormal Jordan subbasis Z depends on the sensitivity
of the computed nonpositive eigenvalues −ω2 of M2. It is shown in [27] that the
computed ±iω are the exact eigenvalues of a matrix M + E where ‖E‖ depends on
the square root of the machine precision. Hence, the accuracy of the computed Z is
reliable when the sensitivity of ±iω of M is acceptable.

The following theorem gives the relation between orthonormal Jordan bases corre-
sponding to zero eigenvalues of M2 and M , respectively. We use the notation defined
in (3.1)–(3.4) but omit the superscript (j).

Let Z̃ = [Z1, . . . , Zq] and Ỹp = [Y1, . . . , Yp], where Zq and Yp are orthonormal
Jordan bases of M2 and M , respectively, of degree q and p for q = 1, . . . ,mk and
p = 1, . . . , 2mk.

Theorem 3.2. For p = 1, . . . ,mk, it holds that
(i) span{Ỹ2p} = span{Z̃p},
(ii) span{Zp} = span{Y2p−1}⊕ span{Y2p},
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600 WEN-WEI LIN AND CHERN-SHUH WANG

(iii) span{Y2p−1} = span{(I − Z̃p−1Z̃
T
p−1)MZp} = span{(ZpZTp )MZp},

(iv) if W2p−1 is an orthonormal basis of span{(I − Z̃p−1Z̃
T
p−1)MZp}, then

span{Y2p} = span{(I −W2p−1W
T
2p−1)Zp}.

For convenience, here we use Z̃0 = 0.
Proof. (i) Since (M2)pv = M2pv for any v ∈ R2n×1, (i) follows.
(ii) From (i), we have

span {Y2p} ⊕ span {Y2p−1} ⊕ span
{
Ỹ2p−2

}
= span {Zp} ⊕ span

{
Z̃p−1

}
.

Furthermore, both subspaces span{Zp} and span{Y2p}⊕ span{Y2p−1} are orthogonal

to span{Ỹ2p−2} (i.e., span{Z̃p−1}). Hence, (ii) is proved.
(iii) By the definition of Zp, we have

span{MZp} ⊂ span
{
Ỹ2p−1

}
= span{Y2p−1} ⊕ span

{
Z̃p−1

}
.(3.5)

This implies that

span
{(
I − Z̃p−1Z̃

T
p−1

)
MZp

}
⊂ span {Y2p−1} .(3.6)

On the other hand, from (ii), we have

span
{(
I − Z̃p−1Z̃

T
p−1

)
MY2p

}
⊂ span

{(
I − Z̃p−1Z̃

T
p−1

)
MZp

}
.(3.7)

By (3.6) and (3.7), it is easily seen that

dim
(

span
{(
I − Z̃p−1Z̃

T
p−1

)
MY2p

})
≤ dim

(
span

{(
I − Z̃p−1Z̃

T
p−1

)
MZp

})
≤ dim (span {Y2p−1}) .(3.8)

From (3.6) and (3.7), it follows that to verify the first equality of (iii) it is sufficient
to show that both inequalities in (3.8) hold. Now, suppose that

dim
(

span
{(
I − Z̃p−1Z̃

T
p−1

)
MY2p

})
< dim (span {Y2p−1}) .(3.9)

Since all partial multiplicities of zero eigenvalues are even,

dim (span {Y2p}) = dim (span {Y2p−1}) .(3.10)

From (3.9) and (3.10) it follows that the column vectors of (I − Z̃p−1Z̃
T
p−1)MY2p are

linearly dependent. Thus, there exists a nonzero vector ξ such that(
I − Z̃p−1Z̃

T
p−1

)
MY2pξ = 0.

This implies that MY2pξ ∈ span{Z̃p−1}. By the definition of Z̃p−1, we then have

M2p−1Y2pξ = (M2)p−1MY2pξ = 0.(3.11)

This contradicts the definition of Y2p. Therefore, the strict inequality in (3.9) does
not hold; i.e., both equalities in (3.8) hold. Thus, the first equality of (iii) is proved.
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 601

From (ii), we know that there exists an orthonormal matrix U such that

Zp = [Y2p−1, Y2p]U.(3.12)

This implies that

MZp = [MY2p−1,MY2p]U.(3.13)

On the other hand, by the definitions of Y2p−1 and Z̃p−1, we have

span {MY2p−1} ⊂ span
{
Z̃p−1

}
.(3.14)

From (3.13) and (3.14), (
ZpZ

T
p

)
MZp =

[
0, ZpZ

T
pMY2p

]
U.

Hence, we get

span
{(
ZpZ

T
p

)
MZp

}
= span

{(
ZpZ

T
p

)
MY2p

}
.

