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CHAPTER I 

INTRODUCTION 

 

Rationale for the Dissertation Research 

 

 Since the beginning of modern physiology, human red blood cells have attracted many 

physiologists’ interest due to its remarkable mechanical stability and deformability, which are 

essential in their survival during the circulation through the narrow capillaries. These unique 

physical properties can be explained by the presence of a mesh network of spectrin-based 

membrane skeleton, which lies right beneath the lipid bilayer and physically support it (reviewed 

in (Mohandas and Gallagher, 2008; Perrotta et al., 2008)). Each unit of the spectrin tetramer is 

linked to the lipid bilayer by means of the two major junctional complexes, one (the ankyrin 

complex) at the middle of spectrin dimer and the other (the 4.1R complex) at the junctional 

region between two spectrin dimers. Of those two vertical linkages, the ankyrin complex has a 

dominant role in determining erythrocyte membrane structure and its mechanical properties. 

Ankyrin-R forms a bridge between the the plasma membrane and membrane skeleton by directly 

interacting with cytoplasmic domain of the membrane protein band 3 and spectrin at two separate 

binding regions.  

While the nature of the interaction between ankyrin-R and the spectrin tetramer has been 

elucidated by recent co-crystal structures (Stabach et al., 2009), the structure of the complex 

between the membrane binding domain (MBD) of ankyrin-R and the cytoplasmic domain of band 

3 (cdb3) still remains unknown. The significance of this interaction can be manifested by a 

clinical condition called hereditary spherocytosis (HS). Mutation in cdb3 or the MBD of ankyrin-

R that impairs the binding between these two proteins accounts for more than 60% of HS cases in 

North American and European populations (Eber and Lux, 2004).  
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Previous mutation studies defined two separate binding sites on the D2 and D34 

subdomains of ankyrin-R, which showed distinct binding characteristics in terms of both pH- and 

salt-dependence (Michaely and Bennett, 1995). One ankyrin-R binds two band 3 dimers in the red 

blood cells and band 3 was found to be distributed between two subpopulations, dimer and 

tetramer in the ghost membrane preparations (Blackman et al., 1998; Casey and Reithmeier, 

1991; Hanspal et al., 1998). Thus, one main question is whether the structure of the ankyrin 

complex is determined by the oligomeric state of cdb3 bound to ankyrin. Is it a dimer of dimers 

that bind to two distinct binding sites on ankyrin or alternatively, is it a tetramer as previously 

proposed (Michaely et al., 2002).   

Depending on the cell type and isoform, ankyrins anchor many different membrane 

proteins to the spectrin-based cytoskeleton to form macromolecular complexes in diverse types of 

specialized membranes. The membrane proteins that are known to be associated with ankyrin 

include E-cadherin in epithelial cells (Kizhatil et al., 2007), the voltage-gated Na+ channel in 

neuron (Lemaillet et al., 2003), the inositol 1,4,5-triphophate receptor (Mohler et al., 2004) and 

the Na+/Ca2+ exchanger (Mohler et al., 2005) in cardiomyocytes as well as band 3 in erythrocytes. 

The ankyrin-mediated tethering of the membrane proteins to the cytoskeleton plays essential roles 

in cells from different tissues by contributing to membrane stability, the recruitment of cytosolic 

proteins and signaling complexes, and localization of receptors and channels in microdomains 

(Bennett and Baines, 2001). Therefore, elucidating the structure of the cdb3-ankyrin complex is 

of importance not only in understanding the molecular mechanism for a family of red cell 

disorders including HS, but also in gaining insight into the general nature of the spectrin-ankyrin 

based localization of the membrane proteins by providing a model system. 

 Since the co-crystal structure for the complex between cdb3 and the MBD-ankyrin-R is 

not available and the size of the complex exceeds the size limits for NMR studies, to obtain a 

high resolution structure from conventional biophysical techniques is formidable. This thesis 

work aims to determine the structure of the cdb3-AnkD34 complex at medium-resolution level 
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using SDSL-EPR techniques in conjunction with molecular modeling. Given that the crystal 

structures are currently available for the binding domain of each protein component, cdb3 and 

AnkD34, it is possible to probe any conformational change that may occur upon binding and to 

construct structural models using a range of constrains obtained from CW- and pulsed EPR 

measurements. Since intraprotein distance measurements indicated that the complex formation 

induces no significant conformational change in either protein, it was reasonable to perform rigid 

body docking using the ROSETTA docking algorithm to explore all possible conformational 

spaces and then filter the structural models that meet the full range of EPR-driven structural 

constrains such as spin label mobility, solvent accessibility, and interspin distances. This work 

shows that the inherent uncertainty in constraints which mainly originate from the flexible tether 

of the spin label relative to the proteins can be overcome by multiple and independent EPR data 

sets.  

 The same approach was employed in the second part of this thesis work as described in 

the Appendix. This work also utilized SDSL-EPR to determine structural features of the calcium 

binding domains of the Na+/Ca2+ exchanger in cardiac myocytes (NCX1.1). NCX1.1 plays a 

crucial role in excitation-contraction (EC) coupling by extruding intracellular Ca2+ across the 

plasma membrane at the expense of Na+ uptake using the electrochemical Na+ gradient. This 

exchange activity returns the intracellular Ca2+ level, which is elevated by the Ca2+ signal cascade 

triggered by the action potential (Ca2+ transients), to the basal level after contraction. While no 

direct link between human NCX1 gene variants and cardiac dysfunction has been identified to 

date, elevated Na+/Ca2+ exchanger expression or activity has been associated with 

pathophysiological conditions in humans and animal models such as arrhythmia and heart failure 

(Sipido et al., 2000; Wang et al., 2001). 

The exchange activity is totally reversible, depending on the Na+ concentration gradient 

across the plasma membrane, and is modulated by the binding of regulatory Ca2+ to the calcium 
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binding domains which are located on the long cytosolic loop of NCX1. The calcium binding 

domains consist of a tandem array of two immunoglobulin-like domains, called CBD1 and CBD2. 

A collection of data from many functional analyses and structural studies unveiled the topology 

of the full length protein and the functional role of each separate domain. However, the molecular 

mechanism by which the ion exchange activity is modulated by regulatory Ca2+ binding to the 

two CBDs leading to an increase in Ca2+ extrusion is still unknown.  

The structure of CBD12 shows similarities in many respects with a complex formed by a 

rigid body docking of two proteins, like the cdb3-AnkD34 complex. For example, the high 

resolution structures of each isolated domain, CBD1 and CBD2, were determined by X-ray 

crystallography and NMR studies. Both domains, which are linked with each other by a short and 

flexible linker, can form independent folding units. Furthermore, the data from this study 

indicated that the structures of the isolated domains of CBD1 and CBD2, which were previously 

determined by either X-ray crystallography (Chaptal et al., 2009; Besserer et al., 2007; Nicoll et 

al., 2006) or NMR studies (Hilge et al., 2006; Hilge et al., 2009) are well preserved in full length 

CBD12 within their central β-sheet regions. Thus, the structure of CBD12 was constructed in this 

work by determining the relative orientation of the two domains using multiple interdomain 

distance constraints. The effect of Ca2+ binding on the global structure of CBD12 was also 

determined to evaluate previously proposed structural models. 

With the beginning of the post-genomic era, the number of protein structures that are 

experimentally determined is explosively increasing, and their functions are being explained at 

the molecular or even atomic levels based on their structures and functional analyses. Many of 

them found in databases (e.g., PDB) are recombinant proteins that were expressed as a small 

fragment or isolated domains due to the size limit or their unfavorable propensity for crystal 

formation. However, in many biological systems, macromolecular complexes are frequently 

found in diverse biochemical and physiological processes. These multi-component structures 

achieve the orchestration and fine tuning of the complex physiological processes, facilitate 
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biochemical machineries functioning in a concerted way as exemplified by the ‘metabolon’, or 

form structural frames of cells. Similarly, in some cases, a protein containing a combination of 

domains or modules, or a protein in oligomeric states can be regarded as a complex consisting of 

multiple domains or subunits. Therefore, ‘assembling’ is emerging as a common theme as we 

more and more commonly encounter multiprotein complexes or protein oligomers in important 

biological systems. From this point of view, SDSL-EPR can be a strong tool which can put the 

structures of the disparate pieces together and complete the whole picture of the complex systems, 

overcoming the limitations imposed on the other biophysical techniques. The dissertation works 

described in this thesis show how SDSL-EPR, especially DEER distance constraints, can be 

applied to construct structural models of a protein complex by determining the spatial 

arrangement of two protein components (Chapter III) and the structural models of a single protein 

by determining the relative orientation of two domains (Appendix Chapter).  

 

Erythrocyte Membrane Skeleton 

 

Mechanical Stability and Deformation of the Erythrocyte Membrane 

The red blood cell is required to survive harsh environments during its journey through 

the narrow capillaries of the microvasculature where the cross-sections are less than its own 

diameter. In order to tolerate the applied shear stress inside the capillaries, erythrocytes undergo a 

large and reversible deformation with linear extensions of up to 250 %, which is seen in Fig. 1 

which shows red blood cells traveling through capillaries with different diameters in vivo (Skalak 

and Branemark, 1969) and the ellipsoidal cells from flow-induced deformation in vitro 

(Mohandas and Gallagher, 2008).  

A normal human erythrocyte is shaped as a biconcave disk with a volume of 90 fL and 

surface area of 136 μm2. This unusual geometry of the cell gives rise to a 40% excess surface area  
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Figure 1. Deformability of red blood cells. A, the precursor of the mature discoid 

red cell; B, ellipsoidal cells generated in vitro by flow-induced deformation of 

discoid cells; C, the parachute shape of red blood cells in vivo in a 7 μm diameter 

capillary; D, a red cell traversing from the splenic cord to the splenic sinus.  

 

 

compared with a sphere of the same volume, which allows it to undergo extensive deformation 

without significant changes in its volume and surface area. In fact, even during deformation, the 

membrane surface area of the erythrocyte remains constant. This is essential given that a small 

change (3~4 %) in surface area is sufficient to induce cell lysis. Hence, the tight maintenance of 

the membrane surface area is essential in its survival throughout its 120-day average life span. 

The capability of erythrocytes to undergo deformation maintaining constant surface area is 

attributed to the presence of a 2-dimensional meshwork of spectrin-based membrane skeleton 

which lines the cytoplasmic surface of the plasma membrane and to the tethering of the lipid 

bilayer to this membrane skeleton through a set of junctional bridges. Two distinct multiprotein 

complexes have been identified as junctional contacts which form ‘vertical’ (normal to the 

membrane) linkages as illustrated in Fig. 2. At the first junctional sites, the cytoplasmic domain 

of the anion exchanger, also known as band 3, binds to ankyrin-R to form a bridge with the 

spectrin-based membrane skeleton by linking two structural entities directly. Protein 4.2 plays a 

critical role in stabilizing and regulating the protein-protein interaction between band 3 and 
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ankyrin-R. The key element involved in the other junctional complex, the 4.1R complex, is the 

interaction of glycoporin C with protein 4.1R, which in turn binds spectrin at a separate binding 

site to form a stable bridge with the aid of additional proteins. The details of the structural 

features of each constituent and their arrangements within each complex will be covered in the 

following section. 

One of the most important properties of the erythrocyte membrane, its mechanical 

stability, allows the cell to resist external pressure and shear stress and to maintain its structural 

integrity during circulation. This unique property can be explained by the stability of spectrin-

based membrane skeleton which is composed of stable tetramers of spectrin via lateral interaction 

between two spectrin dimers (Liu and Palek, 1980). The dimer-dimer interaction is dynamically 

regulated in response to the external forces imposed by deformation, maintaining a highly 

dynamic tetramer-dimer equilibrium within the membrane skeleton. An et al. has reported that 

 

 

 

Figure 2. A schematic presentation of red cell membrane structure illustrating 

two major junctional multiprotein complexes with their constituents. 
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the loss of avidity of the dimer-dimer interaction resulted in decreased membrane mechanical 

stability (An et al., 2002). The distal end of the spectrin tetramer forms a junctional complex with 

F-actin and protein 4.1R, which also contributes to the membrane mechanical stability (An et al., 

2005; Tchernia et al., 1981). 

 Besides mechanical stability, the modular structure of spectrin is also responsible for the 

high elasticity of the cell membrane although the structural identity for that feature remains 

ambiguous. The long filamentous spectrin dimer consists of 36 spectrin repeats, each of which 

acts as an independent folding unit with different melting temperatures (An et al., 2006a). The 

repeats with low stability have been observed to undergo unfolding under the mechanical stress in 

two different in vivo studies using mass spectroscopy (An et al., 2006a; Johnson et al., 2007) and 

atomic force spectroscopy (Rief et al., 1999). Currently, it is speculated that the fast folding-

refolding cycle of the least stable repeats may contribute to the membrane elasticity together with 

the intrinsic flexibility due to its long modular structure. 

 Recently, the lipid bilayer itself is emerging as another important regulator for 

erythrocyte membrane stability via asymmetric distribution of phospholipids and its interaction 

with skeletal proteins. The outer monolayer exclusively contains phosphoatidylcholine and 

sphingomyelin while the inner monolayer includes most phosphatidylethanolamine, all 

phosphatidylserine (PS), and phosphoinositides (PI) (Zwaal and Schroit, 1997). Among these 

phospholipids, asymmetric distribution of PS and PI is of critical functional importance. For 

example, loss of asymmetry accompanying exposure of PS on the outer monolayer leads to 

phagocytosis by macrophages (Yasin et al., 2003) or adhesion of red cells to vascular endothelial 

cells (Setty et al., 2002). Furthermore, recent studies have suggested that PS and phosphatidyl-

insitol-4,5-bisphosphate (PIP2) can directly interact with cytoskeletal proteins such as spectrin 

and protein 4.1R, thereby modulating linkage of the plasma membrane to the membrane 

cytoskeleton (An et al., 2006b; Manno et al., 2002). Therefore, membrane phospho-lipids may 

also contribute to the mechanical stability of the red cell membrane.  
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Organization of the Erythrocyte Membrane Skeleton 

 

Spectrin-based membrane skeleton   The mesh network of spectrin tetramers provides the 

fundamental structural scaffold for the membrane skeleton. A main feature in spectrin structure is 

the tandem arrays of multiple spectrin repeats, 20 in α-spectrin and 16 in β-spectrin and each 

repeat is 106 amino acids long and forms a triple-helix bundle with two parallel and one 

antiparallel α-helices.  α- and β-spectrin form an antiparallel heterodimer through strong lateral 

interactions between repeats 19 and 20 near the C-terminus of α-spectrin and repeats 1 and 2 near 

the N-terminus of β-spectrin. The spectrin tetramer, the major structural unit of the membrane 

skeleton, is formed by head-to-head interaction of two dimers, where a N-terminal solitary helix 

of the α-subunit from one dimer laterally interacts with 2 helices at the C-terminus of the β-chain 

from the other subunit to generate a stable triple-helical repeat (DeSilva et al., 1992; Speicher et 

al., 1993). While the ankyrin-binding site is located in the middle of the tetramer, F-actin and 

protein 4.1R form a multiprotein junctional complex at the distal end of the spectrin tetramer, 

which has a crucial role in increasing the membrane mechanical stability (Karinch et al., 1990). 

The effect of protein 4.1R on the stability of the F-actin-spectrin interaction becomes evident 

when the binding affinity of two proteins in the ternary complex (Kd ≈ 10-15 M) is compared with 

that in the binary complex of F-actin and spectrin (Kd ≈ 10-5 M)(Morris and Lux, 1995). 

Currently, a set of additional proteins including tropomyosin, tropomodulin, and adducin are 

known to be associated with this complex to further stabilize the structure of the complex and 

maintain the appropriate length of actin filaments (Bennett and Baines, 2001). 

 

Ankyrin Complex      Two transmembrane proteins, Band 3 and RhAG (Rh-associated 

glycoprotein) link the lipid bilayer to the membrane skeleton through the interaction of their 

cytoplasmic domains with ankyrin-R. Even though a number of membrane and cytosolic proteins 

are involved in the formation of a multiprotein complex, the band 3-ankyrin-R interaction is 
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central to the organization of the ankyrin complex and has provided a good model system for 

membrane structure studies. More comprehensive descriptions on this binary complex will be 

provided in the next section. Rh blood group antigens, Rh and RhAG, were also found to be 

associated with ankyrin  (Endeward et al., 2008). A Tetramer composed of two Rh and two 

RhAG subunits forms a functional unit in the ankyrin complex and their C-terminal cytosolic 

domains interact with the D2 domain (repeats 6-12 of the membrane binding domain) of ankyrin-

R (Nicolas et al., 2003). The morphological abnormalities of Rh-null erythrocytes, associated 

with the primary defects of Rh or RhAG, imply an importance of the association of the Rh 

complex to the membrane skeleton (Huang et al., 1999). Protein 4.2 is another member of the 

ankyrin complex which associates with both band 3 (Korsgren and Cohen, 1986) and ankyrin-R 

(Korsgren and Cohen, 1988) and stabilizes the interaction between the two proteins (Rybicki et 

al., 1996). The observation of spherocytosis caused by the mutation of protein 4.2 at its N-

terminal region (Gallagher and Forget, 1997) and the diminished levels of protein 4.2 induced by 

 

 

 

Figure 3. Structure of the ankyrin junction that links 

cytoskeleton to the lipid bilayer. 
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point mutations at various sites on the cytosolic domain of cdb3 (cdb3)  (Jarolim et al., 1992) 

demonstrate the functional importance of protein 4.2 in the assembly of junctional proteins. The 

association of protein 4.2 with the erythrocyte membrane has been observed to be strengthened 

with protein modifications such as myristoylation and palmitoylation at specific sites of protein 

4.2 (Bhattacharyya et al., 1999).  

 

4.1R Complex       Protein 4.1R, an essential constituent in the spectrin-4.1R-actin complex that is 

formed at the distal end of the spectrin tetramer, provides a docking site for the cytosolic domain 

of glycophorin C (GPC) to form the second class of junctional complexes. p55, a member of 

MAGUK (membrane associated guanylate kinase homologues), stabilizes the interaction between 

GPC and protein 4.1R by forming a stable ternary complex (Marfatia et al., 1994) with both 

proteins. GPC and p55 are missing in 4.1R-/- mouse red cells (Shi et al., 1999) and much reduced 

in human 4.1R-deficient red cells (Reid et al., 1990). Besides, at least three other membrane 

blood group proteins, XK, Rh, and Duffy are associated with protein 4.1R providing further 

bridging interactions to the junctional complex though their relative contributions are not yet 

clear. Additionally, two other actin-binding proteins, adducin and dematin, are also known to 

stabilize this vertical linkage by directly binding band 3 and Glut1 (Khan et al., 2008; Salomao et 

al., 2008). 

 

Inherited Red Cell Disorders 

Inherited red cell disorders with impaired membrane and cell function can be categorized 

into two classes. The first group of conditions includes hereditary spherocytosis (HS), hereditary 

elliptocytosis (HE), hereditary ovalocytosis, and hereditary stomatocytosis where defects in the 

constituents in the junctional complexes or skeletal proteins due to mutations cause altered 

membrane structure. The second group features altered cell function resulting from mutations in 
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Figure 4. Red cell morphology. Hereditary spherocytosis (HS; left panel); nonhemolytic hereditary 

elliptocytosis (HE; middle panel); elliptocytes, poikilocytes, and fragmented red cells in hemolytic HE 

(right panel). 

 

 

globin genes which includes sickle cell disease, Hb SC disease, Hb CC disease, and thalassemias. 

A common feature of red cells in all of these conditions is decreased cell deformability and each 

of them can be characterized by its abnormal morphology in peripheral blood smears. Among 

them, HS and HE have been most extensively studied and their mechanistic and molecular basis 

is well defined; however, for the other conditions, causative factors and mechanisms underlying 

the abnormal cell physiology still remain unidentified at the molecular level.   

 

Hereditary spherocytosis HS refers to a group of heterogeneous inherited anemias that is 

characterized by the spherical shape of erythrocytes on a peripheral blood smear. It occurs in all 

ethnic groups, but is particularly common in northern European populations with an incidence 

rate of 1 in 3000 (Gallagher and Jarolim, 2005). The clinical manifestations of HS are highly 

variable ranging from mild to very severe hemolysis with anemia, jaundice, splenomegaly, 

reticulocytosis, and gallstones. Decreased membrane surface area and the resultant change in cell 

shape from biconcave disc to sphere is a common feature in all forms of HS. The spherocytes 

with reduced deformability are selectively trapped in the spleen, undergo splenic conditioning 

resulting in further loss of membrane, and are finally eliminated from the circulatory system 

(Gallagher and Jarolim, 2005). Splenic conditioning provides an unfavorable milieu to the 
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abnormal erythrocytes, which includes low pH, high macrophage contact, low glucose 

concentration, and high oxidant concentration. This elimination process in the spleen is the main 

severity of anemia by decreasing the survival of spherocytes.  

Reduced membrane surface area in HS is ascribed to the weakened vertical linkages 

between the lipid bilayer and the membrane skeleton. Defects in genes encoding any of the 

protein components in the ankyrin complex (band 3, RhAG, ankyrin, protein 4.2, or spectrin) and 

the resultant deficiency in the corresponding protein lead to HS. Ankyrin deficiency is the most 

common cause of HS in northern European populations accounting for approximately 50-60% of 

cases (Eber and Lux, 2004). Ankyrin mutations cause both dominant and recessive disease that 

range from clinically mild to severe depending on the extent of membrane loss (Delaunay, 2007; 

Eber et al., 1996). Since ankyrin provides the main membrane binding site for the spectrin-based 

membrane skeleton, ankyrin deficiency is strongly coupled to a reduction in spectrin assembly in 

the membrane despite normal levels of spectrin (Hanspal et al., 1991).  

 While hereditary spherocytosis caused by α-spectrin mutations is recessive, mutations in 

β-spectrin give rise to dominant inheritance due to the 3-4 fold higher expression level in α-

spectrin compared with β-spectrin (Wong et al., 2004). β-spectrin is known to be responsible for 

15-30 % of cases of hereditary spherocytosis in the northern European population. Patients with 

β-spectrin deficiency have mild to moderately severe disease. α-spectrin defects account for about 

5 % of cases, but typically lead to severe anemia. 

 Band 3 deficiency accounts for approximately 20-35 % of HS patients, presenting from 

mild to moderate anemia with dominant inheritance. Only 20-30 % of patients show a reduction 

in band 3 in SDS-PAGE analysis, which implies there is partial compensation by wild-type allele 

in trans for the mutated allele (Dhermy et al., 1997). Currently, over 40 different band 3 

mutations have been identified from the gene (SLC4A1) which correspond to a range of mutant 

proteins associated with HS with mutations widely spread out in both cytoplasmic and 

transmembrane domains of the protein (Wrong et al., 2002).  
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 Recessive HS resulting from homozygous mutations in the protein 4.2 gene (EPB42) is 

prevalent in Japan (Yawata et al., 2000), but is rare in other populations. The cell membranes 

from this condition show nearly complete absence of protein 4.2. To date, a series of protein 4.2 

mutations have been identified in association with HS. While some mutations lead to premature 

termination of translation, the others have been found to generate mutant proteins with a single 

amino acid substitution which impair the ability to bind to the cytoplasmic domain of band 3 

(Toye et al., 2005).  

 Absent or markedly reduced Rh or RhAG expressions result in mild to moderate 

hemolytic anemia. Rh deficiency accounts for less than 1 % of HS patients. In addition to the 

typical features of spherocytosis, Rh null erythrocytes show increased osmotic fragility and 

 

 

Table 1. Clinical and molecular characterization of molecular defects that cause hereditary spherocytosis  

Proteins Patients with HS Heredity Prevalent mutations Protein reduction Disease 
severity Peripheral blood smear 

Ankyrin-1 USA and Europe, 40-

65%; Japan, 5-10% 

AD, AR, 

de novo 

AD or de novo: null 

mutation; AR: missense and 

promoter mutation 

Spectrin and ankyrin -R, 

15-50% 

Mild to 

moderate 

Spherocytes 

Band 3 20-35% AD Functionally null mutation Band 3, 15-35% Mild to 

moderate 

Spherocytes, occasional 

mushroom-shaped or 

pincered cells 

α-spectrin < 5% AR α-LEPRA allele and null 

mutation 

α-spectrin, 50-75% Severe Spherocytes, contracted 

cells, and poikilocytes 

β-spectin 15-30% AD,      

de novo 

Null mutation β-spectin, 15- %40 Mild to 

moderate 

Spherocytes, 5-10% 

acanthocytes 

Protein 4.2 USA and Europe < 5%; 

Japan, 45-50 % 

AR Missense              

(prevalence of 4.2 Nippon) 

Protein 4.2, 95-100% Mild to 

moderate 

Spherocytes, 

ovalostomatocytes 

AD=autosomal dominant; AR=autosomal recessive; HD=hereditary spherocytosis; LEPRA=low-expression allele Prague. 
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dehydration which is manifested by reduced cell cation and water content and increased cell 

density (Cartron, 2001).  

 

Hereditary Elliptocytosis HE is easily characterized by the presence of elliptically shaped 

red cells on peripheral blood smear. It is a relatively common red blood cell disorder with 

worldwide distribution, but is more prevalent in malaria endemic regions such as West Africa 

where its prevalence reaches up to 2 % of the population. The majority of HE, which is 

heterozygous for an elliptocytic variant, is asymptomatic but approximately 10 % of patients with 

homozygous or compound heterozygous for HE variants suffer from mild to severe anemia. This 

abnormal morphology and mechanical property of cells in HE come from the mechanically 

unstable membrane, which results in progressive transformation of cell shape, membrane 

fragmentation, and reduction in membrane surface area. Therefore, the severity of the disease has 

a strong correlation with the extent of decrease in membrane mechanical stability (Lane et al., 

1987). The underlying molecular mechanism for decreased membrane stability in HE is a loss of 

‘horizontal’ linkages in the membrane skeleton mainly due to defects either in spectrin dimer-

dimer interactions or in the spectrin-actin-4.1R junctional complex. Defects in any of the protein 

components involved in lateral linkages in the membrane skeleton are the main cause of HE. 

 

 

 

Figure 5. Horizontal linkages in the structure of the spectrin-based cytoskeleton 
 



 

16 
 

 The primary cause of HE is α-spectin defects which account for 65 % of cases. The most 

frequent mutation in α-spectrin is missense mutations in the N-terminal region that is directly 

involved in the spectrin dimer-dimer interaction (Gallagher, 2004). Defects in β-spectrin also 

present in 30 % of HE cases. Mutations in β-spectin which are involved in loss of spectrin self-

association include point mutations and truncations in the C-terminus. Most cases of HE from 

spectrin mutations show decreased spectrin self-association, the level of which shows a strong 

correlation with clinical severity. Defects in 4.1R contribute to only 5% of HE cases (Gallagher, 

2004), which leads to a weakened spectrin-actin junctional complex and subsequently to 

decreased membrane mechanical stability.  

 

Structure and Function of Anion Exchanger 1 

 

Topology and function of the AE1 transmembrane domain 

The transmembrane domain of AE1 (residues 361-911; tdb3) is functional in anion 

transport either when isolated from the cytosolic domain by proteolysis (Grinstein et al., 1978) or 

when expressed from a recombinant construct (Lepke et al., 1992), showing that it is structurally 

and functionally independent of the cytosolic domain. The primary biological function of tdb3 is 

to catalyze the one-for-one exchange of two monovalent anions, chloride and bicarbonate, in 

opposite directions across the red blood cell membrane. The passive exchange of these anions is 

essential to the disposal of carbon dioxide and pH homeostasis in the body. The discovery that 

stilbenedisulfonates are potent competitive inhibitors of band 3-mediated anion transport 

provided a tool to gain insight into the mechanism of the transport process (Cabantchik and 

Rothstein, 1972; Passow, 1986). A body of evidence from kinetic studies using competitive 

inhibitors and 35Cl NMR revealed that band 3 is an alternating site transporter possessing a single 

transport site that is alternately exposed to opposite sides of the membrane (Falke and Chan, 
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1985; Jennings, 1982) confirming the early proposed ping-pong mechanism (Falke and Chan, 

1985; Gunn and Frohlich, 1979).  

Biophysical data from CD and NMR studies have shown that the transmembrane domain 

of band 3 is almost entirely helical (Gargaro et al., 1994; Popov et al., 1997). Due to its large size 

and difficulty in obtaining crystals suitable for high resolution diffraction studies, detailed 

structural information on tdb3 has remained ambiguous. Hydropathy analysis of amino acid 

sequence combined with some experimental data from covalent labeling studies, proteolysis, and 

antibody epitope mapping have lead to the model containing 14 membrane spans (Tanner, 1993; 

Vince and Reithmeier, 1996). However, a later study using scanning N-glycosylation mutagenesis 

(Popov et al., 1997) and cysteine scanning (Zhu et al., 2003) proposed a different model with 12 

membrane spans. The main topological difference between the two models is seen in a 70 residue 

long fragment of the C-terminal region, raising a possibility of structural heterogeneity in this 

region.  

 

 

 

Figure 6. Two alternative models for the topology of the AE1 transmembrane domain 
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Notably, the isolated segment spanning this C-terminal region was sufficient to insert into 

the microsomal membrane by itself and when it was co-expressed in Xenopus oocyte with the 

remainder of the protein, transport activity was restored to the normal level (Groves and Tanner, 

1995). Taken together with the presence of the signal sequences required for proper membrane 

insertion and targeting to the plasma membrane (Okubo et al., 1997), it is speculated that the C-

terminal region of tdb3 is of structural and functional importance. Likewise, the N-terminal 

region encompassing the first transmembrane domain (TM1) was also shown to be associated 

with membrane targeting and transport activity of tdb3 in a more recent mutation study (Kanki et 

al., 2003). A set of specific mutants of an N-terminal fragment which has mutations within the 

residues involved in Southeast Asian ovalocytosis (residues 400-408) impaired membrane 

insertion of TM1 both in vivo and in vitro. Furthermore, deletion of the cytoplasmic surface 

sequence (G381LVRD) abolished chloride transport indicating that this sequence is essential in 

anion transport of tdb3. A low resolution (20Å) EM image from two dimensional crystals (Wang 

et al., 1993; Wang et al., 1994) and NMR structures for a set of isolated fragments (Askin et al., 

1998; Gargaro et al., 1994) have been previously reported. Recent cryo-EM image analysis of 

tubular crystals of tdb3 yielded a 3D image of the tdb3 dimer in the inhibitor-stabilized outward-

open conformation at 18 Å resolution (Yamaguchi et al., 2010), but a higher resolution structure 

for the whole domain of tdb3 is still unknown.  

 

Structure and function of the cytoplasmic domain of AE1 

The cytoplasmic domain of band 3 serves as an organizing center to recruit various 

cytoplasmic proteins such as glycolytic enzymes (Campanella et al., 2005), hemoglobin (Walder 

et al., 1984; Waugh and Low, 1985), hemichromes (Waugh and Low 1985), and tyrosine kinase 

p72syk (Harrison et al., 1994).  At least 5 glycolytic enzymes including glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), aldolase, phospho-fructokinase (PFK), lactate dehydro-

genase (LDH), and pyruvate kinase (PK) were observed to bind to the N-terminal region of cdb3 
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to form a macrocomplex.  The cdb3 recognition sites of GAPDH, aldolase, and PFK contain two 

consensus binding motifs (D6DYED10 and E19EYED23) and are clustered along the narrow 

segment (residues 1-23) of the unstructured N-terminal region of cdb3 (Chu and Low, 2006).  

The current view on the functional implication of this macrocomplex assumes the 

formation of a ‘metabolon’, which provides two advantages for red cell metabolism; (i) increase 

in the efficiency of glycolysis through the channeling of substrates throughout the reaction 

pathway (ii) compartmentalization of generated ATP for the direct consumption by ion channels 

on the membrane without release into the cytoplasm (Campanella et al., 2005). It is interesting to 

note that the assembly of glycolytic enzymes on cdb3 is sensitive to the oxygenation state of the 

cell and tyrosine phosphorylation on the N-terminal region of cdb3. Recent studies showed that 

binding of deoxygenated hemoglobin or tyrosine phosphorylation by p72syk on the N-terminus of 

cdb3 lead to dissociation of glycolytic enzymes, strongly suggesting there might be regulatory 

mechanisms of the glycolytic machinery on the inner surface of the membrane by oxidative stress 

(Chu, Breite et al. 2008) or red cell senescence processes (Chu et al., 2008; Ding et al., 1996; 

Pantaleo et al., 2009). The observation of this glycolytic assembly in murine erythrocytes and of 

its dissipation in erythrocytes from band 3 knockout mice suggests that this could be a general 

phenomenon for all mammalian erythrocytes (Campanella et al., 2008). Another example of 

metabolon formation in red cells is seen in the cytoplasmic C-terminal tail of tdb3. Carbonic 

anhydrase II which catalyzes conversion of carbon dioxide to bicarbonate has been observed to 

bind a short acidic motif (LD887ADD) on the C-terminal region of tdb3 (Vince and Reithmeier, 

2000). The interaction of these two proteins involved in bicarbonate metabolism is speculated to 

facilitate and regulate the flow of bicarbonate across the membrane (Reithmeier, 2001).  

