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CHAPTER I

INTRODUCTION

I.1 Overview of the Problem Space

Distributed real-time and embedded(DRE) systems form the core of many mission-

critical domains, such as shipboard computing environments [141], avionics mission com-

puting [145], multi-satellite missions [155], intelligence, surveillance and reconnaissance

missions [144], and smart buildings [146].

Such systems are composed of services and client applications that are deployed across

networks that are normally the size of a local or metropolitan area network. Often these

services and client applications are part of multiple end-to-end workflows that operate in

environments that are constrained in the number of resources (e.g., CPU, network band-

width). These systems can predominantly be classified as being static/closed (i.e., fixed

system loads) or dynamic/open (i.e., varying system loads), both of which may experience

fluctuating resource availabilities (e.g. due to resource failures or overloads). It is in such

operating conditions that each service within the workflowsmust process periodic events

belonging to other services or clients while providing quality of service (QoS) assurances

in the form of reliability and timeliness.

To enable DRE systems to support the QoS demands of their multiple application work-

flows, all of which contend for resources, there is a strong demand for techniques and

mechanisms that can efficiently and effectively manage the limited number of resources,

such as CPU and network, in the face of failures and workload changes. With the ad-

vent of low-cost high-speed processors, and large network bandwidth availabilities, it may

appear conceptually simple to handle this problem by simplyoverprovisioning network

bandwidth and CPU resources. In practice, however, the resource provisioning problem is

more complex due to the need to differentiate applications and application flows based on
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varied criteria including priorities, urgencies and mission-criticalities [100, 136]. A naive

resource overprovisioning solution is not a viable option in cost- and resource-constrained

environments in which DRE systems are often deployed.

I.2 Contemporary Mechanisms: QoS-enablers in Middleware

The responsibility of allocating resources to applications in a controlled manner has

historically being delegated to themiddleware layer, which acts as a bridge between the

application and the underlying system resources. A significant amount of prior research

exists in developing novel middleware mechanisms to ease the development of DRE sys-

tems. Earlier efforts in middleware research focused on providing location transparency,

portability and interoperability to satisfy the needs of general-purpose DRE systems. These

efforts gave rise to middleware, such as CORBA [115], Java [152], and DCOM [98]. Such

middleware simplify the development of DRE systems by hiding complexities associated

with low-level operating system and protocol-specific details of network programming.

Subsequent research efforts building on the successes of these middleware focused on

providing missing capabilities, such as features to support the QoS needs of DRE sys-

tems. These efforts resulted in standards that have defined interfaces, services and strate-

gies to enhance the timeliness and fault-tolerance capabilities of DRE systems. For exam-

ple, RT-CORBA [113] and Distributed Real-time Java [64] provide capabilities to ensure

predictable end-to-end behavior for remote object method invocations. Similarly, Fault-

Tolerant CORBA (FT-CORBA) [110] and Continuous Availability API for J2EE [154]

provide services and strategies to enhance the dependability of DRE applications.

Additional prior research efforts have also focused on middleware-based QoS man-

agement mechanisms including approaches that focus exclusively on timeliness assur-

ances [39, 66, 78, 101, 123, 157, 167], or others focusing only on high availability as-

surances [11, 13, 48, 92].

Providing both high availability and soft real-time performance simultaneously for
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DRE systems using the above described technologies and mechanisms is complex for the

following reasons:

• Prior research on QoS mechanisms in middleware focus on addressing onlyoneQoS

dimension (e.g., timeliness), but by no meansbothQoS dimensions (e.g., timeliness

and high availability) as expected by DRE systems. For example, fault-tolerance

solutions are often not designed to honor timeliness while recovering from failures,

whereas real-time solutions often do not account for failures and recovery times while

ensuring predictable end-to-end behavior for remote object method invocations.

• It is not straightforward to expect both availability and timeliness assurances by

simply combining one or more of the existing solutions (e.g., FT-CORBA and RT-

CORBA) due to the syntactic and semantic differences between the interfaces, and

how the individual solutions are developed. Moreover, any solutions along this ap-

proach result in systems that are brittle and hard to maintain and upgrade.

I.3 Technical Gaps: Overview of Missing Middleware Capabilities

We are interested in the development of middleware-based mechanisms that provide

both high availability and soft real-time performance simultaneously for both the open

and closed types of DRE systems. For open systems, changing system loads and fluctu-

ating system resource availabilities make the problem of assuring timeliness challenging

because the timeliness properties of client applications are dependent on the performance

characteristics of the hardware nodes hosting the server applications, which is continuously

varying with time. Hence, sophisticated, adaptive resource management solutions at the

middleware-level are required that adapt QoS by dynamically monitoring the performance

characteristics at the hardware nodes in the system.

For closed system, all the properties associated with system workloads are invariant. As

a result, any QoS solution made at design/deployment-time continues to be valid even at
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runtime as long as that solution covers all possibilities ofsystem evolution. Suchahead-of-

time (i.e., at deployment-time rather than at runtime) decisions to handle resource failures

are essential since the highly resource-constrained nature of closed DRE offers very limited

scope for any sophisticated runtime solutions, which were shown to be integral open DRE

systems.

Given the diversity of the solution needs for assuring multiple QoS properties across a

range of DRE systems, aone-size-fits-allapproach that is prevalent with standards-based

middleware [64, 110, 113, 154] will not suffice. Further, given the complexity of DRE

systems and the market forces that require system development and maintenance costs to

be kept low, it is not feasible to expect each and every application to develop their own

proprietary solution to managing both the performance and fault-tolerance requirements of

DRE systems.

Our goal is thus to address the issue of semantic differencesbetween multiple QoS

dimensions by enhancing existing standards-based middleware with novel features for de-

signing, developing, deploying, and configuring DRE systems with bothdeployment-time

as well asruntimeQoS assurances. To realize these goals, there is a strong demand for

algorithms, architectures, and mechanisms within middleware that overcomes the disad-

vantages of aone-size-fits-allsolution yet holistically offers to:

• work for closed environments, where it can allocate CPU andnetwork resources to

contending applications at deployment-time and provide the required QoS subject to

the resource constraints imposed by the closed systems, and

• work for open environments, where it can react to changing system loads and re-

source fluctuations at runtime and maintain the required QoSsubject to the resource

availabilities.

Supporting the vision of the middleware capabilities outlined above leads to three key
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open research issues that are identified and resolved by thisdissertation. These three open

issues include:

1. Deployment-time, Resource-aware Fault-tolerance for DRESystems.

As noted earlier, DRE systems can benefit from middleware [7, 104, 120, 128, 174]

that provides distributed software platforms for buildingfault-tolerant DRE systems.

Server replication is a popular technique [61] adopted by such middleware to provide

high availability assurances for DRE systems.ACTIVE andPASSIVE replication [61]

are two common approaches for building fault-tolerant distributed applications that

provide high availability and satisfactory response timesfor performance-sensitive

distributed applications operating in dynamic environments.

In ACTIVE replication [137], client requests are multicast and executed at all repli-

cas. Failure recovery is fast because if any replicas fail, the remaining replicas can

continue to provide the service to the clients.ACTIVE replication, however, im-

poses high communication and processing overheads, which may not be viable in

resource-constrained environments. In contrast, inPASSIVE replication [20] only one

replica—called the primary—handles all client requests, and backup replicas do not

incur runtime overhead, except (in stateful applications)for receiving state updates

from the primary. If the primary fails, a failover is triggered and one of the backups

becomes the new primary. Due to its low runtime overhead,PASSIVE replication is

appealing for applications that cannot afford the cost of maintaining active replicas.