Furthermore, from (3.5) and (3.12), we have

span
{(
ZpZ

T
p

)
MY2p

}
= span

{(
ZpZ

T
p

)
MZp

}
⊂ span {Y2p−1} .

This implies

dim
(
span

{(
ZpZ

T
p

)
MY2p

})
≤ dim (span {Y2p−1}) .(3.15)

Suppose the inequality of (3.15) holds. Then, from (3.10), we conclude that there
exists a vector ξ 6= 0 such that (

ZpZ
T
p

)
MY2pξ = 0.

This implies MY2pξ ∈ span{Z̃p−1}. By the same argument as (3.11) we get the
contradiction. Therefore, the second equality of (iii) is proved.

(iv) From (ii) and (iii) immediately follows (iv).
Remark. From statements (iii) and (iv) of Theorem 3.2, we see that the matrices

Y2p−1 and Y2p can be replaced by an orthonormal basis of span{(ZpZTp )MZp} and

span{(I −W2p−1W
T
2p−1)Zp}, respectively. In the following, we develop an algorithm

for computing Y2p−1 and Y2p by using the orthonormal bases Zp.
Algorithm 3.3. This algorithm computes Y2p−1 and Y2p by using the orthonor-

mal basis Zp, p = 1, . . . ,mk, obtained by Algorithm 3.1.

Step 1. Compute an orthonormal basis Q
(0)
1 of MZ

(0)
1 and set

Y
(0)
1 = Q

(0)
1 .

Step 2. Compute the SVD of (Q
(0)
1 )TZ

(0)
1 such that(

U
(0)
1

)T ((
Q

(0)
1

)T
Z

(0)
1

)
V

(0)
1 =

[
Σ

(0)
1 0

]
,

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



602 WEN-WEI LIN AND CHERN-SHUH WANG

where U
(0)
1 , V

(0)
1 are two unitary matrices and

Σ
(0)
1 =

 σ1

. . .

σk

 .
Set

Y
(0)
2 = Z

(0)
1 V

(0)
1

[
0

Ik

]
.

Set p = 2.
Step 3. Repeat:

If p > mk
2 + 1, then stop.

Determine j ∈ {0, 1, . . . , k − 1} such that mj < p ≤ mj+1.

3.1 Compute an orthonormal basis Q
(j)
p of MZ

(j)
p .

3.2 Compute the SVD of (Z
(j)
p )TQ

(j)
p such that(

U
(j)
2p−1

)T [(
Z(j)
p

)T
Q(j)
p

]
V

(j)
2p−1 = Σ

(j)
2p−1,

where U
(j)
2p−1, V

(j)
2p−1 are two unitary matrices and

Σ
(j)
2p−1 =


σ

(2p−1)
1

. . .

σ
(2p−1)
k−j

Ok−j


with σ

(2p−1)
1 ≥ · · · ≥ σ(2p−1)

k−j > 0.
Set

Y
(j)
2p−1 = Z(j)

p U (j)
p

[
Ik−j

0

]
.

3.3 Compute the SVD of
(
Y

(j)
2p−1

)T
Z

(j)
p such that

(
U

(j)T

2p

)[(
Y

(j)
2p−1

)T
Z(j)
p

]
V

(j)
2p =

[
Σ

(j)
2p

∣∣∣∣O] ,
where U

(j)
2p , V

(j)
2p are two unitary matrices and

Σ
(j)
2p =


σ

(2p)
1

. . .

σ
(2p)
k−j

 .
Set

Y
(j)
2p = Z(j)

p V
(j)
2p

[
0

Ik−j

]
.
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 603

3.4 Update p := p+ 1 and go to Repeat.
This algorithm needs about O(n2) flops.
Denote Υs as an orthonormal basis of the M -stable isotropic subspace correspond-

ing to the first half of Jordan blocks of zero eigenvalues. We now define a sequence of
orthonormal bases {Υ̃p}mkp=1 which is closely related to the matrix Υs.

Definition 3.4. Let Υ̃p for p = 1, . . . ,mk be a maximal orthonormal basis
satisfying the following:

(i) span{Υ̃p} ⊂ N (Mp) (null space of Mp).

(ii) xTJy = 0 for any x, y ∈ span{Υ̃p}.
(iii) span{Υ̃p−1} ⊂ span{Υ̃p}. (Here, Υ̃0 ≡ 0.)
(iv) If there is a subspace V ⊂ R2n satisfying statements (i), (ii), and (iii), then

V ⊂ span{Υ̃p}.
Theorem 3.5. The following properties for the sequence {Υ̃p}mkp=1 defined above

are true:
(i) span{Υ̃p} is unique for p ∈ {1, . . . ,mk}.
(ii) span{Υ̃mk} = span{Υs}.