 The low pH (pH 4.8) crystal structure of the cdb3 dimer has been determined at 2.6 Å 

resolution as shown in Fig. 7 (Zhang et al., 2000). The core domain of each cdb3 monomer forms 

a tightly packed globular structure spanning residues 55-290.  The dimerization arm of cdb3 

(residues 314-344) extends away from the core domain and interdigitates with the equivalent part 
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of the second monomer to give a tightly interlocked dimer structure. The presence of a cluster of 

9 leucine residues provides an extensive network of hydrophobic interaction contributing to the 

stabilization of dimer structure. Two important domains involved in the association with various 

binding partners, N- and C-terminal region of cdb3 (residues 1-54 and 357-379, respectively), 

were missing or poorly defined by electron density, suggesting that they are in a structurally 

dynamic or heterogeneous state. This finding agreed with the solution structure obtained from a 

recent SDSL-EPR study (Zhou et al., 2005) where spin labeling at both the N- and C-terminal 

regions, resulted in fast and unrestricted motion which is characteristic for unstructured protein. 

 One of the longtime intriguing questions about cdb3 structure is its reversible pH-

dependent conformational equilibrium in solution. A body of evidence from various biophysical 

studies (Appell and Low, 1981; Low, 1986; Thevenin et al., 1994) revealed that cdb3 can exist in 

three distinct conformations along the wide range of pH (pH 4~10) with transitions at pH 7.2 and  

 

 

 

Figure 7. Crystal structure of the cdb3 dimer.  Top view of a cdb3 dimer (left panel) and the 

peripheral surface of one monomer were illustrated in a ribbon presentation. Two monomers 

were colored in skyblue and pale green. The dimerization arms from each monomer were 

highlighted in green and blue,  α-2 helix in pink, α3-helix in orange and β6/β7 hairpin loop in 

red. The unstructured N- and C-terminal regions are missing in the crystal structure. 
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9.2. Especially, the sedimentation experiment exhibited approximately a 10 Å increase in 

hydrodynamic radius with increasing pH (Low et al., 1984). Based upon the crystal structure, the 

conformational change observed at high pH was hypothesized to be involved in an outward 

movement of peripheral domains away from the dimerization arms to form an extended form of 

the dimer. Even though pH-driven conformational changes of cdb3 may not be relevant in vivo 

since variations in intracellular pH in normal erythrocytes is less than a tenth pH unit, it cannot be 

excluded that the conformational equilibrium of cdb3 might be controlled by other physiological 

triggers such as interaction with its binding partners (Zhou and Low, 2001). When the solution 

structure of cdb3 at neutral pH was extensively probed by SDSL-EPR (Zhou et al., 2005), the 

global structure determined by crystallography at low pH was found to be retained well, 

indicating the crystal structure is likely to be the physiologically relevant form of cdb3.  

 

AE1 and Hereditary Spherocytosis 

 HS associated with AE1 is inherited dominantly and is generally milder than HS caused 

by ankyrin or spectrin mutations. AE1 deficiency accounts for approximately 30 % of HS cases in 

European patients (Jarolim et al., 1996). To date, more than 55 band 3 gene mutations have been 

identified, most of which are missense or frameshift mutations. Many of the mutations that are 

localized in the transmembrane domain involve highly conserved arginine residues as 

demonstrated by R490C, R518C, R760Q, R808C, R808H and R870W (Dhermy et al., 1997). 

These mutations in the transmembrane domain appear to impair co-translational insertion of band 

3 into the membranes of the ER during protein synthesis or to reduce protein stability. Mutations 

in the cytosolic domain of band 3 can interfere with its binding to other membrane skeletal 

proteins such as ankyrin and protein 4.2. For example, three cytosolic domain mutations 

associated with HS, E40K (Band 3 Montefiore; (Rybicki et al., 1993), G130R (Band 3 Fukuoka; 

(Inoue et al., 1998), and P327R (Band 3 Tuscaloosa; (Jarolim et al., 1992) show normal AE1 

content in the cell. Instead, these mutations are associated with significant decreases in the protein 
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4.2 content. Biophysical characterization of these mutants revealed that the overall structure and 

stability of wt-cdb3 are maintained in all three variants (Bustos and Reithmeier, 2006). 

Consistently, a structural study using EPR also demonstrated that the P327R mutation results in a 

subtle change in the local structure of the cdb3 dimer only near the mutation site (Zhou et al., 

2007). 

 

Structure and Function of Ankyrin-R 

 

The ANK repeat and ankyrin protein family 

 Repeat proteins form one of the most abundant protein classes that mediate various 

protein-protein interactions involved in a number of physiological and cellular processes which 

includes cytoskeleton integrity, membrane protein targeting, cell-cell signaling, transcription and 

cell-cycle regulation, cell and tissue development, and inflammatory response etc. (Main et al., 

2003; Mosavi et al., 2004). Their most prominent structural feature is that they contain relatively 

short (typically 20-40 amino acid residues long), repeating motifs which function as building 

blocks that stack side by side to form non-globular, modular structures. Unlike other protein-

protein interaction domains, these modular structures typically recognize neither specific amino 

acid sequence nor structural motif. Instead, a tandem stack of repeating units provides an 

elongated binding interface and the variations in interacting surface residues (hot spots) 

determines the specificity for binding. 

 The ankyrin-Repeat (ANK), a motif of 33 amino acid residues, is the second most 

frequent repeating module found in protein databases. Although ANK proteins are present across 

all forms of life including the viral genome, the majority are found in eukaryotes indicating their 

critical role in modulating diverse signaling pathways necessary to evolve more complicated 

multi-cellular organisms (Marcotte et al., 1999). While the proteins with up to 34 ANKs have 
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been found by genome analysis, most of ankyrin proteins contain 4~7 ANK motifs. Consistent 

with the observation of no single ANK repeat in nature, an isolated ANK was shown to be unable 

to form a stably folded structure (Mosavi et al., 2002). 

 Despite a few exceptions of insertion in the long loop region, most of ANK repeats 

maintain a canonical helix-turn-helix-β-haripin/loop conformation. As shown in Fig. 8, two α-

helices in the same repeat are arranged in an antiparallel fashion and the longer outer helix from 

the preceding repeat and the shorter inner helix from the next repeat are linked by the long hairpin 

loop which extends outward from the α-helices forming an approximately right angle with the 

helix axis. Multiple ANK repeat units stack together to form an elongated helix bundle, which 

exhibits a slight curvature mainly due to the differences in the lengths as well as in the extents in 

the interrepeat packing interactions between two α-helices. Each repeat is rotated 2–3º 

counterclockwise from the preceding repeat and hence 32 repeats can complete a single 

superhelical turn with a radius of 35 Å (Michel et al., 2001).  

 ANK repeats contain a set of key residues and sequence motifs which are well 

conserved in most ankyrin proteins which are critical in maintaining its characteristic topology. 

ANK consensus sequences obtained from statistical analyses shown in Fig. 8 (Kohl et al., 2003; 

Mosavi et al., 2002) highlights those residues and sequences. The two conserved sequences, α-

TPLH motif (positions 4–7) from the inner helix and a (V/I)VX(L/V)LL motif (positions 17-22; 

X is any hydrophilic residue) from the outer helix are the primary contributors to the network of 

hydrophobic interactions which stabilize the extended helix bundles that constitute the main 

backbone of ANK proteins. To the contrary, the stability of the β-hairpin loop and its expansion 

to a β-sheet are ascribed to numerous hydrogen bonds between non-hydrophobic resides which 

are rich in the long loop region. It is notable that the β-hairpin loop domain is relatively flexible 

in size and conformation and consists of much less conserved residues as is evident in Fig 8. 

Given that one of the common features throughout all structures of ANK protein complexes 

determined to date is the direct involvement of β-hairpin loops in the binding, the residue 
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variations in β-hairpin positions are speculated to provide binding specificity for a range of 

diverse binding partners despite the high degeneracy in modular structure of ANK repeats (Li et 

al., 2006).  

 

 

 

Figure 8. The top panel shows the consensus sequences of 

the ANK repeat as defined by Mosavi et al. (Mosavi et al., 

2002) and Kohl et al. (Kohl et al., 2003). The schematic 

representation of the secondary structures corresponding to 

this sequence is presented above the sequences. The 

conservation level of each sequence is color-coded. The 

consensus sequence from Kohl et al. includes an X that 

denotes any amino acid except C, G, and P and a Z that can 

be a H, N, or Y. The left panel illustrates the structure of 

the typical ANK repeat with the highly conserved residues. 

 

 

 

Ankyrins and ankyrin binding proteins 

 Ankyrins are a family of adaptor proteins that have the potential to link various 

membrane proteins to the spectrin-based membrane skeleton. In the mammalian genome, three 

distinct genes encoding ankyrins (ANK1, ANK2, and ANK3) have been identified. 

Corresponding polypeptides are designated as ankyrin-R (R for restricted, also called ankyrin 1), 

ankyrin G (G for giant, also called ankyrin 2), and ankyrin B (B for broad, also called ankyrin 3), 
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respectively. These isoforms share a similar domain structure which consists of four conserved 

domains: N-terminal membrane-binding domain, central spectrin-binding domain, and C-terminal 

regulatory domain and death domain. Ankyrin genes are expressed and processed through 

alternative splicing in a tissue-dependent and developmentally regulated fashion, giving rise to a 

large number of isoforms that utilize different combinations of functional domains (Bennett and 

Baines, 2001). While the canonical ankyrins including ankyrin-R in human erythrocytes have 

190~220 kDa Mw, alternative splicing produces multiple isoforms with different sizes in all three 

ankyrin classes. A small isoform of ankyrin-R (20-26 kDa), which lacks both the membrane-

binding and spectrin-binding domain is enriched in M and Z lines of skeletal myofibrils in the 

sarcoplasmic reticulum. The truncated forms of ankyrin G missing all or portions of their 

membrane-binding domain are found in Golgi and lysosomal membranes. The distribution pattern 

of these small ankyrins strongly suggests their distinct function in the cytoplasm. To the contrary, 

ankyrin G and B exhibit giant isoforms whose Mw is up to 480 kDa. One of the common 

structural features seen in these giant ankyrins is that they contain long inserted sequences 

between the membrane-binding and death domain forming an extended random coil. Based upon 

the observation that ankyrin isoforms containing this tail domain are highly localized in axons, 

the tail domain is hypothesized to have a role in axonal targeting of giant ankyrins.  

 The membrane binding domain of ankyrins provides a docking platform for a range of 

structurally diverse and sequence-unrelated integral membrane proteins to coordinate various 

tissue- and cell-specific physiological functions. These membrane proteins can be roughly 

categorized into three groups based on their fundamental functions and are listed in Table 2 

below.  

The L1 CAM family of cell adhesion molecules (L1, neurofascin, Nr-CAM, Ng-CAM) is 

the major class of ankyrin-binding proteins in the vertebrate nervous system. In axon initial 

segments and nodes of Ranvier, the 480/270 kDa isoform of ankyrin G anchors neurofascin to β-

spectrin (Davis et al., 1996). On the other hand, ankyrin G showed the ability to form voltage-
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gated Na+ channel clustering in the same membrane domain. Targeted knockout of ankyrin G 

leads to loss of the ability to fire action potentials and clustering of voltage-gated Na+ channels 

and neurofascin at the axon initial segments of Purkinje neurons in mice (Jenkins and Bennett, 

2001) and cultured hippocampal neurons (Yang et al., 2007). KCNQ2/3 channels, which 

colocalize with voltage-gated Na+ channels and modulate its activity at nodes of Ranvier and 

axon initial segments, also showed the ability to bind ankyrin G to form the a multiprotein 

complex (Pan et al., 2006; Rasmussen et al., 2007).  

Another good example of ankyrin-mediated formation of functional membrane domains 

can be seen in microdomains of cardiomyocyte T-tubules where a set of membrane transporters 

coordinate synchronous waves of calcium release and uptake. Several lines of evidence indicate 

that ankyrin B colocalizes both the Na+/Ca2+ exchanger (NCX1) and Na+/ K+ ATPase in the 

plasma membrane and is in association with the IP3 receptor in the sarcoplasmic reticulum 

(Mohler et al., 2005). Reduced expression of Ankyrin B has lead to the selective loss of NCX1 

and Na+/ K+ ATPase as well as IP3 receptor in cardiomyocytes (Mohler et al., 2005; Mohler et 

al., 2003).  These observations strongly suggest the plausible functional coupling between two 

transporters resulting from ankyrin B-dependent colocalization. In a different type of 

microdomain of T-tubules, ankyrin G binds Nav1.5 and is required to the targeting of the channel 

protein (Mohler et al., 2004).  

In addition, E-cadherin, a key cell adhesion molecule in the lateral membrane of 

epithelial tissues, dystrophin-dystroglycan complex at costameres in skeletal muscle and cardio-

mytocytes, and clathrin are known to require association with ankyrins for their normal 

trafficking and function (Bennett and Healy, 2009).  

Even though all the proteins mentioned above have been evolved independently with 

neither sequence nor structural homology among them, it is intriguing to note that many of them 

show one shared feature. For many ankyrin-binding proteins, their binding sites are observed or  
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Figure 9. Macromolecular complexes organized by ankyrins and spectrins in diverse types of specialized 

membranes. (A) Ankyrin-G forms a complex with β-IV spectrin, neurofascin (a cell adhesion protein), and 

ion channels (KCNQ2/3 and voltage-gated sodium channel) at axon initial segments in Purkinje neurons. 

(B) In costameres of skeletal muscle, ankyrins-B and -G cooperate to target and stabilize key components 

of the dystroglycoprotein complex. At the membrane, ankyrin-G binds to dystrophin and β-dystroglycan. 

(C) In cardiomyocyte transverse tubules, ankyrins-B and -G coordinate separate microdomains. Ankyrin-B 

binds Na+/K+ ATPase, Na+/Ca2+ exchanger (NCX1), and the inositol triphosphate receptor (IP3R). Ankyrin-

G forms a complex with Nav1.5 and spectrin. (D) Ankyrin-G in epithelial lateral membrane assembly. 
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Ankyrin-G binds to E-cadherin, β-2 spectrin, and the Na+/K+ ATPase. Spectrins are connected via F-actin 

bridges bound to α/γ-adducin and tropomodulin. 

 

 

predicted to reside on the extended peptides with no secondary structure (Bennett and Healy, 

2009). For these proteins, binding through unstructured domains is expected to provide their 

binding partners more functional versatility and variable binding affinity, enabling them to adapt 

to rapidly changing physiological demands. 

 

Table 2. Ankyrin binding proteins 

Ion channels and pumps Cell adhesion molecules Cellular transport 

Anion exchanger L1-CAM family Tubulin 

Na+/K+ ATPase CD44 Clathrin 

Voltage-gated Na channel E-cadherin  

Na+/Ca2+ exchanger Dystroglycan  

KCNG2/3   

Rh antigen   

IP3 receptor   

Ryanodine receptor   

  

 

Unlike globular proteins, ANK proteins with modular structures lack long range-tertiary 

interactions. They are stabilized by intra-repeat interactions or inter-repeat interactions with 

neighboring repeats.  This unique structural aspect raised many interesting questions with regards 

to protein folding issues. Surprisingly, most folding studies using various ANK proteins showed a 

two-state folding pathway (folded or unfolded state) with no observation of a partially folded 

intermediate, and a highly cooperative transition between them (Mosavi et al., 2002; Tang et al., 

1999; Zeeb et al., 2002; Zhang and Peng, 2000; Zweifel et al., 2003). This observation strongly 
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implies the existence of long range coupling between the sparse repeats, which can affect the 

entire molecule. However, in other kinetic folding studies using human p16 and p19, members of 

the INK4 tumor suppressor family (Tang et al., 1999; Zeeb et al., 2002), and Notch ANK domain 

(Mello et al., 2005; Zweifel and Barrick 2001), partially folded intermediates were detected. The 

manipulation of ANK proteins such as insertion or truncation of a whole unit showed that each 

repeat in the protein has a distinct stability and folding equilibrium. In the case of p16, two ANK 

repeats at the C-terminus was found to fold first with higher stability and form a scaffold to 

facilitate the folding of the other repeats (Zhang and Peng, 2000; Zweifel and Barrick, 2001).  

 

Structure of human erythrocyte ankyrin-R 

Human erythrocyte ankyrin-R is a member of the canonical ankyrin (190 ~ 220 kDa) which 

consists of four distinct domains: a membrane-binding domain, a spectrin-binding domain, a 

death domain and a regulatory domain. The spectrin-binding domain contains a small subdomain, 

ZU5-ANK (homologous protein to ZO-1, a tight junction-associated protein, and Unc5, the netrin 

receptor), which interacts with repeat 13 to 15 of βI-spectrin. Recently, a crystal structure of this 

protein complex has been determined and the nature of the mutations associated with these 

proteins has been examined at atomic resolution (Ipsaro and Mondragon, 2010). 

 

 

 

Figure 10. Multidomain structure of ankyrin-R. The N-terminal membrane-binding domain consists of 4 

independently folded subdomains denoted D1-D4, each of which contains 6 ANK repeats. 
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Death domains were first reported in proteins such as Fas and tumor necrosis factor 

receptors that participate in apoptosis pathways. They possess the ability to interact with related 

death domains in other proteins. These findings lead to the assumption of the involvement of the 

death domain in self-association or interaction with other protein, but which ones remains to be 

elucidated. The C-terminal regulatory domain has been observed to modulate the binding affinity 

of the protein for both AE1 and spectrin (Davis et al., 1992; Hall and Bennett, 1987), but the 

mechanism underlying the regulatory activity is not defined yet.  

The N-terminal membrane-binding domain (residues 1-826) is comprised of 24 ANK 

repeats and can be divided into four subdomains D1 through D4 based upon proteolytic maps, 

each of which contains the basic folding unit of 6 ANK repeats (Michaely and Bennett, 1993). 

The membrane-binding domain of Ankyrin-R is known to recruit two band 3 dimers with two 

separate binding sites interacting with the cytoplasmic domains of band 3. The details of this 

protein-protein interaction will be described in the next section.  

The crystal structure of AnkD34 (repeats 13 through 24) from human ankyrin-R has been 

determined at neutral pH (Michaely et al., 2002). The structure of each individual repeat was 

found to feature the typical ‘L’-shaped ANK repeat as described earlier. The 12 ANK repeats 

stack side by side to form a 125 Å long, left-handed super helix with 13° of pitch. This curvature 

of the repeat stack is primarily determined by the relative side chain volumes of residues that 

form the helical bundle cores, such as the residues at positions 10, 17, and 18 of each repeat. The 

residues from equivalent positions in each repeat form four distinct surfaces of overall structure: 

i) a concave ‘bottom’ surface (positions 13-16); ii) a concave ‘groove’ surface (positions 1, 3, 11, 

12, and 32); iii) a convex ‘back’ surface (positions 19, 23, 24); and iv) a convex ‘top’ surface 

(positions 27, 29, 31, and 33) as shown in Fig 8. Each of four surfaces from individual repeats 

forms an extended and continuous surface along the superhelical axis in the whole molecule. In 

particular, the concave bottom and groove surfaces are predicted to provide multiple, but 

disparate binding interfaces for various binding partners such as the clathrin heavy chain, AE1, 
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Na+/K+ ATPase, L1 family of cell adhesion molecules and voltage-gated Na+ channels (Michaely 

and Bennett, 1995; Michaely et al., 1999; Thevananther et al., 1998). 

 

 

 

Figure 11. The crystal structure of AnkD34 which contains 12 ANK repeats. The 

juxtaposition of the long β-hairpin loops forms the β-sheet-like ‘top’ surface. The 

concave groove surface consists of inner helices and β-hairpin loops and the 

convex backbone surface is formed by outer helices. 

 

 

Interaction between cdb3 and AnkD34 

 

The association of cdb3 with ankyrin-R has been one of the most intensively studied 

protein-protein interactions due to its importance in contributing to the structural integrity of the 

erythrocyte membrane. Most of the previous efforts have been devoted to identifying the critical 

structural entities of each protein which mediate this interaction. Even though early studies with 

different approaches generated conflicting results on the binding interface of cdb3, general 

consensus has been reached that the putative central hinge (the β6/β7 hairpin loop) and the acidic 
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N-terminal tail of cdb3 are the regions which are essential for ankyrin binding. Competition 

assays using monoclonal antibodies raised against peptides encompassing the hinge region 

(residues 175-186) showed that these antibodies could block ankyrin binding (Davis et al., 1989; 

Willardson et al., 1989). Analyses of a series of chimeric constructs also revealed that a fragment 

containing the hinge region (residues 155~195) are necessary for binding (Ding et al., 1996). 

Furthermore, ankyrin has been observed to protect the cdb3 hinge from tryptic cleavage 

(Willardson et al., 1989). A recent in vivo study where transgenic mice expressing a deletion 

mutant of cdb3 which lacks the β6/β7 hairpin loop have lead to spherocytosis with decreased 

ankyrin binding demonstrated the importance of this loop in the interaction between cdb3 and 

ankyrin (Stefanovic et al., 2007). 

Evidence from additional studies suggested that the N-terminal region of cdb3 might also 

be involved in ankyrin binding. The finding that kidney cdb3 which lacks the N-terminal region 

(residues 1-65) exhibits no affinity for ankyrin (Ding et al., 1994; Wang et al., 1995). Inhibition 

of tyrosine phosphorylation on the N-terminus of cdb3 upon binding ankyrin and reduction in 

binding affinity caused by antibodies against the N-terminus of cdb3 further supported the 

hypothesis that the N-terminus of cdb3 might be another ankyrin docking site for ankyrin-R 

(Willardson et al. 1989).  

 Several lines of evidences suggest that two cdb3 dimers are associated with the full 

length membrane binding domain of one ankyrin in the complex (Casey and Reithmeier, 1991a; 

Thevenin and Low, 1990; Van Dort et al., 1998) although there has been a report that the dimer is 

sufficient for ankyrin binding (Pinder et al., 1995). It is not known if a true tetramer of cdb3 is the 

preferential form that binds ankyrin or if ankyrin-Recruits two cdb3 dimers in a sequential 

manner. Currently, both hypotheses are equally plausible based upon the previous study on cdb3 

binding sites of ankyrin where binding assays using a series of truncated mutants of ankyrin 

identified two separate cdb3 binding sites, one on repeats 7-12 (AnkD2) and the other on repeats 

13-24 (AnkD34) with positive cooperativity between them (Michaely and Bennett, 1995). 
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Interestingly, these two sites exhibit totally different binding characteristics. Binding to AnkD2 

has been observed to be highly salt and pH dependent with a higher affinity (Kd ≈ 10 nM), 

strongly implying that this interaction could be mediated by electrostatic interactions. To the 

contrary, binding to AnkD34 is likely to depend on hydrophobic interactions since it displays no 

sensitivity to salt concentration or pH and exhibits lower binding affinity (Kd ≈ 40 nM). The 

isolated fragment of either AnkD3 or AnkD4 lost its binding affinity when separately expressed. 

It is interesting that this latter binding interaction requires an abnormally long equilibrium time 

(longer than 10 hours), implying that some conformational changes in either protein might be 

involved in this binding event.  

 Based upon all the available structural information including the crystal structures and the 

plausible binding interfaces of both proteins, a working structural model for cdb3-AnkD34 

complex has been proposed by Michaely and coworkers (Michaely et al., 2002) as shown below.  

 

 

Figure 12. Hypothetical structural model of cdb3·AnkD34 complex proposed by 

Michaely et al. (Michaely et al., 2002). Note that peripheral domains of cdb3 

including the β6/β7 hairpin loop (shown in red) directly interact with the concave 

groove region of AnkD34 (orange). 
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The two main features in this model are;  i) ankyrin forms complex with cdb3 through its concave 

groove region composed of long hairpin loops and inner helices as seen in many other ankyrin 

complexes, ii) the β6/β7 hairpin loop of cdb3 makes direct contact with ankyrin on the binding 

interface. The studies in Chapter III utilize site-directed spin labeling in combination with modern 

EPR methods to test and refine this working structural model. 
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CHAPTER II 

ELECTRON PARAMAGNETIC RESONANCE SPECTRSCOPY 

 

Principles of Electron Paramagnetic Resonance 

 

Zeeman Interaction 

 Spins are magnetic moments that are associated with angular momentum. An atom or 

molecule will possess a permanent magnetic dipole moment only if it has nonzero electronic (or 

total) angular momentum J which corresponds to the vectorial sum of spin angular momentum S 

and orbital angular momentum L. The primary and secondary quantum numbers for total angular 

momentum, j and mj can be defined, for example, in a one electron system which has l and s = 

1/2, as 

j = l ± 1/2  and  mj = j, j-1,···, -j+1, -j 

From these quantum numbers, the total angular momentum, J, and its z direction component, Jz, 

is given by 

|ܬ| ൌ ඥ݆ሺ݆ ൅ 1ሻ԰, and   ܬ௭ ൌ ௝݉԰ 

 In quantum theory, the magnetic moment of a particle with mass m and charge q in an electronic 

state specified by the quantum numbers L, S, and J is 

ߤ ൌ J ൌߚ݃  ԰ J|ߛ|

where g is the spectroscopic splitting factor also called the Zeeman factor and ԰ is h/(2π) = 1.054 

× 10-34 Js (h is the Planck constant). The proportionality constant ߛ ൌ  ሺ2݉ሻ, which is called/ݍ

the magnetogyric ratio, converts angular momentum to magnetic moment. When a single 

(unpaired) electron is placed in an external magnetic field B applied along the z direction, the 

component μz of the magnetic moment is given by 
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௭ߤ ൌ െ݃௘ߚ௘݉௦ ൌ  ௘԰݉௦ߛ

where ݃௘ is 2.00232 for a free electron, ߚ௘ is the Bohr magneton equal to 9.274×10-24 JT-1, and ߛ௘ 

is the electron magneto-gyric ratio. The spin quantum number, ݉௦ is ±1/2 for an electron. The 

interaction energy (Zeeman energy) of the magnetic moment with an external field B of uniform 

intensity B0 is calculated by the Hamiltonian 

Hs ൌ െߤ ڄ ۰ ൌ ݃௘ߚ௘ܯ௦B଴ ൌ േ ଵ
ଶ

݃௘ߚ௘B଴ 

The degeneracy of the electron spin states characterized by the quantum number, Ms = ±1/2 is 

lifted by the application of an electromagnetic field B1 of the appropriate frequency ν and the 

energy required for the transitions between the spin levels thus are 

Δܧ ൌ ݃௘ߚ௘B଴ ൌ  ߥ݄

 

 

Figure 13. The energy diagram illustrating the transitions of spin states during 
the EPR experiment (a) and the resultant EPR spectrum (b). 

 

 

 The g-value of a bound electron generally exhibits some deviation from ge that is mainly 

due to interaction of the spin with orbital angular momentum of the unpaired electron (spin-orbit 
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coupling) which arises from the electromagnetic field effects provided by the other nearby 

electrons and nuclei in the magnetic species. In general these fields provide an anisotropic 

environment, and one should thus expect the g factor to be anisotropic.  

As the orbital angular momentum is associated with a molecular coordinate frame and the 

spin is quantized along the magnetic field (z axis of the laboratory frame), the g-value depends on 

the orientation of the molecule with respect to the field. This anisotropy can be described by a 

second rank tensor with three principal values, gxx, gyy, and gzz. The corresponding principle axes 

can be determined by a proper transformation (diagonalization) of the laboratory axis using the 

unitary matrix L. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==−

zz

yy

xx

diagonal

g
g

g

00
00
00
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 In solution states where molecules tumble with a rotational diffusion rate that is much 

higher than the differences of the electron Zeeman frequencies between different orientations, the 

g-value is orientationally averaged and only its isotropic value is observed as 

 

 The g anisotropy can be resolved in solid samples more clearly, but in a differential 

manner with dependence on degree of symmetry. Unpaired electron species placed in an isotropic 

medium with high symmetry, such as a cubic crystal, provide g-values that are of a scalar 

constant. As for crystalline systems which contain randomly oriented samples relative to the 

external field, however, the g factor is markedly dependent on the relative orientations and each 

component of the principle axis is empirically obtained from the line position. A uniaxial sample 

with a symmetry axis belongs to a special case and its geff is given by the following equation. 

geff ൌ ൫݃ୄ
ଶ݊݅ݏଶߠ ൅ צ݃

ଶܿݏ݋ଶߠ൯ିଵ/ଶ 

where ߠ is the angel between the external field B and the symmetry axis. 

3/)( zyxiso gggg ++=
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 For a nitroxide, the axis directions of the g-tensor are oriented relative to the molecular 

frame as illustrated in Fig. 14. These axes are chosen so that the corresponding principal g-values 

obey the relation gx > gy > gz. Thus, the z axis of magnetic tensor (zm) lies along the axis of the pz 

orbital of the nitrogen, the xm axis is perpendicular to zm and lies approximately along the N-O 

bond direction, and the ym axis is perpendicular to these.  

 

 

 
 

 

 

 

 

 

Figure 14. Directions of the principal g axes are 

oriented relative to the nitroxide molecular frame. 

 

 

 

Nuclear Hyperfine Interaction 

The electron spin magnetic moment interacts with the magnetic moments of nuclei 

possessing nonvanishing nuclear spin angular momentum such as nitrogen (IN=1) to split each 

energy level of the electron spin into sublevels. Isotropic hyperfine interaction can be regarded as 

contact interaction between unpaired electrons in s orbitals and nuclei. By virtue of the spherical 

symmetry of s orbital, this hyperfine interaction is isotropic and its Hamiltonian is described as  

Hiso ( )3/8π= ISIS ⋅=⋅Ψ 0
2 A)0(nnee gg ββ
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The factor A0 = 2)0()3/8( Ψnnee gg ββπ is an isotropic hyperfine (coupling) constant and 

this term is also called the “Fermi contact interaction”. The second term, anisotropic hyperfine 

interaction is derived from the dipolar couplings between two particles and dependent on the 

length and orientation of the vector that connects them. 

 

  Hdip 

  

 

 

 

 

 

 

where < > means integration over the spatial coordinates and r is the distance vector. The matrix 

representation of Adip is a tensor and its diagonal sum (trace) vanishes (Tr[Adip] = 0). Thus the 

hyperfine spin Hamiltonian can be summarized as a combination of ‘isotropic’ and ‘anisotropic’ 

hyperfine interactions: 

Hhf IS ISIS ⋅⋅=⋅⋅+⋅= AA dip0A  

A = 0A + dipA  
 

The principal axis directions of the A tensor are specified using the Euler angles, referred to as 

the “magnetic tilt” angles. This set of angles,  Ωm = (αm,βm,γm) defines the orientation of principal 

axes of the A tensor relative to the g tensor. In practice, A axes are usually assumed to coincide 

with the g axes with tilt angles of zero; however, the nitroxide in six-membered rings shows a 

small rotation in the x-y plane due to the twisted boat configuration of the ring.  
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Sensitivity of EPR experiment 

 When electromagnetic radiation induces a transition between different energy levels in a 

given quantum mechanical system, absorption or emission of a photon occurs. The experiment 

detects net absorption, i.e., the difference between the number of photons absorbed and the 

number emitted. Since absorption is proportional to the number of spins in the lower level and 

emission is proportional to the number of spins in the upper level, net absorption is proportional 

to the difference: 

Net absorption ן  ܰି െ ାܰ 

The ratio of populations at equilibrium is governed by the Boltzmann distribution: 

ାܰ/ ିܰ ൌ expሺെ∆ܧ/݇ܶሻ ൌ expሺെ݃ߚ௘ܤ/݇ܶሻ 

Under the normal range of temperature and magnetic fields, the exponent is very small and the 

exponential can be accurately approximated by the expansion ݁ି௫ ൎ 1 െ  Thus .ݔ

ାܰ/ ିܰ ൎ 1 െ  ܶ݇/ܤ௘ߚ݃

ିܰ െ ାܰ ൌ ିܰሾ1 െ ሺ1 െ ሻሿܶ݇/ܤ௘ߚ݃ ൌ  2݇ܶ/ܤ௘ߚ݃ܰ

This expression tells us that EPR sensitivity is improved with the higher magnetic field. Since the 

field at which absorption occurs is proportional to microwave frequency, in principle sensitivity 

should be greater for higher frequency K- or Q-band spectrometer than for X-band. However, 

practically, the need for small sample volume in K- or Q-band spectrometers cancels the 

advantage of a more favorable Boltzmann factor. 

 

Spin relaxation 

 The magnetic moment in the static magnetic field undergoes a precessional motion 

around the field at the Larmor frequency ߱௅ ൌ   and this motion is described by ܪߛ
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J
dt
dBT
rrrr

=×= μ  

where T
r

 is a torque applied on a magnetic moment and J
r

is the angular momentum of the spin. 