AlthoughPASSIVE replication is desirable in resource-constrained systems, it is chal-

lenging to deliver soft real-time performance for applications based onPASSIVE

replication. Specifically, the middleware [7, 104, 120, 128, 174] implementingPAS-

SIVE replication schemes requires replica recovery decisions (such as per-replica

failover targets) to be configured statically at deployment-time so that replica recov-

ery from failure can be quick and appropriate. To configure the appropriate replica
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recovery decisions, per-replica node allocation decisions need to be computed. Such

per-replica node allocation decisions need to be computed in aresource-awareman-

ner, asad hocmappings can deliver fault-tolerance, but may not deliverresource-

effectivefault-tolerance with acceptable response time and load.

Determining such per-replica node allocation decisions atruntime is expensive and

time-consuming, particularly for closed DRE systems. Instead, the invariant, known,

and fixed properties of closed DRE systems, such as the numberof applications,

their execution patterns, their timeliness and high availability requirements, and their

resource constraints should be leveraged to determine suchallocation decisions at

deployment-timerather than atruntime. Further, when multiple replicas are hosted

for each application and their replica node allocation decisions are computed to pro-

vide high availability for DRE systems, additional resources are inherently required.

For closed DRE systems, however, there is often a premium placed on the number of

resources used,e.g., ∼40% of a vehicle’s cost is attributed to electronics [19]. It is

therefore necessary to minimize the number of resources utilized while deriving the

benefits of replication. Therefore, this dissertation identifies the need for developing

efficient passively replicated real-time fault-tolerancesolutions that are driven by

replica allocation algorithms which incur low resource consumption overhead.

2. Scalable QoS Provisioning, Deployment, and Configuration of Fault-Tolerant

DRE Systems.

Although middleware-based fault-tolerance solutions [102, 128] are available for dis-

tributed systems, such solutions only deal with issues associated with the complexity

of managing replication and failures at runtime. As described above, such solutions

do not deal with the orthogonal issues associated with wherethe applications and

their replicas are deployed (as described above, this decision dictates the failure re-

covery behavior), and how the application-specified CPU andnetwork resources are

6



appropriately provisioned. In the past, significant research has been conducted in

designing and developing general purpose, as well as domainspecific, resource man-

agement algorithms and mechanisms for DRE systems.

Examples of general purpose resource management algorithms and mechanisms in-

clude network quality of service (QoS) mechanisms, such as integrated services

(IntServ) [81] and differentiated services (DiffServ) [18], which support a range of

network service levels for applications in DRE systems. Similarly, to configure re-

quired CPU resources for applications, prior work has focused on resource allocation

algorithms [31, 57] that satisfy timing requirements of applications in a DRE system.

Further, real-time fault-tolerant task allocation algorithms have focused on both ac-

tive replication [24, 44, 54, 57] as well as passive replication [15, 53, 114, 125, 153,

171] to simultaneously provide both soft real-time performance and high availability

assurances for DRE systems.

Although substantial number of results on QoS mechanisms have been achieved,

there is still a significant question to be answered in how applications can avail of

these mechanisms to satisfy their requirements. To provideend-to-end QoS for DRE

systems, both CPU and network resources need to be provisioned. In the past, ap-

plications have conventionally used relatively low-levelAPIs provided by these QoS

mechanisms to provision required resources. However, thisforces frequent appli-

cation source code changes, as different deployments of thesame application might

have different resource requirements.

Further, both CPU and network resources need to be provisioned together. For exam-

ple, if a particular deployment of two applications across two different physical hosts

do not satisfy the application’s network resource requirements, the applications need

to be deployed in different hosts. Addressing these limitations requires higher-level

integrated CPU and network QoS provisioning technologies that decouple applica-

tion source code from the variabilities (e.g., different source and destination node
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deployments, different QoS requirement specifications) associated with their QoS

requirements.

This decoupling enhances application reuse across a wider range of deployment con-

texts (e.g., different deployment instances each with different QoS requirements),

thereby increasing deployment flexibility. Therefore, this dissertation identifies the

following as an open issue, which deals with developing a deployment and configura-

tion middleware that can deploy and configure QoS for applications in an integrated

and non-intrusive manner.

3. Resource-aware, Adaptive Fault-tolerance for Open DRE Systems.

Current middleware mechanisms [102, 128] configurePASSIVE replication recovery

strategies in a static fashion, which allows timely client redirection. However, since

the failover targets are chosen statically, and without knowledge of the current system

resource availability, client failovers in dynamic environments could cause system

pollution, where different and uncorrelated processor failures cause multiple clients

to failover to the same processor. This could lead to cascading resource failures

thereby seriously affecting the real-time and fault tolerance capabilities of the system.

Further, current research [1, 56, 75] to provide adaptive fault tolerance do not focus

on overload management techniques, which are required to reconfigure the system

after a client failover inPASSIVE replication. Lack of such overload management

techniques causes severe resource imbalance in the system which leads to inefficient

resource usage. Additionally, when both real-time and fault tolerance must be satis-

fied within the same system, it is rather likely that trade-offs [103] are made during

the composition.

For example, in conditions where overloads cannot be controlled by migration, per-

formance needs to be compromised by operating tasks with implementations which
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consume less resources but deliver a performance lower thanthe possible capac-

ity. However, current fault tolerance solutions do not provide support for applying

algorithms for the automatic adaptation of the applications to the changing system

conditions. Therefore, this dissertation identifies an open issue, which deals with

developing efficient resource management algorithms that can adapt to transient load

changes and fluctuating resource availabilities, and manage resources and failures

in a passively replicated distributed system, so that application performance is not

significantly affected before and after failures.

I.4 Research Approach and Contributions

To address the identified open issues related to the complexity of supporting perform-

ance-sensitive distributed applications based onPASSIVE replication, this dissertation de-

velops a comprehensive and novel middleware-based solution. Our solution comprises

resource management algorithms at bothdeployment-time(to support closed DRE sys-

tems) and atruntime (to support open DRE systems) in conjunction with adaptive,and

configurable, architectures and mechanisms that together realize the design, deployment,

configuration, and adaptation of fault-tolerant DRE systems.

In particular, this dissertation involves a combination of:

• Deployment-time Resource-aware Real-time Fault-tolerant Replica Allocation Fra-

mework, which includes a replica allocation engine (DeCoRAM) thatuses the tim-

ing and availability requirements of a closed DRE system to automatically determine

allocation decisions for all applications and their replicas while honoring the real-

time, resource minimization, and high availability requirements. This research pro-

vides real-time fault-tolerant allocation algorithms that are used to configure failure

recovery (e.g., per-replica failover targets) and management (e.g., per-replica state

synchronization frequency) behavior in real-time fault-tolerant middleware [22, 102,

128]. ChapterIII describes DeCoRAM in detail.
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• Scalable, Model-driven Deployment and Configuration Middleware, which inclu-

des a domain specific model-driven [138] QoS provisioning engine (NetQoPE) that

simplifies resource provisioning for applications by shielding application develop-

ers from the complexities of programming the lower-level CPU and network QoS

mechanisms. NetQoPE provides mechanisms for application non-intrusive resource

requirements specification, allocation, and enforcement.This research helps applica-

tions to implement and realize the QoS-specific decisions made by domain-specific

resource allocation algorithms [31, 57]. ChapterIV describes NetQoPE in detail.