Proof. (i) From Theorem 2.1 and assumption (A1), we can assume that M has the

form (2.2). Since span{Υ̃p} ⊂ N (Mp) for p = 1, . . . ,mk, for convenience, we assume
without loss of generality (w.l.o.g.) that M has only zero eigenvalues and discuss two
typical cases of M in the following.

Case 1. Let k = 2, m1 < m2, and

M =


J (m1)(0) Λ(m1)(0)

J (m2)(0) Λ(m2)(0)

−J (m1)(0)T

−J (m2)(0)T


with Λ(m1)(0)(m1,m1) = Λ(m2)(0)(m2,m2) = 1.

For p ≤ m1, we have

N (Mp) = span{e1, . . . , ep, em1+1, . . . , em1+p}.

Since p < m1 + p ≤ m1 + m2 (= the half of dimension of M) for any x, y ∈ N (Mp)

we have xTJy = 0. From the definition of Υ̃p it follows that

span{Υ̃p} = N (Mp).

In addition, N (Mp) is unique. Thus, span{Υ̃p} is unique for p ≤ m1.
For m1 + 1 ≤ p ≤ m2, we have

N (Mp) = span{e1, . . . , em1 , e(m1+m2)+m1
, . . . , e(m1+m2)+m1−p+1, em1+1, . . . , em1+p}.

Let U ≡ span{e1, . . . , em1
, em1+1, . . . , em1+p}. Obviously, U ⊂ N (Mp). Since m1 +

p < m1 +m2 for any x, y ∈ U we have xTJy = 0. Hence,

U ⊂ span{Υ̃p}.

If U 6= span{Υ̃p}, then there exists a nonzero vector v ∈ span{e(m1+m2)+m1
, . . . ,

e(m1+m2)+m1−p+1} such that v ∈ span{Υ̃p} and v 6∈ U . But, for this v, there exists
an associated nonzero vector u ∈ U such that

uTJv 6= 0.
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604 WEN-WEI LIN AND CHERN-SHUH WANG

This contradicts the definition of span{Υ̃p}. Hence U = span{Υ̃p}. Since U is unique,
the proof follows.

Case 2. Let k = 3, 2m1 < m2, and

M =


J (2m1)(0) 0

J (m2)(0) Λ(m2)(0)

−J (2m1)(0)T

−J (m2)(0)T


with Λ(m2)(0)(m2,m2) = 1. The proof of this case is similar to that for Case 1. We
omit it here.

(ii) By the definition of span{Υ̃p} and (i), (ii) follows immediately.

Remark. If we ignore the monotone property of span{Υ̃p}, i.e., condition (iii)

of Definition 3.4, then the uniqueness of span{Υ̃p} does not hold. For example, let
2m1 = 2, 2m2 = 4, and

M =


0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0

 ;

then for p = 2 there exist two different maximal isotropic orthonormal bases {e(6)
1 , e

(6)
2 ,

e
(6)
3 } and {e(6)

2 , e
(6)
3 , e

(6)
4 }. But the latter does not form a subspace of span{Υs}.

Hence, we must determine Υs by using a monotone process.
We now develop an algorithm to determine the maximal isotropic subbasis Υs by

using the computed Ỹmk ≡ [Y1, . . . , Ymk ] and Theorem 3.5.

Algorithm 3.6. This algorithm computes Υs by using orthonormal basis Ỹmk
obtained by Algorithm 3.3.

Step 1. Let Υ̂ = [Y
(0)
1 , . . . , Y

(0)
m1 ] and p̂ = m1 + 1.

Step 2. Repeat:
Determine j ∈ {1, . . . , k} is a maximal integer such that mj < p̂.

If j = k, set Υs = Υ̂ and stop.
For p = mj + 1, . . . ,mj+1:
2.1 Find i ≥ 0 such that 2mi < p ≤ 2mi+1.

If p = m1 + 1, then Ŷ
(0)
m1+1 = Y

(0)
m1+1,

else Ŷ
(i)
p = [Y

(0)
m1+1, . . . , Y

(i)
p ].

Let #1 = the number of columns of Υ̂.

Let #2 = the number of columns of Ŷ
(i)
p .

2.2 Compute the SVD of Υ̂TJŶ
(i)
p such that(

U (j)
p

)T [
Υ̂TJŶ (i)

p

]
V (j)
p =

[
Σ(j,i)
p

∣∣∣∣O] ,
where

Σ(j,i)
p =


σ

(j,i)
1

. . .

σ
(j,i)
#1

 .D
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 605

Let #3 = max{q|σ(j,i)
q > 0 for q = 1, . . . ,#1}.