This relationship can be rewritten with regard to macroscopic the magnetization vector: 

BMM
dt
d rrr

×= γ  

In the presence of a static magnetic field 0B
r

along the z axis ( 0BBz = , )0== yx BB , three 

Cartesian components of the magnetization vector can be given as: 

ሻݐ௫ሺܯ          ൌ ௫ሺ0ሻܯ cosሺ߱଴ݐሻ 

ሻݐ௬ሺܯ          ൌ ௫ሺ0ሻܯ sinሺ߱଴ݐሻ 

ሻݐ௭ሺܯ          ൌ  ௭ሺ0ሻܯ

The built-up of the macroscopic magnetization of the sample in a magnetic field requires 

energy exchange with motional degrees of freedom of the surroundings of the spin. Such energy 

exchange causes a relaxation of the Mz component of the magnetization vector towards its 

equilibrium value M0 with time constant T1, which is called longitudinal relaxation. The 

equilibrium values of the transverse components of the magnetization vector are Mx = My = 0. 

Transverse relaxation towards these equilibrium values does not necessarily require energy 

exchange with the surroundings. It can arise from energy exchange between spins in the same 

ensemble. In solutions, spin-spin relaxation is a dominating process that leads to transverse 

relaxation. However, since both spin-spin and spin-lattice relaxation contribute to transverse 

relaxation, it is in general characterized by a time constant T2. 

 Bloch proposed a set of phenomenological equations to describe the dynamic behavior of 

interacting nuclear spins. The Bloch equation is basically the torque equation of motion with the 

relaxation term, R: 

( ) RMHM +×= γdtd /  
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In order to obtain the steady-state solutions, the rotating coordinates with frequency of ω can be 

employed to translate the magnetization to the in-phase and out-of phase components of the 

oscillating field, B1, as 

tvtutM x ωω sincos)( += ,  tvtutM x ωω cossin)( −=  

Presuming the steady-state conditions, 0/// === dtdMdtdvdtdu z , one obtains the 

solutions: 
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where ω1 is the frequency of the off-resonance irradiation and Ω0 = ω0 – ω1. Since the average rate 

at which energy is absorbed per unit sample volume from the H1 field depends on the out-of–

phase component, v, v-mode is called the absorption mode while u-mode is called dispersion 

mode. In resonant condition (Ω0 = 0), My is proportional to the equilibrium magnetization M0, and 

for ߱ଵ
ଶ

ଵܶ ଶܶ ا 1, is also proportional to ω1. If this condition is violated, My grows less than 

linearly with ω1, which is called a saturation effect and ߱ଵ
ଶ

ଵܶ ଶܶ  is the saturation factor. By 

avoiding the saturation effect, the Lorentzian lineshape from the magnetic resonance can be given 

by 
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The actual lineshape obtained from the experiment has a form: 
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which contains the absorption line intensity, I, and the line-width, ΔH1/2, which corresponds to 

Δω1/2. These parameters are related to T2 with the equations, Δω1/2 = 2/ T2 or ΔH1/2 = 2/γT2. Since 

EPR spectra are recorded in a derivative line shape, the peak-to-peak line width, ΔHpp can be 

utilized to obtain T2 from the following equation: 

23/2 TH pp γ=Δ  

 

Spin dynamics 

In most SDSL applications, it is the motion of the spin label side chain that is of primary 

interest, as it is the side chain dynamics that is most sensitive to tertiary contacts and local 

structure of the protein. The lineshape of the EPR spectrum does not only depend on static 

interactions in the paramagnetic sample, but on dynamic processes on the timescale of the EPR 

experiment as well. These time-dependent terms are represented by the perturbing Hamiltonian, 

H’(t), to the Zeeman term, H0 0BS ⋅= Bgμ which is time-independent. The EPR timescale is 

determined by the spectral anisotropy, Δω, i.e., the maximum difference between resonance line 

positions when the orientation of the molecule is varied. The most important and most visible 

dynamic process in solutions or membranes observable by EPR is the rotational diffusion of 

paramagnetic species. This rotational diffusion motion is a random process, and its timescale is 

characterized by the rotational correlation time τC. Nitroxides in different dynamic states (τC) thus 

give rise to their characteristic lineshapes as shown in Fig. 15. By comparing the speed of the 

rotational diffusion to the spectral anisotropy (Δω/τC), four dynamic regimes with distinct types of 

EPR spectra can be distinguished (Fig.  16).  
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Figure 15. Simulated nitroxide spectra at different rotational correlation times τc. 
 

 

 

Figure 16. Schematic representation of the timescale of rotational dynamics accessible by CW-

EPR. The four dynamic regimes are divided along the increasing  where  is the 

rotational correlation time and Δω is the spectral anisotropy. The borders between the four 

regimes are only approximate.  
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Isotropic limit  paramagnetic molecules are tumbling extremely fast, so that any 

anisotropic property is completely averaged out. Only the isotropic parts of all interactions are 

observable such as the isotropic g factor and A constants. Spectral line intensities and widths are 

identical for all transitions.  

 

Fast-motion regime The fast-motional regime for a spin system is defined as a stochastic 

process for which the anisotropic part of the spin Hamiltonian, H1(t), is effectively averaged out. 

This condition can be defined as  

ሻ|߬஼/԰ݐଵሺܪ| ൑ 1 

In this regime the EPR spectrum of a 14N (I=1) nitroxide spin label consists of three equally 

spaced lines, and the only spectral manifestation of stochastic tumbling of the nitroxide is in 

broadening of the EPR lines. The homogeneous line width )( Ipp mHΔ of each nitrogen hyperfine 

transitions mI  in the fast-motional regime can be expressed in terms of spectral parameters a, b, 

and c: 
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These spectral parameters contain contributions of several modified spectral densities arising 

from rotational modulation of the anisotropic part of the nitrogen hyperfine tensor A (JDD), the 

electronic g-matrix (JGG), and the correlated effect of both tensors (JDG). In these equations ω0 and 

ωn are the electronic and nuclear resonant frequencies and the subscript identifies the net change 

in (ms + mI), where mS and mI are the z component quantum numbers of the electronic spin and 

nuclear spin, respectively (Budil, 1993).  
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Slow-motion regime As the rotational motion slows down further, the symmetric Lorentzian 

lines broaden substantially, become asymmetric and distort, and gradually converge to rigid-limit 

powder line shapes, revealing the full anisotropy of the underlying magnetic interactions. There 

are two major approaches that are adopted to calculate the EPR spectrum of a paramagnetic 

species reorienting on the slow-motional time scale. One approach is the trajectory method, 

which utilizes the time-dependent trajectories of axes that are fixed in the nitroxide frame. The 

trajectories can be generated either by simulating them using single-particle Brownian dynamics, 

or by obtaining them directly from a MD simulation. The other approach was developed by Freed 

and coworkers based on the stochastic Liouville equation (SLE)(Schneider, 1989). In this 

approach, the electronic and nuclear spins are treated quantum mechanically while the 

reorientational motion is treated classically using parameters describing rotational diffusion 

motion of paramagnetic species. For most of spin labeled biological samples, the MOMD 

(microscopic order-macroscopic disorder) model can be conventionally applied to simulate the 

EPR spectrum. The model assumes that the spin probe undergoes microscopic molecular ordering 

with respect to a local director that is determined by ordering potential; however, the local 

directors are randomly oriented in the laboratory frame (Budil et al., 2006). The physical origin of 

the ordering potential is the constrained local dynamics of spin label either by the tether bond or 

by interaction with neighboring side chains. A set of parameters that define rotational diffusion 

motion of the spin label is obtained from non-linear least square fitting of the experimental 

spectrum, including correlation time (τ) and order parameter (S2).  

 

Rigid limit     The paramagnetic molecules are immobilized with no rotational motion. The EPR 

spectra reveal the full anisotropy of all interactions. This is a typical spectral pattern for powder 

materials, glasses, and frozen solutions at low temperatures. The simulation of rigid-limit spectra 

generally requires two separate stages: i) determination of positions, intensities, and widths of all 

resonance lines for each orientation, and ii) construction of the total spectrum by summing or 
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iteratively processing the obtained line information. To compute the resonance field positions for 

a given orientation of the paramagnetic molecule, explicit analytical formulae based on second-

order perturbation theory or the adaptive modeling of the energy levels are commonly employed 

(Stoll, 2003). 

 

Pulsed EPR 

In an external magnetic field, electron spins can assume either a parallel orientation (α 

state) or an antiparallel orientation (β state). The β state, which is lower in energy, has a larger 

population than the α state as a consequence of the Boltzmann distribution and this forms a 

macroscopic magnetization M in the direction parallel to B0. The behavior of this magnetization 

during a pulsed EPR experiment can be easily described using a coordinate system which rotates 

with the frequency ωmw. Under this rotating frame, the mw field can be decomposed into two 

circularly polarized components. The component with the same rotational direction with 

coordinate system becomes time-independent and assumed to be parallel to the x-axis of the 

rotating frame. Application of a short intense mw pulse causes rotation of the magnetization Mz 

through the flip angle ppe ttB 11 ωγβ == , in the yz plane, where  eγ is the gyromagnetic ratio of 

the electron spin, 1B is the field intensity of the mw pulse, and pt is the pulse duration. If the 

resonance condition 0Bemw γω = is exactly fulfilled, the magnetization stays along the y-axis 

after the pulse. However, if the Larmor frequency 0ω does not exactly match the microwave 

frequency 1ω , the magnetization vector starts to precess about the z-axis with the frequency

10 ωω −=Ω . The oscillating signal, which decays due to transverse relaxation or inhomogeneous 

line broadening, is called the free induction decay (FID). By performing a Fourier transformation 

(FT) into the frequency domain one obtains the spectrum, consisting of a peak at the frequency Ω

. 



 

48 
 

 

Figure 17. Tilt of magnetization vector on the yz plane by tilt angle β 

upon the application of mw pulse B1 along the x axis. 

 

 

In contrast to rf pulses in NMR, mw pulses cannot usually excite the entire spectrum at 

once. For this reason, pulsed EPR is somewhat less sensitive than CW-EPR for many applications 

and manipulation of the spin dynamics is less effective than in pulsed NMR. Much faster 

relaxation rates are also a big problem for pulsed EPR versus NMR, causing a loss of information 

by the deadtime. Nonetheless, pulsed EPR allows for a better separation of different interactions 

in the spin Hamiltonian, or detection of different types of spin relaxation mechanisms, compared 

with CW-EPR. Separation of interactions allows for precise measurements of the small 

interactions of the observed electron spin with remote spins in the presence of line broadening 

due to larger contributions from g tensor and hyperfine A tensor anisotropy. The separation of 

different contributions from spin relaxation relies on echo experiments. Spin echoes are also the 

basis for almost all other pulsed EPR experiments since the free induction signal induced by a 

single pulse usually decays within a time that is shorter than the receiver deadtime after that 

pulse. The simplest echo experiment is the two-pulse or Hahn echo experiment, which consists of 

a first pulse with flip angle π/2, a delay τ, and a second pulse with flip angle π. The first pulse 

converts the longitudinal magnetization of the spins to transverse magnetization. 
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Figure 18. Pulse sequence for the two pulse echo experiment (top) and the evolution of 

the magnetization vectors corresponding to spin packets with difference resonance offsets 

Ω. (bottom) 

 

 

Magnetization within each spin packet with equal resonance frequency decays by transverse 

relaxation with time constant T2. The following π pulse inverts the phase of each spin packet 

cancelling the phase differences generated by transverse magnetization and leads to coherence of 

spin packets. This coherence corresponds to the observable FID signal after the first pulse with 

attenuation of the signal amplitude by a factor of exp (–2τ/T2). 

 Various pulsed EPR experiments allow distance information to be extracted from a two 

spin system with a wide range of interspin distances as summarized in Table 4. Pulsed EPR 

experiments for the measurement of long interspin distances include single-resonance techniques 

such as saturation recovery and Tm measurement, double-resonance techniques (pulsed electron 

double resonance [PELDOR]), and double quantum coherence (DQC). Saturation recovery and 

Tm measurements utilize the effect of dipolar coupled fast-relaxing spins on the longitudinal or 

transverse relaxation rate of slow-relaxing spins (reviewed in (Eaton, 2000)). In typical 

applications, the slow-relaxing spin can be an amino acid radical (tyrosyl radical) or a spin label, 

and a metal center serves as the fast-relaxing spin. The double resonance technique, PELDOR is 

represented by 4-pulse DEER experiments, and will be more comprehensively discussed in the 

next section. In the DQC measurement, evolution of the electron spin coherences that is typically 
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generated by a 6-pulse sequence is selectively detected and the dipolar interaction between a pair 

of spin labels is extracted. DQC can excite almost all spins with strong microwave pulses, which 

give rise to a high sensitivity. Moreover, it suppresses complicating features due to correlations 

between orientations of the magnetic tensors of the nitroxide and the inter-radical vector, and 

unwanted artifacts can be filtered (Borbat and Freed, 2000). However, it has an ESEEM effect for 

relatively short distances and needs a complex phase cycle and precise pulse angles (Borbat et al., 

2002) to eliminate the unwanted echo.  

Short-range distance measurements involves electron-nuclear hyperfine interactions 

between paramagnetic transition metal ions or radicals and NMR nuclei such as 1H, 2H, 13C, 14N, 

15N, and 17O. In both frequency-domain ENDOR and time-domain ESEEM and HYSCORE 

spectroscopy (Lakshmi and Brudvig, 2001; Prisner et al., 2001), spin-coupled nuclear transitions 

are monitored through the observation of the paramagnetic electron spins. ENDOR is a double 

resonance technique with high spectral resolution that allows the measurement of small hyperfine 

couplings. Pulsed ENDOR at high frequency can be used to obtain orientation selection of the 

Zeeman interaction for spin centers with small g anisotropy as well as distance measurements. It 

is applicable to the determination of substrate binding geometry and orientation of the hyperfine 

tensor within the molecular frame. ESEEM utilizes the spin echo technique to overcome the 

inhomogeneous broadening of EPR resonances and the unresolved nuclear hyperfine couplings. 

Typically, ESEEM experiments are performed with a two-pulse Hahn echo or a three-pulse 

stimulated echo pulse sequence measured as a function of the echo interval (t) or the interpulse 

separation (T). HYSCORE is a two-dimensional version of ESEEM spectroscopy that can be 

used to obtain correlations between nuclear transitions to facilitate the detection and assignment 

of nuclear hyperfine couplings. 
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Table 3. Pulsed EPR techniques that allow distance measurements over the various ranges. 

Pulsed 
Technique Type of interaction Types of spins Distance 

range (Å) 

Saturation 
recovery 

Electron-electron exchange and  
dipolar couplings 

Observed spin: amino acid radical or spin label 
Relaxation enhancer: metal center 

~ 40 
 

Tm 
measurement 

Electron-electron exchange and 
dipolar couplings 

Observed spin: amino acid radical or spin label 
Relaxation enhancer: metal center 

~ 30 
 

PELDOR Electron-electron dipolar couplings Radical pairs ~ 60 

DQC  Electron-electron dipolar couplings Radical pairs ~ 60 

ENDOR Electron-nuclear hyperfine couplings Electron spin interacting with nuclear spin ~ 4-5 

ESEEM Electron-nuclear hyperfine couplings Electron spin interacting with nuclear spin ~ 4-6 

 

 

Application of SDSL-EPR in Protein Structure 

 

Side chain mobility 

 Among the most informative and simplest types of information that can be extracted from 

an EPR spectrum are parameters that reflect spin label motion. Conventional, X-band EPR 

spectra are sensitive to rotational motion in the range of 0.1 to 100 ns. Specialized techniques 

such as saturation transfer (ST) EPR can extend the motional sensitivity to the millisecond 

timescale and are useful for determining the tumbling rate of the spin-labeled protein as a whole 

or of a protein domain in a supramolecular complex (Fajer, 2000). 

The relationship between side chain mobility and protein structure has been explored in 

detail for T4 lysozyme (Hubbell et al., 1996; McHaourab et al., 1996). The overall mobility of the 

spin label is determined by a combination of (i) motion of the label itself relative to the protein 

backbone, (ii) fluctuations of the α-carbon backbone, and (iii) rotational motion (molecular 

tumbling) of the entire protein or peptide (Columbus and Hubbell, 2002). For proteins with 

molecular weights greater than ~150 kDa or proteins in macromolecular assemblies, the overall 
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tumbling rate of the complex is too slow to affect the conventional EPR spectrum. However, for 

proteins of less than ~150 kDa, rotational diffusion of the protein can influence the observed 

spectrum. This can be simply overcome by increasing solution viscosity with additional solutes, 

such as sucrose or glycerol (e.g., (McHaourab et al., 1997))  

 Local fluctuations of the α-carbon backbone can also contribute to spin label mobility. To 

study backbone dynamics by SDSL, the flexibility of the spin label side chain can be eliminated 

by using MTSSL derivatives where the 4’-hydrogen is replaced with bulky substituents such as 

methyl or phenyl groups (Columbus et al., 2001). Additionally the effects of backbone 

fluctuations can be manifest via comparison of sites in similar environments where side chain 

flexibility is expected to be sequence-independent, as seen in the case of the α-helical zipper 

domain of the yeast transcription factor GCN4 (Columbus and Hubbell, 2004). 

 In β-sheet proteins the situation is somewhat more complex, with spin label motion being 

influenced by location within the β-sheet (i.e., edge vs internal strand) and interactions of side 

chains with neighboring strands  even though the allowed conformational space is much 

narrowed compared with α-helical structure (Hubbell et al., 2000; Lietzow and Hubbell, 2004). 

Local secondary structure influences the spin label mobility somewhat, far more significant 

effects are seen at sites where the spin label is in tertiary contact with other side chains in the 

local environment. Spin labels at tertiary contact sites show relatively slow motions, and sites 

buried within the core of a protein often approach the rigid limit. 

 One of the main parameters for examining relative mobility in a semi-quantitative way is 

the inverse width of the center line, ΔHpp(0)-1. Since linewidth increases with decreasing motion, 

taking the inverse width gives an empirical parameter that is proportional to motion. The inverse 

width of the center line can also be normalized to provide a scaled mobility parameter, MS 

(Hubbell et al., 2000), as given by: 
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where 1)0( −Δ ppH (m) and 1)0( −Δ ppH (i) are the inverse widths of the center line for the most 

mobile and most immobile sites in a given system, respectively. Alternatively, the spectral second 

moment, <H2>, reflects the breadth of the EPR spectra (Slichter, 1980) and is given by 

( ) ( )
( )∫

∫ −
=

dBBS

dBBSHB
H

2

2 , 

which is defined based on the first moment ∫ ∫= dBBSdBBBSH )(/)( , where B is the magnetic 

field, and S(B) is the absorption spectrum of the spin-labeled protein. Like ΔHpp(0), the inverse of 

<H2> is used as a mobility parameter since <H2> increase as the correlation time of the nitroxide 

reorientational motion is reduced. In the presence of multicomponent spectra ΔHpp(0)-1 is 

dominated by the fast motional component while the second moment is biased toward the slow 

motional component. As shown in Fig. 19, the plot of the inverse of the second moment, <H2>-1, 

versus the inverse of the central line width, ΔHpp(0)-1, extracted from the experimental data 

reveals the correlation of this plot with the topographical region of the protein that bears the spin 

label. 

 

 

 

 

Figure 19. Reciprocal plot of the second moment

(<H2>) of the EPR spectrum versus central line-

width (ΔHpp(0)) (Fanucci and Cafiso, 2006).

Points represent analyzed spectra for 30 singly

labeled R1 mutants of annexin 12 (Isas et al.,

2002), and indicate the correlation between these

spectral parameters and regions of secondary

structure and tertiary contact.  
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 A different set of parameters is used to characterize the spin label mobility in the slow 

motional regime. Such spectra are characterized by features corresponding to spin labels aligned 

with their z-axis either parallel to the external magnetic field, separated by 2  or perpendicular צܶ

to the external field, separated by 2ܶୄ . Spin label motion is typically modeled as rotation within a 

cone about the z-axis (i.e., the nitrogen p-orbital). The amplitude of the motion is described by an 

order parameter, S: 

ܵ ൌ
1
2

ሺ3ݏ݋ܿۃଶۄߠ െ 1ሻ 

where ݏ݋ܿۃଶۄߠ is the time-averaged value for the angle of deviation of the nitroxide z-axis. For 

EPR spectra with distinct ܶצ and ܶୄ  features, the order parameter can be given as: 

ܵ ൌ ቈ
൫ צܶ

ᇱ െ ܶୄᇱ ൯
ሺ צܶ െ ܶୄ ሻݔଵ

቉ ቈ
ܽேሺݔଵሻ

ܽԢே
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where primes indicate experimental values and x1 indicates values from single-crystal or powder 

spectra. The nitrogen isotropic hyperfine coupling constant, ܽே, is given by 1/3൫ צܶ
ᇱ ൅ 2ܶୄᇱ ൯ from 

the experimental spectra. 

 

Solvent accessibility 

The power saturation technique takes advantage of the fact that certain reagents are 

paramagnetic and affect the relaxation rate of the spin label. The accessibility of the nitroxide 

toward those reagents selectively partitioning in different environments defines the topology of 

the natural side chain with respect to the protein/water/membrane boundaries. Thus, the 

Heisenberg exchange frequency (Wex) of the nitroxide with a paramagnetic exchange reagent has 

a direct correlation with the solvent accessibility of the nitroxide in a given system.  

The collision between a nitroxide and a relaxation enhancer leads to variations in T1 

(spin-lattice relaxation time) or T2 (spin-spin relaxation time) of a spin label bound to a protein. If 
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the longitudinal relaxation time of the reagent is shorter than the encounter complex lifetime (T1 < 

tc), the Heisenberg exchange give rise to equal changes in T1 and T2: 
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For a bimolecular encounter between a nitroxide moiety in solution (N) and an exchange reagent 

(R) the Heisenberg exchange frequency experienced by the nitroxide is given as 

Wex = kexCR 

where kex is the exchange constant and CR is the concentration of the reagent (R). 

 For a single homogeneous Lorentzian line the peak-to-peak amplitude of the first 

derivative absorption spectrum, Y’, has the form 
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 where H1 is the microwave magnetic field in Gauss, γ is the gyromagnetic ratio of the electron, 

and Λ is the correction factor. Y’ is proportional to P for low microwave power and to 1/P for 

higher power. Saturation occurs when the amplitude of the signal deviates from the square root 

dependency on power because the relaxation rate of the spin system is not fast enough to absorb 

more power. An easily extractable parameter, P1/2 which is defined as the mw power at which the 

signal amplitude reaches half of the theoretical value reachable in the absence of saturation: 
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The expression of P1/2 for a homogeneous line can then be written as  
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The fitting equation can be derived from the above equation as 
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with adjustable parameters of I, ε, and P1/2. 

In the presence of exchange paramagnetic reagents colliding with the nitroxide, variations 

in the relaxation times of the nitroxide are reflected in changes of P1/2 values.  

0
2

0
2

0
121

0
2/12/12/1

11
T
W

TTTT
PPP ex

RR
R ∝−∝−=Δ  

Under the condition of CT τ<<2 , T2 is not affected by the relaxation enhancer and 0
22 TT R ≅ . 

For different spin labels with comparable T2, ΔP1/2 reflects the relative collision frequency. Thus, 

to eliminate the dependency on T2, ΔP1/2 values are normalized with ΔH0 (Farahbakhsh et al., 

1992), thus leading to  
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The relaxation enhancing reagents can be divided into two groups based upon their 

propensity for solvent partitioning. While oxygen is small and hydrophobic so that it is 

preferentially distributed in the center of lipid bilayer or hydrophobic pockets of proteins, nickel 

compounds such as nickel (II) ethylenediaminediacetate (EDDA) or chromium oxalate (CROX) 

are water soluble and are dominantly located in the solvent phase. NiEDDA is neutral and 

therefore does partition slightly into bilayers and hydrophobic regions, but CROX is negatively 

charged and is strictly found in the aqueous phase.  

The accessibility measurement can be useful in determining the secondary structure of 

proteins when a series of consecutive sites along the primary sequence is measured. In the case of 

a peripheral α-helix, every 3 or 4 residues would be highly exposed to the solvent due to a 

periodicity of 3.6 residues per turn and consequently show high NiEDDA accessibility while the 

sites on the other side of the helix which would be buried against the protein exhibit low ΔP1/2 

values for both NiEDDA and oxygen. Similarly, β-strands give a periodicity pattern of 2.0, and 

unstructured regions will show no regular periodicity. The application of solvent accessibility in 



 

57 
 

probing the secondary structure, tertiary structure and protein folding can be seen in the structural 

studies on water soluble proteins such as α-crystallin (Berengian et al., 1997) and voltage 

dependent potassium channel KvAP (Cuello et al., 2004).  

For integral membrane proteins or membrane-associated peptides, the depth of a given 

spin label side chain within a lipid bilayer can be determined using accessibility data. This is an 

extremely useful technique for positioning protein or peptide segments within the lipid bilayer 

(e.g.,(Hubbell et al., 1998; Isas et al., 2002; Perozo et al., 2001)). The membrane depth of spin 

label side chains facing the membrane can be measured based on the following equation 

(Altenbach et al., 1994) 
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The variation in the concentrations of oxygen and NiEDDA within the membrane bilayer has 

been shown to form inversely proportional gradients; oxygen concentration is greatest at the 

center of the bilayer and decreases toward the membrane surface whereas NiEDDA shows the 

greatest concentration at the surface of the bilayer and decreases to zero in the center of the 

bilayer. Φ can then be calibrated to each particular membrane system using lipid-analogue spin 

labels that reside at known bilayer depths. The accessibility measurements obtained for each lipid 

label are plotted against their known depths to yield a depth calibration equation: 

Depth (Å) = mΦ + b 

Conformational changes in dynamic processes like receptor activation and channel gating 

are another main field that can be probed by accessibility measurement as shown in G protein 

coupled receptor rhodopsin (Farrens et al., 1996), pH-gated K+ channel KcsA (Perozo et al., 

1999), mechanosensitive channel MscL (Perozo et al., 2002), and multidrug transporter MsbA 

(Dong et al., 2005). 
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Inter-spin distance measurement 

 

Short distance measurement by CW-EPR 

The spin Hamiltonian for a pair of dipolar coupled nitroxides is given by 

H 21212221112122
0

11
0

ˆˆˆˆˆˆˆˆ)(ˆˆ SSJSSSISIIISHSH eezznee ⋅+⋅⋅+⋅⋅+⋅⋅++−⋅⋅+⋅⋅= DAAgg γγωββ  

where g1 and g2 are g tensors of nitroxide 1 ( 1Ŝ ) and nitroxide 2 ( 2Ŝ ) with external magnetic field 

( 0H ), nω is the Larmor frequency of the nitrogen nucleus ( 1
zI and 2

zI ), A1 and A2 are the hyperfine 

tensors, D is the dipolar coupling tensor, and J is the scalar exchange coupling constant. The 

dipolar coupling tensor, D, can be expressed with regard to the spin-spin vector, R, by 
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where θ  is the angle between the DC magnetic field and the interspin vector, R. The principal 

axes of the g- and A-tensors of a spin label are essentially coincident and are well defined within 

the molecular frame of the nitroxide, with gxx along the N-O bond and gzz perpendicular to the 

planar nitroxide. Since the unpaired electron is assumed to be localized at the center of the N-O 

bond, which is a good approximation for distances longer than 1nm, the dipolar coupling tensor 

can then be described by the point-dipole approximation, where the D tensor is axially symmetric, 

with the principal z-axis of the diagonalized D-tensor aligned with the interspin vector. For spin 

labels on biomacromolecules, through-bond exchange couplings J are not significant for 

internitroxide distances greater than 10 Å compared to dipolar couplings (Luckhurst, 1976) and 

are neglected in normal circumstances.   

An internitroxide distance in the range of 10-20 Å leads to dipolar splitting of 7~55 G in 

a CW-EPR spectrum. The dipolar couplings in this range are partially averaged by rotational 

diffusion, with correlation times on the order of 1-10 ns, which corresponds to the intermediate 

motional regime. Thus, analyses of the short interspin distance should adopt different approaches 
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based upon the motional regime to which a given spin system belongs and the contribution of 

global tumbling motion of protein. 

When both spins are rigidly bound and statically ordered on the protein of which the 

global rotational correlation time is greater than 1μs, the motional averaging effects on dipolar 

couplings will disappear. Consequently, the unique values for internitroxide distance and the 

relative orientation of two nitroxides can be determined by rigorous numerical spectral analysis 

where the EPR spectrum that best fit the data is explored for a set of parameters that defining the 

distance and relative orientation of two nitroxides.  One representative case study has been 

presented by Hustedt and coworkers in a study of 15N-spin labeled coenzyme NAD+ bound to 

tetrameric glyceraldehydes-3-phosphate dehydrogenase. For such a complex the spin labels adopt 

unique conformations and remain virtually immobilized with respect to the protein. The interspin 

distance and the angles that determine the relative orientation of the spin pair was simultaneously 

fit to the multifrequency EPR data collected at X-, Q-, and W-band by global analysis which 

performs simultaneous nonlinear least-squares analysis of multiple data sets. 

 Another case in which interspin distance can be reliably measured involves statically 

disordered spin pairs in the absence of any rotational diffusion effect on the EPR timescale. In 

this situation, the orientations of both dipolar coupling and magnetic tensors from the spin pair 

are assumed to be isotropic. Thus, the EPR spectrum for two dipolar coupled equivalent spins 

will be powder-pattern absorption spectrum known as a Pake pattern (Pake, 1948).  Rabenstein 

and Shin (Rabenstein and Shin, 1995) has developed the Fourier deconvolution method which is 

based on the assumption that the biradical spectrum, Π(B) is the convolution of the dipolar 

broadening function, D(r,B) and the monoradical spectrum, S(B): 

∫
∞

∞−
−=Π ')',()'()( dBBBrMBSB ,  ∑=

r
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where M(B) is the weighted sum of the D(r,B) over the distribution of the distances P(r). The 

convolution of two functions in real space is given in Fourier space as Π*(ω) = S*(ω)·M*(ω). 

M(B) is then obtained from the inverse Fourier transform of Π*(ω)/S*(ω): 

ω
ω
ωωπ

π
d

S
BiBM ∫

∞

∞−

Π
=

)(
)()2exp(

2
1)( *

*

 

In a model system of a set of doubly spin labeled peptides, the deconvolution method accurately 

measured the interspin distance in the range of 8-25 Å. In an independent study, Steinhoff and 

coworkers obtained a distribution in interspin distance by averaging a Pake pattern function over 

a Gaussian distribution (Steinhoff et al., 1997). They performed nonlinear least-squares analysis 

for the spectra obtained from the convolution model to determine the mean distance and width of 

the Gaussian distribution that best fit experimental spectrum. Further justification of this 

approach has been provided using insulin as a model and by comparing interspin distances 

between nitroxides from ESR and the available crystal structure of insulin. 

 Even with successful applications in many studies, the convolution approach has some 

intrinsic limitations in the accuracy of measurement. Its theoretical basis depends on two 

assumptions: i) the dipolar broadening function can be treated as a Pake pattern by neglecting the 

g- and A-tensor anisotropies. ii) the relative orientation of two nitroxides and the orientation of 

the interspin vector with respect to the nitroxides are isotropically distributed. However, these 

assumptions need to be corrected or treated more carefully in application to real biological 

systems. Typically, g- and A-tensor anisotropies are equal to or larger than the dipolar splitting 

for interspin distances in the range of 10-20 Å, leading to deviations from the Pake pattern even 

in ideal system (Hustedt and Beth, 1999). Moreover, most systems will have some restrictions in 

the relative orientations of two spin labels imposed by attachment to the protein backbone or side 

chain interactions. Recently Hustedt et al. developed the tether-in-a-cone model to overcome 

these limitations and to treat the side chain motion of a nitroxide more realistically (Hustedt et al., 

2006). This model allows restricted spatial distribution of each unpaired electron by localizing 
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side chain dynamics to a cone which has a specific orientation and width rather than isotropic 

distribution. Spectral simulations and applications to T4 lysozyme have shown that more ordered 

spin systems (i.e. cones with narrower width), can provide a more detailed and accurate 

description of the relative geometry of a spin pair and the interspin distance distribution compared 

with the convolution approach. 