• Adaptive Real-time Fault-tolerant Middleware and Architecture, which includes a

adaptive fault-tolerant middleware (FLARe) with algorithms, architecture, and strate-

gies for providing runtime resource-aware fault-tolerance for DRE applications, and

a QoS-aware middleware (SwapCIAO) with application transparent mechanisms for

in-place updating of component implementations. FLARe provides capabilities for

managing applications and their replicas, and making dynamic fault-tolerance de-

cisions that simultaneously support both performance and high availability require-

ments of applications. This research helps applications toreact to changing system

loads and system resource availabilities and maintains both soft real-time perfor-

mance and high availability by recomputing the failure recovery and management

decisions that were configured at deployment-time in middleware [22, 102, 128].

SwapCIAO provides capabilities for in-place updating of components which is useful

for providing overload management when multiple implementations of a component

that impose different loads on resources are available. ChapterV describes FLARe

in detail while ChapterVI describes SwapCIAO.
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I.5 Research Contributions

Our research on resource-aware fault-tolerance for DRE systems has resulted in QoS-

aware middleware mechanisms that adaptively manage replicated resources in an applica-

tion transparent manner. The key research contributions ofthis dissertation are summarized

in Table1.

Category Benefits

Real-time
Fault-tolerant
Allocation Framework
(DeCoRAM)

1. Provides a novel replica-node mapping algorithm that is (1) real-time
aware,i.e., honors application timing deadlines, (2) failure-aware,i.e.,
handles a user-specified number of multiple processor failures by de-
ploying multiple passive replicas such that each of those replicas can
continue to meet client timing needs when processors fail, and (3)
resource-aware,i.e., minimizes the number of processors used for repli-
cation.

2. Provides a real-time fault-tolerance solution that incurs low (1)resource
consumption overhead, where application replicas are deployed across
processors in a resource-aware manner, and (2)runtime processing over-
head, where failure recovery decisions are made at deployment-time.

Model-driven QoS
Provisioning Engine
(NetQoPE)

1. Provides a domain specific modeling language (DSML) for specifying
per-application timeliness, network QoS, and high availability require-
ments.

2. Provides a middleware resource allocation framework that complements
theoretical research on resource allocation and enables deployment and
configuration of DRE systems

3. Provides a real-time fault-tolerance solution that incurs low develop-
ment overhead, where application developers need not write application-
specific code to obtain a real-time fault-tolerance solution.

Adaptive Real-time
Fault-tolerant
Middleware (FLARe
and SwapCIAO)

1. Provides a Load-aware and Adaptive Failover (LAAF) strategy that
adapts failover targets based on system load

2. Provides a Resource Overload Management Redirector (ROME) strat-
egy that dynamically enforces CPU utilization bounds to maintain de-
sired server delays in face of concurrent failures and load changes

3. Provides an efficient fault-tolerant middleware architecture that supports
transparent failover to passive replicas

4. Provides an efficient QoS-aware component middleware that supports
application transparent swapping of component implementations

Table 1: Summary Of Research Contributions
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I.6 Dissertation Organization

The remainder of this dissertation is organized as follows:ChapterII describes the re-

search related to our work on algorithms, architectures, and middleware mechanisms for

providing timeliness and high availability assurances to DRE systems and points out the

gap in existing research; ChapterIII presents a deployment-time resource allocation frame-

work that leverages the ahead-of-time known and invariant properties of closed distributed

real-time and embedded (DRE) systems (such as the number of applications together with

their timeliness and availability requirements) to ensurereal-time and fault-tolerance while

minimizing utilized resources; ChapterIV presents a model-driven middleware that shields

application developers from the complexities of programming the lower-level CPU and

network QoS mechanisms by simplifying activities related to requirements specification,

resource allocation, and QoS enforcement, and provides a scalable QoS-aware deployment

and configuration middleware for DRE systems; ChapterV presents a fault-tolerant load-

aware real-time middleware that adjusts system fault-tolerance configurations at runtime in

response to system load fluctuations and resource availability to provide both high availabil-

ity and timeliness assurances for dynamic DRE systems; ChapterVI presents a lightweight

middleware that supports dynamic updating of component implementations for automating

the performance management (e.g., overload management) of complex component-based

DRE systems; ChapterVII provides a summary of the research contributions, presents

concluding remarks and outlines future research work.
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CHAPTER II

RELATED WORK

SectionI.3 described the urgent need for algorithms, architectures, and mechanisms

within middleware that can overcome the disadvantages of aone-size-fits-allsolution for

providing both high availability and soft real-time performance simultaneously for DRE

systems. There are three main challenges involved in designing and developing a holistic

middleware solution that works together for both closed as well as open DRE systems:

• Deployment-time Resource-aware Fault-tolerance for DRE Systems. The mid-

dleware should account for the invariant properties of closed DRE systems, such as

the number of applications, their execution patterns, their timeliness and high avail-

ability requirements, and automatically determine how to configure the middleware

real-time fault-tolerance properties (e.g., replica-host mapping to honor timeliness

properties and client failover order to honor fault-tolerance properties) to ensure that

the required deployment-time assurances for both high availability and timeliness are

provided for closed DRE systems.

• Scalable QoS Provisioning, Deployment, and Configuration of Fault-Tolerant

DRE Systems.The middleware should shield application developers from the low-

level complexities of accessing resource allocation algorithms, such as requirements

specification, resource allocation, and QoS enforcement, so that application source

code development is simple, can just focus on the business logic of the applications,

but yet obtain access to resources to satisfy their QoS needs.

• Resource-aware, Adaptive Fault-tolerance for Open DRE Systems. The mid-

dleware should adapt to the unpredictability of the dynamicenvironments, obtain

current performance characteristics from the system, perform runtime modification
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to the allocation of resources to applications they made at deployment-time, and at

runtime maintain the simultaneous QoS assurances they provided to applications at

deployment-time.

Since our desired middleware solution needs to provide solutions for all the three chal-

lenges together, this chapter surveys alternate approaches to solutions for each of those

challenges, and discusses limitations of existing approaches in providing these capabilities

in a holistic manner.

II.1 Resource-aware Fault-tolerance by Design

Design and deployment mechanisms for fault-tolerance for performance-sensitive sys-

tems can be classified along the following dimensions.

Real-time fault-tolerance for transient failures. Prior research has focused on alloca-

tion algorithms that consider real-time and fault-tolerance together. For example, transient

failures (failures that appear and disappear quickly) are handled in uniprocessor [3, 29,

86, 118, 122, 170] as well as multiprocessor [69, 85] systems. A common theme across

all of these research approaches is that failure recovery isdone usingtime redundancy,

where extra time is reserved in the schedule for potential recovery operations, such as task

re-execution within the same processor.

Real-time fault-tolerance for permanent failures.Prior research has focused on real-

time fault-tolerant task allocation algorithms that handle permanent failures [24, 44, 54,

57]. All of these approaches have focused on active replication, whose resource consump-

tion overhead is not suitable for certain classes of DRE systems. Prior research has also

focused on passively replicated real-time fault-toleranttask allocation algorithms that deal

with dynamic scheduling which exhibit extra overheads at runtime [2, 53, 91, 153, 171].