2.3 Update Υ̂ = [Y
(0)
1 , . . . , Y

(0)
m1 , Ŷ

(i)
p V

(j)
p [ 0

I#2−#3
]].

Endfor.
Step 3. Update p̂ = p+ 1 and go to Repeat.

Comment: (i) In substep 2.1, it is easily seen that

#1 =

j−1∑
`=0

(m`+1 −m`)(k − `) + (p−mj)(k − j)

and

#2 = 2

i−1∑
`=0

(m`+1 −m`)(k − `) + (p− 2mi)(k − i)−m1k.

(ii) This algorithm needs about O(n2) flops.
After the M -stable isotropic subspace span{Υs} is found, we can deflate it by

using symplectic orthogonal transformations to get a reduced Hamiltonian matrix M̂
(say!) having no purely imaginary eigenvalue. Then we compute the maximal stable

isotropic subspace of M̂ by exploiting [2, 23, 29]. Combining these two computed
isotropic subspaces, we obtain the desired M -stable Lagrangian subspace YL.

4. Computing the stable Lagrangian subspace of a symplectic pencil
having unimodular eigenvalues. Let N−λL be a symplectic pencil as in (1.2). As-
sume (A2) holds; i.e., the partial multiplicities of unimodular eigenvalues ofN−λL are
all even. In this section, we shall develop an algorithm to compute the (N,L)-stable
isotropic subspace W corresponding to the first half Jordan blocks of all unimodular
eigenvalues and get a reduced symplectic pencil having no unimodular eigenvalue.
Combining W with the maximal isotropic subspace corresponding to the strictly sta-
ble eigenvalues of N − λL, we obtain the desired (N,L)-stable Lagrangian subspace
WL.

The main idea of our algorithm to determine W is that by using S + S−1-
transformation [18] we first compute a Jordan basis of Γ−λ∆ as in (1.7) corresponding
to eigenvalues with magnitudes between −2 and 2 and a Jordan basis corresponding
to unimodular eigenvalues of N − λL and then use it to determine an isotropic basis
Υ of W.

We recall from (1.7) that

Γ− λ∆ ≡
[(
NJLT + LJNT

)
− λLJLT

]
JT .

Now we want to show the relation between Jordan bases corresponding to the uni-
modular eigenvalue µ of N − λL and the eigenvalue µ+ µ−1 of Γ− λ∆, respectively.
For the pencil N − λL, we can use the method of [20, p. 120] to deflate its zero
and infinity eigenvalues simultaneously and get a reduced symplectic pencil having
no zero or infinity eigenvalues. Hence, we can assume w.l.o.g. that both N and L are
nonsingular in the following.

Theorem 4.1. Let N −λL be a symplectic pencil having unimodular eigenvalues
µ ∈ {±1, e±iθ, (θ 6= 0)}. Let

J (2m1)(µ), . . . , J (2mk)(µ)(4.1)

be the corresponding Jordan blocks with even sizes. Then
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606 WEN-WEI LIN AND CHERN-SHUH WANG

(i) for µ = ±1 the corresponding eigenvalue 2 or −2 of Γ−λ∆ has Jordan blocks

J (m1)(±2), J (m1)(±2), . . . , J (mk)(±2), J (mk)(±2),

(ii) for µ = e±iθ the corresponding eigenvalue eiθ + e−iθ of Γ − λ∆ has Jordan
blocks

J (2m1)(eiθ + e−iθ), . . . , J (2mk)(eiθ + e−iθ)

with the same sizes as (4.1).
Proof. To prove this theorem, we consider the following simple case. The complete

proof is a straightforward generalization. Let Y = [y1, . . . , y2m1 ] be a Jordan basis of
J (2m1)(µ) satisfying

NY = LY J (2m1)(µ).(4.2)

Write Y = JLTJTZ with Z = [z1, . . . , z2m1
]. Substituting Y into (4.2), we have

NJLTJTZ = LJLTJTZJ (2m1)(µ).(4.3)

Since NJNT = LJLT and N and J (2m1)(µ) are invertible, from (4.3) we get

LJNTJTZ = LJLTJTZJ (2m1)(µ)−1.(4.4)

Combining (4.3) and (4.4), we get(
NJLTJT + LJNTJT

)
Z = LJLTJTZ

(
J (2m1)(µ) + J (2m1)(µ)−1

)
.

If µ = ±1, then it is easily seen that

J (2m1)(±1) + J (2m1)(±1)−1 s.∼



±2 0 ±1 0
. . .

. . .
. . . ±1

0
0 ±2


s.∼
[
J (m1)(±2) 0

0 J (m1)(±2)

]
.

Here the symbol
s.∼ denotes “similar.” Thus, statement (i) is proved.