The last case to be considered involves the systems of a spin pair where both the 

nitroxide side chains and the protein are in a highly dynamic state on a timescale to which linear 

EPR is sensitive. Since data analysis methods for this case are still in progress, many of these 

applications can be solved with the convolution methods after conversion to the second case by 

slowing the dynamics of side chain and global tumbling, which is typically done by lowering 

temperature or increasing viscosity of the media (Steinhoff et al., 1997). The fast motion regime 

is defined as a stochastic process for which the anisotropic part of the time-dependent spin 

Hamiltonian is effectively averaged out. Thus, for many practical applications the interspin 

distance could be assumed to be time-independent and then the only stochastic mechanism that 

could average the dipolar field would be reorientation of the interspin vector in the magnetic field 

arising from global tumbling of a spin labeled macromolecule in solution. If global tumbling of 

the macromolecule is approximated as an isotropic, and Redfield conditions are satisfied, the 

dipolar interaction gives rise to an additional spin relaxation characterized by the following T2dd:  

( )
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 Under this case the dipolar couplings would result in additional uniform Lorentzian broadening 

of CW-EPR spectra. McHaourab et al. developed the method in which such a broadening was 

utilized to quantify the distance between two nitroxide spin labels attached to a protein 

(McHaourab et al., 1997). The dipolar broadening was estimated by comparing CW-EPR line 
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widths of single and double-labeled mutants and relating the observed broadening 

( ) 1
22 −=Δ ddedd TgH βh with the interspin distance r.  

   

Long distance measurement by pulsed EPR 

For the long distance measurements larger than 2 nm the dipole-dipole coupling is much 

smaller than the inhomogeneous linewidth of the CW-EPR spectrum. The pulse sequence 

employed in the DEER experiment separates the dipolar coupling from those other interactions 

by exciting  two subpopulations of spin A and spin B with two pulses at different frequencies as 

shown in Fig 20.  

The microwave pulses which are not ideally rectangular on the timescale of dipolar 

evolution can overlap with the DEER signal and thus causes distortion of the signal at times t < td. 

The deadtime td is typically in the range of 30~100 ns (~80 ns). For broad distribution 

contributions with the mean distance shorter than 2.2 nm may decay completely within this time. 

In 4-pulsed DEER experiment deadtime is eliminated by refocusing the observer echo with an 

additional π pulse, which prolongs the experiment by a time span of at least 2td. For short 

distances (r < 2.2 nm), the sensitivity loss due to decay factor exp(–2td/tm) is compensated by 

recovering the most pronounced first oscillation of the signal. Longer distances with sufficiently 

long Tm can be determined without significant sensitivity loss. 

For an isolated two-spin system (SA = 1/2 and SB = ½), the Hamiltonian in angular 

frequencies is 

H B
z

A
zAB

B
zB

A
zA SSSS ωωω ++=  

where Aω  and Bω  are the resonance frequency of the spin species A and B and ABω  is the 

dipolar coupling between them, given as 
3

22 1cos3
r

gg BAB
AB

−
=

θμ
ω
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Figure 20. Excitation profiles of the mw pulses within the nitroxide spectrum (top) and 

the pulse sequence of the DEER experiment at two different microwave frequencies 

(bottom) 

 

 

where gA and gB are the g factors of the respective electron, r is the electron-electron distance, and 

θ is the angle between the interspin vector and the magnetic field B0.  

The experiment can be explained by using the rotating frame picture, in which the 

Hamiltonian for spin A is written as  
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H´A
B
z

A
zAB

A
zA SSS ωω +Δ=  

where ΔωA = ωA - ωmw, and ωmw is the microwave carrier frequency. Only the terms affecting A 

spins need to be considered, since any coherence of B spins generated during the pulse sequence 

does not contribute to the signal. The dipolar interaction leads to a splitting of each transition with 

the A spin frequencies ABAA ωωω
2
1

±Δ=± .  The first π/2 pulse generates electron coherences 

evolving with +
Aω  and −

Aω  and the following π pulse causes an inversion of the evolving electron 

coherence. An electron coherence transfer is then induced by the π pulse at the second (pump) 

mw frequency at the variable time t, which causes the electron coherence formerly evolving with 

+
Aω and −

Aω  to evolve after this pulse with −
Aω  and +

Aω , respectively. The final pulse at the 

observer frequency induces again an inversion of the phase of the electron coherence resulting in 

an electron spin echo of which phase, Ψ, can be given by adding up all the phase changes induced 

by each pulse step: 

22121 )()()22( τωτωτωτωττ mm
AAAA tt +−−+−=+Ψ ±±  

    tAA )( ±−= ωω m  

When normalized to the intensity at t = 0, the echo intensity is given by 

( )tABtI ωcos)( =  

Thus, the echo amplitude is modulated along the variable time t. Besides the dipolar couplings 

between two spins within nano-objects of interest (Iintra), the coupling between the observed spin 

and every other spin in the sample (Iinter) contribute to the DEER signal. For a homogeneous 

distribution of radicals, this contribution can be written as 

( )

h39
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where C is the concentration of the unpaired electron spins and FB is the fraction of electron spins 

excited by the mw pulse at frequency νmw2. This contribution to the decay, called instantaneous 

diffusion, can at least partially be suppressed by diluting the sample. The echo amplitude at 

evolution time t can then be expressed by the product of two factors: 

( ) ( )tItItI erraDEER intint)( =
 

             ( ) ( )tkCFt BAB −= expcos ω  

 In order to obtain the distance distribution from the observed DEER signal, the Iintra term 

responsible for echo modulation needs to be separated from the Iinter which represents background 

contributions. During the dipolar evolution of the echo signal along the evolution time t, IDEER(t) 

is damped with a factor of exp(–2t/Tm), where Tm is the phase memory time (transverse relaxation 

time, T2), oscillating with a frequency that is proportional to r-3. The decay of oscillation becomes 

faster with increasing distance distribution and can be characterized by an approximate time tdecay 

at which the oscillation is fully decayed. Due to the incomplete excitation of spins at the pump 

frequency, the signal decays to a 1–λ, where λ is the modulation depth. For sufficiently long 

dipolar evolution times, the signal is described by ( ) erdecayDEER IttI int)1( λ−=> .  

 Fourier transformation of the time-domain signal yields a Pake pattern. The distance can 

be computed either by fitting the time-domain DEER modulation or by measuring the frequency 

of singularity νdd(90º) from the Pake pattern. However, asymmetric lineshape in the vicinity of 

singularity tend to shift the maximum to lower frequencies leading to an overestimate of the 

distance. Therefore, more precise distance distributions are obtained by fitting the time domain 

data with a set of parameters including the mean distance (r), distribution width (s), spin 

concentration (C), and modulation depth (λ). 
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Figure 21. The relationship between time-domain DEER modulation and frequency-

domain Pake patterns. The green line shows the Pake pattern and the red line indicates 

only one of the transitions in the Pake pattern showing the angular dependence.  

 

 Distance resolution depends on the maximum dipolar evolution time tmax. To obtain 

sufficient sensitivity, one should have tmax < 1.5Tm. For distances up to 2.5 nm, 1.5 μs of tmax is 

sufficient for determining a precise distance. Furthermore, sensitivity can be improved by 

increasing Tm, which can in turn be achieved by appropriate choice of temperature and matrix or 

solvent. The signal-to-noise (S/N) ratio in echo experiments varies with temperature T due to the 

temperature dependence of polarization of spin transitions, of transverse relaxation time, and of 

longitudinal relaxation time. In the high temperature limit, hνmw << kBT, polarizations of spin 

transitions are inversely proportional to T (Schweiger, 2001). Transverse relaxation with time 

constant T2 damps echo modulation by a factor of exp(–2t/T2). In general, T2 in solids increases 

with decreasing temperature until it reaches its asymptotic limit. Thus, the temperature should be 

lowered to the point where transverse relaxation is dominated by spin diffusion of abundant 

nuclear spins in the system rather than by modulation of the hyperfine or g tensor by molecular 

reorientation. In addition, for a given measurement time, S/N ratio increases with the square root 

of the repetition rate of experiment that is inversely proportional to the longitudinal relaxation 

time T1. The relation of S/N ratio with temperature can collectively expressed by 

( )
)(

1)(/2exp1)(/
1

2 TT
TTt

T
TNS −∝

.
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In the low-temperature limit, transverse relaxation is mainly mediated by the fluctuations 

of the hyperfine field at electron spin, which is induced by proton spin diffusion. Removal of 

those protons that contribute to the enhancement of transverse relaxation leads to elongation of 

relaxation time, which in turn improves the sensitivity and the range in DEER distance 

measurements. Perdeuteration of solvent or matrix reduces the fluctuations of hyperfine field due 

to the smaller magnetic moment of deuterons than that of protons by a factor of 6.5 and 

consequently expands the distance range that can be measured by DEER by slowing down the 

transverse relaxation rate (1/TM). For example, in an attempt to measure the end-to-end distance 

distribution for a shape-persistent biradical with a length of approximately 7.5 nm, perdeuteration 

of the medium extended tmax from 4 μs to 24 μs, exhibiting three periods of full oscillation in 

dipolar modulation (Jeschke et al., 2004). In case of biomacromolecules, it is hard to expect such 

a huge extension in tmax due to more significant limitations imposed on many other factors, such 

as local structure of labeled position, sample concentrations, and the cost of deuterated matrices 

etc.; however, in some applications on proteins (Huber et al., 2001), perdeuteration of the solvent 

was successful in measuring long distances up to 7 nm with prolonged TM. Alternatively, solvents 

without methyl groups are more favorable than those with methyl groups (Lindgren, 1997). 

Methyl group rotation is not fully repressed even at very low temperatures and causes a strong 

nuclear modulation. 

 

Explicit modeling of spin labels in structural studies of proteins 

 The uncertainties given in DEER distance constraints by the flexible tether of the spin 

label set a substantial limitation in their application to structural studies on biomacromolecules. If 

the measured distance between the nitroxides is interpreted as a Cα-Cα distance ignoring the size 

and conformation of the spin label, errors of up to 1.2 nm may be introduced that result from 

conformational distributions of a single spin label (Borbat et al., 2002). Sales et al. have 

demonstrated the importance of explicit modeling of spin labels in EPR distance measurements 
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with regard to protein structures (Sale et al., 2005). When they compared dipolar-EPR distances 

with the corresponding Cβ-Cβ distances in the protein structures, the low correlation between two 

sets of distances with a mean error of 6 Å was substantially ameliorated by showing 2 fold 

increase in correlation (R2) and a mean error of only 3 Å over the entire distance range (8-50 Å). 

Especially, the improvement in correlation was more remarkable in the shorter distance range (8-

20 Å).  

 

Figure 22. Structure of the R1 side chain. 
 

A body of evidence from crystallographic analysis of spin-labeled T4 lysozymes (Guo et 

al., 2008; Langen et al., 2000), molecular modeling of spin labeled side chain based on MD 

simulation (DeSensi et al., 2008; Polyhach et al., 2010), and spin labeling with MTSSL analogues 

containing bulky substituents in the nitroxide ring (Columbus et al., 2001) have revealed that for 

the sites on an α-helix the flexibility of the spin labeled side chain is dominated by rotations about 

the two bonds (χ4 and χ5) closest to the nitroxide ring moiety. Crystal structures of spin labeled T4 

lysozyme revealed that the formation of a hydrogen bond between the Sδ and Cα-hydrogen, and 

slow isomerization about the disulfide bond (χ3) on the EPR timescale substantially restrict 

rotational motions about χ1 and χ2, allowing only a limited number of preferential conformers for 

a R1 side chain (Fig.  22) tethered on an solvent-exposed helical site. To date, {m,m}, {t,m}, and 

{t,p} rotamers are known to be preferred in spin labels residing on helical structures as shown in 

Fig. 23, where m = –60°, p = +60°, and t = 180° in Lovell’s notation (Lovell et al., 2000). The 
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rotamers from the empirically constructed rotamer library are also supported by the quantum 

mechanical calculations (Tombolato et al., 2006) and MD simulations. Practically, spin label 

conformations can be approximated by simply taking preferential rotamers (typically χ1=-60°, 

χ2=60°) and then refining them with optimization processes such as energy minimization. This 

approach has been successfully employed in many applications to probe conformational changes 

using long DEER distance constraints (Altenbach et al., 2008; Kuo et al.; Oldham et al., 2007; 

Smirnova et al., 2007; Van Eps et al., 2006).  

 

 

Figure 23. Rotamer preferences of R1 at solvent-exposed helical sites. Side chain 

dihedral angles χ1 and χ2 from the work by Guo et al.(Guo et al., 2008) are shown by 

circles, and those from Langen et al. (Langen et al., 2000) and Guo et al. (Guo et al., 

2007) are shown by triangles. 
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CHAPTER III 

STRUCTURE OF THE CDB3-ANKD34 COMPLEX 

 

Introduction 

 

Human erythrocytes exhibit an unusual biconcave disc shape and remarkable plasma 

membrane mechanical stability and deformability, all of which are necessary for their survival in 

the circulatory system. It is now well established that the unusual cell shape and membrane 

mechanical properties are due in large part to the presence of an extensive membrane skeleton, 

composed primarily of the proteins spectrin and actin, that lines the inner membrane surface and 

to specific bridging interactions between this membrane skeleton and intrinsic membrane proteins 

in the lipid bilayer. The spectrin-based cytoskeleton associates with the membrane bilayer via two 

types of contacts, one involving short actin protofilaments and protein 4.1 which interact with the 

cytoplasmic domain of glycophorin C, and the second involving the bridging protein ankyrin-R 

and protein 4.2 which interact with the cytoplasmic domain of the anion exchange protein (AE1) 

also known as band 3. Alterations in this second class of interactions often result in spherical 

erythrocytes with decreased cell size and increased fragility, a condition known clinically as 

hereditary spherocytosis (HS). HS is a spectrum of inherited diseases, occurring in one family out 

of 2,000 to 3,000, which presents clinically as varying degrees of hemolytic anemia resulting 

from hemolysis of the spherical erythrocytes as they flow through the microcirculation. Recent 

data have indicated that 15-20 % of HS cases are attributable to AE1 mutations and ~50 % of HS 

cases result from ankyrin-R mutations (Delaunay, 2002).  

The ankyrin family of adaptor proteins, which includes the three isoforms ankyrin-R, 

ankyrin-G, and ankyrin-B in vertebrates, serve critical functions in cells by linking the lipid 

bilayer to the spectrin-based membrane skeleton as well as assembling proteins in specialized 
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membrane domains (Bennett and Baines, 2001; Nilsson and Bennett, 2009). Like the other two 

isoforms, ankyrin-R contains an N-terminal membrane binding domain, a central spectrin binding 

domain, and a C-terminal regulatory domain. The membrane binding domain is composed of 24 

ankyrin-Repeat modules (ANK), each of which contains two anti-parallel α-helices and a long 

loop. The stacking of individual ANK repeats forms a superhelical spiral (Michaely et al., 2002). 

Proteolysis studies have shown that the 24 repeats in ankyrin-R, the isoform in human 

erythrocytes, can be subdivided into four groups of 6 repeats each (D1, D2, D3, and D4). This 

same study demonstrated that the full length membrane binding domain of ankyrin-R bound two 

dimeric cytoplasmic domains of AE1 with positive cooperativity. One binding site was located in 

domain 2 (AnkD2; repeats 7-12) and the second binding site was located in domains 3 and 4 

(AnkD34; repeats 13-24) (Michaely and Bennett, 1995).  

AE1 is the most abundant membrane protein in the erythrocyte with a population of one 

million copies per cell. While the transmembrane domain of AE1 plays a critical role in pH 

homeostasis of the body by exchanging two monovalent anions, bicarbonate and chloride across 

the plasma membrane, its cytosolic domain (cdb3) acts as an organizing center for a set of 

intracellular proteins to form a macromolecular complex. Cdb3 exclusively exists as a 

homodimer in vitro, where two dimerization arms from each monomer are tightly interlocked 

with each other and its N-terminal region, known to contain binding sites for many binding 

partners, is largely unstructured (Zhang et al., 2000; Zhou et al., 2005). A range of biochemical 

studies have implied that the β6/β7 hairpin loop of cdb3 (residues 175~185; also called ‘critical 

ankyrin binding loop’) and the disordered N-terminal region (residues 1~54) might be the major 

sites for interaction with the membrane binding domain of ankyrin-R. 

Previous studies have indicated that a “tetramer” of AE1, rather than the fundamental 

dimer, is involved in binding ankyrin-R (Che et al., 1997). Interestingly, a stable sub-population 

of AE1 tetramers can be extracted by non-ionic detergents from erythrocyte ghost membrane 

preparations (e.g. (Blackman et al., 1998; Casey and Reithmeier, 1991b; Hanspal et al., 1998)). 
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What is not known is whether interaction of two cdb3 dimers with the two cooperative binding 

sites on ankyrin-R (Michaely and Bennett, 1995) drive the formation of a true tetramer of cdb3 or 

whether the structure is more accurately described as a dimer of dimers with no major structural 

rearrangements of the individual dimer units. 

Now that crystal structures are available for isolated cdb3 (Zhang et al., 2000) and for 

isolated ankyrin-R repeats 13-24 (AnkD34; (Michaely et al., 2002)), it is possible to determine 

the structure of the complex formed between one cdb3 dimer and AnkD34 using modern protein 

docking algorithms in conjunction with structural constraints obtained from site directed spin 

labeling studies (e.g. (Bhatnagar et al., 2010; Hilger et al., 2007; Park et al., 2006)). In the present 

studies, site directed spin labeling and EPR have been employed to map the binding interfaces on 

cdb3 and on AnkD34 under conditions where the proteins form a stable complex. Distance 

measurements using double electron-electron resonance (DEER) between pairs of spin labels in 

cdb3 or AnkD34 have shown that the global structure of neither protein is significantly altered 

upon complex formation. Additional DEER measurements between pairs of spin labels, one in 

cdb3 and the other in AnkD34, have provided interprotein distance constraints. All of these data 

have been utilized to build a family of structural models using the ROSETTA suite of docking 

algorithms (reviewed in (Kauffman et al., 2010)) that are compatible with the experimental data. 

The models indicate that a large section of the peripheral domain of cdb3 interacts with ankyrin-

Repeats 18-20 on the top loop region of AnkD34 primarily through hydrophobic interactions. The 

binding surface on AnkD34 is remote from the ankyrin groove which has been hypothesized to be 

involved in binding to a number of membrane proteins. In preliminary docking studies, the 

ankyrin groove of AnkD34 was hypothesized to be involved in binding to cdb3 (Michaely et al., 

2002). The models presented in this work indicate that the ankyrin groove is not the binding 

interface and they also place restrictions on whether a second cdb3 dimer could bind to the D2 

domain of ankyrin-R to form a true tetramer of cdb3. 
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Materials and Methods 

 

Protein preparation and spin labeling      

The preparation of wild-type and singly or doubly spin-labeled cdb3s has been described in 

previous work (Zhou et al., 2005). The cDNA encoding ankyrin-Repeats 13-24 plus 12 residues 

from the spectrin binding domain (AnkD34; residues 403-827) of ankyrin-R was provided by Dr. 

Peter Michaely (UT Southwestern). The DNA construct for wild-type AnkD34 was inserted into 

the pGEX-2T expression vector (GE Healthcare, Piscataway, NJ) wherein the two endogenous 

cysteines at positions 476 and 531 were converted to Ser and Ala, respectively. Cysless and 

single or double Cys mutants were constructed using the QuikChange Site-Directed Mutagenesis 

Kit (Stratagene, La Jolla, CA). The GST-fusion protein was overexpressed in BL21 Gold (DE3) 

competent cells by incubating the culture at 17 ºC for 3.5 to 4 hrs in the presence of 1 mM IPTG 

and purified using a GST affinity chromatography system (GE Healthcare, Piscataway, NJ) 

following the manufacturer’s instructions. Before being cleaved from the resin, single or double 

Cys mutants of AnkD34 were reacted with a 10-fold molar excess of 1-oxyl-2,2,5,5,-tetramethyl-

Δ3-pyrroline-3-methyl methanethiosulfonate spin label (MTSSL; Toronto Research Chemicals, 

North York, ON, Canada) in the binding buffer plus 0.1% (v/v) octaethylene glycol monododecyl 

ether (ANAPOE®-C12E8; Anatrace, Santa Clara, CA) at room temperature for 2 hrs and then at 4 

ºC overnight. Unreacted spin label was removed by flowing excess washing buffer (50 mM 

sodium phosphate buffer containing 500 mM NaCl, 2 mM EDTA, pH 7.0) through the column 

until no spin label was detected in the flow through by EPR. Spin labeled AnkD34s were released 

from the immobilized GST-tag by thrombin cleavage in the binding buffer (50 mM sodium 

phosphate, 500 mM NaCl, 2 mM EDTA, and 10 % (w/v) glycerol, pH 7.0). Upon completion of 

the cleavage reaction, benzamidine sepharose (GE Healthcare Piscataway, NJ) was added to 

remove the residual thrombin from the protein solution. Protein purity was assessed by SDS-

PAGE as described in previous work (Zhou et al., 2007).  All samples used in the studies were > 
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95% pure as judged by coomassie blue staining intensity. Protein concentrations were determined 

either using the Bradford assay with bovine serum albumin as a standard or by measuring 

absorbance at 280nm with the calculated extinction coefficients for each protein construct (cdb3, 

33,920 M-1cm-1; AnkD34, 15,930 M-1cm-1). 

 

GST pull-down binding assay      

In order to assess the effect of mutation and concomitant spin labeling on the binding affinity of 

singly labeled cdb3 mutants, a GST pull-down binding assay was performed. A known amount 

(0.5 to 1 nmole) of wt-AnkD34-GST fusion protein was immobilized on the GST resin. To each 

aliquot of 50 % (v/v) suspension, a 4-fold molar excess of a singly labeled cdb3 mutant was 

added. After overnight incubation at 4 ºC, the column was washed with washing buffer three 

times to remove unbound cdb3. The resultant resin was directly loaded onto a SDS-PAGE gel and 

the band intensities of each protein were analyzed using a UN-SCAN-IT gel digitizing system 

(Silk Scientific, Orem, UT).  The amount of bound cdb3 was assessed from the band intensity 

ratio between bound cdb3 and normalized wt-AnkD34 fusion protein. The relative binding 

affinity of each spin-labeled cdb3 mutant was estimated by comparing the bound fraction of a 

mutant with that of wt-cdb3. Likewise, the binding affinities of singly labeled AnkD34 mutants to 

wt-cdb3 were evaluated in the same manner as described above using a series of singly labeled 

AnkD34-GST fusion proteins which were immobilized on the resin.  

 

Complex Formation       

Complexes between spin-labeled AnkD34s and cdb3s were prepared by incubating wild-type or 

specific spin-labeled proteins in the same binding buffer defined above at 4 ºC overnight. Both 

proteins were concentrated to the desired range using a centrifugal membrane filter device (30 

kDa molecular weight cutoff; Millipore, Billerica, MA) before complex formation.  
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Circular dichroism (CD) measurements.      

CD Spectra were recorded on a Jasco J-810 system (Easton, MD) at room temperature with a 

0.1cm path length cell. All spectra were obtained from samples in 10 mM potassium phosphate 

buffer, pH 7.4. The data were collected from 190 to 260 nm at a scanning speed of 20 nm/min. 

The raw data, in millidegrees (θ), were converted to molar ellipticity [θ] using the relationship: 

[θ] = (100)×[signal]/(ncl) 

Where n is the number of amino acid residues, c is the protein concentration in mM, and l is the 

path length in cm. 

 

CW-EPR measurements      

CW-EPR spectra were collected at X-band (9.8 GHz) on a Bruker EMX spectrometer 

fitted with a TM110 cavity (BrukerBiospin, Billerica, MA) using 5mW microwave power and 1G 

field modulation at 100 kHz. Samples were prepared in the 80 to 120 μM concentration range and 

spectra were collected at room temperature in 50 μL glass capillaries (Kimble Glass, Inc., 

Vineland, NJ).  

 

NiEDDA accessibility      

For the measurement of spin label side chain accessibilities, a singly labeled protein was 

mixed with a 4 molar excess amount of its non-labeled binding partner. The 4-fold excess was 

used to ensure saturation of binding sites. NiEDDA accessibility of individual sites on each 

protein was measured using a gas permeable TPX capillary and an ER4123D resonator 

(BrukerBiospin, Billerica, MA) as previously described (Zhou et al., 2005). Accessibilities are 

expressed numerically as dimensionless Π values which were calculated from the following 

equation: 

0

22/12/1 )()(
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H
NPNiEDDAP
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Δ

−
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where P1/2 is the half-saturation power in the presence of NiEDDA or N2 and ΔH0 is the field 

width of the central peak. Short inter-probe distances (<20Å) were measured on samples in 

binding buffer plus 50 % glycerol at 2 °C. The resulting EPR spectra were analyzed using the 

convolution method which assumes Gaussian distance distributions as described in previous work 

(Hustedt et al., 2006; Rabenstein and Shin, 1995). 

 

Four-pulse DEER measurements and data analysis.      

The four-pulse DEER experiment was performed at X-band (9.5 GHz) on a Bruker 

EleXsys 580 spectrometer equipped with a Bruker split ring resonator (ER 4118X-MD5). A 

standard 4-pulse sequence was employed with a 32 ns π pulse and a 16 ns π/2 pulse. All 

measurements were recorded at 80 °K. Samples were prepared in binding buffer containing 30% 

(w/w) glycerol in the 150 to 250 μM concentration range and loaded into 2.4 mm i.d. quartz 

capillaries (Wilmad LabGlass, Buena, NJ). While the interprotein distances were measured from 

a complex composed of two labeled proteins in an equimolar ratio, for the intraprotein distances, 

labeled proteins were allowed to form a complex with a 1.5 to 2 molar excess amount of its 

diamagnetic binding partner prior to the measurement. All DEER data were analyzed using 

software developed in house which simultaneously fits the background signal as a function of an 

effective spin concentration and radius of the molecule or complex while determining the specific 

interactions of interest using a distance distribution defined as a sum of Gaussians (manuscript in 

preparation). This approach, which takes into account the excluded volume of the molecule or 

complex, typically gave better fits to the data than those obtained using a priori background 

correction. The calculated average distances and distance distributions were similar to those 

obtained using the conventional Tikhonov regularization method (Chiang et al., 2005).  
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Chemical cross-linking of cdb3-AnkD34 complexes      

Cross-linking of the complex between a pair of Cys residues from each protein was 

accomplished using the homo-bifunctional maleimide crosslinker, bismaleimidoethane (BMOE, 

Pierce Biotechnology, Rockford, IL) following the manufacturer’s instructions. Briefly, each pair 

of single Cys mutants of cdb3 and AnkD34 was mixed at an equimolar ratio (10 μM final 

concentration of each protein) and allowed to form a complex in binding buffer containing 5mM 

EDTA. To 100 μL of protein mix, freshly prepared BMOE stock solution (20 mM in DMF) was 

added to give 30 μM final concentration. After 1 hr incubation at room temperature, the reaction 

was quenched with Laemmli sample buffer supplemented with 5 mM SDS and 10 mM DTT, and 

the formation of the cross-linked complex in the reaction mixture was visualized by SDS-PAGE 

as described in previous work (Zhou et al., 2007). 

 

Molecular Modeling      

The structure refinement process was carried out by first generating a large number of 

docked cdb3-AnkD34 complexes. The experimental results presented in Figs. 26-28, below, 

indicate that neither the cdb3 homodimer nor the AnkD34 fragment undergoes any major global 

conformational changes upon complex formation. Therefore, the RosettaDock program (Gray et 

al., 2003) was used to perform rigid docking calculations with the x-ray crystal structures for 

cdb3 (PDB code 1HYN) and AnkD34 (PDB code 1N11). 100,000 docked complexes were 

generated using unrestrained rigid body docking to explore all plausible docking orientations as 

shown in Fig. 37, upper panel, below. Next, a filtering protocol was devised to screen the 100,000 

candidate complexes to eliminate all the models that were clearly inconsistent with the 

experimental DEER distance measurements. In the first-pass filter, the Cβ-Cβ distance was 

measured for a pair of spin labeled sites in cdb3 and AnkD34 from each docking model. In order 

to take the distance between the nitroxide electron and the Cβ carbon (~7 Å) into account, the Cβ-
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Cβ distance ± 14 Å cutoff was applied to select acceptable models in the first-pass filter process. 

Since cdb3 is a homo-dimer, spin label positions in each subunit were considered in the filtering 

process. Using this cutoff criterion and 20 experimental DEER distance measurements, it was 

determined that 811 docked poses from the RosettaDock calculations were compatible with the 

distance constraints as shown in Fig. 37, middle panel. All other docking poses had at least one 

(and generally many) pair distance violations that exceeded the Cβ-Cβ ± 14 Å tolerance value. 

A second-stage filter was then implemented to select candidate structures that were 

consistent with experimental data for spin label side chain accessibility. Using MSMS software 

(Sanner et al., 1996), per-residue solvent-accessible surface areas were computed for five sites 

that caused large reductions in complex formation upon mutation (cdb3: 72, 129, 158 – AnkD34: 

596 and 629) and nine sites that exhibited large changes in NiEDDA accessibility (i.e. changes in  

Π values of < -8; see Tables 1 and 2) upon formation of the complex (cdb3: 137, 148, 160, 166, 

254 – AnkD34: 598, 631, 662, 664).  Using canonical surface areas for fully-exposed side chains 

in G-X-G tripeptides (Chothia, 1975), the raw surface area computed for each of the wild-type 

residues was normalized to a value between 0 and 1, with 1 representing a fully-exposed residue 

and 0 representing a fully buried residue. The normalized values were summed together to form 

an accessibility score, where a small score corresponds to more buried surface and therefore 

better agreement with experiment. The top 100 structures were sorted based upon increasing 

accessibility score and every 10 structures were then binned cumulatively from the top. An 

overall backbone RMSD was then computed for all structures in each of the bins, and the RMSD 

values versus bin size were plotted. The larger bins, with 40 or more structures, contained 

structures with accessibility scores that were a minimum of 28 % larger than the best overall 

score of 1.96. In addition, the slope of the RMSD vs. bin size plot is much steeper beginning with 

a bin size of 40, indicating that besides significantly worse accessibility scores, the larger bins 

contain structures which look significantly different than the best-scoring structure (RMSD from 
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the mean of as high as 6.1 Å in the 40-structure bin, moving higher from there). Given these 

statistics, the top 30 structures were chosen as the final solution set, which spans a range of 

accessibility scores from 1.96-2.48, and has an average pairwise RMSD value of 2.68 Å. It should 

be noted that it is also possible to more precisely model the orientation of the R1 side chain 

thereby lowering the ±14 Å tolerance value used in this work (Bhatnagar et al., 2010; Borbat et 

al., 2002; Fajer et al., 2007; Herrick et al., 2009; Sale et al., 2005). However, having extensive 

interface mapping data from solvent accessibility measurements permitted the determination of 

structural models without the need for these approaches. 

 

Results 

 

Biophysical Characterization of AnkD34 

Typically, structural studies using exogenous probes, such as the SDSL-EPR, require 

mutations which potentially can induce some structural alterations in the target protein. Hence, 

the mutant proteins to be studied should be stable enough to endure structural perturbations that 

can be induced by the mutations. AnkD34 contains two endogenous cysteine residues at positions 

476 and 531, which were substituted with alanine and serine, respectively. The cysless form of 

AnkD34 was expressed with a good yield (more than 5 mg/L) and was stable in the presence of 

high salt (0.5 M NaCl) and 10 % (w/v) glycerol. 

In order to assess the effect of point mutations on the global structure of AnkD34, CD 

spectroscopy was employed. As shown in Fig. 24, wild-type and cysless AnkD34 resulted in 

identical CD profiles showing that removal of two endogenous cysteins had no detectable effects 

on the secondary structure of the protein. Additionally, one single cysteine mutant of AnkD34 

where a cysteine was introduced at position 656 on the cysless background also showed no 

difference in its CD profile. As predicted from the crystal structure of AnkD34, the spectra 
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Figure 24. The CD spectra from three different AnkD34 constructs. Three spectra from 

wild-type (black), cysless (red), and S656C (blue) were superimposed for comparison. 

 

 

Figure 25. The thermal profiles obtained from CD measurements and its first derivatives 

(inset) for three different AnkD34 constructs. The three profiles from wild-type (black), 

cysless (red), and S656C (blue) were superimposed for comparison. 

 

 

feature a typical pattern for α-helices with two local minima at 208 and 222 nm. Moreover, all 

three constructs showed identical thermal profiles in CD measurements with melting 

temperatures of approximately 56 °C. These data demonstrate that mutations to be utilized for 

SDSL cause no significant change in the secondary structure or the thermal stability of AnkD34. 
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Cdb3 and AnkD34 form a complex without any major changes in their global structures.  

The first questions that were addressed were whether the global structures of either cdb3 

or AnkD34 were significantly altered upon complex formation. This question was addressed for 

cdb3 by spin labeling selected sites on the cdb3 dimer and then observing dipolar coupling by 

CW-EPR for sites at the dimer interface or by DEER at selected sites remote from the dimer 

interface in the absence and then the presence of bound wt-AnkD34. Fig. 26 exhibits CW-EPR 

spectra obtained from four selected sites residing on the dimer interface. The dipolar couplings 

revealed by lineshape broadenings showed no significant changes upon binding AnkD34 in all 

the spectra with the exception of position 339. Given that the lineshape from the dipolar coupled 

spectrum is extremely sensitive to the inter-probe distance and their relative orientation, a slight 

change in the lineshape observed only in the mutant 339R1 appears to be the result of local 

structural perturbation associated with repacking of the R1 side chain upon binding AnkD34. 