Prior research on static scheduling approaches has also focused on passively replicated

real-time fault-tolerant task allocation algorithms thatdeal with only one processor fail-

ure [15, 114, 125].
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Real-time fault-tolerant middleware systems.Fault-tolerant middleware has emerged

as a core distributed software platform for developing closed DRE systems. For example,

MEAD [37, 104, 105], AQUA [128], TMO [74, 75, 76], Delta-4/XPA [12, 96, 120], AR-

MADA [ 1, 65, 151, 173, 174], and MARS [77], are fault-tolerant middleware frameworks

that provide replication management capabilities in a DRE system.

II.1.1 Unresolved Challenges

The advent of middleware that supports application-transparent passive replication [14,

22, 45] appears to simplify the development of fault-tolerant DREsystems. In practice,

however, simultaneously meeting real-time and fault-tolerance requirements is hard due to

the need to support fault-tolerance in a resource-aware manner that satisfies soft real-time

application requirements [103]. In particular, the following problems must be addressed

to deploy and configure (D&C) DRE systems which often become limitations of prior

research in this area:

• Application developers must determine how to configure middleware fault-tolerance

properties (e.g., replica-host mapping and client failover order) to ensurethat DRE

system availability and performance requirements are met.Ad hocfault-tolerance

configurations can lead to unacceptable response times, overloads, and low-availabil-

ity applications. Prior research on real-time-, failure- and resource-aware middleware

does not address the automatic deployment and configurationof DRE systems with

the replica-node mappings.

In particular, existing solutions focus either on algorithms [24, 44, 57] or on deploy-

ment and runtime code generation [32, 58, 147], without considering fault-tolerance

as a QoS parameter and automating application deployment and configuration.

• Even when algorithms focus on real-time and fault-tolerance together, often they

do not focus on dealing with multiple processor failures while considering passive
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replication [20], which is ideal for resource-constrained DRE systems as itreduces

resource consumption when compared with active replication [20].

ChapterIII describes our approach to provide a deployment-time real-time fault-toleran-

ce solution that addresses these challenges.

II.2 Deployment and Configuration Mechanisms in Middleware

Deployment and configuration of a system is necessary to operationalize the system.

Prior work in this area to support fault-tolerance for performance-sensitive systems can be

classified along the following dimensions.

Model-based design tools.Model-based design tools provide an intuitive level of ab-

straction for designing large systems. PICML [10] enables DRE system developers to de-

fine component interfaces, their implementations, and assemblies, facilitating deployment

of LwCCM-based applications. TheEmbedded Systems Modeling Language(ESML) [70]

was developed at the Institute for Software Integrated Systems (ISIS) to provide a visual

metamodeling language based on GME that captures multiple views of embedded sys-

tems, allowing a diagrammatic specification of complex models. The modeling building

blocks include software components, component interactions, hardware configurations, and

scheduling policies. Using these analyses, design decisions (such as component allocations

to the target execution platform) can be performed.

VEST [148] and AIRES [60] analyze domain-specific models of embedded real-time

systems to perform schedulability analysis and provides automated allocation of compo-

nents to processors. SysWeaver [33] supports design-time timing behavior verification of

real-time systems and automatic code generation and weaving for multiple target platforms.

QoS management in middleware.Prior research has focused on adding various types

of QoS capabilities to middleware. For example, [66] describes J2EE container resource

management mechanisms that provide CPU availability assurances to applications. Like-

wise, 2K [167] provides QoS to applications from varied domains using a component-based
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runtime middleware. In addition, [30] extends EJB containers to integrate QoS features

by providing negotiation interfaces which the applicationdevelopers need to implement

to receive desired QoS support. Synergy [129] describes a distributed stream processing

middleware that provides QoS to data streams in real time by efficient reuse of data streams

and processing components.

Network QoS management in middleware.Prior work has focused on integrating

network QoS mechanisms with middleware. Schantz et al. [126] show how priority-

and reservation-based OS and network QoS management mechanisms can be coupled with

standards-based middleware to better support distributedsystems with stringent end-to-

end requirements. Gendy et al. [40, 41] intercept application remote communications by

adding middleware modules at the operating system kernel space and dynamically reserve

network resources to provide network QoS for the application remote invocations.

Schantz et al. [135] intercept application remote communications by using middle-

ware proxies and provide network QoS for application remotecommunications by using

both DiffServ and IntServ network QoS mechanisms. Yemini etal. [166] focused on

providing middleware APIs to shield applications from directly interacting with complex

network QoS mechanism APIs. Middleware frameworks transparently converted the spec-

ified application QoS requirements into lower-level network QoS mechanism APIs and

provided network QoS assurances.

Deployment-time resource allocation.Prior work has focused on deploying appli-

cations at appropriate nodes so that their QoS requirementscan be met. For example,

prior work [87, 149] has studied and analyzed application communication and access pat-

terns to determine collocated placements of heavily communicating components. Other

research [31, 57] has focused on intelligent component placement algorithms that maps

components to nodes while satisfying their CPU requirements.
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II.2.1 Unresolved Challenges

Although the network and CPU QoS deployment and configuration mechanisms de-

scribed above are powerful, it is tedious and error-prone todevelop applications that inter-

act directly with low-level QoS mechanism APIs written imperatively in third-generation

languages, such as C++ or Java. For example, applications must make multiple invoca-

tions on network QoS mechanisms to accomplish key network QoS activities, such as QoS

mapping, admission control, and packet marking.

To address part of this problem, middleware-based network QoS provisioning solutions,

that were discussed in SectionII.2, have been developed that allow applications to specify

their coordinates (source and destination IP and port addresses) and per-flow network QoS

requirements via higher-level frameworks. The middlewareframeworks—rather than the

applications—are thus responsible for converting high-level specifications of QoS intent

into low-level network QoS mechanism APIs.

Although middleware frameworks alleviate many accidentalcomplexities of low-level

network QoS mechanism APIs, they can still be hard to evolve and extend. In particular,

the following challenges remain:

1. Application source code changes may be necessary whenever changes occur to the

deployment contexts (e.g., source and destination nodes of applications), per-flow

requirements, IP packet identifiers, or middleware APIs. This limits application

reusability as the same application source code could be used for many different

deployment contexts, and each of those deployment contextscould have different

network and CPU resource requirements.

2. Applications must explicitly determine the optimal source and destination nodes be-

fore they can obtain network performance assurances via theunderlying network

QoS mechanisms. Otherwise, network resource reservationsmight be made between

two wrong pair of hosts, when applications could be deployedin some other pair of
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source and destination nodes. Further, resource allocation backtracking cannot be

made, when physical hosts in which the applications are deployed could be changed

to try out newer set of network resource allocations to satisfy end-to-end application

QoS requirements.

To address the limitations with current approaches described above, therefore, what

is needed are higher-level integrated CPU and network QoS provisioning technologies

that can completely decouple application source code from the variabilities (e.g., differ-

ent source and destination node deployments, different QoSrequirement specifications)

associated with their QoS provisioning needs. This decoupling enhances application reuse

across a wider range of deployment contexts (e.g., different instance deployments each

with different QoS requirements), thereby increasing deployment flexibility. ChapterIV

describes our approach to provide a model-driven QoS provisioning engine that addresses

these challenges.