If µ = e±iθ, then it is easily seen that

J (2m1)(e±iθ) + J (2m1)(e±iθ)−1 s.∼


eiθ + e−iθ 1

. . .
. . .

. . . 1
eiθ + e−iθ

 .
Hence, statement (ii) follows.

As in section 3, we can also give the relation between orthonormal Jordan bases
corresponding to eigenvalues 2 and 1 of Γ − µ∆ and N − λL, respectively. Here we
use the same notation as in section 3.
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 607

Let Z̃q = [Z1, . . . , Zq] and Ỹp = [Y1, . . . , Yp] for q = 1, . . . ,mk and p = 1, . . . , 2mk

be the orthonormal Jordan bases corresponding to 2 and 1 of Γ − µ∆ and N −
λL, respectively, where Zq and Yp are orthonormal Jordan bases of degree q and p,
respectively. We say that Zq is of degree q if it holds

(Γ− 2∆)v ∈ span{∆Z̃q−1}, (Γ− 2∆)v 6∈ span{∆Z̃q−2} (for q ≥ 2)

for all v ∈ span{Zq} and that Yp is of degree p if it holds

(N − L)v ∈ span{LỸp−1}, (N − L)v 6∈ span{LỸp−2} (for p ≥ 2)

for all v ∈ span{Yp}. Here we set Z̃0 = 0 and Ỹ0 = 0.

Let Θq be an orthonormal basis of JLTJTZq and Θ̃q = [Θ1, . . . ,Θq] for q =
1, . . . ,mk.

Theorem 4.2. For p = 1, . . . ,mk, we have
(i) span{Θ̃p} = span{Ỹ2p}.
(ii) span{Θp} = span{Y2p−1}⊕ span{Y2p},
(iii) span{Y2p−1} = span{(I − Θ̃p−1Θ̃T

p−1)(L−1N − I)Θp}
= span{(ΘpΘp

T )(L−1N − I)Θp},
(iv) if W2p−1 is an orthonormal basis of span{(I − Θ̃p−1Θ̃T

p−1)(L−1N − I)Θp},
then span{Y2p} = span{(I −W2p−1W

T
2p−1)Θp}.

Proof. (i) Let p = 1. For u ∈ span{Θ̃1} there is a vector v ∈ span{Z̃1} such that
u = JLTJT v. Then we have (Γ− 2∆)v = 0. Since

NL−1(Γ− 2∆) = (N − L)L−1(N − L)JLTJT (from (1.7)),(4.5)

we have

0 = NL−1(Γ− 2∆)v = (N − L)L−1(N − L)JLTJT v.

Hence, u ∈ span{Ỹ2} and span{Θ̃1} ⊂ span{Ỹ2}.
Conversely, if u ∈ span{Ỹ2}, then

(N − L)L−1(N − L)u = 0.(4.6)

By (4.5) and (4.6), we have

NL−1(Γ− 2∆)(JLTJT )−1u = 0.

Let v = (JLTJT )−1u. Since N and L are nonsingular, we have (Γ− 2∆)v = 0. Thus,

v ∈ span{Z̃1}. Statement (i) holds for p = 1.

Assume that statement (i) holds for p̂ = p− 1 < mk. For u ∈ span{Θ̃p} there is

a vector v ∈ span{Z̃p} such that u = JLTJT v. By (4.5) and the definition of Z̃p, we
have

(N − L)L−1(N − L)(JLTJT )v = NL−1(Γ− 2∆)v

= NL−1∆(Z̃p−1w̃p−1)

= N(JLTJT Z̃p−1w̃p−1)

for some nonzero vector w̃p−1. Since (i) holds for p̂ = p− 1, there is a nonzero vector
ŵ2(p−1) such that

Ỹ2(p−1)ŵ2(p−1) = JLTJT Z̃p−1w̃p−1.
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608 WEN-WEI LIN AND CHERN-SHUH WANG

This implies

(N − L)L−1(N − L)(JLTJT )v = NỸ2(p−1)ŵ2(p−1)

= (N − L)Ỹ2(p−1)ŵ2(p−1) + LỸ2(p−1)ŵ2(p−1)

∈ span{LỸ2(p−1)}.

Hence, u ∈ span{Ỹ2p}.
Conversely, if u ∈ span{Ỹ2p}, from the proof of (i) of Theorem 4.1, we know that

there is a nonzero vector v with u = JLTJT v such that v ∈ span{Z̃p}. Hence, by
induction, statement (i) follows.

(ii), (iii), (iv) From (i) we have that

span
{

(L−1N − I)Θp

}
⊂ span

{
Ỹ2p−1

}
.(4.7)

Using (4.7) and a similar argument as in Theorem 3.2, we obtain (ii), (iii), and (iv)
immediately.