These spectra show conclusively that binding of wt-AnkD34 to the peripheral domain of each 

cdb3 monomer does not lead to any observable changes in the structure of the dimer interface. 

 

 

Figure 26. Dipolar coupled EPR spectra obtained from the sites at the dimer interface of cdb3 in the 

presence (grey solid line) or absence (black dashed line) of AnkD34. Sites 105, 108, 112, and 339 are all at 

the dimer interface and each gives rise to a dipolar coupled EPR spectrum due to their close proximity.  
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Likewise, there were no significant changes in inter-probe distances as a result of complex 

formation for three pairs of sites located in peripheral regions indicating that the global structure 

of the cdb3 dimer is not altered (Fig. 27 and Table 4).  

           

Figure 27. Inter-subunit distances between spin labeled side chains of cdb3 before and after complex 

formation with AnkD34 measured by DEER. Three pairs of surface sites consisting of identical positions 

from each monomer were selected as depicted by the spheres (84, red; 302, orange; 340, yellow) in the left 

panel. The DEER data (black dots) and fits to the data (blue, before complex formation; red, after complex 

formation) are shown as solid lines in the stacked plots in the right panel. The resultant average distances 

and distance distributions from fitting the data in Å is shown in the insets. 

 

 

Table 4. Inter-subunit DEER distances analyzed from from the peripheral domains of a cdb3 dimer. The 

mean distances and their distributions (numbers in parentheses) are shown along with the corresponding 

Cβ-Cβ distances from the crystal structure. 

Spin labeled sites 
 on cdb3 

Distance (Å) Cβ-Cβ distance (Å) 
 in crystal structure - AnkD34 + AnkD34 

84 26.1 (0.4) 26.2 (0.3) 23.9 

302 56.5 (0.2) 57.2 (6.8) 53.8 

340 34.6 (0.8) 33.5 (0.5) 30.4 
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Again, when two cysteine residues were introduced into cysless AnkD34 at sites in the 

groove region or along the convex backbone and DEER measurements were made on the spin 

labeled proteins, there were no significant changes in inter-probe distances following complex 

formation with wt-cdb3 as shown in Fig. 28 and as given in tabular form in Table 5, indicating 

that binding to cdb3 does not induce any global structural change in AnkD34. 

 

 

 

 

 

 

 

 

 

Figure 28. Intraprotein distances in AnkD34 measured by DEER. The residue pairs are defined by the 

structure in the upper panel and representative DEER data before and after complex formation with cdb3 

are shown in the lower panel. The DEER data (black dots) and fits to the data (blue (before complex 

formation)) and red (after complex formation)) are shown as solid lines in the stacked plots in the lower 

panel. The resultant average distances and distance distributions from fitting the data (Å) is shown in the 

insets. 
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Table 5. Intraprotein DEER distances from both the concave groove and the convex backbone sides of 

AnkD34.For a set of doubly labeled mutants of AnkD34, DEER distances were measured in the absence 

and then in the presence of cdb3. The mean distances and their distance distributions (numbers in 

parentheses) are shown below along with the corresponding Cβ-Cβ distances from the crystal structure. 

 

 

Collectively, these data suggest that modeling of the structure of the complex formed 

between cdb3 and AnkD34 to a first approximation would only require rigid body docking of the 

two proteins using binding interface information obtained from EPR experiments (i.e. what 

surfaces of the two proteins are in close contact) and interprotein distance constraints obtained 

from EPR or DEER experiments (i.e. what is the relative spatial positioning of the two proteins). 

This basic approach has been described and successfully utilized in previous work on other 

protein complexes by other investigators (e.g. (Bhatnagar et al., 2010; Hilger et al., 2007; Park et 

al., 2006)). 

 

Determination of the binding interface on cdb3. 

Studies by a number of investigators (e.g. (Chang and Low, 2003; Davis et al., 1989; 

Stefanovic et al., 2007; Willardson et al., 1989)) as well as our own previous studies (Zhou, 2006) 

have indicated that residues on the peripheral domains of the cdb3 dimer are involved in binding 

Spin-labeled sites 
Distance (Å) Cβ-Cβ distance (Å) 

 in crystal structure - cdb3 + cdb3 

Concave groove 
( Inner helices )  

410/509 24.4 (2.7) 24.3 (3.0) 25.1 

509/608 22.1 (2.2) 22.0 (1.9) 26.2 

608/707 22.3 (2.3) 21.9 (2.0) 25.0 

Convex backbone  
(Outer helices)  

425/524 41.5 (8.6) 41.3 (6.8) 34.8 

524/623 35.3 (4.0) 32.0 (6.4) 33.9 

623/722 40.3 (1.5) 39.7 (2.3) 36.2 

722/788 30.7 (3.7) 30.6 (3.9) 25.5 
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to ankyrin-R. Prior to CW-EPR scanning, a GST pull-down assay was performed for a series of 

singly spin labeled mutants of cdb3 where R1 side chains were attached at various surface sites 

on the peripheral domains to assess their binding affinity to wt-AnkD34. It was observed that 

most of the singly spin-labeled mutants had binding affinity that was > 80 % of that observed 

with wt-cdb3, indicating that spin labeling at these sites does not significantly disrupt the binding 

interface of the complex. When spin labeled side chains were introduced at residues 70, 72, 129, 

155, and 158, binding affinity to wt-AnkD34 was reduced by greater than 60% (see binding data 

 

A 

 

                 

B 

 
 

Figure 29. The effect of mutation and spin labeling at various sites of cdb3 on its binding affinity for 

AnkD34. Relative binding affinities for the selected spin labeled mutants of cdb3 with wt-AnkD34 were 

measured by the pull-down assay as described in the materials and methods section. The SDS-PAGE gel in 

the panel A (top) demonstrates the pull down assay results for sites 70, 72, 126, 158, 159, 160, 166, 252, 

and 254. The relative affinities of 26 sites are compared with binding of wt-cdb3 to wt-AnkD34 in panel B 

(bottom).  

wt- and spin-labeled mutants of cdb3 

cdb3 

GST-AnkD34 

 WT    70      72    126    158   159   160     166   252   254 
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in Fig. 29) suggesting that these residues are in close contact with residues in AnkD34 in the 

complex and that a spin labeled side chain at these positions disrupts critical contacts between the 

two proteins.  

The binding interface was further defined by the EPR data in Fig. 30, where specific sites 

on the α2-helix (residues 126, 127, and 130), on the α3-helix (residue 152), and on the β6/β7-

hairpin loop (residues 179, 180, and 183) of cdb3 show significant changes in spin label side 

chain mobility when wt-AnkD34 is bound. In addition, spin labeled side chains at residues 160 

and 254 also showed changes in mobility upon complex formation. These changes in side chain 

mobility are mapped onto the crystal structure of cdb3 in the right panel of Fig. 30, together with 

the sites that impair the binding affinity upon spin labeling. Spin labeled side chains at many 

other positions on the peripheral domains (sites 133, 134, 137, 140, and 141 in the α1 helix, at 

sites 148 and 151 in the α2 helix, and at sites 180 and 181 in the β6/β7 hairpin loop) showed no 

changes in mobility upon complex formation (marked in black in Fig. 30; (Zhou, 2006) and data 

not shown) consistent with the observation of no changes in global structure of cdb3 when it is 

bound to AnkD34.  

The binding interface was further defined by measuring solvent accessibility of the same 

sites using NiEDDA as the paramagnetic broadening agent. As shown in Fig. 31 and in tabular 

form in Table 7, solvent accessibility mirrors the changes in spin labeled side chain mobility in 

general, providing further evidence for the surface on cdb3 that is involved in direct interaction 

with AnkD34. Consistent with mobility data, the most remarkable decreases in NiEDDA 

accessibility were observed in positions 160 and 254, which are located below the α2- and α3-

helices. Collectively, a range of data collected from the surface sites on the peripheral domains of 

cdb3 well defines the putative binding interface mainly consisting of the N-terminal region of the 

α2-helix (residues 126, 127, 129, and 130), the C-terminal region of the α3-helix (residues 152, 

155, and 158), and residues 70, 72, 160,  and 254 on the loops. As predicted, spin labeling at 
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Figure 30. Changes in spin labeled side chain mobility in peripheral domain of cdb3 induced by complex 

formation. Left panel shows representative EPR spectra from spin labeled side chains incorporated into the 

α2-helix (126, 127, and 130), the α3-helix (152), and the β6/β7 hairpin loop (179, 181, and 183) in the 

peripheral domain of cdb3. The spectra in solid lines were recorded in the absence of wt-AnkD34. The 

superimposed spectra in dashed lines were recorded after complex formation with wt-AnkD34. Also shown 

are the data from sites 160 and 254 which lie outside these three structured domains but which showed 

significant changes upon binding of wt-AnkD34. There were no changes in EPR line-shapes upon complex 

formation at sites 133, 134, 137, 140, and 141 in the α2-helix, at sites 148 and 151 in the α3- helix, and at 

sites 180 and 181 in the β6/ β7 hairpin loop (data not shown). Changes in spin label side chain mobility 

(upper) assessed from EPR spectra were mapped onto the X-ray crystal structure of AnkD34 in the right 

panel. The red residues showed a decrease in side chain mobility upon complex formation, the black 

residues showed no change, and the blue residues significantly impaired complex formation when the wt 

residue was changed to cysteine and spin labeled with MTSSL. 
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positions 70 and 155, which exhibited partially impaired binding affinity (less than 50%), resulted 

in no decrease in NiEDDA accessibility. It is interesting to note that placing the R1 side chain at 

positions 137, 140, 141, and 148, which showed no change in mobility, gave rise to significant 

decreases in NiEDDA accessibility. While residue 137 is in close proximity with other residues 

contributing to the binding interface, residues 140, 141, and 148 forms a cluster at the top of the 

peripheral surface in Fig. 31. The long tether of the spin label and the spatial proximity of these 

residues to the binding interface revealed in the constructed structural models, which will be 

described later, suggest that local conformational changes or R1 side chain repacking are 

responsible for these observations. 

 

Table 6 NiEDDA accessibility of surface sites on the peripheral domain of cdb3. 

Labeled position 126 127 130 133 134 137 140 141 148 151 152 

Π (- AnkD34) 20.5 22.5 15.8(1.4) 17.5(5.2) 14.9(1.9) 29.3(4.8) 24.8(2.1) 27.1(2.2) 29.7(2.5) 17.2 8.4(3.0)

Π (+ AnkD34) 12.8 17.1 16.0(2.7) 13.8(4.3) 12.6(3.3) 19.2(2.8) 21.5(1.8) 18.6(1.5) 16.3(0.8) 14.7 5.3(1.7)

Difference -7.7 -5.4 0.2 -3.7 -2.2 -10.2 -3.3 -8.5 -13.4 -2.5 -3.1 

 

 

Labeled position 155 179 180 181 183 70 160 166 216 254 293 302 

Π (- AnkD34) 13.7 15.9(3.5) 21.2(2.9) 23.3(3.9) 19.8(2.2) 30.4 25.4 26.6 20.5 30 7.1 15 

Π (+ AnkD34) 13.3 14.9(2.3) 17.4(2.2) 19.1(5.5) 17.4(1.8) 33 3.5 15.6 20.2 8.5 7.4 10.5 

Difference -0.4 -1.0 -3.8 -4.2 -2.4 2.6 -21.9 -11.0 -0.3 -21.5 0.3 -4.4 

 Standard deviations from triplicate measurements are shown in parentheses. Π values are dimensionless 
quantities as defined in experimental procedures. Residues 126 through 141 are in the α2 helix. Residues 
148-155 are in the α3 helix. Residues 179-183 are in the β6-β7 hairpin loop. Residues 70, 160, 166, 216, 
254, 293 and 302 are distributed over the peripheral domain of cdb3. 

 

 
 



 

89 
 

 

 
 
Figure 31. Changes in solvent accessibility as assessed by collision frequency with NiEDDA. Accessibility 

changes were mapped onto the X-ray crystal structure of AnkD34 in the top panel. The red residues 

showed a decrease in side chain mobility upon complex formation, the black residues showed no change, 

and the blue residues significantly impaired complex formation when the wt residue was changed to 

cysteine and spin labeled with MTSSL. The residues that showed changes in accessibility were displayed 

with three different colors based on their ΔΠ (Πcomplex-ΠAnkD34) values (red, ΔΠ < -14.0; hot pink, -14.0 ≤ 

ΔΠ < -5.0; pale pink, -5.0 < ΔΠ ≤ -2.0). In the lower panel, ΔΠ values from each mutant in the presence 

(grey) and absence (black) of wt-AnkD34 were graphically displayed. Residues 160 and 254, showing the 

most dramatic decreases, are highlighted with red border lines. 

 

 

Determination of the binding interface on AnkD34.   

Early work by Michaely and Bennett showed that binding of cdb3 to ankyrin-Repeats 

13–24 was salt independent, unlike the binding to ankyrin-Repeats 7–12 which was salt 

dependent (Michaely and Bennett, 1995b). This important observation provided evidence that the 
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binding of cdb3 to AnkD34 was likely to be dominated by hydrophobic interactions. In 

agreement with this hypothesis, the spin labeled side chains in the groove of ankyrin-Repeats of 

AnkD34, which contain a number of charged and polar residues, showed no changes in mobility 

upon complex formation (e.g., residues 599, 603, and 636; data not shown). However, as shown 

in Fig. 32, when spin labeled side chains were incorporated into the top linker surface of ankyrin-

Repeats 18, 19, and 20 in AnkD34, there were significant changes in mobility when a complex  

 

 

 

Figure 32. Binding-induced changes in spin label side chain mobility at the top liker surface sites of 

AnkD34. The left panel shows representative EPR spectra from spin labeled side chains incorporated into 

the β-hairpin loop regions of ankyrin-Repeat 18 (590 and 598), ankyrin-Repeat 19 (602, 623, and 631), and 

ankyrin-Repeat 20 (635 and 662) in AnkD34. The spectra in grey solid lines were recorded in the absence 

of wt-cdb3. The superimposed spectra in black dashed lines were recorded after complex formation with 

wt-cdb3. In the right panel, the mobility changes have been mapped onto the X-ray crystal structure of 

AnkD34. The red residues in the top panel showed a decrease in side chain mobility upon complex 

formation, the black residues showed no change, and the blue residues significantly impaired complex 

formation when the wt residue was changed to cysteine and spin labeled with MTSSL. 
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was formed with wt-cdb3. Introduction of spin labeled side chains at equivalent structural 

positions in repeats 17 and 21 showed no changes in mobility upon complex formation (e.g., 

residues 565 and 697; data not shown). Incorporation of a spin labeled side chain at residue 596 

in ankyrin-Repeat 18 and at position 629 in ankyrin-Repeat 19 (blue residues in Fig. 32) inhibited 

binding affinity of wt-cdb3 by greater than 80% (Fig. 33) suggesting that these residues are 

critical for binding. The side chain mobility data are mapped onto the X-ray crystal structure of 

AnkD34 in Fig. 32, right panel.  

 

          A                   

 

 
     

            B 

 

 

 

 

 

 

Figure 33. The effect of mutation and spin labeling at various sites of AnkD34 on its binding affinity for 

cdb3. Relative binding affinities for selected spin labeled mutants of AnkD34 with wt-cdb3 were also 

measured by the pull-down assay as described in the experimental procedures section. The relative 

affinities of 6 sites are compared with binding of wt-AnkD34 to wt-cdb3 in the panel B (bottom). Spin 

labeling at sites 598 on ankyrin-Repeat 18, 631 on ankyrin-Repeat 19, and sites 662 and 664 on ankyrin-

Repeat 20 all resulted in relative binding affinities that were > 70 % of that observed with wt-AnkD34. 

However, labeling at site 596 in ankyrin-Repeat 18 and at site 629 in ankyrin-Repeat 19 resulted in less 

than 20 % of the binding relative to wt-AnkD34. The SDS-PAGE gel in panel A (top) demonstrates the 

dramatic reduction in relative binding affinity for AnkD34 mutations at sites 596 and 629 again indicating 

that spin labeling at these sites result in unfavorable steric and/or electrostatic interactions at the binding 

interface.  

Wt- and spin-labeled mutants of AnkD34 

wt-Cdb3 

GST-AnkD34 

  wt    596    598    629   631  662   664 

   wt       596      598       629      631      662      664 
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The binding interface was further defined by measuring the solvent accessibility of the 

same sites using NiEDDA as the paramagnetic broadening agent. Consistent with the mobility 

measurements, the residues that show most of the major changes in NiEDDA accessibility (Table 

2; residues 590, 598, 623, 631, 662, 664) are clustered on the top linker surface together with 

residues 596 and 629. Note that the residues which reside on the same linkers, but whose side 

chains are facing the groove in the crystal structure (Table 8 and Fig. 32; residues 599, 603, and 

636) showed no change in solvent accessibility. Overall, as shown in Fig. 34, top panel, solvent 

accessibility again mirrors the changes in spin labeled side chain mobility providing further 

evidence for the surface on AnkD34 that is involved in direct interaction with cdb3.  

 

Table 7. NiEDDA accessibility of surface sites on AnkD34. 

Labeled position 565 586 590 596 598 599 600 603 611 613 616 

Π (- cdb3) 16.2 4.9 29.3 18.5 22.7 2.3 16.9 1.2 1.3 26.2 34.8 

Π (+ cdb3) 14.2 3.1 19.6 15.3 6.8 1.3 15.0 0.9 1.8 18.8 23.3 

 -2.0 -1.8 -9.7 -3.2 -15.9 -1 -1.9 -0.3 0.5 -7.4 -10.5 

 

Labeled position 619 623 629 631 632 636 652 662 664 689 697 

Π (- cdb3) 26.7 32.7 18.9 18.8 15.1 1.4 18.9 28.2 25.4 8.9 25.1 

Π (+ cdb3) 13.9 20.7 16.2 3.9 7.1 0.9 6.8 13.5 16.9 13.2 19.8 

 -12.8 -12.0 -2.7 -14.9 -8.0 -0.5 -12.1 -14.7 -8.5 4.3 -5.3 

Π values are dimensionless quantities as defined in experimental procedures. 

 

 In addition to the sites on the top loop surface, spin labeling at another set of sites which 

reside on the outer helix (residues 616 and 619 from the 19th repeat and residue 652 from the 20th 

repeat) and the short linker (residue 613 from the 19th repeat) exhibited significant decreases in 

NiEDDA accessibility upon complex formation as shown in Table 8 and Fig. 34. The same set of 

spin labeled mutants also showed slight decreases in side chain mobility upon binding (data not 

shown). However, interprotein DEER distance constraints, which will be described in the next 

section, clearly excluded the outer helix surface from the binding interface. Observation of the 
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Figure 34. Changes in spin label side chain mobility (upper) and solvent accessibility as assessed by 

collision frequency with NiEDDA (lower) mapped onto the X-ray crystal structure of AnkD34. The red 

residues in the top panel showed a decrease in side chain mobility upon complex formation, the black 

residues showed no change, and the blue residues significantly impaired complex formation when the wt 

residue was changed to cysteine and spin labeled with MTSSL. The same color scheme is used for the 

NiEDDA accessibility data in the lower panel for the black and blue residues while the residues that 

showed changes in accessibility were displayed with three different colors based on their ΔΠ (Πcomplex-

ΠAnkD34) values (red, ΔΠ < -14.0; hot pink, -14.0 ≤ ΔΠ < -5.0; pale pink, -5.0 < ΔΠ ≤ -2.0). The sites that 

showed significant decrease in accessibility at the top loop surface or outer helix are highlighted with red or 

blue border lines, respectively. 

 

 

identical data from binding of these mutants to the N-terminal tail (residues 1–54)-truncated form 

of cdb3 and of no alteration in the R1 side chain mobility at the sites on C-terminal tail (residues 

791–827) of AnkD34 upon complex formation demonstrated that these changes are not artifacts 

caused by interaction with those unstructured parts of the complex (data not shown).  Based upon 
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the long range coupling observed in folding experiments and high sensitivity to the mutations, it 

is speculated that binding to cdb3 might induce some allosteric effects to be transmitted to the 

surface sites on the outer helix surface accompanying rearrangements of R1 side chain 

orientations at those sites.  

 

 

 

 

 

 

 

 

 

 

 

Interprotein distance constraints from DEER measurements.      

Having determined the surfaces on cdb3 and on AnkD34 located at the binding interface, 

it was possible to rationally choose residues on each protein for introduction of single Cys 

mutations, spin labeling, and making DEER measurements of interprotein distances. The 

interprotein distance data make it possible to spatially orient the two proteins relative to each 

other (Bhatnagar et al., 2010; Hilger et al., 2007; Park et al., 2006). Fig. 36 shows the 20 

interprotein distances that were chosen along with the corresponding DEER data and analyses. 

The results of the analyses of DEER data from the 20 pairs are listed in Table 9. Most of the 

DEER data from these 20 pairs of sites (16 out of 20) gave rise to a single component without 

interference from the intra-dimer spin label on cdb3. However, analysis of data involving 

Figure 35. The ribbon presentation of 19th

repeat of AnkD34 with the side chains of 

surface residues which were spin labeled for the 

binding interface mapping study. 
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Figure 36. The 20 interprotein distances between selected sites on cdb3 and on AnkD34 that were used to 

refine the structural model for the complex. The distances measured by DEER are shown superimposed on 

a selected model for the complex in the upper panel. DEER data (dots) and the fits to these data (solid red 

lines) from 20 label pairs are shown in the lower panel. The insets in the lower panel show the average 

distances and distance distributions that were recovered from fitting the experimental data as described in 

experimental procedures.  
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Table 8. Interprotein DEER distances from 20 pairs of surface sites on cdb3 and AnkD34. 

 

 

# 
Sample Interprotein 

DEER distance (Å) 

Inter-subunit distance 

in cdb3 (Å)† cdb3 AnkD34 

1 70 707 30.6 (1.7) 76.2 

2 70 722 27.1 (2.0) 76.2 

3 127 509 29.9 (0.7) 70.0 

4 130 491 37.4 (2.1) 67.9 

5 130 509 34.5 (1.3) 67.9 

6 130 524 24.7 (4.9) 67.9 

7 130 608 28.6 (0.7) 67.9 

8 130 656 28.2 (3.7) 67.9 

9 141 524 33.9 (5.1) 46.5 

10 148 608 38.1 (3.1) 53.0 

11 166 608 20.2 (1.3) 67.8 

12 166 623 30.3 (4.2) 67.8 

13 166 707 26.9 (3.5) 67.8 

14 166 722 31.9 (4.2) 67.8 

15 179 623 25.7 (3.9) 59.6 

16 254 600 19.6 (2.3) 72.3 

17 254 616 30.0 (2.2) 72.3 

18 254 623 24.8 (2.8) 72.3 

19 302 524 28.9 (4.3) 53.8 
20 302 623 32.1 (2.8) 53.8 

†, Cβ-Cβ distance between two equivalent sites from each subunit obtained from the crystal structure of a 
cdb3 homodimer. The numbers in parentheses are the widths of the distance distributions recovered from 
fitting the experimental DEER data. 
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sites 141, 148, and 302 on cdb3 gave rise to two distance components, one from the intra-dimer 

dipolar coupling of spin labels on cdb3 and one from the interprotein dipolar interaction of spin 

labels on cdb3 and AnkD34. The intra-dimer distances were easily analyzed by extending the 

modulation time window in the DEER experiment and extraction of both inter-probe distances by 

a bimodal distance distribution as shown by the data presented in Fig. 36.  

 

Molecular models of the complex based on long range distance constraints.      

The unconstrained rigid docking calculations yielded 100,000 candidate complexes that 

span the full range of possible cdb3-ankyrin orientations, as shown in Fig. 37, upper. This result 

provides compelling evidence that no possible docking orientations were excluded in our 

modeling process. The first-pass distance filter reduced the solution set to 811 candidate 

structures, shown in Fig. 37, middle. When these candidate structures are superimposed on 

ankyrin, cdb3 dimers are localized in a radial band that extends from one side of the ankyrin 

molecule, across the convex surface and to the opposite side. This filter yielded a 99 % reduction 

in the solution set size, but as the fig. 37 shows, there is still considerable variability in this data 

set. The accessibility filter results exhibit a sharp increase in the model RMSD versus 

accessibility score when more than 30 best-scoring candidates are considered. As seen in Fig. 37, 

lower, the set of top 30 candidates forms a tightly clustered group on the side of the top loop 

surface of ankyrin, which agrees well with the empirically defined binding interface of AnkD34 

from the mobility and accessibility measurements of spin labeled side chains. This collection of 

structures, which is shown in an expanded view in Fig. 38, upper panel, predicts an average 

buried surface area of 1103 Å2 and represents the best current solution set. This set of structures 

will constitute the starting point for more detailed structural refinement in future work where both 

the spin labeled side chains will be explicitly modeled for interpretation of inter-probe distances 

and the local structures of cdb3 and AnkD34 at the binding interface will be allowed to relax.  
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Figure 37. Ensemble of structural models for the cdb3-AnkD34 complex superimposed on the crystal 

structure of AnkD34. The top panel shows 500 representative poses from the 100,000 generated by 

ROSETTA dock using no constraints to guide how the proteins could interact. The center panel shows how 

filtering these 100,000 poses using the 20 interprotein distance constraints from DEER measurements 

reduced the number of poses to 811 and gives a strong indication of the surfaces of the two proteins that 

form the binding interface, the potential orientations of cdb3 relative to AnkD34, and which ankyrin-

Repeats were likely involved in binding. The bottom panel shows the top 30 structures that were obtained 

by filtering the 811 poses in the center panel with the solvent accessibility data as described in experimental 

procedures.  



 

99 
 

 

Figure 38. Color representation for the complex formed between cdb3 and AnkD34. In the upper panel, the 

set of poses for the α-carbon trace for AnkD34 (orange) has been held constant and the 30 poses of the 

cdb3 dimer (green/blue) are positioned relative to AnkD34. In the lower panel, the pose of AnkD34 that is 

closest to the mean of the 30 poses in the upper panel is shown docked with cdb3. The view in the lower 

panel is rotated ~90° from that shown in the upper panel in order to clearly see the positions of residues 160 

and 254 on cdb3 and residues 598 and 631 on AnkD34 shown as silver balls at the binding interface. These 

residues showed high efficiency cross-linking with BMOE as shown in Fig. 41. Also shown as blue balls 

are residues 133, 151, and 181 on cdb3 and residues 590, 623, and 656 on AnkD34. These residues showed 

exchange and dipolar coupling upon complex formation as shown in Fig. 43. The β6/β7 hairpin loop is 

shown in red. 
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 As shown in Fig. 39, the solution set of all top 30 models satisfies 20 DEER distances 

within the ±14 Å boundaries for the corresponding Cβ-Cβ distances with the mean violation of 7.4 

Å. However, previously proposed Michaely model violated these boundaries for 4 distances, 

demonstrating that this model is not correct.  

 

 
Figure 39. Distance differences between the DEER measurements and the corresponding Cβ-

Cβ distances from the Michaely model (red) and the solution set of top 30 models (dark grey).  

 

 

Surface electrostatic potentials of the binding interface 

As mentioned earlier, observation of salt and pH independence of binding predicts that 

hydrophobic interactions might be the dominant forces associated with complex formation. The 

calculated surface electrostatic potential maps of the two proteins, as illustrated in Fig. 40, 

satisfies this hypothesis by showing approximately neutral electrostatic potentials on the 

predicted binding interface for both proteins. In particular, the concave groove region of AnkD34, 

which has been previously hypothesized to be the putative binding interface, exhibited the surface 
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with high density of electrostatic potentials and is unlikely to mediate the hydrophobic 

interaction. Likewise, the β6/β7 hairpin loop of cdb3, which presented considerable negative 

charges on its surface, appears not favorable for binding. These surface electrostatic potential 

maps further support the validity of the defined binding interfaces from each protein component 

and the solution set of structural models. 

 

 

 

Figure 40. Surface electrostatic potentials mapped onto the crystal structures of cdb3 (panel A) and 

AnkD34 (panel B). The electrostatic potentials were calculated based upon the Poisson-Boltzmann 

equation using APBS (Adapted Poisson-Boltzmann Solver) software implemented on PyMol. The 

empirically defined binding interfaces are marked with black dashed lines.   
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Model validation. 

The model of the complex in Fig. 38, bottom, predicts residues that are in close proximity 

at or near the binding interface. As a check on the validity of the models, two types of 

experiments were carried out. First, single Cys mutants of cdb3 at residues 160 and 254 were 

prepared. These residues are at the interface but do not inhibit complex formation as shown by 

the binding data in Fig. 38. Single Cys mutants of AnkD34 were made at residues 616, 619, and 

623 on the back convex surface of repeat 19, at residue 613 on the short linker, and at residues 

598 and 631 on the top convex surface. Residues 598 and 631, which are predicted by the model 

in Fig. 38, lower panel to be at the binding interface, do not interfere with complex formation as 

shown in Fig. 33. The model predicts that both residues 160 and 254 on cdb3 and residues 598 

 

 
 
 

 
 
 
 
 
 
 
 
Figure 41. Chemical cross-linking of cysteine residues between single sites on cdb3 and at single sites on 

AnkD34. The models in Fig. 38 predict the residues that are at the protein-protein interface of the complex. 

These predictions were tested using the short cross-linking reagent BMOE. The SDS PAGE results confirm 

that residues 160 and 254 on cdb3 are in close proximity to residues 598 and 631 on AnkD34. However, 

residues 160 and 254 on cdb3 do not form cross-links with residue 613 in the linker region of AnkD34 or 

with residues 616, 619, or 623 on the back convex surface. 
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and 631 on AnkD34 are within 10 Å in the complex. It further predicts that residues 160 and 254 

on cdb3 are greater than 20 Å from residues 613, 616, 619, and 623 on AnkD34. In order to test 

these predictions, the short cross-linking reagent bis-maleimidoethane (BMOE) was used to 

determine which pairs of cysteines could be cross linked and which could not. As shown by the 

SDS-PAGE gel in Fig. 29, residues 160 and 254 on cdb3 were efficiently cross-linked to residues 

598 and 631 on AnkD34. However, no cross-links to residues 613, 616, 619, or 623 on AnkD34 

were formed. The latter results not only agree with the model for the complex in Fig. 38, lower 

panel, but they also support the binding interface data for cdb3 and AnkD34. Fig. 42 illustrates 

that all top 30 models present relatively short Cβ-Cβ distances for four pairs of sites (indicated by 

red box in Fig. 42) that allowed the formation of BMOE-mediated cross-linked products. All 

those distances are in or close to the range of 4-12 Å, which are typical Cβ-Cβ distances that can  

 

 

 

Figure 42. Comparison of Cβ-Cβ distances from the Michaely model (red line) and 

the solution set of top 30 models (grey lines) for the pairs of sites which have been 

used in cross-linking experiments. 
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afford BMOE-mediated cross-linking reactions. The same set of distances from the Michaely 

model shows that the observed cross-linked products cannot be formed in this model.  

The second set of experiments involved measuring interprotein dipolar coupling between 

spin label pairs, one on cdb3 and the other on AnkD34. This was accomplished by placing a spin 

labeled side chain, one at a time, on cdb3 at residues 133, 151, and 181. All of these residues are 

near the binding interface based upon the model presented in Fig. 38, lower panel, introduction of 

a cysteine and spin labeling does not alter binding affinity (Fig. 29), and none shows significant 

changes in EPR lineshape upon complex formation. Similarly, spin labeled side chains were 

incorporated in AnkD34 at residue 590 on the 18th ankyrin-Repeat, at residue 623 on the 19th 

ankyrin-Repeat, and at residue 656 on the 20th ankyrin-Repeat. Each of these residues is at 

structurally equivalent positions at the base of the outer helix of the respective ankyrin-Repeat  

motifs. The structural model for the complex presented in Fig. 38, lower panel, predict that a spin 

labeled side chain at residue 133 in cdb3 should be in close proximity (< 10 Å) to a spin labeled 

side chain at residue 590 in AnkD34, that a spin labeled side chain at residue 151 in cdb3 should 

be in close proximity to a spin labeled side chain at residue 623 in AnkD34, and a spin labeled 

side chain at residue 181 in cdb3 should be in close proximity to residue 656 in AnkD34. Fig. 43 

shows that this is the case as strong exchange and dipolar coupling is observed for each of these 

three interprotein pairs. The models are also compatible with additional data which show weaker 

dipolar coupling between a spin labeled side chain at residue 133 on cdb3 and one at residue 623 

on AnkD34 but no significant dipolar coupling to one on residue 656 on AnkD34. Similarly, the 

models predict weaker dipolar coupling between a spin labeled side chain at residue 151 on cdb3 

and on residues 590 and 656 on AnkD34. Finally, the models predict very weak dipolar coupling 

between a spin labeled side chain at residue 181 in cdb3 and at residues 590 and 623 on AnkD34. 