II.3 Resource-aware, Adaptive Fault-tolerance for Open DRE Systems

Prior research in adaptive fault tolerance solutions for open systems can be classified

along the following dimensions.

CORBA-based fault-tolerant middleware systems. Prior research has focused on

designing fault-tolerant middleware systems using CORBA.A survey of the different ar-

chitectures, approaches, and strategies using which fault-tolerance capabilities can be pro-

vided to CORBA-based distributed applications is presented in [45]. [13] describes a

CORBA portable interceptor-based fault-tolerant distributed system using passive replica-

tion and extends the interceptors to redirect clients with astatic client failover strategy.

MEAD [102], FTS [47] and IRL [11] use CORBA portable interceptors to provide fault-

tolerance for CORBA-based distributed systems using active replication.

Scheduling algorithms. Fundamental ideas and challenges in combining real-time and

fault tolerance are described in [160], where imprecise computations are used to provide
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degraded QoS to applications operating in the presence of failures. [56] proposes adaptive

fault tolerance mechanisms to choose a suitable redundancystrategy for dynamically ar-

riving aperiodic tasks based on system resource availability. The Realize middleware [67]

provides dynamic scheduling techniques that observes the execution times, slack, and re-

source requirements of applications to dynamically schedule tasks that are recovering from

failure, and make sure that non-faulty tasks do not get affected by the recovering tasks.

Adaptive passive replication systems. Prior research has focused on adaptive passive

replication to reduce delays incurred by conventional passive replication during fault de-

tection, client failover, and fault recovery. For example,IFLOW [22] uses fault-prediction

techniques to change the frequency of backup replica state synchronizations to minimize

state synchronization during failure recovery. Similarly, MEAD [119] reduces fault de-

tection and client failover time by determining the possibility of a primary replica failure

using simple failure prediction mechanisms and redirects clients to alternate servers before

failures occur. Other research [72] uses simulation models to analyze multiple checkpoint-

ing intervals and their effects on fault recovery in fault-tolerant distributed systems. [49]

focuses on an adaptive dependability approach by mediatinginteractions between middle-

ware and applications to resolve constraint consistencieswhile improving availability of

distributed systems.

Load-aware adaptations of fault-tolerance configurations. Prior research has fo-

cused on run-time adaptations of fault-tolerance configurations [36]. For example, the

DARX framework [93] provides fault-tolerance for multi-agent software platforms by fo-

cusing on dynamic adaptations of replication schemes as well as replication degree. Re-

search performed in AQUA [80] dynamically adapts the number of replicas receiving a

client request in anACTIVE replication scheme so that slower replicas do not affect the

response times received by clients. Eternal [68] dynamically changes the locations of ac-

tive replicas by migrating soft real-time objects from heavily loaded processors to lightly

loaded processors, thereby providing better response times for clients.
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Quality of service using generic interception frameworks. Other projects have fo-

cused on interceptions above the middleware layer to add quality of service (QoS) for

applications. For example, QuO [172] weaves in QoS aspects into applications at com-

pile time by wrapping application stubs and skeletons with specialized delegates that can

be used for intercepting application requests and replies.The ACT project [133] provides

response to unanticipated behavior in applications by weaving adaptive code into ORBs

at runtime and provides fine-grained adaptations by intercepting application requests and

replies. CQoS [62] provides platform-dependent interceptors based on stubsand skele-

tons, and QoS-specific service components, that work with the interceptors to add QoS like

fault-tolerance to applications.

Real-time fault-tolerant systems. Delta-4/XPA [120] provided real-time fault-tolerant

solutions to distributed systems by using the semi-active replication model. MEAD [119]

and its proactive recovery strategy for distributed CORBA applications can minimize the

recovery time for DRE systems. The Time-triggered Message-triggered Objects (TMO)

project [75] considers replication schemes such as the primary-shadowTMO replication

(PSTR) scheme, for which recovery time bounds can be quantitatively established, and

real-time fault tolerance guarantees can be provided to applications. AQUA [79] usesAC-

TIVE replication to provide both availability and timeliness capabilities for applications,

and optimizes the response times for applications by dynamically deciding on the num-

ber of replicas executing the request. DARX [94] provides adaptive fault-tolerance for

multi-agent software platforms by dynamically changing replication styles in response to

changing resource availabilities and application performance.

II.3.1 Unresolved Challenges

Existing solutions for providing fault-tolerance in distributed systems demonstrate that

PASSIVE replication has a much simpler programming model thanACTIVE replication, and

21



has much lesser resource consumption overhead thanACTIVE replication. Hence,PAS-

SIVE replication is naturally suited for providing both performance and high availability

for applications - especially those operating in resource-constrained environments.

Although PASSIVE replication is desirable in a resource-constrained environment, it

is particularly challenging to support performance-sensitive distributed applications based

on PASSIVE replication. Specifically, the following challenges in maintaining acceptable

client response times and managing application utilizations while recovering from a failure

remain unresolved:

1. After a failover, the client perceived response times will depend on the loads of the

processor hosting the new primary. Incorrect client redirections could overload a

processor thereby affecting the response time(s) for the redirected client(s) and other

clients that were already invoking remote operations on targets hosted on that proces-

sor. If a client has multiple backup replica choices for failover, load-aware failover

targetdecisions therefore must be made to determine the appropriate backup replica

so that application performance is not affected after failure recovery.

2. Workload fluctuations (e.g., deployment of new applications) and client failovers

from (possibly multiple) processor failures might result in overloads.Adaptiveover-

load management decisions must be made to recover from overloads so that applica-

tion performance is not affected by fluctuating operating environments.

3. Fault-tolerant middleware should mask failures from clients and transparently redi-

rect them to appropriate alternate servers while supporting the adaptive, load-aware

failover and overload management capabilities. As described above, however, load-

aware failover target selection and adaptive overload management decisions are need-

ed to maintain high availability and acceptable performance for clients. Fault-tolerant

middleware therefore needs to support adaptive failover and overload management

decisions so that clients are shielded from failures and system load fluctuations.
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ChapterV and ChapterVI describe our approach to provide an adaptive fault-tolerant

real-time middleware that addresses these challenges.
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CHAPTER III

DEPLOYMENT-TIME RESOURCE-AWARE FAULT-TOLERANCE FOR DRE
SYSTEMS

Developing large-scale distributed real-time and embedded (DRE) systems is hard in

part due to complex deployment and configuration issues involved in satisfying multiple

quality for service (QoS) properties, such as real-timeliness and fault tolerance. Effective

deployment requires developing and evaluating a range of task allocation algorithms that

satisfy DRE QoS properties while reducing resources usage.Effective configuration re-

quires automated tuning of middleware QoS mechanisms to avoid tedious and error-prone

manual configuration.

This chapter makes three contributions to the study of deployment and configuration

middleware for DRE systems that satisfy multiple QoS properties. First, it describes a

novel task allocation algorithm for passively replicated DRE systems to meet their real-

time and fault-tolerance QoS properties while consuming significantly less resources. Sec-

ond, it presents the design of a strategizable allocation engine that enables application

developers to evaluate different allocation algorithms. Third, it presents the design of a

middleware-agnostic configuration framework that uses allocation decisions to deploy ap-

plication components/replicas and configure the underlying middleware automatically on

the chosen nodes. These contributions are realized in the DeCoRAM (Deployment and

Configuration Reasoning and Analysis via Modeling) middleware. Empirical results on a

distributed testbed demonstrate DeCoRAM’s ability to handle multiple failures and provide

efficient and predictable real-time performance.