According to Theorems 4.1, 4.2, and 3.5, we can also develop a structure-preserving
algorithm to compute the (N,L)-stable Lagrangian subspace WL. The algorithm is
similar to Algorithms 3.1, 3.3, and 3.6. We omit the detail descriptions while the
statements are the same.

Algorithm 4.3. This algorithm computes the desired (N,L)-stable isotropic
basis Υs. Suppose that the only unimodular eigenvalue of N − λL is one.

Step 1: Reduce the skew-Hamiltonian pencil Γ − λ∆ ≡ [(NJLT + LJNT ) −
λLJLT ]JT to a skew-Hamiltonian quasi-upper upper triangular pencil by us-
ing the stable algorithm proposed by [22]; i.e., find orthogonal matrices U and
Q such that

UTΓQ =

[
Γ1 H1

O ΓT1

]
≡ H

and

UT∆Q =

[
∆1 E1

O ∆T
1

]
≡ E,

where Γ1 is quasi-upper triangular, ∆1 is upper triangular, and H1, E1 are
skew symmetric.
Set

H :=

[
I O

O Î

]
H

[
I O

O Î

]
(quasi-upper triangular),

E :=

[
I O

O Î

]
E

[
I O

O Î

]
(upper triangular),

Q := Q

[
I O

O Î

]
, where Î =


0 1

·
·

1 0

 .
Let j = 0, q = 1.
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 609

Step 2: Compute Z
(j)
q for q = 1, . . . ,mk, by performing the same statements in

Step 3 of Algorithm 3.1 but replacing H by H−2E. Compute an orthonormal

basis Θ
(j)
q of JLTJTZ

(j)
q for q = 1, . . . ,mk.

Comment: Here Z
(j)
q is an orthonormal Jordan basis of degree q correspond-

ing to eigenvalue 2 of Γ− λ∆.

Step 3: Perform the same statements as in Algorithm 3.3 but replace MZ
(j)
p by

(L−1N − I)Θ
(j)
p .

Comment: This step computes an orthonormal Jordan basis {Y (j)
p }mkp=1 of

N − λL corresponding to the unimodular eigenvalue 1.
Step 4: Perform the same statements as in Algorithm 3.6 to compute the desired

(N,L)-stable isotropic basis Υs.
Remark. If N − λL has unimodular eigenvalues −1 or e±iθ, then we replace

H − 2E in Step 2 by H + 2E or H − ηE with η = eiθ + e−iθ and perform the same
process.

According to Algorithm 4.3, we can find the desired (N,L)-stable isotropic basis

Υs ≡
[
Υ

(0)
11

T
,Υ

(0)
21

T
,Υ

(0)
31

T
,Υ

(0)
41

T
]T

with Υ
(0)
11 ,Υ

(0)
31 ∈ R

n0
2 ×

n0
2 of N −λL. Here, n0 is the number of unimodular eigenval-

ues. We now give an algorithm to determine a symplectic matrix Q and a nonsingular
U such that

U(N − λL)Q =


N11 N12 0 0

0 N22 0 0
0 0 I 0
0 N42 0 I

− λ

I 0 L13 L14

0 I L23 L24

0 0 L33 0
0 0 L43 L44

 ,(4.8)

where the reduced symplectic pencil [N22

N42

0
I ]−λ[ I0

L24

L44
] has no unimodular eigenvalue.

Here L44 = NT
22, N42 = NT

42, and L24 = LT24.
Algorithm 4.4. This algorithm is to determine a symplectic matrix Q and an

invertible matrix U such that (4.8) holds.
Step 1: Find a symplectic Householder matrix Q1 such that

QT1 Υs =


Υ

(1)
11

Υ
(1)
21

Υ
(1)
31

0

 .
Set

N := QT1 NQ1, L := QT1 LQ1, U := QT1 , Q := Q1.

Step 2: If Υ
(1)
11 is singular or ill conditioned, then Return.