The relevance of model prediction is more clearly illustrated in Fig. 44 where the Cβ-Cβ distances 

were compared between the Michaely model and the solution set of top 30 models for the pairs of 

sites which have been used in dipolar/exchange coupling experiments. All top 30 models show 
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relatively short Cβ-Cβ distances (approximately shorter than 20 Å) for the three pairs of sites 

which have shown strong dipolar/exchange coupled spectra; however, the Michaely model 

predicts that none of the pairs of sites are close to each other enough to present dipolar/exchange  

 

 

 

 

Figure 43. Exchange and dipolar coupling from pairs of labeled sites near the binding interface. The strong 

dipolar and exchange couplings were observed between spin label pairs in 133cdb3/590AnkD34, 

151cdb3/623AnkD34, and 181cdb3/656AnkD34, all of which are predicted by the structural model in Fig.  

38 to be at the binding interface between the two proteins. The models in Fig. 38 and in more detail, the 

lower panel, which presents one of those models with the pairs of sites for spin labeling, also predicts close 

proximity between two spin labels in 133cdb3/623AnkD34, 151cdb3/590AnkD34, and 151cdb3/656 

AnkD34. However, it predicts much weaker dipolar interactions in 133cdb3/656AnkD34, 181cdb3/590 

AnkD34, and 181cdb3/ 623AnkD34. The additional 6 EPR spectra confirm these predictions. Each EPR 

spectrum obtained from the complexes (red) was compared with the sum of spectra from the corresponding 

singly spin labeled constructs (black). 
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couplings reinstating that this model is not correct. Collectively, the cross-linking data and the 

dipolar coupling data verify that the models of the complex are able to correctly predict these 

experimental observations thereby adding confidence that many of the essential features of the 

models are correct. 

 

 
Figure 44. Comparison of Cβ-Cβ distances from the Michaely model and the 

solution set of top 30 models for the pairs of sites on or near the binding interface 

which have been used in the dipolar/exchange coupling experiments. 

 

 

Local structural changes in the peripheral domain of cdb3  

  Dipolar couplings shown in CW-EPR and DEER distances, obtained from the pairs of 

spin labels attached at equivalent sites on the dimer interface confirmed that a cdb3 dimer 

undergoes no global structural change upon the complex formation. However, the possibility of 

local structural changes occurring on or near the peripheral binding interface cannot be excluded. 

In order to probe if binding to AnkD34 can induce such changes, multiple DEER distances were 

collected for pairs of sites residing around the binding interface as shown in Fig. 45 (top panel). 
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According to the constructed models, only residue 130 is on the binding interface while residues 

166, 179, 302 are in proximity to, but not exactly on, the interface. In particular, a significant 

decrease in R1 side chain mobility observed in the EPR lineshpae of residue 130 suggests 

plausible changes in the conformation of the R1 side chain upon binding to AnkD34. Thus, the 

slight distance changes shown in 130/166 and 130/302 can be explained by repacking of the R1 

side chain at residue 130. In accordance with the spin label mobility data and binding interface 

mapping, the DEER distance distribution from 166/302 was insensitive to binding. Collectively, 

these data indicate that a large peripheral area encompassing most of the binding interface is 

structurally stable to the binding reaction.  

However, it is of particular interest to note the last three sets of DEER data in  Fig. 45 

which involve residue 179 on the β6/β7 hairpin loop. Though this loop is not at the binding 

interface, residue 179 exhibits some decrease in spin label mobility and NiEDDA accessibiltiy 

implying that the β6/β7 hairpin loop undergoes some local structural changes upon the complex 

formation. The substantial changes in distance distributions from the three doubly labeled 

mutants, 130/179, 166/179, and 179/302 demonstrate that there are the local conformational 

changes of the β6/β7 hairpin loop. Unlike the slight changes (less than 2 Å) from the DEER data 

involving residue 130, the DEER data from 130/179 and 166/179 presented more significant 4~5 

Å alterations in the mean distances. Both internal conformational changes of the R1 side chain 

and backbone movement can contribute to the inter-spin DEER distances and they are typically 

not separable.  Therefore, it is currently not clear if these distance changes involving residue 179 

are associated with the backbone movement of the β6/β7 hairpin loop or just due to reorientation 

of spin label side chain at residue 179. In either case, the essential role of the β6/β7 hairpin loop 

in the complex formation, which was manifested by many lines of evidences (Chang and Low, 

2003; Davis et al., 1989; Ding et al., 1996; Willardson et al., 1989) could be associated with the 

local structural changes of this loop observed in this study. 
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Figure 45. Intraprotein DEER distances around the binding interface of CDB3 with (red lines) and without 

(blue lines) molar excess of AnkD34. The top panel displays four sites used in DEER measurements with 

explicitly placed spin labels on them. The bottom panel exhibits DEER traces (left) and their corresponding 

distance distributions (right). 
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Discussion 

 

Ankyrin as an adaptor protein that links the lipid bilayer to the cytoskeleton 

 The ankyrin family of adaptor proteins is able to recognize and bind to the cytoplasmic 

domains of a large number of intrinsic membrane proteins via their membrane binding domains 

(reviewed in (Bennett and Baines, 2001)) and thereby form a link between the cytosolic surface 

of the membrane and the underlying spectrin meshwork through binding of ankyrin to spectrin 

via its spectrin binding domain. Some of the ankyrin binding partners that have been reported 

include the Na+/K+-ATPases (Nelson and Veshnock, 1987), sodium channel β subunits (Malhotra 

et al., 2000), the cardiac Na+/Ca2+ exchanger (Li et al., 1993), glycoprotein GP85 (Kalomiris and 

Bourguignon, 1988), nervous system cell adhesion molecules including neurofascin, L1, NrCAM, 

NgCAM, and neuroglian (Davis and Bennett, 1994), the InsP3 receptor (Bourguignon et al., 

1993), clathrin (Michaely et al., 1999), and the ryanodine receptor (Bourguignon et al., 1995) in 

addition to the cytoplasmic domain of the anion exchange protein in erythrocytes (Michaely and 

Bennett, 1993). Interestingly, no clear patterns of which surfaces on ankyrin are involved in these 

many binding interactions and what structural elements on their target binding proteins serve for 

binding recognition have emerged (Mosavi et al., 2002). In fact, extensive data in the literature 

indicate that different surfaces of the ankyrin membrane binding domain can interact with 

different proteins. To date, there have been only a dozen structures determined at, or near, atomic 

resolution for many of the known complexes including those involving DARPins (Kohl et al., 

2005; Kohl et al., 2003; Schweizer et al., 2007). Thus, it is of considerable interest to understand 

what the structures of representative members of these classes of complexes are and what drives 

the high affinity binding interactions which are essential to normal cellular function and 

organization. 
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AnkD34 binding interface of cdb3 

The association of cdb3 with the AnkD34 region of the membrane binding domain of 

ankyrin-R has been examined in detail in previous biochemical and mutagenesis studies on cdb3 

and on AnkD34. Studies on cdb3 have indicated that there are interactions of residues 1-75 in the 

unstructured N-terminal domain, and residues 118-141, 155-160, and 174-193 in the peripheral 

domain of cdb3 with AnkD34 (Davis et al., 1989; Davis et al., 1991; Ding et al., 1994; Ding et 

al., 1996; Wang et al., 1995; Willardson et al., 1989). The data in Figs. 30 and 31 and the binding 

data in Fig. 29 agree with these previous conclusions. The residues in and around α-helices 2 and 

3 in the peripheral domain of cdb3 showed substantial changes in mobility and solvent 

accessibility upon complex formation as well as diminished binding affinity in pull-down assays. 

Also, spin labels at some positions in the β6-β7 hairpin loop showed spectral changes in 

agreement with previous work by site directed fluorescence labeling which showed modest 

changes in solvent accessibility when the complex with wt-AnkD34 was formed (Zhou, 2006).  

The collection of data presented clearly defined the binding interface as the horizontally extended 

area in the middle of the peripheral domain as presented in Figs.30 and 31, providing a relatively 

flat and hydrophobic surface (Fig. 40), which is highly complementary to the defined interface of 

ankD34 in terms of both shape and electrostatics. However, despite the spectral changes, the β6-

β7 hairpin loop was excluded from the defined interface by the multiple interprotein DEER 

constraints, which will be discussed later. 

 In previous work, it has been shown that the N-terminal domain of cdb3, which is 

composed of residues 1-54, is dynamically disordered in solution with no observable interactions 

between this domain and the central folded domain of cdb3 (Zhou et al., 2005). However, when 

spin label side chains are placed at sequential positions along the central portion of the N-terminal 

domain, a signal with restricted motion is observed when cdb3 is bound to AnkD34 (data not 

shown). Previous studies have indicated a role for the N-terminal domain in the cdb3-AnkD34 
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interaction (Davis et al., 1989; Ding et al., 1994; Ding et al., 1996; Wang et al., 1995; Willardson 

et al., 1989). On the other hand, the models for the complex presented in Fig. 38 do not indicate 

any direct interactions between the peripheral domain of cdb3 and ankyrin-Repeats 22 and 23 

even though previous studies have shown that these repeats are important for high affinity 

binding (Davis et al., 1991; Michaely and Bennett, 1995b). These results thus suggest that the N-

terminal domain may be involved in interactions with ankyrin-Repeats 22 and 23. However, a 

cdb3 deletion mutant lacking the N-terminal domain was confirmed to retain the ability to bind 

AnkD34 in a previous study (Chang and Low, 2003) and in this study (data not shown), showing 

that the N-terminal domain is not necessary for binding AnkD34. Given that the N-terminal 

domain of cdb3 binds multiple intracellular proteins such as glycolytic enzymes to form a 

macromolecular complex in erythrocytes, stabilization of the N-terminal domain through its 

interaction with AnkD34 might have implications in organizing those binding partners. This 

working hypothesis needs to be tested in future studies. 

 

Cdb3 binding interface of AnkD34 and structural models for cdb3-AnkD34 complex 

Once the crystal structures for cdb3 (Zhang et al., 2000) and for AnkD34 (Michaely et 

al., 2002) became available, it was possible to construct docked structures for the complex using 

available rigid body docking software packages. Michaely and coworkers used FT-DOCK 

software (Gabb et al., 1997) to construct a model of the complex where the biochemical and 

mutagenesis data from previous studies served as a guide for orienting the two proteins relative to 

each other (Michaely et al., 2002). The proposed model showed extensive interactions of the 

peripheral domain of cdb3 including α-helices 2 and 3 with the ankyrin groove and bottom 

surfaces of ankyrin-Repeats 18-20 on the concave surface of AnkD34 and additional interactions 

between the β6-β7 hairpin loop with ankyrin-Repeats  22 and 23 (Michaely et al., 2002).  
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The models presented in Fig. 38 agree with the previous modeling work with regards to 

which ankyrin-Repeats in AnkD34 interact with the peripheral domain of cdb3. A previous study 

by Michaely and Bennett indicated that cdb3 binding to AnkD34 involves ankyrin-Repeats in the 

13-18 range and in the 19-24 range (Michaely and Bennett, 1995). Specifically, this study showed 

that cdb3 did not bind to the separate domains of ankyrin-Repeats 13-18 (the AnkD3 domain) nor 

repeats 19-24 (the AnkD4 domain), both of which formed stable folded structural domains, 

suggesting the binding interface involved repeats that span the junction between the D3 and D4 

domains. Consistent with this finding, the data in Figs. 32 and 34, indicate that ankyrin-Repeats 

18-20, which span this junction, serve as primary sites of contact between cdb3 and AnkD34.  

Indeed, many other proteins which contain ANK repeat-domains utilize the concave 

groove surfaces formed by inner helices and long linker to interact with their binding partners as 

revealed in co-crystal structures of the ankyrin complexes (e.g., (Katz et al., 2008; Nam et al., 

2006; Truhlar et al., 2006)). Recently, the tips of the linker surface on the membrane binding 

domain of ankyrin-B, which contains many charged residues, has been shown by Mohler and 

coworkers to be involved in binding of the Na+/Ca2+-exchanger to the membrane binding domain 

of ankyrin-B in cardiomyocytes (Cunha et al., 2007).  

However, the constructed models of the cdb3-AnkD34 complex do not agree with the 

interacting surface being located in the ankyrin groove and bottom surfaces of AnkD34 as seen in 

the previously proposed model (Michaely et al., 2002). By placing spin labeled side chains on all 

four surfaces of AnkD34 in the present work it was shown that the top linker surface of AnkD34 

showed the most significant spectral changes as shown in Figs. 32 and 34 while the others did 

not. Moreover, spin labeled side chains incorporated into the tips of the loop regions  in ankyrin-

Repeats 16-21 (residues 600 and 633) showed no changes in side chain mobility or in solvent 

accessibility upon complex formation with wt-cdb3 (data not shown). Collectively, the present 

work provides direct new experimental evidence for a previously uncharacterized surface of 

AnkD34 being involved in binding to cdb3. 
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Construction of structural models of the complex 

 Site directed spin labeling, in conjunction with conventional CW-EPR and modern 

methods of pulsed dipolar EPR including DEER, has emerged as a powerful approach for 

determining the structures of protein complexes (e.g. Bhatnagar et al., 2010; Hilger et al., 2007; 

Park et al., 2006)). This methodology is applicable to determination of structural features of 

complexes of proteins in solution without the necessity of generating ordered single crystal 

samples of the complex as required by X-ray crystallography and is not limited by the size of the 

complex as NMR can be. Among several spectral observables, interspin distances are the most 

direct and powerful constraints that can be obtained from EPR for determination of the complex 

structures. However, the relatively long tether (approximately 6~7 Å) and the intrinsic flexibility 

of the spin label give rise to substantial uncertainty in its conformation relative to the protein 

backbone which complicates the application of inter-spin distances in model construction.  

Recent work on the bacterial chemotaxis proteins CheA and CheW utilized long-range 

interprobe distance constraints obtained by pulsed EPR to guide the docking structure, avoiding 

explicit modeling of spin labels by adopting metric matrix distance geometry and a subsequent 

rigid body refinement process which is used in NMR studies (Borbat and Freed, 2007; Park et al., 

2006). In another study where a similar site-directed spin-labeling approach has been used to 

determine the structure for the functional Na+/H+ antiporter dimer in a liposome, spin labels were 

modeled using a rotamer library and then the relative orientation of two monomers were 

determined by fitting the simulated DEER time traces to the experimental DEER data (Hilger et 

al., 2007). 

 In this study, solvent accessibility constraints were employed for the filtration of 

candidate models instead of explicit modeling of spin labels. As for the cdb3 dimer, the sites 

utilized in the interprotein DEER measurements were selected from the peripheral domain to 

minimize interference from the long intra-dimer DEER distances (generally longer than 60 Å). 

This selection led to the unavoidable inclusion of residues 70, 127, 130, and 254 from cdb3 and 
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residues 623 and 656 from AnkD34, which reside on the defined binding interface. R1 side 

chains attached at those sites are thus predicted to undergo significant changes in their local 

environment and concomitant rearrangement of R1 side chain conformation. The conformational 

spaces of the R1 side chain which can be explored by MD simulations from each crystal structure 

may not reflect the real conformation in the complex.  

Previously, Perozo and his colleagues attempted direct incorporation of solvent 

accessibility constraints into the structure refinement of Streptomyces lividans potassium channel 

protein (KcsA) by calculating the interaction between a pseudoatom representation of the R1 side 

chain and solvent molecules using an empirical potential function (Sompornpisut et al., 2008). In 

terms of protein docking, however, it is notable that NiEDDA accessibility is considered as a 

relatively mild constraint since many factors such as the size effect of NiEDDA and the 

orientation of a spin label side chain will act as major determinants, especially for sites on the 

boundary of the binding interface. Under the basic assumption that solvent accessibility will be 

minimized for the sites on the binding interface, all the poses that passed the distance constraints 

were ranked with increasing sum of SAS (solvent accessible surface) area for the sites on the 

defined binding interface and top 20 models were represented as the solution set (described in  

Materials and Methods). However, despite these weaknesses, the solution set of models proves  

 

 

Figure 46. Mean backbone RMSDs of the models in bins with 
increasing bin dimension. 
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well justified by providing binding interfaces which are generally in a good agreement with 

interface mapping data and a considerably lower RMSD value. 

 

Local structural changes induced by the complex formation and the β6-β7 hairpin loop of 

cdb3 

 Studies by Chang and Low (Chang and Low, 2003) indicated that the β6-β7 hairpin loop 

on cdb3 was essential for binding to AnkD34. Specifically, replacing the entire loop composed of 

residues 175-185 with a diglycine bridge greatly reduced binding affinity to levels essentially the 

same as reported for the kidney isoform of cdb3. Replacement of the loop with the diglycine 

bridge did not result in any significant global disruptions of the structure of cdb3 as judged by pH 

induced conformational changes, by binding to protein 4.1, and by binding of the N-terminus to 

glycolytic enzymes. The role of this loop was later tested in an in vivo mouse model (Stefanovic 

et al., 2007) where again results indicated a role for the β6-β7 hairpin loop in ankyrin binding. 

The model in Fig. 38, lower panel, does not indicate a direct interaction between the 

β6/β7 hairpin loop of cdb3 and AnkD34 even though changes in spectroscopic observables 

suggest that this loop senses the binding interaction. None of the other 29 poses shown in Fig. 38, 

upper panel, indicate a direct interaction either. It is possible that this loop is necessary for 

structural rearrangements of residues on cdb3 that are at the protein-protein interface. It should be 

emphasized that even though the data in Figs. 27 and 28 demonstrate that there are no significant 

global structural changes in either cdb3 or AnkD34 upon complex formation, it is likely that there 

are side chain rearrangements and possibly small changes in positioning of secondary structural 

elements of both proteins at the binding interface. The changes in DEER distance distributions 

upon complex formation revealed in Fig. 45 also support this notion. Such localized changes 

could lead to additional interactions that are not revealed using rigid body docking as a first 

approximation for determining the major features of the structure of the complex. Thus, it will 
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require additional refinement of the rigid body docked structures using molecular dynamics 

approaches in order to draw final conclusions about the exact role of the β6-β7 hairpin loop in the 

binding interaction.  

 

Insights into the structural models of Cdb3-AnkD34 complex in erythrocytes 

Two cdb3 dimers may bind to ankyrin-R, one to AnkD2 and the other to AnkD34, either 

separately (Michaely and Bennett, 1995) or as a tetramer (Michaely et al., 2002). The models in 

Fig. 38 showing how one cdb3 dimer binds to AnkD34 likely preclude the possibility that the 

second cdb3 dimer could simultaneously bind to AnkD2 and the first cdb3 dimer in the 

orientation consistent with the previously proposed tetramer structure (Zhang et al., 2000) unless: 

1) there is a significant structural rearrangement of the membrane binding domain as a result of 

binding two dimers of cdb3 or 2) the major binding interaction between cdb3 and the AnkD2 

domain involves the extended N-terminus of cdb3. Further studies on the structure of the complex 

formed between cdb3 and the AnkD2 domain or studies on binding two dimers to the full length 

membrane binding domain will be required to discriminate between these two possibilities. 

 

 

 

 

 

Figure 47. Two schematic cartoon presentations showing the possible arrangements of two cdb3 dimers 

that bind the membrane binding domain of ankyrin-R (D1–D4). Top model displays the formation of ‘true 

tetramer’ of cdb3 where two cdb3 dimers interact with each other and one of them (colored in blue) binds 

D34 region of ankyrin. In this model, the unstructured N-terminal region of the other cdb3 dimer, which is 

not shown in the figure, can be speculated to bind the D2 region of ankyrin-R. The bottom model features 

the ‘dimer of dimer arrangement’ of two cdb3 dimers in which one (colored in blue) binds to D34 and the 

other (colored in magenta) to D2. 
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APPENDIX 

 

STRUCTURE OF THE CALCIUM BINDING DOMAIN OF NCX1.1 

 

CHAPTER A1 

Introduction 

 

Excitation-Contraction Coupling in Cardiac Muscle Cells 

 

 Excitation-contraction (EC) coupling is the process whereby an action potential triggers 

myocytes to contract. It is well known that calcium ions play a pivotal role in cardiac EC 

coupling (reviewed in (Bers, 2002; Bers and Guo, 2005)). Upon membrane depolarization, Ca2+ 

ions enter the cell through L-type Ca2+ channels (or dihydropyrodine receptors [DHPRs]) located 

on the sarcolemma. The elevated level of intracellular Ca2+ concentration ([Ca2+]in) triggers a 

subsequent release of Ca2+ that is stored in the sarcoplasmic reticulum (SR) through Ca2+-release 

channels, ryanodine receptors (RyRs), which increases local [Ca2+]in from about 200–400 μM. 

The L-type Ca2+ channel and RyR are colocalized to form a local calcium signaling complex 

called a couplon that is specialized to enhance Ca2+ induced Ca2+ release by providing the RyR its 

maximum sensitivity for its ligand. The resultant rise in [Ca2+]in binds to, and activates proteins in 

the myofilaments to produce cardiac contraction. First, the free Ca2+
 binds to troponin-C that is a 

part of the regulatory complex attached to the thin filaments. Calcium binding induces a 

conformational change in the regulatory complex and troponin-I exposes a site on actin that is 

able to bind to the myosin ATPase located on the myosin head. The subsequent ATP hydrolysis 

provides the energy required for the conformational change which results in a movement 
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(“ratcheting”) between myosin heads and actin, so that the actin and myosin filaments slide past 

each other. Ratcheting cycles iterate as long as the [Ca2+]in remains elevated. To allow cardiac 

muscle to relax, [Ca2+]in must decline quickly to the basal level. This calcium removal process is 

performed mainly by the SR Ca2+-ATPase (SERCA) which pumps cytosolic Ca2+ back into the 

SR, and the Na+/Ca2+ exchanger (NCX) which extrudes Ca2+ out of myocytes. As [Ca2+]in falls 

back to the basal level, the troponin complex undergoes conformational changes that render 

troponin-I able to inhibit actin-myosin binding. Replacement of ADP with a new ATP in the 

myosin head closes the cycle and the initial sarcomere length is restored.  

 

 

 

 
Figure 48. The mechanism of EC coupling and the involved Ca2+ pathway in myocytes. The inset 

shows the time-dependent changes in intracellular Ca2+ concentrations and contractions induced by 

the action potential. The flow of Ca2+ ions during the depolarization and relaxation of myocytes are 

indicated by red and green arrows, respectively.  
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The Na+/Ca2+ exchanger family and NCX1 isoforms 

 

NCX1 belongs to the SLC (solute carrier) 8 gene family, which is part of a larger 

superfamily of related Ca2+/cation antiporter genes, known as the CaCA superfamily (Cai and 

Lytton, 2004). This superfamily comprises five major branches including NCX (SLC8) and 

NCKX (SLC24), both of which contain almost exclusively vertebrate members. The common 

structural feature of transporters from the CaCA superfamily reside in their membrane topology, 

where two clusters of five transmembrane helices are joined by a cytoplasmic loop of varying 

size. Importantly, each cluster contains a signature motif, the α-repeat (Schwarz and Benzer, 

1997), which is known to be critical for the transport function of both NCX1 and NCKX2 

transporters. Two α-repeats from each hydrophobic cluster are oppositely oriented in terms of the 

membrane and associate with each other, forming the ion-binding pocket of exchangers (Iwamoto 

et al., 2000; Kinjo et al., 2007). 

  Mammals express three members of the NCX (SLC8) family, NCX1, NCX2, and 

NCX3. NCX1 is predominantly expressed in heart, brain, and kidney, but also distributed in 

almost all other tissues at lower levels. The other members of the family show a much more 

restricted pattern of expression. NCX2 is almost exclusively found in neurons in brain while 

NCX3 is expressed in skeletal muscle and at lower levels in some brain regions.  

The tissue-specific distribution of NCX1 isoforms is the consequence of alternative 

splicing where different combinations of 6 exons (denoted as exons A, B, C, D, E, and F) 

constitute the long cytoplasmic loop of NCX1 isoforms. Exons A and B are expressed in a 

mutually exclusive manner while the other 4 exon cassettes are randomly inserted (Kofuji et al., 

1994). The splice variant of NCX1.1 (exons ACDEF) is the dominant form in heart, while the 

other variants NCX1.3 (exons BD) and NCX1.4 (exons AD) are typically found in kidney and 

brain, respectively. No difference was observed in regulatory property between heart and brain 

splice variants which show typical Ca2+ regulation. However, the kidney splice variant is 



 

120 
 

insensitive to regulatory Ca2+ which releases the exchanger from Na+-dependent inactivation 

(Dyck et al., 1999).  

 

Transport Function of NCX1 and its Regulation 

 

Ion exchange function of NCX1 

Na+/Ca2+ exchange is the main Ca2+ efflux mechanism across the plasma membrane of 

cardiomyocytes that reestablishes resting levels of Ca2+ after muscle contraction. The transport 

function is fully reversible, so the direction of ion movement depends on the ion gradients and the 

number of ions that are transported. Under normal physiological conditions, NCX1 extrudes one 

Ca2+ ion for influx of 3 Na+ ions using the electrochemical Na+ gradient provided by Na+/K+ 

ATPase (Kang and Hilgemann, 2004). The current model of the transport mechanism proposes a  

 

 

Figure 49. The transport cycle of NCX1. The empty exchanger is shown to bind either 

one Ca2+ ion or three Na+ ions, in a mutually exclusive manner. Either binding event 

allows a conformational change that reorients the accessibility of the ion-binding site 

across the membrane barrier.  
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cycle of sequential events that consists of binding, conformational changes, and release steps as 

shown below (Blaustein and Lederer, 1999). This model also involves a single ion-binding site 

that can bind either three Na+ ions or one Ca2+ ion in a mutually exclusive manner.  

 

Regulation of channel activity by ions 

 The transport site of NCX1 shows different binding affinities for intracellular and 

extracellular ion ligands. An apparent affinity in the low micromolar range for cytoplasmic Ca2+ 

prevents NCX1from being fully activated until [Ca2+]in rises well above the resting level while an 

apparent affinity of 10-20 mM for Na+ is close to or slightly higher than the resting [Na+]in. 

However, when the transport site faces outward, the apparent affinities for [Ca2+]ex and [Na+]ex 

become markedly higher, which are approximately 1 and 60-80 mM, respectively (Matsuoka and 

Hilgemann, 1992). Hence the overall kinetic rate of the exchanger under normal resting 

conditions is determined by occupancy of the cytoplasmic Ca2+- binding sites. 

 Regulation of NCX1 activity by Ca2+ was first observed using dialyzed squid axon, and 

then in patch-clamped myocytes and giant excised patches. Several later studies have found that 

the long cytoplasmic loop is associated with regulation of exchange activity by [Ca2+]in. 

Treatment of the excised patches with chymotrypsin lead to removal of Ca2+ regulation 

(Hilgemann, 1990). Patch experiments using a series of mutant NCX1s revealed that acidic 

clusters within the central cytosolic loop are essential to Ca2+ regulation (Levitsky et al., 1994; 

Matsuoka et al., 1995).  

 The two major intrinsic regulatory properties of the Na+/Ca2+ exchangers are Na+-

dependent inactivation and Ca2+ regulation. These are readily observable in the giant excised 

patch experiments (Hilgemann, 1990) as illustrated in Fig. 50. Unlike Ca2+ regulation, a high 

level of [Na+]in has an inhibitory effect on exchange activity. This Na+-dependent inactivation 

results in a characteristic pattern of outward Na+/Ca2+ exchange current, which features a 

significant decline with time to a steady-state level following the rapidly developing current upon 
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the application of Na+ in excised patches. Initially, this process was proposed to be triggered by 

Na+-binding to the cytoplasmically oriented transport site. However, the current view supports an 

alternative model where Na+ interacts with a regulatory site distinct from the transport site, called 

XIP (exchange inhibitory peptide) (DiPolo and Beauge, 2006). The XIP region is located on the 

N-terminal region of the cytosolic loop and consists of a 20 residue segment which is rich in 

hydrophobic and basic amino acids. The other regulatory mechanism, Ca2+ regulation, is 

mediated by the large intracellular loop. Binding of Ca2+ to distinct high-affinity sites on this loop 

activates the exchange activity in a concentration-dependent manner and also eliminates Na+-

dependent inactivation. However, these two different regulations by intracellular Ca2+ appear to 

be performed independently.  

 

 

 

Figure 50. Regulation of the Na+/Ca2+ exchanger by Na+ and Ca2+ demonstrated by outward 

Na+/Ca2+ currents generated across a giant patch excised from an oocyte expressing NCX1. The 

current is initiated by the rapid application of Na+ into the bath at the intraculleular surface. 

Current peaks and then partially inactivates (Na+-dependent inactivation). The Na+/Ca2+ 

exchanger also requires submicromolar levels of regulatory Ca2+ in the bath for activation (Ca2+ 

regulation). 
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Regulation of channel activity by metabolites 

 During the early 90’s, Hilgemann and co-workers found that ATP has an ability to 

activate exchange activity from giant excised patch preparations (Collins et al., 1992; Hilgemann 

et al., 1992). This ATP upregulation was observed to require the simultaneous presence of Mg2+ 

and also to be dependent on vanadate. The later studies have shown that this stimulation of NCX1 

by Mg·ATP is predominantly mediated by the production of phosphatidyl inositol-4,5-

bisphosphate (PIP2) (Hilgemann and Ball, 1996). Thus the findings that ATPγS can upregulate 

the exchanger even in the absence of vanadate (Berberian et al., 1998) strongly suggest that 

vanadate may play a role in inhibiting the phosphatase associated with PIP2 hydrolysis. Further 

experiments demonstrated that PIP2 can directly bind to NCX1 (Asteggiano et al., 2001) and the 

XIP region of the intracellular loop is the binding site involved in PIP2 upregulation, implying 

that the Mg·ATP and PIP2 stimulation is mediated by alleviating Na+-dependent inactivation (He 

et al., 2000). Consistent with this model, mutations of key residues in the XIP region showed 

reciprocal effects on Na+-dependent inactivation and PIP2 activation.  

 

Regulation of channel activity by binding partners 

 Much evidence has been reported that interactions with other proteins are associated with 

modulation of NCX1 function. Recently, a study using ankyrin B-knockout heterozygous mice 

showed that ankyrin deficiency impaired stability, expression and localization of NCX1 (Cunha 

et al., 2007; Mohler et al., 2005).  

 Schulze et al. (Schulze et al., 2003) demonstrated an association between Na+/Ca2+ 

exchanger and a macromolecular complex including protein kinase A, protein kinase C, protein 

phosphatase 1, protein phosphatase PP2A, and muscle protein kinase A-anchoring protein 

(mAKAP). Phospholemman (PLM), known as a modulator of Na+/K+-ATPase activity in various 

tissues, binds to the cytosolic loop of NCX1 through its C-terminal cytosolic tail upon being 

phosphorylated resulting in inhibition of NCX1 function (Wang et al., 2006; Zhang et al., 2006). 
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Another example of a protein-protein interaction that regulates NCX1 can be seen in Caveolin-3, 

an isoform of caveolins, which has been implicated in the regulation of normal cardiac function, 

and observed to be one of the proteins that associates with NCX1 (Bossuyt et al., 2002).  Yeast 

two-hybrid screening approaches also identified calcineurin (Wang et al., 2006; Zhang et al., 

2006) and protein 14-3-3 (Pulina et al., 2006) as other NCX1 binding partners, both of which 

have been observed to inhibit NCX1 upon binding.  

 

Topology and structure of NCX1 

 

Though the Na+/Ca2+ exchanger was first described in squid axon and mammalian heart 

four decades ago, the canine cardiac Na+/Ca2+ exchanger gene was cloned in 1990 and denoted as 

NCX1 (Nicoll et al., 1990).  The translated polypeptide is matured by signal peptide (N-terminal 

hydrophobic segment of 32 amino acids) cleavage and glycosylation at the first extracellular 

segment at the N-terminus. A biochemically derived topology model of NCX1 predicts nine 

transmembrane α-helices, and a large cytosolic loop of about 500 residues (residues 217~705) 

between helices 5 and 6. This cytosolic loop consists of a tandem array of two CBDs (calcium 

binding domains) and the linker domain (residues 217–370 and 651–705) called the CLD 

(catenin-like domain). The CLD flanks the CBDs and link them to the transmembrane domain as 

shown in Fig. 51, below. The two structurally homologous Ca2+ binding domains, CBD1 and 

CBD2, are independently folded units, and connected by a short linker. They sense cytoplasmic 

Ca2+ levels by binding regulatory Ca2+ ions and account for the full Ca2+ regulation activity in the 

exchanger. The designation CLD is derived from its sequence homology with the cadherin 

adhesion molecule α-catenin (Hilge et al., 2006); however, any functional and structural 

information is not yet known for this domain. A segment of the N-terminal region of the CLD 
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forms the XIP domain which is responsible for Na+-dependent inactivation and is predicted to be 

in proximity with the ion transport site of the transmembrane domain. 