The rest of this chapter is organized as follows. SectionIII.1 introduces the research

problem and provides the motivation for our work; SectionIII.2 describes the fault model
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and system model that underlies our work on DeCoRAM; SectionIII.3 describes the struc-

ture and functionality of DeCoRAM; SectionIII.4 empirically evaluates DeCoRAM in the

context of distributed soft real-time applications with varying real-time and fault-tolerance

deployment and configuration requirements; Finally, Section III.5 provides a summary of

our contributions.

III.1 Introduction

Distributed real-time and embedded (DRE) systems operate in resource-constrained en-

vironments and are composed of tasks that must process events and provide soft real-time

performance. Examples include shipboard computing environments; intelligence, surveil-

lance and reconnaissance systems; and smart buildings. A second key quality of service

(QoS) attribute of these DRE systems isfault-tolerancesince system unavailability can

degrade real-time performance and usability.

Fault-tolerant DRE systems are often built usingactiveor passivereplication [20, 120].

Due to its low resource consumption, passive replication isappealing for soft real-time ap-

plications that cannot afford the cost of maintaining active replicas and do not require hard

real-time performance [45]. Despite improving availability, however, server replication in-

variablyincreasesresource consumption, which is problematic for DRE systemsthat place

a premium on minimizing the resources used [19].

To address these concerns, DRE systems require solutions that can exploit the benefits

of replication, but share the available resources amongst the applications efficiently (i.e.,

to minimize the number and capacities of utilized resources). These solutions must also

provide both timeliness and high availability assurances for applications. For a class of

DRE systems that areclosed(i.e., the number of tasks, their execution patterns, and their

resource requirements are known ahead-of-time and are invariant), such solutions may be

determined at design-time, which in turn can assure QoS properties at runtime.

The advent of middleware that supports application-transparent passive replication [104,

25



120, 128, 174] appears promising to provide such design-time QoS solutions for fault-

tolerant DRE systems. Unfortunately, conventional passive replication schemes incur two

challenges for resource-constrained DRE systems: (1) the middleware must generate the

right replica-to-node mappings that meet both fault-tolerance and real-time requirements

with a minimum number of nodes, and (2) the replica-to-node mapping decisions and QoS

needs must be configured within the middleware. Developers must otherwise manually

configure the middleware to host applications, which requires source code changes to ap-

plications whenever new allocation decisions are made or existing decisions change to

handle new requirements. Due to differences in middleware architectures, thesead hocand

manual approaches are neither reusable nor reproducible, so this tedious and error-prone

effort must be repeated.

To address the challenges associated with passive replication for DRE systems, this

chapter presents a resource-aware deployment and configuration middleware for DRE sys-

tems called DeCoRAM (Deployment and Configuration Reasoning and Analysis via Mod-

eling). DeCoRAM automatically deploys and configures DRE systemsto meet the real-

time and fault-tolerance requirements via the following novel capabilities:

• A resource-aware task allocation algorithmthat improves the current state-of-the-

art in integrated passive replication and real-time task allocation algorithms [15, 125,

153, 171] by providing a novel replica-node mapping algorithm called FERRARI

(FailurE, Real-time, and Resource Awareness Reconciliation Intelligence). The nov-

elty of this algorithm are its simultaneous (1)real-time awareness, which honors

application timing deadlines, (2)failure awareness, which handles a user-specified

number of multiple processor failures by deploying multiple passive replicas such

that each of those replicas can continue to meet client timing needs when processors

fail while also addressing state consistency requirements, and (3)resource aware-

ness, which reduces the number of processors used for replication.

• A strategizable allocation enginethat decouples the deployment of a DRE system
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from a specific task allocation algorithm by providing a general framework that can

be strategized by a variety of task allocation algorithms tailored to support different

QoS properties of the DRE system. The novelty of DeCoRAM’s allocation engine

stems from its ability to vary the task allocation algorithmused from the feasibility

test criteria.

• A deployment and configuration (D&C) enginethat takes the decisions computed

by the allocation algorithm and automatically deploys the tasks and their replicas in

their appropriate nodes and configures the underlying middleware appropriately. The

novelty of DeCoRAM’s D&C engine stems from the design of the automated config-

uration capability, which is decoupled from the underlyingmiddleware architecture.

DeCoRAM’s allocation engine, and the deployment and configuration engine are im-

plemented in∼10,000 lines of C++. This chapter empirically evaluates thecapabili-

ties of DeCoRAM in a real-time Linux cluster to show how its real-time fault-tolerance

middleware incurs low (1)resource consumption overhead, where application replicas

are deployed across processors in a resource-aware manner using the FERRARI algo-

rithm, (2) runtime processing overhead, where failure recovery decisions are made at

deployment-time, and (3)development overhead, where application developers need not

write application-specific code to obtain a real-time fault-tolerance solution.

III.2 Problem Definition and System Model

This section defines the problem definition for our work on DeCoRAM in the context

of the task and fault system models used.
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III.2.1 DRE System Model

Our research focuses on a class of DRE systems where the system workloads and the

number of tasks are knowna priori. Examples include system health monitoring appli-

cations found in the automotive domain (e.g., periodic transmission of aggregated vehicle

health to a garage) or in industrial automation (e.g., periodic monitoring and relaying of

health of physical devices to operator consoles), or resource management in the software

infrastructure for shipboard computing. These systems also demonstrate stringent con-

straints on the resources that are available to support the expected workloads and tasks.

Task model.We consider a set ofN long running soft real-time tasks (denoted asS= { T1,

T2, ...,TN}) deployed on a cluster of hardware nodes. Clients access these tasks periodically

via remote operation requests: each applicationTi is associated with its worst-case execu-

tion time (denoted asEi), its period (denoted asPi), and its relative deadline (which is equal

to its period). On each processor, the rate monotonic scheduling algorithm (RMS) [84] is

used to schedule each task and individual task priorities are determined based on their pe-

riods. We assume that the networks within this class of DRE systems provide bounded

communication latencies for application communication and do not fail or partition.

Fault model. We focus on fail-stop processor failures within DRE systemsthat prevent

clients from accessing the services provided by hosted applications. We usepassive repli-

cation [20] to recover from fail-stop processor failures. In passive replication, only one

replica—called the primary—handles all client requests when the application state main-

tained at the primary replica could change. Since backup replicas are not involved in pro-

cessing client’s requests, their application state must besynchronized with the state of

the primary replica. We assume that the primary replica (which executes for worst-case

execution timeEi) uses non-blocking remote operation invocation mechanisms, such as

asynchronous messaging, to send state update propagationsto the backup replica, while

immediately returning the response to the client.

Each backup replica of a taskTi is associated with its worst-case execution time for
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synchronizing stateSi, which significantly reduces the response times for clients, but sup-

ports only “best effort” guarantees for state synchronization. Replica consistency may be

lost if the primary replica crashes after it responds to the client, but before it propagates

its state update to the backup replicas. This design tradeoff is desirable in DRE systems

where state can be reconstructed using subsequent (e.g., sensor) data updates at the cost of

transient degradation of services.