Else compute a Gaussian symplectic matrix Q−1
2 ≡ [ IΩ

0
I ], with Ω ≡ −Υ

(1)
31 Υ

(1)
11

−1
,

so that

Q−1
2


Υ

(1)
11

Υ
(1)
21

Υ
(1)
31

0

 =


Υ

(2)
11

Υ
(2)
21

0
0

 .D
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610 WEN-WEI LIN AND CHERN-SHUH WANG

Comment: Since Υs is isotropic, it follows that Ω is symmetric. Thus Q2 is
symplectic.
If (I + L12Ω) is singular or ill conditioned, then Return.
Else set

U2 :=

[
(I + L12Ω)−1 0

0 I

]
, U3 :=

[
I 0

−L12Ω I

]
,

Q := QQ2, U := U3U2U,

and form

N := UNQ =

 (I + L12Ω)−1N11 0

N21 + Ω− L22Ω(I + L12Ω)−1N11 I

 ,
L := ULQ =

 I (I + L12Ω)−1L12

0 L22 − L22Ω(I + L12Ω)−1L12

 .
Comment: Here the matrix L22 − L22Ω(I + L12Ω)−1L12 = NT

11(I + ΩL12)−1

and (I + L12Ω)−1L12 is symmetric.
Step 3: Find a symplectic Householder matrix Q3 such that

QT3


Υ

(2)
11

Υ
(2)
21

0
0

 =


Υ

(3)
11

0
0
0

 .
Set

N := QT3 NQ3, L := QT3 LQ3, Q := QQ3, U := QT3 U.

Remark. (i) This algorithm deflates the maximal (N,L)-stable isotropic subspace
of N − λL corresponding to unimodular eigenvalues and gets a reduced symplectic
pencil having no unimodular eigenvalue. Consequently, we can use the structure-
preserving algorithm proposed by [19] or [29] to compute the stable invariant subspace

of the reduced symplectic pencil. (ii) If the matrix (I + L12Ω) or Υ
(1)
11 in Step 2 is

not invertible or ill conditioned, then we return the deflation process to N − λL. We
deflate the isotropic basis Υs from N − λL directly by using symplectic orthogonal
transformations and get a reduced symplectic pencil having no unimodular eigenvalue.
Then we apply the algorithm of [29] to find the rest of the stable invariant subspace.
Although here only orthogonal symplectic transformations are used, it is numerically
difficult to keep symplecticity of N − λL explicitly [7]. Hence, it may be numerically
troublesome in this case.

5. Numerical examples. In this section we illustrate the numerical perfor-
mance of our algorithms for a Hamiltonian matrix M . A program based on Algorithms
3.1, 3.3, and 3.6 has been implemented on a SUN 4/470 computer using MATLAB
with eps ≈ 10−16.D
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COMPUTATION OF STABLE LAGRANGIAN SUBSPACES 611

Example 5.1. Let

A0 = diag
{

[0], J (2)(0)T , J (4)(0)T ,−I2
}
,

H0 = diag
{

[−1],−Λ(2)(0),−Λ(4)(0),−I2
}
,

G0 = O9×9,

where J (mj)(0) and Λ(mj)(0) are defined in section 1 with Λ(mj)(0)(mj ,mj) = 1,

j = 1, 2. It is easily seen that the corresponding Hamiltonian matrix M0 = [A0

H0

0
−AT0

]

has nonzero eigenvalues −1, −1, 1, 1 and the zero eigenvalue with partial multiplicities
{2, 4, 8}. Now we construct a nontrivial Hamiltonian matrix M by

M =

 I V2

0 I

 V T1 0

0 V −1
1

M0

 V −T1 0

0 V1

 I −V2

0 I

 ,
where

V1 =


1 1 0

. . .
. . .

1
0 1

 and V2 =



1 1 0
1 −1 2

2 1
. . .

. . .
. . .

−1 8
0 8 1


.

The new matrix M ≡ [AH
G
−AT ] has the same Jordan canonical form as M0 and has

the forms

A =



−1 −1 1 0 0 0 0 0 0
−1 3 −3 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0
−1 4 −3 0 0 0 0 0 0
−1 1 −1 1 0 −5 5 0 0
−1 1 −1 0 1 7 −13 6 0
−1 1 −1 0 0 −4 11 −13 7
−1 1 −1 0 0 8 −14 16 −9
−1 1 −1 0 0 1 9 −15 6


,

H = diag


 −1 0 0

0 −1 1
0 1 −1

 , [ 0 0
0 0

]
,


−1 1 0 0

1 −2 1 0
0 1 −2 1
0 0 1 −1


 ,

G =



2 −2 1 −3 0 0 0 0 0
−2 10 −1 11 4 4 4 4 4

1 −1 −3 −5 −4 −1 −1 −1 −1
−3 11 −5 9 4 −1 3 3 3

0 4 −4 4 17 −36 20 −40 −5
0 4 −1 −1 −36 75 −70 92 −53
0 4 −1 3 20 −70 98 −146 90
0 4 −1 3 −40 92 −146 178 −118
0 4 −1 3 −5 −53 90 −118 115


.
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612 WEN-WEI LIN AND CHERN-SHUH WANG

It is easy to check that H is negative definite and G is indefinite. The matrix M
satisfies the condition of Theorem 5.1 of [8] from H∞-control problems. Hence, we
can apply Algorithms 3.1, 3.3, and 3.6 to find an M -stable Lagrangian subspace YL.
We first use Algorithm 3.1 to compute an orthonormal Jordan subbasis Z[1 : 14]
corresponding to zero eigenvalues of M2. Since zero eigenvalues of M2 have partial
multiplicities {1, 1, 2, 2, 4, 4}, we check 2-norms of the following matrices:

M2Z[1 : 6] M4Z[7 : 10] M6Z[11 : 12] M8Z[13 : 14]

‖ · ‖2 3.34e–14 1.72e–12 8.65e–12 1.79e–12

.