 

 

 

Figure 51. Topology model of NCX 1.4. The four NCX domains are depicted in unique colors: TM, 

gray; CLD, blue; CBD1, red; and CBD2, green. TM helix 5 and the region subjected to alternative 

splicing are displayed in violet. Boundaries of the domains are indicated by residue numbers and are 

based on the NCX1 AD-splice variant. 

 

 

The membrane domain of NCX1 

Despite a lack of structural information at the atomic level, a range of studies have determined the 

precise topology of the transmembrane domain of NCX1. Like other members of  the CaCA 

superfamily, NCX1 comprises two hydrophobic clusters joined by a long intracellular loop which 

is encoded in a combination of 6 exons. The current model proposes 5 transmembrane helices in 

the N-terminal cluster and 4 in the C-terminal cluster (Iwamoto et al., 1999; Nicoll et al., 1999). 
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The two conserved α-repeats from each cluster are oriented in opposite directions with respect to 

the membrane, with their central regions between two transmembrane helices forming reentrant 

loops (Iwamoto et al., 2000; Nicoll et al., 1999). Cross-linking experiments have shown that 

helices 2, 3, 7, and 8, which are located in or around the α-repeats, are in proximity with one 

another (Qiu et al., 2001; Ren et al., 2006) as shown in Fig. 52. It has been suggested that the two 

α-repeats are near one another in the folded protein so that they can work in concert to form the 

ion conduction pathway. A study using NCX1 mutants where a set of residues on the α-repeats 

were mutated has confirmed that this region is pivotal to ion binding and transport. There are two 

critical acidic residues in each repeat (Iwamoto et al., 2000; Nicoll et al., 1996). In a subsequent 

mutational study on the α1 repeat, transmembrane helix 3, rather than the reentrant loop, was 

observed to be more directly involved in binding and transport of Na+ ion (Ottolia et al., 2004). 

Taken together, it seems highly probable that the two highly conserved α-repeats form a pathway 

for the transport of ions across the membrane though its molecular mechanism still remains 

unknown. 

 

    

Figure 52. Helix packing of transmembrane segments in NCX1. The left panel is a diagram that 

shows a possible arrangement of transmembrane segments 2, 3, 7, and 8 with the pairs of sites that 

yielded disulfide bond formation in cross-linking experiments. Sites indicated by black-filled circles 

are modeled to be near the intracellular surface, whereas sites indicated by grey-filled circles are 

modeled to be in proximity with the extracellular surface. The right panel is the hypothetical 

topology of transmembrane domains that were examined for their intramolecular interactions are 

colored in grey. 
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The cytoplasmic domain of NCX1 

 Electrophysiological and mutational studies have indicated that the regulation of NCX1 

function is primarily mediated by the long cytoplasmic loop region. More recent studies have 

identified the XIP and clusters of acidic residues as critical elements in the cytoplasmic loop. 

However, lack of structural information has slowed understanding of underlying molecular 

mechanisms of NCX1 function and its regulation. However, crystal and NMR structures of the 

isolated CBDs have been determined recently at atomic resolution as listed in Table 9, below. 

However, due to the large size of the two tandem Ca2+ binding domain (more than 500 amino 

acid residues), which makes NMR studies challenging, and the presence of flexible regions, 

which make crystallization difficult, currently available structures are limited to the two isolated 

fragments that can bind to regulatory Ca2+, CBD1 (residues 357-500) and CBD2 (residues 501-

650). The full length cytoplasmic loop of NCX1 contains not only the two Ca2+ binding domains  

 

Table 9. Structures of CBDs determined at atomic resolution using X-ray crystallography or NMR 

PDB code Protein Domain Ca2+ Source Structure References 

3EAD CALX CBD1 + Drosophila X-ray (Wu et al.) 

3E9T CALX CBD1 - Drosophila X-ray (Wu et al.) 

3E9U CALX CBD2 - Drosophila X-ray (Wu et al., 2009) 

     

2KLT NCX1.3 CBD2 - Canis NMR (Hilge et al., 2009) 

     

2FWS NCX1.4 CBD1 + Canis NMR (Hilge et al., 2006) 

2FWU NCX1.4 CBD2 + Canis NMR (Hilge et al., 2006) 

     

3GIN NCX1.1 CBD1 + Canis X-ray (Chaptal et al., 2009) 

2DPK NCX1.1 CBD1 + Canis X-ray (Nicoll et al., 2006b) 

     

2QVK NCX1.4 CBD2 - Canis X-ray (Besserer et al., 2007) 

2QVM NCX1.4 CBD2 + Canis X-ray (Besserer et al., 2007) 

2KLS NCX1.4 CBD2 - Canis NMR (Hilge et al., 2009) 
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but also the previously described XIP region, and N- and C-terminal loops. The function of the 

CLD (‘catenin-like domain’(Hilge et al., 2006) described above,  in particular, remains elusive.  

 

Structure of CBD1  Atomic level (Crystal or NMR) structures of CBD1 have been 

obtained from three different isoforms, NCX1.1, NCX1.4 (canine), and CALX (Drosophila) to 

date. Even CALX, which has 60 % sequence homology with NCX1.1, exhibits practically 

identical crystal structure with the others (Wu et al., 2010), demonstrating that CBD1 is 

structurally well conserved throughout the different isoforms. CBD1 has a classical immuno-

globulin fold, where two antiparallel β-sheets consisting of strands A-B-E and strands D-C-F-G 

forms a β-sandwich motif. Strands A and G are partly disrupted by a β-bulge and cis-proline, 

respectively, which appear to prevent them from forming intermolecular hydrogen bonding and 

then consequent interaction. The Ca2+-bound from of the CBD1 crystal structure displays four 

Ca2+ ions positioned in a planar cluster where multiple acidic residues tightly coordinate Ca2+ 

ions. The binding region consists of multiple loops including the C-terminus (D498, D499, 

D500), A-B loop (E385), C-D loop (D421), and E-F loop (D446, D447, I449, E451, E454). 

Consistently, mutations in these residues lead to significant decreases in Ca2+ affinity (Hilge et 

al., 2006; Ottolia et al., 2004). Interestingly, the crystal structure of the E454K-CBD1 mutant 

showed that lysine substitution replaces a Ca2+ at position 1 resulting in full exchange activity in a 

charge compensation mechanism (Chaptal et al., 2009). Furthermore, mutations of key residues 

that coordinate Ca2+ at positions 1 and 2 failed to modulate exchange function in the same study, 

implying that Ca2+ ions at positions 3 and 4 are the primary Ca2+ ions that are responsible for Ca2+ 

regulation. 

 Two independent NMR studies revealed the structure of the apo form of CBD1 (Hilge et 

al., 2006; Johnson et al., 2008). In both studies, Ca2+ removal resulted in the most significant 

changes in the binding region, which were found to be unfolded due to the charge repulsion 
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between acidic residues. Based upon NMR parameters such as amide chemical shift change and 

residual dipolar coupling (RDC), the effect of Ca2+ removal was defined to be restricted to the 

binding region even though it appears that Ca2+ binding can be sensed by some distant residues 

away from the binding region. In addition, the long F-G loop and C-terminus were also observed 

to be in a more dynamic state in the apo form of CBD1 with low S2 values.  

 

Structure of CBD2  Due to the presence of the 35 residue-long, extra region of the F-

G loop in CBD2 from NCX1.1 resulting from expression of 5 of the 6 possible splice variant 

exons, crystal or NMR structures of CBD2 have been determined only for the shorter NCX1.4 

(Besserer et al., 2007) and CALX (Wu et al., 2009). The basic structural frame in CBD1 is well 

maintained in CBD2, which features an immunoglobulin fold with a β-sandwich motif formed by 

two antiparallel β-sheets. Even two β-bulges located in strand A and G are also seen in the CBD2 

structure. The long F-G loop, which is located oppositely from the Ca2+ binding region, was not 

resolved in the crystal structure, suggesting this region is in a highly dynamic state. The main 

structural difference between the two domains is noted in the Ca2+ binding region, where the Ca2+ 

binding region of CBD2, unlike CBD1, coordinates only two Ca2+ ions. Based on Ca2+ binding 

affinity, coordination patterns, and mutational analysis, two Ca2+ binding sites were distinguished 

as primary and secondary sites (Besserer et al., 2007). While impaired Ca2+ binding at the 

secondary site did not influence NCX1 function, when the key residues that are involved in Ca2+ 

binding at the primary site were mutated, NCX1 entirely lost two characteristic Ca2+ regulatory 

functions, [Ca2+]in–dependence of exchange function and Na+-dependent inactivation. Given that 

mutations that impaired primary Ca2+ binding in CBD1 just lowered the apparent Ca2+ affinity, 

but none of them was able to eliminate Ca2+ regulation, it is speculated that Ca2+ binding at the 

primary site in CBD2 presumably plays an essential role in Ca2+ regulation.  

 Another distinct feature seen in the crystal structure of CBD2 is that the effect of Ca2+ 

binding on the structure is much smaller than in CBD1. The only structural difference between 
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the bound and apo form of CBD2 is a small shift of the Ca2+ binding loop (Wu et al., 2009). 

However, in a more recent NMR study, chemical shift changes in response to Ca2+ binding were 

observed in multiple regions including residues up to 20Å away from the binding region, 

suggesting that Ca2+ binding can be sensed throughout the molecule (Breukels and Vuister, 2010). 

Moreover, significant changes in backbone dynamics in the F-G loop strongly suggest a critical 

role for this domain in transmitting the Ca2+ binding signal to other part of the Ca2+ regulation 

machinery involved in NCX1 function. 

 

Current structural model of CBD12 

 The recent NMR and crystal structures from each isolated domain of CBD1 and CBD2 

are contributing to our understanding of how the exchange function of NCX1 is regulated upon 

Ca2+ binding. Based upon the NMR structures of CBD1 and CBD2 from NCX1.4, Hilge and 

colleagues proposed a hypothetical model where the plane formed by two CBDs is approximately 

normal to the lipid bilayer so that the Ca2+-binding sites of CBD1 are approximately 90 Å away 

from the transport Ca2+-binding sites (Hilge et al., 2006). The model assumes that Ca2+-dependent 

conformational changes in the relative orientation between two domains may trigger the Ca2+ 

regulation signal, which is transmitted to the transmembrane domain through the CLD domain. 

This model also supposes that the two separate Ca2+-binding regions function as electrostatic 

switches that cause significant and global structural rearrangements in the whole cytoplasmic 

loop upon Ca2+-binding as shown in Fig. 53 (Hilge et al., 2009). Consistent with this model, 

SAXS measurements of CBD12 constructs showed 25 Å and 15 Å of changes in Dmax of 

scattering vectors from AD and ACDEF splice variants, respectively, though the low resolution 

of the technique prevents getting more information on molecular details of structural changes 

caused by Ca2+ -binding. However, a more recent NMR study using the CBD12 construct of the 

AD splice variant provided a different model (Salinas et al., 2011). The residual dipolar couplings 

indicated that the CBD12 adopts an elongated shape in the Ca2+-bound state and the relative 
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arrangement of the two domains is not largely altered in the apo form. Instead, NMR 15N 

relaxation data of the apo state showed a significant increase in interdomain flexibility compared 

with the bound form though it is not clear if the Ca2+-dependence of CBD12 dynamics has any 

implication in the Ca2+ regulatory mechanism. 

 

 

Figure 53. Hypothetical dual electrostatic switch mechanism in NCX regulation. (A) Inactive, Ca2+-free 

NCX is in an extended conformation ([Ca2+] < 200 nM). (B) Submicromolar Ca2+ concentrations induce a 

conformational change via the electrostatic switch in CBD1 that results in a compaction of the Ca2+-binding 

domains probably reducing tension on the linker regions to the CLD ([Ca2+] ~ 200 nM-1 μM). (C) Binding 

of Ca2+ to CBD2 allows for sustained Na+/Ca2+ exchange and removes counteracting Na+-dependent 

inactivation ([Ca2+] > 10μM). 

 

 Another issue which should be considered with regards to the overall topology of NCX1 

and the mechanism of Ca2+ regulation is the oligomeric state of NCX1 in vivo and in vitro. 

Evidence that a monomeric form of NCX1 is not sufficient for its appropriate trafficking to the 

plasma membrane came from the coexpression of two NCX1 proteins tagged with different 

fluorophores (Ottolia et al., 2007). While the two NCX1 constructs showed different localizations 

when they were separately expressed, coexpression of them exhibited homogeneous distribution 

of the two proteins, strongly suggesting that dimerization may be essential for the proper 

targeting of NCX1. Moreover, when FRET was monitored from fluorophores tagged at the long 
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intracellular loop regions of two NCX1s, Ca2+-binding lead to an increase in FRET, which means 

that the long intracellular loops of two exchangers are in sufficiently close proximity to form a 

dimer and that the dimer undergoes Ca2+-dependent conformational changes. FRET analysis of 

NCX1 mutants that lost their Ca2+-binding affinity in either CBD1 or CBD2 revealed that the 

Ca2+-induced conformational changes of NCX1 dimers arise from only the movement of CBD1 

(John et al., 2011). In addition, cross-linking experiments also demonstrated that NCX1 can exist 

as a dimer in vitro (Ren et al., 2008). Taken together, evidence supporting dimer formation of 

NCX1 are accumulating from various approaches. Though any physiological relevance of dimer 

formation has not been implicated, it will be worth attempting to interpret structural aspects 

associated with Ca2+ regulation in the context of a dimer and to construct new structural models 

of NCX1.  
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CHAPTER A2 

Determination of Structural Models of the Calcium Binding Domain of NCX1.1 

 

Introduction 

 

  The cardiac Na+/Ca2+ exchanger NCX.1.1 plays a major role in the contractile 

cycle via efflux of Ca2+ from the cardiomyocyte following its transient rise during systole. Under 

normal physiological conditions, the exchanger utilizes the electrochemical Na+ gradient to 

extrude one Ca2+ ion for influx of 3 Na+ ions (Kang and Hilgemann, 2004). This exchange 

process is vital to proper timing of the Ca2+ transient since studies have provided evidence that 

some cardiac arrhythmias are related to altered exchanger properties and that it has atypical 

function in heart failure (Piacentino et al., 2003; Pogwizd et al., 1999; Weisser-Thomas et al., 

2003).  

 NCX1.1 is regulated by the same ions that it exchanges. Previous studies have shown that 

intracellular Na+ can inactivate the exchanger (Hilgemann et al., 1992). Conversely, intracellular 

Ca2+ overcomes the Na+-dependent inactivation and leads to the physiologically important 

increase in exchange activity (Hilgemann et al., 1992). This activation is vital to proper cardiac 

function. There are a number of splice variants of the NCX1 family of proteins with the ACDEF 

splice variant (NCX1.1) being expressed in cardiomyocytes (Hilge et al., 2006). Most current 

topological models for NCX1.1 predict nine trans-membrane α-helices and a large intracellular 

domain located between helices 5 and 6 (Nicoll et al., 1999; Ren et al., 2006). The intracellular 

domain can be subdivided into three separate structural elements. Current models include an α-

catenin like domain which is proximal to the membrane surface and hence to the transmembrane 

domain of the exchanger and two Ca2+-binding domains which are furthest from the membrane 

surface (Hilge et al., 2006). Numerous studies over the past decade have led to characterization of 
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two tandem regulatory Ca2+-binding domains, denoted Ca2+-binding domain 1 (CBD1) and Ca2+-

binding domain 2 (CBD2), which are located in the central portion of the large intracellular 

domain (e.g.(Hilge et al., 2006)). CBD1 binds four Ca2+ ions (Nicoll et al., 2006) while the 

CBD2-AD  splice variant binds only two (Besserer et al., 2007).  

Structural studies by NMR (Breukels and Vuister, 2010; Hilge et al., 2006; Johnson et al., 

2008) and by X-ray crystallography (Besserer et al., 2007; Nicoll et al., 2006) on isolated CBD1 

and on isolated CBD2-AD have shown that these domains adopt an immunoglobulin fold that is 

composed of a seven-stranded β-sandwich of two antiparallel β-sheets. Most structural studies to 

date have been carried out on the AD splice variant of CBD2 which has a shorter F-G loop 

between β-strands F and G than the ACDEF splice variant. Collectively, these studies have led to 

identification of the regions of the proteins that show changes in structure and dynamics upon 

Ca2+ binding to both isolated domains. Even though the atomic resolution structures of CBD1 and 

CBD2-AD are well established, it remains unknown how binding of Ca2+ is able to regulate 

exchanger activity. Recent studies by Hilge et al. have led to the proposal that Ca2+ regulation of 

the exchanger involves a dual electrostatic switch mechanism where binding of Ca2+ to both 

CBD1 and CBD2-AD are required for structural rearrangements within CBD12 and that this 

could be the basis for regulation of exchanger activity (Hilge et al., 2009). Small angle X-ray 

scattering data in this same extensive study suggested that such a structural rearrangement could 

also occur in the ACDEF splice variant found in heart. 

In the present studies, site directed spin labeling has been employed in conjunction with 

conventional continuous wave electron paramagnetic resonance (CW-EPR) to determine how 

Ca2+ binding to the CBD12-ACDEF splice variant alters the dynamics of specific regions of the 

protein. The results from these studies agree well with the previous NMR studies on the isolated 

domains with regards to which regions of the Ca2+-binding domains show the greatest changes 

upon Ca2+ binding. 4-Pulse DEER has been employed to construct a family of structural models 
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for CBD12-ACDEF in the Ca2+-free and Ca2+-bound forms. These latter studies show that CBD1 

and CBD2 are not lengthwise antiparallel and in close proximity along the entire interface as 

hypothesized in early studies (Hilge et al., 2006) but rather are oriented in an almost linear 

arrangement as suggested by the more recent small angle X-ray scattering studies (Hilge et al., 

2009) and an NMR study (Salinas et al., 2011). Most significantly, both EPR studies in solution 

and DEER measurements show that the relative orientations of the two Ca2+ binding domains are 

not significantly altered upon Ca2+ binding. This result strongly suggests that the allosteric signal 

that regulates the exchanger involves other types of changes in the structure and/or dynamics of 

CBD12 than rigid body reorientation of the two Ca2+-binding domains. Additional studies 

indicated that binding of Ca2+ does lead to changes in the positioning of the α-helix and the 

structure/dynamics of the F-G loop of CBD2. These latter results, coupled with previous studies 

reported in the literature (Breukels and Vuister, 2010; Dyck et al., 1999; Hilge et al., 2009), 

suggest that further investigations of these regions of CBD2 are now warranted. 

 

 

Materials and Methods 

 

Protein preparation and spin labeling 

The full length rat NCX1.1 cDNA, which was generously provided by Dr. J. Lytton at the 

University of Calgary, was used to produce the ACDEF splice variant of CBD12 (NCX1.1). The 

cDNA encompassing residues 360-685 was generated using QuikChange Site-Directed 

Mutagenesis Kit (Stratagene, La Jolla, CA). The PCR fragment was ligated into a pET19b+ 

expression vector (Stratagene, La Jolla, CA) using Nde I and Xho I restriction sites. All four 

endogenous cysteines were replaced with alanine to create a cysteine-less construct (∆C-CBD12). 

Single or double cysteines were then introduced at desired sites in the ΔC-CBD12 construct. The 
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DNA sequences of all the mutants were confirmed by DNA sequencing. The mutant DNAs were 

then transformed into Escherichia coli  competent cells (DE3, pLys-s, Stratagene, La Jolla, CA).  

One liter of LB medium was inoculated with a 10 ml overnight culture and the culture 

was grown at 37° C to reach OD of 0.6-0.8. Protein expression was induced by adding 0.1 mM 

IPTG and then incubating the culture at 27° C for 4 hrs. After cells were harvested by 

centrifugation, the resultant cell pellet was re-suspended in 100 mL lysis buffer containing 20mM 

Tris-HCl, 300 mM NaCl, 0.2 mM DTT, 16 mM imidazole, 40 units/ml lysozyme and EDTA-free 

protease inhibitors (Roche, Indianapolis, IN), pH 8.0, and then quickly frozen in the ethanol bath 

cooled by dry ice. The frozen suspension was kept at -80 ºC before use. 

After thawed, the cell suspension was sonicated on ice for two minutes and followed by 

incubation with 1 % (w/v) Triton X-100, 0.5 units/ml DNase and 0.5 units/ml RNase on ice for an 

additional 30 minutes. The lysates were centrifuged at 12,000 rpm (JA-20 Beckman rotor, 

Beckman Coulter, Inc., Indianapolis, IN) for 30 minutes. The cleared lysate was incubated with 2 

mL of Ni-NTA resin (Qiagen, Valencia, CA) which had been preequilibrated with lysis buffer for 

one hour. The resin was washed with 100 column volumes of wash buffer containing 20 mM 

Tris-HCl, 150 mM NaCl, and 16 mM imidazole, pH 7.4. Single and double mutant proteins were 

then spin labeled overnight on the resin with a 10-fold molar excess of 1-Oxyl-2,2,5,5, 

tetramethyl-∆ 3-pyrroline-3- methyl methanethiosulfonate spin label ( MTSSL: Toronto research 

chemicals, North York, ON, Canada) at 4° C. Labeled protein was first washed with wash buffer 

containing 20 mM Tris-HCl and 16 mM imidazole, pH 7.5, and then with buffer containing 20 

mM Tris-HCl and 60 mM imidazole, pH 7.5. Protein was eluted with 20 mM Tris-HCl and 250 

mM imidazole, pH 7.5. Partially purified protein was further purified using a DEAE anion 

exchange column (TSK DEAE 650M; Ace Scientific, Cherry Hill, NJ) with a linear 0-0.8 M 

NaCl gradient. The labeled proteins were collected from the main peak of the elution profile 

(detected at 280 nm) and then concentrated using an Amicon Ultra-4 centrifugal filter device (30 

kDa cutoff, Millipore, Bedford, MA) to the desired protein concentration. The apparent molecular 
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weight and purity of each labeled protein was assessed by SDS-PAGE gel (Laemmli, 1970). All 

samples used for CW-EPR and DEER measurements were greater than 95 % pure according to 

the intensity of bands on gels. 

 

Isothermal titration calorimetry (ITC) measurements      

Wild type and ∆C-CBD12 protein samples were prepared as described above. The 

proteins were dialyzed against buffer containing 10mM EDTA, 20 mM Tris-HCl and 150 mM 

sodium chloride, pH 7.4. The samples were then thoroughly washed with 20 mM Tris-HCl and 

150mM sodium chloride, pH 7.4. Protein concentrations were determined by the BCA assay 

according to the manufacturer’s protocol (Themo Scientific, Rockford, IL). A 2 mM CaCl stock 

was prepared in the same buffer as the corresponding protein samples. ITC were carried out using 

a VP-isothermal titration calorimeter (Microcal, LLC, GE Healthcare, Piscataway, NJ) with 

protein concentrations of 50 μM. After equilibration at 25° C, a total of 55 5 μL serial injections 

of the CaCl stock were made at 3 minute intervals at a stirring speed of 300 rpm. To correct for 

background error, calcium chloride was titrated into the buffer in the absence of protein. All 

experiments were repeated three times.  

 

CW-EPR measurements. 

CW-EPR spectra were collected at X-band (9.8 GHz) on a Bruker EMX spectrometer 

fitted with a TM110 cavity (BrukerBiospin, Billerica, MA) using 5mW microwave power and 

1Gauss field modulation  (peak-to-peak) at 100 kHz. Samples were prepared in 20 mM Tris-HCl, 

150 mM NaCl, pH 7.5, in the 80 to 120 μM concentration range and spectra were collected at 

room temperature in 50 μL glass capillaries (Kimble Glass, Inc., Vineland, NJ). Short inter-probe 

distances (< 20 Å) were measured on samples in 50 % glycerol at 2 °C. The resulting EPR spectra 

were analyzed using the convolution method which assumes Gaussian distance distributions as 
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described in previous work (e.g. (Hustedt et al., 2006; Rabenstein and Shin, 1995)). Samples with 

Ca2+ were incubated with 10 mM CaCl2 and samples without Ca2+ were incubated with 10 mM 

EDTA for 10 minutes prior to EPR measurements. 

 

Four-pulse DEER measurements and data analysis 

The four-pulse DEER experiment was performed at X-band (9.5 GHz) on a Bruker 

EleXsys 580 spectrometer equipped with a Bruker split ring resonator (ER 4118X-MD5). A 

standard 4-pulse sequence was employed with a 32 ns π pulse and a 16 ns π/2 pulse. All 

measurements were recorded at 80 K as described in previous work (Kim et al., 2011; Zhou et al., 

2007; Zhou et al., 2005). Samples were prepared in 20 mM Tris-HCl, 150 mM NaCl, pH 7.5, 

buffer containing 30% (w/w) glycerol in the 150 to 250 μM concentration range and loaded into 

2.4 mm i.d. quartz capillaries (Wilmad LabGlass, Buena, NJ). All DEER data were analyzed 

using software developed in house which simultaneously fits the background signal as a function 

of an effective spin concentration and radius of the molecule or complex while determining the 

specific interactions of interest using a distance distribution defined as a sum of Gaussians 

(manuscript in preparation). This approach, which takes into account the excluded volume of the 

molecule or complex, typically gave better fits to the data than those obtained using a priori 

background correction. All of the DEER data shown in the Figs. 56, 58, and 59 are with the 

background removed subsequent to the analysis. The calculated average distances and distance 

distributions were similar to those obtained using the conventional Tikhonov regularization 

method (Chiang et al., 2005).  

 

Molecular modeling      

Explicit modeling of the spin label R1 side chains at each of the sites which were utilized 

for interdomain DEER distance measurements was carried out using the MMM program 

developed by Jeschke and coworkers (Polyhach et al., 2011). These modeling calculations were 
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performed on the MATLAB platform (The Mathworks, Inc., Natick, MA). Briefly, R1 side 

chains were modeled on the 7 sites in each structure of CBD1 (PDB code: 2DPK) and CBD2 

(PDB code: 2QVM) and the resultant spatial distribution of MMM rotamers were calculated at 80 

K. The average Cartesian coordinate of the nitroxide electron at the spin labeled site was taken 

from the probability-weighted sum of coordinates from each rotamer as shown in the following 

formula: 
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where pi is the probability of finding the ith rotamer of the R1 side chain at this set of coordinates 

and n is the number of allowed rotamers.  

Two structures of CBD1 and CBD2 were covalently linked in silico by manually 

introducing a peptide bond between residue 500 in CBD1 and residue 501 in CBD2 using 

PyMOL software (www.pymol.org) to generate a CBD12 template structure. Inspection of two 

crystal structures from the isolated CBD1 and CBD2 indicates that the three consecutive residues 

501-503 form a potentially flexible interdomain linker (Salinas et al.). Thus, a set of CDB12 

structures having different configurations between the two domains was generated by 

systematically rotating the backbone bonds along the linker region using Chimera 

(www.cgl.ucsf.edu/chimera/) and in-house written python scripts. Three pairs of backbone bonds 

flanking two peptide bonds in residues 501 through 503 were subject to systematic rotations with 

a 30° interval while two  

 

 

 

http://www.pymol.org/�
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peptide bonds were fixed in the trans-configuration. The resultant conformers were first checked 

for backbone clashes in the absence of side chains and the conformers which contained any steric 

clash between backbone atoms were discarded. The remaining poses (569,520 out of 2,985,984 

conformers; 19.1 %) were subsequently filtered with 17 interdomain DEER distance constraints 

(5 Å cutoff) and resulted in 1,356 poses. The generated models were ranked based upon the 

RMSD values for the distance violations. The overall scheme used for the molecular modeling is 

shown in Fig. 54. 

 

 

 

 

Figure 54. Schematic diagram of the method used to construct models of CBD12-

ACDEF from experimental DEER data.  
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Results 

 

Biophysical characterization of the CBD12 constructs 

 Wt-CBD12 from NCX1.1 contains four endogenous cysteine residues at positions 383, 

387, 485, and 557. In order to carry out high quality site-directed spin labeling experiments, it 

was necessary to replace each of the endogenous cysteines with another amino acid that would 

not be chemically reactive with the MTSSL probe used for EPR detection. Alanine was chosen 

for this purpose and used to generate the ΔCys-CBD12 construct used in these studies. The first 

questions that were addressed were whether these substitutions disrupted Ca2+ binding properties 

or the secondary structure of the wt protein. Previously, a fragment of the long cytosolic loop of 

NCX1 encompassing CBD1 was reported to exhibit atypical mobility shift in SDS-PAGE 

between apo and Ca2+-bound states (Levitsky et al., 1994). Consistent with this observation, the 

expressed recombinant protein of wt-CBD12 showed the mobility shift in a Ca2+ binding-

dependent manner (data not shown), suggesting that the expressed protein is functional with 

regards to Ca2+ binding. The identical mobility shift was also seen in the ΔC-CBD12 construct. 

To further examine the effect of removal of four endogenous cysteines from CBD12 on 

its global structure and Ca2+ binding affinity, CD and ITC measurements were performed for wt- 

and ΔC-CBD12. As shown in Fig. 55, the two proteins gave rise to identical spectra in the far-UV 

CD measurements for both Ca2+-bound and unbound states, which means that the secondary 

structures in wt-CBD12 are well conserved in ΔC-CBD12. As predicted, the spectra are 

dominated by a characteristic pattern for β-sheets with the minimum and maximum ellipticity 

around 215 nm and 200nm, respectively.   
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Figure 55. CD (circular dichroism) spectra from wild type and ΔC-

CBD12-ACDEF. 

 

Both the expressed wt- and ΔC-CBD12 exhibited essentially identical binding isotherms 

with that from wt-CBD12 as previously reported by Hilge et al. (Hilge et al., 2006), showing that 

two Ca2+ bind with medium affinity. They observed that the other 4 Ca2+ ions can be sequestered 

in the high binding affinity sites during titration under normal experimental conditions. Likewise, 

no significant difference was observed in binding isotherms between wt- and ΔC-CBD12 and the 

resultant ITC profiles were consistent with the one previously published which showed that 4 

Ca2+ bind with high affinity. Although ΔC-CBD12 shows a slight decrease in binding affinity 

compared with wt-CBD12, this seems to be associated with low binding affinity sites in CBD2 

based upon identical binding isotherms in CBD1. These results indicate that ΔCys-CBD12 

displays critical wt-like properties and that it should provide a suitable background into which 
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single or double cysteine substitutions could be made in order to carry out site-directed spin 

labeling experiments. 

 

 

Figure 56. Calcium-binding isotherms of wild type and ΔC-CBD12-ACDEF 

measured by ITC (isothermal titration calorimetry). 

 

 

The effects of calcium binding on the dynamics of selected spin-labeled sites in the CBD1 

domain in CBD12 

An initial NMR study suggested that almost a half of CBD1 unfolds in the apo form 

(Hilge et al., 2006). However, a later NMR study performed with a protein sample under more 

stabilizing conditions reported that the Ca2+-dependent structural change is limited only to the 

Ca2+-binding loop region. The cw-EPR spectra obtained from the surface sites residing on β-

strands support the latter. Residues 380, 382, 384, 391, and 457 are proximal to the binding 

loop and initially regarded as unstructured in the apo state (Hilge et al., 2006). However, 
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none of them showed increases in R1 side chain motion in the absence of bound Ca2+, 

which can be typically observed in unstructured regions of proteins. Many of the chosen sites in 

the highly structured β-sandwich region show no sensitivity to Ca2+ binding including sites 380 

and 384 on the A’ strand, site 395 on the B strand, site 443 on the E strand, and sites 457 and 

461on the F strand. However, some sites in the β-strands do show sensitivity to Ca2+ binding 

including site 382 in the A’ strand, 391 in the B strand, 441 in the E strand, and 464 in the F 

strand. The EPR spectra that demonstrate the spectral changes observed are shown in Fig. 57, 

right panel. These results, which are in qualitative agreement with previous NMR studies on 

isolated CBD1 (e.g. (Johnson et al., 2008)) and on isolated CBD2 (e.g. (Breukels and Vuister, 

2010)), show that binding of Ca2+ (small yellow spheres in Figs. 54 and 57) to CBD12 is likewise 

sensed at positions distal from the Ca2+ binding loops. 