III.2.2 Problem Motivation and Research Challenges

The goal of DeCoRAM is to deploy and configure a passively replicated DRE system

of N tasks that is tolerant to at mostK fail-stop processor failures, while also ensuring that

soft real-time requirements are met. To satisfy fault tolerance needs, no two replicas of

the same task can be collocated. To satisfy real-time requirements, the system also must

remain schedulable. These goals must be achieved while reducing resource utilization. To

realize such a real-time fault-tolerant DRE system, a number of research questions arise,

which we examine below via an example used throughout the paper.

Consider a sample task set with their individual periods, asshown in Table2. Assuming

Task Ei Si Pi Util

<A1,A2,A3> 20 0.2 50 40
<B1,B2,B3> 40 0.4 100 40
<C1,C2,C3> 50 0.5 200 25
<D1,D2,D3> 200 2 500 40
<E1,E2,E3> 250 2.5 1000 25

Table 2: Sample Ordered Task Set with Replicas

that the system being deployed must tolerate a maximum of twoprocessor failures, two

backup replicas of each task are needed as shown. The table also shows the execution

times taken by the primary replica, the state synchronization times taken by the backup

replicas, and the utilization of a primary replica.

Using bin packing algorithms [26, 34] (e.g., based on first-fit allocation) and ensuring
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that no two replicas of the same task are collocated, we can identify the lower and upper

bounds on the number of processors required to host the system. For example, Figure1

shows the placement of the tasks, indicating a lower bound onprocessors that is determined

using a bin packing algorithm when no faults are considered.Figure2 shows the upper

Figure 1: Lower Bound on Processors (No FT Case)

bound on processors needed when the system uses active replication. This case represents

an upper bound because in active replication, all replicas contribute WCET. Passive repli-

Figure 2: Upper Bound on Processors (Active FT Case)

cation can reduce the number of resources used because the backup replica in a passively

replicated system only contributes to the state synchronization overhead. Naturally, the

number of processors required for passive replication should be within the range identified

above.
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Researchers and developers must address the following questions when deploying and

configuring DRE systems that must assure key QoS properties:

• How can developers accurately pinpoint the number of resources required?

• Does this number depend on the task allocation algorithm used?

•How can application developers experiment with different allocation algorithms and eval-

uate their pros and cons?

• How can the results of the allocations be integrated with theruntime infrastructures and

how much effort is expended on the part of an application developer?

The three key challenges described below arise when addressing these questions.

Challenge 1: Reduction in resource needs.Since backups contribute to state synchro-

nization overhead, a bin-packing algorithm can pack more replicas, thereby reducing the

number of resources used. The resulting packing of replicas, however, is a valid deploy-

ment only in no-failure scenarios, which is unrealistic forDRE systems. On failures, some

backups will be promoted to primaries (thereby contributing to WCET). Bin packing algo-

rithm cannot identify which backups will get promoted, however, since failures are unpre-

dictable and these decisions are made entirely at runtime. What is needed, therefore, is the

ability to identifya priori the potential failures in the system and determine which backups

will be promoted to primaries so as to determine the number ofresources needed. Sec-

tion III.3.1 describes an algorithm that uses the bounded and invariant properties of closed

DRE systems to address this challenge in a design-time algorithm.

Challenge 2: Ability to evaluate different deployment algorithms. An algorithm for

task allocation has limited benefit if there is no capabilityto integrate it with produc-

tion systems where the algorithm can be executed for different DRE system requirements.

Moreover, since different DRE systems may impose differentQoS requirements, any one

allocation algorithm is often limited in its applicabilityfor a broader class of systems. What

is needed, therefore, is a framework that can evaluate different task allocation algorithms
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for a range of DRE systems. SectionIII.3.2 discusses how the DeCoRAM framework

evaluates different task allocation algorithms.

Challenge 3: Automated configuration of applications on real-time fault-tolerant mid-

dleware. Even after the replica-to-node mappings are determined viatask allocation algo-

rithms, these decisions must be enforced within the runtimemiddleware infrastructure for

DRE systems. Although developers often manually configure the middleware, differences

in middleware architectures (e.g., object-based vs. component-based vs. service-based)

and mechanisms (e.g., declarative vs. imperative) make manual configuration tedious and

error-prone. What is needed, therefore, is a capability that can (1) decouple the configura-

tion process from the middleware infrastructure and (2) seamlessly automate the configura-

tion process. SectionIII.3.3 describes how the DeCoRAM configuration engine automates

the configuration process.

III.3 The Structure and Functionality of DeCoRAM

This section presents the structure and functionality of DeCoRAM and shows how it

resolves the three challenges described in SectionIII.2.2.

III.3.1 DeCoRAM’s Resource-aware Task Allocation Algorithm

Challenge 1 described in SectionIII.2.2 is a well-known NP-hard problem [24, 26, 54].

Although this problem is similar to bin-packing problems [26], it is significantly harder due

to the added burden of satisfying both fault-tolerance and real-time system constraints. We

developed an algorithm calledFailurE, Real-time, and Resource Awareness Reconciliation

Intelligence(FERRARI) presented below to satisfy the real-time and fault-tolerance prop-

erties of DRE systems while reducing resource utilization.FERRARI is explained using

the sample task set shown in Table2.
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III.3.1.1 Allocation Heuristic

Algorithm 1 describes the design of DeCoRAM’s replica allocation algorithm called

FERRARI. Line3 replicates the original task set corresponding to theK fault tolerance

requirements, and orders these tuples according to the taskordering strategy (Line4). For

example, to tolerate two processor failures, tasks could beordered by RMS priorities and

the resulting set could contain tasks arranged with tuples from highest priority to lowest as

shown in a sample task set of Table2.

Algorithm 1 : Replica Allocation Algorithm
Input :

T← set ofN tasks to be deployed (not including replicas),
K←number of processor failures to tolerate,

Output :
Deployment planDP← set of two tuples mapping a replica to a processor,
PF : resulting set of processors used

begin1
Intially, DP = {},PF = default set of one processor2
Let T ′ ← {< tik >},1≤ i ≤N,1≤ k≤ K // Replicate each tasks in T, K times so that T ′ contains set of N K-tuples3
Task_Ordering(T ′) // Order the tasks and replicas4
foreach tuplei ∈ T ′,1≤ i ≤ N do5

for k = 1 to K do6
// Allocate a task and all its K replicas before moving to the next7
Proc_Select:Pick a candidate processorpc from the setPF not yet being evaluated for allocation8
/* Check if allocation is feasible on this processor */9
bool result = Test_Alloc_ f or_Feasibility(tik ,k, pc,K)10
if result==falsethen // Infeasible allocation11

GoTo Proc_Selectfor selecting the next candidate processor for this replica12
else// Update the deployment plan13

DP← DP
⋃

{< tik , pc >} // add this allocation14
if no pc from set PF is a feasible allocationthen15

Add a new processor toPF16
GoTo Proc_Select// Attempt allocation again with the new set of candidate processors17

end18
end19

end20
end21

Lines5 and6 show how FERRARI allocates a task and all of itsK replicas before allo-

cating the next task. For example, for the set of tasks in Table2, first all replicas belonging

to task A will be allocated followed by B and so on. To allocateeach replica, FERRARI

selects a candidate processor based on the configured bin-packing heuristic (Line8). To

satisfy fault-tolerance requirements, FERRARI ensures that the processor does not host an-

other replica of the same application being allocated when selecting a candidate processor.
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For the candidate processor, FERRARI runs a feasibility test using novel enhancements

to the well-known time-demand analysis [84], which is used to test feasibility (see Sec-

tion III.3.1.2). We chose the time-demand analysis for its accuracy in scheduling multiple

tasks in a processor. Although the time-demand analysis method is computationally expen-

sive, it is acceptable since DeCoRAM is a deployment-time solution.