Next, we use Algorithm 3.3 to compute an orthonormal Jordan subbasis Y [1 : 14]
corresponding to a zero eigenvalue of M . The zero eigenvalue of M has partial mul-
tiplicities {2, 4, 8}; we check 2-norms of the following matrices:

MY [1 : 3] M2Y [4 : 6] M3Y [7 : 8] M4Y [9 : 10]

‖ · ‖2 6.44e–14 4.04e–14 8.35e–12 5.27e–13

,

M5Y [11] M6Y [12] M7Y [13] M8Z[14]

‖ · ‖2 2.25e–10 4.22e–12 7.29e–12 2.31e–12

.

Now, we compute the maximal isotropic subbasis Υ[1 : 7] = Υs of the stable La-
grangian subspace corresponding to zero eigenvalues. At the same time, the isotrop-
icity of Υ[1 : 7] is checked:

‖ Υ[1 : 7]TJ9Υ[1 : 7] ‖2= 1.96e− 13.

Finally, we deflate the zero eigenvalue and the associated subbasis Υ[1 : 7] of M
by using symplectic orthogonal transformations and get a 4× 4 Hamiltonian matrix
having eigenvalues {−1,−1, 1, 1}. Then we use algorithms of [2, 23, 29] to find the
rest subbasis Υ[8 : 9] of the desired M -stable Lagrangian subspace YL. Consequently,
a symmetric stable solution Xsol of CARE (1.4) is computed by

Xsol = −Υ[10 : 18, 1 : 9] (Υ[1 : 9, 1 : 9])
−1
.

The 2-norm of the residual of the Riccati equation is 8.71e− 14.

6. Conclusions. In this paper, we have presented structure-preserving algo-
rithms for computing anM -stable and an (N,L)-stable Lagrangian subspace of Hamil-
tonian matrices and symplectic pencils having purely imaginary and unimodular
eigenvalues, respectively. These problems often arise in solving the continuous- or
discrete-time H∞-optimal and linear-quadratic control problems, etc. The main ap-
proach of our algorithms is to find a maximal isotropic subbasis corresponding to each
first half of Jordan blocks of purely imaginary eigenvalues (unimodular eigenvalues,
respectively). Furthermore, we deflate the computed isotropic subbasis by using sym-
plectic orthogonal transformations and get a reduced Hamiltonian matrix (symplectic
pencil) having no purely imaginary (unimodular) eigenvalues. Then we compute the
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maximal stable isotropic subspace of the reduced Hamiltonian matrix (symplectic pen-
cil) by applying some proposed methods of [2, 23, 29]. Thus, we obtain the desired
stable Lagrangian subspace by combining these two computed isotropic subspaces.
For the continuous case, we first compute an orthonormal Jordan basis corresponding
to nonpositive eigenvalues of M2 and then use it to determine the maximal isotropic
Jordan subbasis corresponding to each first half of Jordan blocks of purely imagi-
nary eigenvalues of M . The proposed algorithm is structure preserving and only uses
orthogonal transformations. The dominant flops of the algorithm are in the step of
reducing M2 to a skew-Hamiltonian upper triangular matrix. It requires O(n2) flops
for the deflation of the computed isotropic subbasis if the number of purely imaginary
eigenvalues is of order 1 compared with the dimension of matrices. Numerical ex-
periments performed on a number of constructive Hamiltonian matrices of dimension
30 with variant sizes of Jordan blocks have shown that our algorithm is stable and
reliable in accuracy of the computed maximal isotropic subbasis. For the discrete-
time case, we also develop an algorithm to compute the maximal isotropic Jordan
subbasis corresponding to each first half of Jordan blocks of unimodular eigenvalues
of a symplectic pencil N − λL. The approach is analogous to that developed in the
continuous case by replacing the M2-transformation by the S + S−1-transformation
of the symplectic pencil. The algorithm is structure preserving and uses orthogonal
transformations but in the deflation step. Since the algorithm preserves the symplec-
ticity for the pencil type, if the conditions of nonorthogonal transformations in the
deflation step are fairly good, the proposed algorithm is still efficient and reliable.
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