 The F-G loop of CBD1 forms a tip at the opposite side of the β-sheets from the Ca2+ 

binding loops and is known to be in a highly dynamic state based upon NMR studies (Hilge et al., 

2006). Of two sites selected, spin labeling at residue 472 yielded a spectrum with fast motion, 

which is typical in flexible loops, and was not sensitive to Ca2+ binding. However, the other site 

in the F-G loop, residue 479, shows remarkably slow motion compared to residue 472 even in the 

apo state, and Ca2+ binding resulted in a significant increase in R1 side chain motion. This 

indicates that at least one region in the F-G loop including residue 479 may be locally structured 

or have tertiary interactions, which senses Ca2+-binding occurring approximately 40 Å away 

across the β-sheets. Residue 370, located in the C-terminal region, but in proximity with the F-G 

loop, also showed a Ca2+-dependent change in R1 side chain mobility. Unlike residue 479, 

however, this site showed a dramatic decrease in mobility upon Ca2+-binding, which agrees well 

with the previous NMR studies. Taken together, spin labeling of the F-G loop (and N-terminal 

region) 
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Figure 57. Sites selected for site directed spin labeling in the CBD1 domain of CBD12 and their 

corresponding EPR spectra. The ribbon diagram of CBD1 is shown in purple superimposed on the space 

filling model in the left panel (coordinates from PDB: 2DPK). The sites where single R1 spin labeled side 

chains were incorporated are shown as solid spheres which are centered at the coordinates of the β-carbon 

of each residue. The spheres are color coded to indicate changes in spin labeled side chain mobility upon 

Ca2+ binding as follows: black, no change; bright red, substantial decrease; pale red, subtle decrease; bright 

blue, substantial increase; and pale blue, subtle increase. The positions of the four Ca2+ binding sites are 

shown as small yellow spheres. The position of the F-G loop is shown schematically in dots. The green 

ribbon diagram and space filling model at the top are the apical portion of the CBD2 domain. The EPR 

spectra in the right panel are from sites in the central β-sandwich region and are shown as solid lines (no 

bound Ca2+) and dashed lines (saturating level of bound Ca2+).  
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reveals that the structural effect of Ca2+-binding on CBD1 can be transmitted throughout the 

whole molecule and results in heterogeneous dynamics in the F-G loop. 

 

              
Figure 58. CW-EPR spectra from loop regions of the CBD1 domain of full length CBD12. The left panel 

shows the EPR spectra from four sites in the Ca2+ binding loops, and the right panel from the sites in the F-

G loop and the N-terminus. The EPR spectra are shown as solid lines (no bound Ca2+) and dashed lines 

(saturating level of bound Ca2+) for each site.  

 
  

In order to determine whether Ca2+-binding to CBD12 produced any global structural 

changes in the CBD1 domain, five separate pairs of spin labeled R1 side chains were incorporated 

as shown by the black spheres in Fig. 59, left panel. DEER was employed to measure the average 

inter-probe distance and distribution of distances between each of these five pairs as described in 

experimental procedures and in detail in previous work (e.g. (Kim et al., 2011; Zhou et al., 2007; 

Zhou et al., 2005)). As shown by the DEER data in Fig. 59, right panel, the four inter-probe 

distances involving residues in the structured β-sandwich region of CBD1 showed no sensitivity 

to Ca2+ binding indicating that the β-sandwich region does not undergo any major global 

structural change even in some regions of the β-strands which are in proximity to the Ca2+ 
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binding loops (residues, 384, 387 and 391). These four distances agreed well with the previously 

determined structure of isolated CBD1. 

However, both the average inter-probe distance and distribution of distances was highly 

sensitive to Ca2+ binding between probes at site 411 in the β-sandwich region and site 472 in the  

 

Figure 59. Pairs of sites selected for site directed spin labeling in the CBD1 domain of CBD12 and their 

corresponding DEER spectra. The ribbon diagram of CBD1 is shown in purple in the left panel 

(coordinates from PDB: 2DPK). The sites where pairs of R1 spin labeled side chains were incorporated are 

shown as solid spheres connected by dashed lines. The spheres are centered at the coordinates of the β-

carbon of each selected residue. The positions of the four Ca2+ binding sites are shown as small yellow 

spheres. The DEER data for each of the five pairs of sites are shown as solid black lines in the right panel. 
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The fits to the DEER data are shown as solid blue lines (no bound Ca2+) and solid red lines (saturating level 

of bound Ca2+). The average distances and widths of the distance distributions are shown in the insets to 

each DEER data set in Å. 

flexible F-G loop. This latter result, in combination with the observation of changes in mobility of 

residues in the F-G loop as shown in Fig. 58., indicates that the localized changes in mobility of 

the Ca2+ binding loops are propagated over a long distance and affect the mobility and average 

position of the F-G loop. As shown in Fig. 65, the Ca2+ binding sites on CBD2 are far removed 

from the F-G loop of CBD1 in full length CBD12 and therefore, changes in the mobility of the 

Ca2+-binding loops of CBD2 are unlikely to be directly responsible for the observed changes. 

 

 
Effects of Ca2+binding on the dynamics of selected spin-labeled sites in the CBD2 domain in 

CBD12. 

Fig. 60, left panel shows the sites on CBD2 that were chosen for spin labeling in full 

length CBD12. In agreement with NMR and crystal structures from the isolated domain of CBD2, 

no sites examined in the β-sandwich region of CBD2 showed increased motion in the absence of 

bound Ca2+. All but one of the chosen sites in the highly structured β-sandwich region showed no 

sensitivity to Ca2+ binding including sites 506 in the A strand, 515 in the A’ strand, 520, 526, and 

529 in the B strand, 557 and 559 in the D strand, and 673 in the break between the G and G’ 

strands. The single exception occurred at site 680 which lies at the end of the G’ strand near the 

Ca2+ binding sites (small yellow spheres). This site showed decreased motion upon saturation of 

the Ca2+ binding sites. Unlike CBD1, among the sites chosen, there were none that showed 

increased motion upon Ca2+ binding suggesting that CBD2 may exhibit a more rigid core 

structure than CBD1. Sites in loop regions including 565 and 567 in the D-E loop, 576 in the E-F 

loop, and 596 in the F-G loop  as well as site 685 at the C-terminus all showed decreased motion 

upon Ca2+-binding as indicated by the colored spheres in Fig. 60, left panel, and as demonstrated 

by the EPR spectra in the right panel.   
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Figure 60. Sites selected for site directed spin labeling 

in the CBD2 domain of CBD12 and their 

corresponding EPR spectra. The ribbon diagram of 

CBD1 is shown in green superimposed on the space 

filling model in the left panel (coordinates from PDB: 

2QVM). The sites where single R1 spin labeled side 

chains were incorporated are shown as solid spheres 

which are centered at the coordinates of the β-carbon 

of each residue. The spheres are color coded to 

indicate changes in spin labeled side chain mobility 

upon Ca2+ binding as follows: black, no change; bright 

red, substantial decrease; and pale red, subtle decrease. 

The positions of the two Ca2+-binding sites are shown 

as small yellow spheres. The position of the F-G loop is shown schematically in dotted line. The purple 

ribbon diagram and space filling model at the top are the apical portion of the CBD1 domain. The EPR 

spectra in the right panel are from sites in the central β-sandwich region (top) and in the loops and C-

terminal region (bottom), and are shown as solid lines (no bound Ca2+) and dashed lines (saturating level of 

bound Ca2+). 
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 In order to determine whether Ca2+ binding to CBD12 produced any global structural 

changes in the CBD2 domain, five separate pairs of spin labeled R1 side chains were incorporated 

as shown by the black spheres in Fig. 61, left panel. DEER was employed to measure the average 

inter-probe distance and distribution of distances between each of these five pairs as described in  

 

Figure 61. Pairs of sites selected for site directed spin labeling in the CBD2 domain of CBD12 and their 

corresponding DEER spectra. The ribbon diagram of CBD2 is shown in green in the left panel (coordinates 

from PDB: 2QVM). The sites where pairs of R1 spin labeled side chains were incorporated are shown as 

solid spheres connected by dashed lines. The spheres are centered at the coordinates of the β-carbon of each 

selected residue. The positions of the two Ca2+ binding sites are shown as small yellow spheres. The 

position of the F-G loop is shown schematically in a dashed green line. The DEER data for each of the five 

pairs of sites are shown as solid black lines in the right panel. The fits to the DEER data are shown as solid 

blue lines (no bound Ca2+) and solid red lines (saturating level of bound Ca2+). The average distances and 

widths of the distance distributions are shown in the insets to each DEER data set in Å. 
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experimental procedures and in detail in previous work (e.g. (Kim et al., 2011; Zhou et al., 2007; 

Zhou et al., 2005)). As shown by the DEER data in Fig. 61, left panel, the four inter-probe 

distances involving residues in the structured β-sandwich region of CBD2 showed no sensitivity 

to Ca2+-binding indicating that the β-sandwich region, like CBD1, does not undergo any major 

global structural change. However, a mutant 515/596, where the site 596 is located on the long F-

G loop of CBD2, exhibited a 4 Å decrease in the mean inter-probe distance upon Ca2+ binding. 

This suggests that the binding of regulatory Ca2+ ions induce substantial changes in the 

conformation of the F-G loop in CBD2 and proposes a possible role of this region in Ca2+ 

regulation. Taken together, the presence of CBD1 does not alter the essential structural features of 

CBD2 which have been previously reported from the isolated domain. Like CBD1, Ca2+ binding 

in CBD2 appears to induce conformational changes mainly in Ca2+ binding loops and long F-G 

loop regions. 

 

The effects of calcium binding on the structure of CBD12 

 Recently, Hilge et al. proposed a model describing how Ca2+-binding occurring 

approximately 90 Å away from the intracellular surface of the membrane can be transmitted to 

the transport site of the transmembrane domain to regulate exchanger activity. This model 

assumes a conformational change which primarily includes alterations in the relative orientation 

between the two CBDs. In order to test this model, a set of 17 doubly labeled mutants of CBD12 

where one spin label was placed in CBD1 and the other in CBD2 and interdomain DEER 

distances were collected in the presence and then absence of Ca2+. The results are shown in Fig. 

62. All the DEER measurements for the given set of double mutants resulted in well defined 

Gaussian distance distributions containing single or two components. Surprisingly, all of the 

collected DEER data exhibited no substantial differences in inter-probe distance between the 

Ca2+-bound and apo forms of CBD12 with only a couple of exceptions. This strongly suggests a 
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model where the relative orientation of the two CBDs is not altered in a Ca2+ dependent manner. 

Significant changes in inter-probe distance between Ca2+-bound and apo states were observed 

only in two pairs of sites, 380/506 and 441/506, with a 3.2 and 2.2 Å difference, respectively. 

Given that the rest of DEER distances are not affected by Ca2+ binding, these small differences 

may result from the changes in R1 side chain orientations or local movement of the protein 

backbone, and be assumed to be trivial in terms of the global structure of CBD12. Relatively 

narrow widths of distance distributions found in many of the DEER data sets also demonstrate 

that two CBD domains are tightly associated to maintain their relative orientations in a static 

state. Collectively, a body of interdomain DEER distances demonstrates that the relative 

orientation between the two CBDs is neither in a dynamic state nor significantly altered upon 

Ca2+-binding. 
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Figure 62. All 17 interdomain DEER data that were used for model construction 
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Figure 63.  Mean distances (top panel) and distance distributions (bottom panel) of 17 interdomain DEER 

distances before (light grey) and after (dark grey) Ca2+ binding. 

 

 

Construction of structural models of CBD12 

  The CBD12 template structure having an arbitrary orientation between the two CBDs 

was prepared by manually linking the crystal structures of CBD1 (PDB code, 2DPK) and CBD2 

(PDB code, 2QVM). All possible conformational states were explored by systematic rotation of a 

set of backbone bonds forming a bridge linking the two domains as described in the methods 
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section. The scheme used for model construction is shown in Fig. 54 and the resultant sets of 

models from each filtration step are illustrated in Fig. 64. In the filtration step, the conformational 

space was sampled with the rotation of 6 bonds at 30° intervals while the two peptide bonds were 

fixed in the trans configuration. This generated about 3 million poses which were checked for 

steric clashes between backbone atoms of the two domains which left 569,520 bump-free poses 

(~ 19 %). The subsequent filtrations through the 17 interdomain DEER distance constraints using 

a 5.0 Å cutoff dramatically reduced the number of candidates to 1,356 poses (~ 0.2 % of the 

bump-free poses). The lowest mean distance difference RMSD of 1.6 Å in the best model 

suggests that a 5.0 Å cutoff is enough to safely include all the relevant models that represent the 

actual structure. The resultant poses were ranked with regards to the mean distance difference 

RMSD values. Surprisingly, the top 20 models exhibited a tight cluster with remarkably low 

distance difference RMSD (1.6~1.8 Å) (Fig. 65). Notably, the fact that all the sites involved in 

multiple DEER distance constraints (positions 380, 384, 395, 441, 443, 506, 526) simultaneously 

satisfy those distances in the solution set of models supports the reliability of the explicit 

modeling approach utilized in this study.  

The solution set of models presented in Fig. 65 shows that CBD1 and CBD2 are not 

lengthwise antiparallel and in close proximity along the entire interface as hypothesized in early 

studies, but rather are oriented in an almost linear arrangement, which is consistent with the 

structural model constructed from residual dipolar couplings in a recent NMR study (Salinas et 

al., 2011). According to the constructed models, the N- and C-terminus of CBD12, which 

corresponds to the F-G loop of CBD1 and the Ca2+-binding region of CBD2, respectively, are 

widely separated by approximately 90 Å. This topology of CBD12 is also corroborated by the 

observations of no DEER signals from a set of doubly labeled CBD12 mutants containing a pair 

of spin labels on those two regions (data not shown). 
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Figure 64. The scheme for the generation of solution models of CBD12. In each set of 

models, all the poses were displayed with fixed coordinates of CBD1. 
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Figure 65. The top 20 solution set of structural models for the Ca2+-bound form of CBD12 from 

the two different angles; CBD1, pink ; CBD2, green; Ca2+ ions, red sphere. 

 

 

Model validation by short distance measurements 

 The interdomain DEER distances demonstrate that the two CBDs do not undergo any 

significant change in their relative orientation upon Ca2+ binding. These interdomain distances 

were used to generate structural models of CBD12 in the Ca2+ bound and apo forms. The 

structural models can be utilized to experimentally validate their accuracy by making additional 

model-guided distance constraints as described previously (Kim et al., 2011). In order to examine 

whether this observation is still valid under non-cryogenic conditions, and to confirm the solution 

set of structural models of CBD12, short inter-probe distance measurements were made along the 

bridge region that links the two domains. Guided by the constructed models in conjunction with 

MMM distance prediction, some pairs of sites with short inter-probe distances (5~15 Å) were 

chosen. However, the majority of the singly or doubly labeled mutants at selected sites resulted in 

cw-EPR spectra which exhibited dramatic changes in lineshapes upon Ca2+ binding or were 
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dominated by fast motional components, probably due to the partial denaturation of proteins (data 

not shown). These initial observations imply that the sites around the bridge  

 

 

 

 

Figure 66. Exchange and dipolar couplings from doubly labeled mutants of CBD12 that have a pair of spin 

labels near the interdomain linker. In the top panel, three pairs of spin labeled sites that yielded strong 

exchange and dipolar couplings are marked as dashed lines with Cβ atoms from the labeled sites as blue 

spheres. The model structure employed is one of the solution structures that best satisfy DEER distance 

constraints. The bottom panel shows CW-EPR spectra where the spectra from doubly labeled mutants 

( black solid line) and the sum of single spectra (grey solid line) were overlaid together with the resultant 

distance distributions calculated from deconvolution analysis (bound form, black solid line; apo form, grey 

solid line) and MMM program (dotted line). 
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region are critical in correct folding of CBD12. Fig. 66 displays cw-EPR spectra obtained from 

the three double mutants that give rise to significant lineshape broadening and their 

corresponding distance distributions analyzed by a conventional convolution method or the 

MMM program. Dipolar couplings from all three mutants were insensitive to Ca2+ binding, which 

is evident in the corresponding distance distributions, implying that there is no significant Ca2+-

dependent changes in the relative orientation between two CBDs at non-cryogenic conditions. 

Though a small population of unexpected fast motional component was observed in the cw-EPR 

spectrum from the Ca2+-free form of the doubly labeled mutant, 384/565, the convolution method 

produced reasonably good fits to all dipolar coupled spectra. As shown in Fig. 66, the analyzed 

distance distributions from those fits agreed reasonably well with the ones from the MMM 

distance predictions calculated based on the constructed model.  

 

 

Discussion 

 

The effect of Ca2+ binding on the structure of CBD12 

 The Ca2+-dependent modulation of NCX1 function is ascribed to the presence of the long 

intracellular loop of NCX1 containing a tandem array of two structurally homologous calcium 

binding domains. Despite the importance of this long loop region in understanding the 

mechanism of calcium regulation of NCX1, most structural information to date is limited to the 

NMR or crystal structures of two CBDs which were separately obtained from each isolated 

domain. However, incorporation of spin labels into the various surface sites of CBD1 and CBD2 

within full length CBD12 produced dynamics information which is in good agreement with the 

atomic level structures of the isolated forms of CBD1 and CBD2 indicating structural features 

shown in the isolated domains are well conserved in CBD12. Together with intradomain DEER 
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distances, R1 spin labeled side chain mobility data collected from the central β-sandwich regions 

show that these regions undergo no significant changes upon Ca2+ binding, which provides a 

reasonable basis of treating the two CBDs as rigid bodies to a first approximation during the 

model construction.  

In both domains, Ca2+ binding-induced structural changes appear to be localized to the  

Ca2+ binding loops and the F-G loop. In particular, it is interesting to note that the Ca2+ binding 

signal is transmitted to the F-G loop located at the opposite side of the β-sandwich domain as 

demonstrated by two intradomain DEER distances, 411-472 from CBD1 and 515-596 from 

CBD2, as well as spin label dynamics changes shown in residues 479 and 596.  

The functional implications of the F-G loops from both CBDs are still elusive. Recently, 

a double deletion mutant of NCX1.1 which lacked both F-G loops was shown to retain normal 

Ca2+ regulation activity suggesting these loops are of no importance in Ca2+ regulation (Ottolia et 

al., 2009). However, several lines of evidences propose the biological relevance of F-G loops 

from both CBDs. The early study using a chimeric mutant of the Drosophila exchanger Calx1.1 

(Dyck et al., 1998) implied the significance of the F-G loop in CBD1. Unlike other exchangers, 

Calx1.1, which lacks the F-G loop of CBD1, presents a negative regulatory response to Ca2+ 

(Hryshko et al., 1996). However, when the CBD1 F-G loop of cardiac NCX1 was introduced into 

the Calx1.1, the resultant chimeric construct restored normal calcium regulation. Additional 

evidence for the functional importance of the CBD1 F-G loop can be seen in proteolytic cleavage 

studies of this region of NCX1 and NCX3 isoforms that resulted in inactivation of exchanger 

function and subsequent cell death (Bano et al., 2005). Therefore, although this region was 

disordered in both NMR and crystal structures in both the Ca2+-bound and apo states, it is 

probable that the CBD1 F-G loop may be stabilized in intact cells by its interaction with other 

parts of NCX1 or other binding partners, such as ankyrin B and thereby contribute to calcium 

regulation.  
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As in CBD1, the F-G loop in CBD2 is highly dynamic in NMR derived structures and 

unresolved in crystal structures. A recent NMR study using the isolated domain of CBD2 found 

that the F-G loop is in a highly dynamic state and its dynamics was not significantly altered by 

Ca2+ binding based upon the average S2 values. However, R1 side chain mobility (residue 596, 

Fig.  59) and intradomain DEER distances (515/596 double mutant, Fig.  60) involving the F-G  

 

 

 

Figure 67. Structural model of CBD12 that predicts the spatial arrangement of F-G loop of CBD1. Space 

filling presentation was overlaid with ribbon diagram. One of structural models in the solution set that best 

fits the DEER distance constraints was adopted as CBD12 (CBD1, pink; CBD2, green). To explicitly 

model the F-G loop of CBD1, which is missing in the structural model of CBD12, NMR structure of   

CBD2 AD (PDB code: 2FWU) was superimposed (yellow). Calcium ions are shown in red spheres. 
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loop strongly imply that this region may undergo significant changes in its dynamics and 

conformation upon Ca2+ binding in the presence of nearby CBD1. These results are in line with 

possible functional relevance of F-G loop in CBD2. Given that the only difference between the 

ACDEF (NCX1.1) and AD (NCX1.4) splice variants is the presence of an additional 35 residues 

in the CBD2 F-G loop of the ACDEF form, the observations that the ACDEF splice variant 

exhibited much higher Ca2+ binding affinity (Hilge et al., 2009) in vitro and 10 times faster 

response of exchange function (Dyck et al., 1999) in vivo than the AD form indicate the 

involvement of the F-G loop in Ca2+ regulation of NCX1. Indeed, as shown in Fig. 66, when the 

NMR structure of CBD2 AD which contains the F-G loop is superimposed on one of the solution 

models, the F-G loop is placed in close proximity to the Ca2+ binding loops of CBD1 and there 

appears to be direct interactions between the two structural entities.  

 

Construction of structural models of CBD12 

  One way of using sparse distance constraints to construct structural models of the 

complex consisting of CBD1 and CBD2 is to first generate all possible poses of the two domains 

using available docking algorithms or systematic grid search methods and then to filter them with 

the experimentally determined multiple distance constraints. One example of the successful 

applications of this approach has been described in Chapter III. The observations that the 

previously determined structures of isolated CBDs are well preserved in the CBD12 construct and 

that the two domains are contiguous without an intervention in primary sequence lead to the 

notion that CBD12 can be treated as two rigid bodies that are joined together at one end of each 

domain. Thus the systematic rotations of the consecutive backbone bonds linking the two 

domains were utilized to explore the conformational space and coarse structural models for 

CBD12 were generated by just determining the relative orientation between two rigid bodies 

using multiple DEER distance constraints with explicit spin label modeling.  
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To build a structural model using sparse DEER distance constraints is challenging mainly 

due to the uncertainty in association with the rotameric states of the R1 side chain at a given 

specific site. In this study, explicit modeling of the spin label was performed at each labeling site 

using the MMM program which determines the spatial distribution of rotamers from the rotamer 

library established based upon MD simulation of the R1 side chain (Polyhach et al., 2010). Even 

the initial versions of the rotamer library constructed on the basis of rough approximations on the 

sampling space and energy terms were successfully employed in the structural studies on various 

proteins such as the Na+/H+ antiporter (Hilger et al., 2007), Na+/proline symporter PtuP (Hilger et 

al., 2009) of E. coli, and the maltose ATP-binding cassette importer MalKGF2 (Grote et al., 

2008). 

The existence of solution models that simultaneously satisfy all the measured sparse DEER 

distances with high accuracy indicate that the spin label modeling work employed in this study is 

reasonable. In order to assess how accurately the MMM approach can predict the rotameric states 

of the R1 side chain which is attached on CBD1, distance distributions obtained from the 

collected intradomain DEER measurements were compared with those calculated from DEER 

simulations using MMM. As shown in Fig. 68, the two distance distributions almost overlap in 

the last five doubly labeled mutants of CBD12 where both spin labels reside on the β-sheet 

structure, indicating that explicit modeling of spin labels using MMM accurately predicts their 

rotameric states in CBD12. However, the first three DEER data show significant deviations from 

the corresponding simulations for the distance distributions. These discrepancies can be explained 

by the fact that one site involved in each of these DEER measurement is not located on the β-

sheet. Indeed, residues 384 and 387 are on or near the linker region and residue 391 resides on the 

β-strand right next to the abnormal β-bulge of the A-strand. Typically, spin label modeling with 

MMM gives rise to better results with a site residing in β-sheet structure rather than in an α-helix 

or linker domain since the R1 side chain on the β-sheet is substantially restricted in its motion and 

orientation primarily due to steric hindrances from the residues at the i ± 2 positions and side  
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Figure 68. Comparison of distance distributions from 

experimental DEER measurements and DEER 

simulations using MMM for pairs of sites on CBD1 or 

CBD2. In the top panel, distance distributions extracted 

from empirical DEER measurements (black lines) were 

superimposed with those calculated from DEER 

simulations using MMM program (red lines) for 

comparison. The blue bars mark the distances between 

the pairs of spatial positions, which correspond to the 

averaged coordinates of unpaired electrons over all 

possible rotamers at those specific sites, as employed in 

spin label modeling works in this study. The graph in 

the bottom panel shows the mean distances from each 

distance distributions together with the distances from 

blue bars displayed in the left panel; open bar, mean 

distance from DEER measurement; light grey bar, mean 

distance from DEER simulation with MMM; dark grey 

bar, distance between mean coordinates calculated from 

MMM spin label modeling. 
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chains from the neighboring antiparallel β-strands. This insight suggests that the approach 

employed in this study can generate reliable structural models for proteins containing β-sheets. 

 

Structural model of CBD12 and its implications in the Ca2+ regulation mechanism 

 Previously, Hilge and his colleagues proposed a model for the mechanism of Ca2+-

dependent NCX1 regulation with a novel topology of the long intracellular loop of NCX1, where 

the Ca2+ binding region of CBD1 is approximately 90Å away from the plasma membrane surface 

(Hilge et al., 2009). The essential feature of this model predicts a structural rearrangement in 

CBD12 involved in Ca2+ regulation, or more precisely, the change in the relative orientation 

between CBD1 and CBD2 induced by Ca2+ binding. Small angle X-ray scattering (SAXS) data 

from the same study supports this hypothesis by showing a significant decrease in maximal 

distance of the scattering vector upon Ca2+ binding in both the ACDEF and AD splice variants. 

However, multiple interdomain DEER distances collected from CBD12 (Fig. 62) indicate that 

there is no significant change in the relative orientation between the two domains, which is also 

supported by the recent NMR study where the structural model of CBD12 construct of AD splice 

variant has been generated from residual dipolar couplings (Salinas et al., 2011). These results 

indicate that the previously proposed mechanistic model involving rigid body movements 

between two CBDs is not correct. Hence, it is highly probable that the changes in SAXS data 

from the same construct that was used in the current study may result from conformational 

changes in the long F-G loop of CBD2 upon Ca2+ binding, rather than from the rigid body 

motions between the two CBDs.  

 In the context of its structural similarity with the CBDs in NCX1, C2-domains provide 

insight into the implication of CBD12 in the mechanism of its Ca2+-dependent regulation for 

NCX1 function. C2-domains are one of the main Ca2+ binding motifs together with EF-hands and 

function in signal transduction or membrane trafficking in many proteins in a Ca2+-dependent 

manner. Like CBDs, the structures of C2-domains consist of a compact β-sandwich of two four-
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stranded β-sheets with Ca2+ binding loops at the top of the domain. Importantly, none of the 

three-dimensional structures of C2-domains determined so far showed a substantial Ca2+-induced 

conformational change (Rizo and Sudhof, 1998). Instead, as exemplified in the binding of 

synaptotagmin I C2A with syntaxin, Ca2+ binding to the C2-domain was shown to result in 

changes in electrostatic potential of the Ca2+ binding region and is speculated to generate a 

binding surface for its binding partner (Shao et al., 1997). As seen in C2-domains, Ca2+ binding to 

either CBD1 or CBD2 also caused substantial changes in the surface electrostatic potential of 

Ca2+ binding regions in both CBDs (Hilge et al., 2009). Taken together, these data strongly 

suggest that Ca2+ regulation on NCX1 function may be achieved through the electrostatic 

interactions of each Ca2+ binding region from CBDs with other structural elements. 

 The transport activity of NCX1 is modulated by integrated and differential regulation of 

CBD1 and CBD2. Under a low level of [Na+]in, the basal Ca2+ regulation associated with high 

Ca2+ binding affinity activate exchanger function. Functional studies using NCX1 mutants in 

which one or more key acidic residues on Ca2+ binding loops were mutated revealed that both 

CBD1 and CBD2 were involved in primary Ca2+ regulation (Besserer et al., 2007; Ottolia et al., 

2009). However, the Na+-dependent inactivation occurring with the rise of [Na+]in (> 15mM) is 

overcome by the second Ca2+ regulation activity supposedly performed by CBD2 (Hilge et al., 

2009). The strong correlation of the affinity and number of Ca2+ ions binding to CBD2 with the 

capability to overcome Na+-dependent inactivation, which is evident in the comparison of NCX 

isoforms, indicates that the inactivation by XIP is primarily modulated by Ca2+ binding to CBD2 

(Hilge et al., 2009).  

Given that the multiple structural elements, which are distantly located within CBD12 

communicate with one another to carry out differential Ca2+ regulation, this functional complexity 

in Ca2+ regulation is speculated to be achieved through the unique three-dimensional 

arrangements of CBD12 which may allow the critical interaction of CBD12 with other structural 

elements on their Ca2+ binding regions. Despite the paucity of information on the structure of the 
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CLD domain, it is predicted that the CLD domain may have a crucial role in the proper 

positioning of CBD12 or even in mediation of regulatory Ca2+ signals since it connects CBD12 to 

the transmembrane domain. NCX1 binding proteins such as Ankyrin B are other structural 

elements that can be considered as potentially important determinants for the correct spatial 

arrangement of CBD12. Previously, ankyrin B was shown to co-localize NCX1, Na+/K+ ATPase, 

and the InsP3 receptor at the T-tubule microdomain of cardiomyocytes, forming a metabolon-like 

macro-molecular complex (Mohler et al., 2005). In particular, ankyrin B is essential in the 

targeting and stability of NCX1 and directly interacts with the membrane binding domain of 

ankyrin B (Cunha et al., 2007).  Thus, the position and orientation of CBD12 will be restricted 

within the multi-protein complex by the interaction with ankyrin B and, potentially with other 

binding partners. 
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CHAPTER IV 

CONCLUSION AND PERSPECTIVES 

 

Structure of the cdb3-AnkD34 complex 

   

In the current studies, site directed spin labeling, in combination with electron 

paramagnetic resonance (EPR) and double electron-electron resonance (DEER), has been utilized 

to map the binding interfaces of the two proteins in the complex and to obtain interprotein 

distance constraints. These data have been utilized to construct a family of structural models that 

are consistent with the full range of experimental data. These models indicate that an extensive 

area on the peripheral domain of cdb3 binds to ankyrin-Repeats 18-20 on the top loop surface of 

AnkD34 primarily through hydrophobic interactions. This is a previously uncharacterized surface 

for binding of cdb3 to AnkD34. Cross-linking experiments and a set of dipolar coupled spectra 

validated the binding interface that was predicted by the constructed structural models.  

Since a second dimer of cdb3 is known to bind to ankyrin-Repeats 7-12 of the membrane 

binding domain of ankyrin-R, the current models have significant implications regarding the 

structural nature of a tetrameric form of AE1 that is hypothesized to be involved in binding to 

full-length ankyrin-R in the erythrocyte membrane.  

 A set of intraprotein DEER distances measured on the binding interface of cdb3 indicates 

that binding involves some local structural arrangement that can be accounted for local backbone 

movements and repacking of R1 side chains on the binding interface. The major change appears 

to occur in the β6/β7 hairpin loop and is predicted to have a crucial role in binding. These local 

structural changes on the binding interface prevented the construction of structural models at a 

higher resolution using explicit modeling of spin labels. These problems can be solved by 

molecular modeling approaches such as flexible docking in the near future. 
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In order to obtain insight into the whole picture of the structure of the complex containing 

an AE1 tetramer and the molecular mechanisms of the associated disorders, it is necessary to 

elucidate the structure of the complex formed by interaction of AnkD2 with the second cdb3 

dimer. This will also provide a structural model of the central molecular frame in the ankyrin 

complex which involves a number of cytosolic proteins including a set of glycolytic enzymes and 

structural proteins such as protein 4.2. 

 

Calcium binding domains of NCX1.1 

 

Electron Paramagnetic Resonance (EPR) measurements on singly labeled constructs of 

CBD12 have identified the regions which undergo changes in dynamics as a result of Ca2+ 

binding. Double Electron Electron Resonance (DEER) measurements on doubly labeled 

constructs of CBD12 have shown that the β-sandwich regions of the CBD1 and CBD2 domains 

are largely insensitive to Ca2+ binding and that these two domains are not lengthwise anti-parallel 

and in close proximity as previously suggested but rather are widely separated at the N- and C-

termini. Interdomain residues nearer to the apex of CBD12 are in close enough proximity to be 

measured by DEER. These interdomain distances have been employed to construct structural 

models for CBD12 in the presence and absence of Ca2+. These models show that there is not a 

major change in the orientation of the two Ca2+-binding domains relative to each other in full 

length CBD12 as a result of Ca2+ binding. Additional measurements have shown that there are 

changes in the structure and/or dynamics of the F-G loop regions of CBD1 and CBD2 which 

could potentially be involved in regulation of exchanger activity. 

 The current data strongly suggest that the transmission of Ca2+ binding signal to the 

transport site is mediated through the other structural elements. CLD, which links CBDs to the 

transmembrane domain, is predicted to contribute to Ca2+ regulation of exchanger activity. 



 

170 
 

Furthermore, previous studies showed that NCX1 has several binding partners including ankyrin-

B and InsP3 receptors, implying the presence of macrocomplex accomplishing the complex and 

delicate Ca2+ regulation process. Thus, the molecular mechanism of the Ca2+ regulation by CBDs 

needs to be considered in the context of interactions with other domain or proteins. The changes 

in the conformation or dynamics of CBDs will need to be reevaluated in the full length NCX1 or 

in the presence of other binding proteins. Likewise, the role of the dual electrostatic switches 

formed by the surface of calcium binding loops needs to be examined in terms of the interactions 

with other structural elements. 
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