The feasibility criteria evaluates if the replica could be allocated to the processor subject

to the specified real-time and fault-tolerance constraints(Line 10). If the test fails for the

current processor under consideration, a new candidate processor is chosen. For our sample

task set, after deploying task sets A and B along with their replicas (as shown in Figure3),

the next step is to decide a processor for the primary replicaof task C. Processor P1 is

Figure 3: Allocation of Primary and Backup Replicas for Tasks A and B

determined an infeasible solution since the combined utilization on the processor would

exceed 100% if C1 were allocated on P1 already hosting A1 and B1 (40+40+25=105).

If a feasible allocation is found, the output deployment plan setDP is updated (Line14).

If no candidate processor results in a feasible allocation,however, the set of candidate

processorsPF is updated (Line16) and the replica allocation is attempted again. As shown

in SectionIII.3.1.2, C1 cannot be allocated to any of P1, P2 or P3, thereby requiring an

additional processor (as shown in Figure4). FERRARI completes after allocating all the

tasks and its replicas.
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III.3.1.2 Failure-Aware Look-Ahead Feasibility Algorith m

Challenge 1 implied exploring the state space for all possible failures in determining

the feasible allocations. The time-demand analysis on its own cannot determine this state

space. We therefore modify the well-known time-demand function r i(t) for taskTi in time-

demand analysis [84] as follows:

r i(t) = Ei +











∑i−1
k=1⌈

t
Pk
⌉Ek if k is primary

∑i−1
k=1⌈

t
Pk
⌉Sk if k is backup











f or 0 < t < Pi

where the tasks are sorted in non-increasing order of RMS priorities. This condition is

checked for each taskTi at an instant called thecritical instant phasing[84], which corre-

sponds to the instant when the task is activated along with all the tasks that have a higher

priority thanTi . The task set is feasible if all tasks can be scheduled under the critical

instant phasing criteria.

Using this modified definition, we now enhance the feasibility test criteria using the

following novel features:

(1) Necessary criteria: “lookahead” for failures. SectionIII.2.1 explained how a task

being allocated can play the role of a primary (which consumes worst case execution time

E) or a backup replica (which consumes worst case state synchronization timeS). Due to

failures, some backups on a processor will get promoted to primaries and becauseE >> S,

the time-demand analysis method must consider failure scenarios so that the task allocation

is determined feasible in both a non-failure and failure case. For our sample task set, this

criteria implies that all possible failure scenarios must be explored for the snapshot shown

in Figure3 when allocating the primary replica for task C (i.e., C1).

For any two processor failure combinations (e.g., the failure of P1 and P2 or P1 and

P3), the backups of tasks A and B will be promoted to being primaries. It is therefore no

longer feasible to allocate C1 on either P2 or P3 (using the same reasoning that eliminated

P1 as a choice). An enhancement to perform such a check must bemade available in the
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Figure 4: Feasible Allocation for Task C1

time-demand analysis, which then results in an extra processor to host C1, as shown in

Figure4.

(2) Relaxation criteria: assign “failover ordering” to min imize processors utilized.

Clause 1 above helps determine the placement of newly considered primaries (e.g., C1).

We next address the allocation of backups. One approach is toallocate C2 and C3 on

processors P5 and P6 (see Figure2). This straightforward approach, however, requires the

same number of resources used in active replication, which is contrary to the intuition that

passive replication utilizes fewer resources.

Using Clause 1, P1 can be eliminated as a choice to host backupC2 since a failure of

P4 will make C2 a primary on P1, which is an infeasible allocation. Clause 1 provides only

limited information, however, on whether P2 and P3 are acceptable choices to host backups

of C (and also those of D and E since they form a group accordingto the first-fit criteria).

We show this case via our sample task set.

Consider a potential feasible allocation in a non-failure case that minimizes resources,

as shown in Figure5. Using Clause 1, we lookahead for any 2-processor failure combi-

nations. If P1 and P2 fail, the allocation is still valid since only A3 and B3 on P3 will be

promoted to primaries, whereas C1, D1 and E1 continue as primaries on P4. If P2 and P3

were to fail, the allocation will still be feasible since theexisting primaries on P1 and P4

are not affected.

An interesting scenario occurs when P1 and P4 fail. There aretwo possibilities for how

backups are promoted. If the fault management system promotes A2 and B2 on processor
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Figure 5: Determining Allocation of Backups of C, D and E

P2, and C3, D3 and E3 on processor P3 to primaries the allocation will still be feasible and

there will be no correlation between the failures of individual tasks and/or processors. If the

fault management system promotes all of A2, B2, C2, D2 and E2 to primaries on processor

P2, however, an infeasible allocation will result. The unpredictable nature of failures and

decisions made at runtime is the key limitation of Clause 1.

A potential solution is to have the runtime fault managementsystem identify situations

that lead to infeasible allocations and not enforce them. The drawback with this approach,

however, is that the number of failure combinations increases exponentially, thereby mak-

ing the runtime extremely complex and degrading performance as the system scale in-

creases. A complex runtime scheme is unaffordable for closed DRE systems that place a

premium on resources. Moreover, despite many properties ofclosed DRE systems being

invariant, the runtime cannot leverage these properties tooptimize the performance.

It is possible to overcome the limitation of Clause 1 if the runtime fault management

system follows a specific order for failovers. Our algorithmtherefore orders the failover

of the replicas according to their suffixes, which eliminates the possibility of infeasible

allocations at design-time. Naturally, the replica-to-node mapping and hence the time-

demand analysis must be enhanced to follow this ordering.

Based on this intuition, even withK processor failures it is unlikely that backups on

a live processor will be promoted all at once. In other words,only a subset of backups

on a given processor will be promoted in the worst case, without causing an infeasible

allocation. The rest of the backups will continue to contribute onlyS load, which enables
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the overbooking of more backup replicas on a processor [53], thereby reducing the number

of processors utilized.

These two criteria form the basis of the enhancements we madeto the original time-

demand analysis, which underpins the feasibility test in our task allocation algorithm FER-

RARI. Due to space considerations we do not show the feasibility test algorithm itself, but

the details are available atwww.isis.vanderbilt.edu/sites/default/files/-

decoram_tr09.pdf.

Figure6 shows a feasible allocation determined by FERRARI for the sample set of

tasks and their replicas, which reduces the number of resources used and supports real-

time performance even in the presence of up to two processor failures.

Figure 6: Allocation of Sample Task Set

III.3.1.3 DeCoRAM Algorithm Complexity

We now briefly discuss the complexity of FERRARI. The top-level algorithm (Algo-

rithm 1) comprises an ordering step on Line4, which results inO(Nlog(N) for N tasks.

Allocation decision must then be made for each of theN tasks, theirK replicas, and upto

M processors if the feasibility test fails forM−1 processors.

The overall complexity is thusO(N∗K ∗M ∗ f easibility_test), where feasibility_test is

the failure-aware look-ahead feasibility algorithm described in SectionIII.3.1.2. Each exe-

cution of the feasibility test requires (1 +
(Pt

K

)

) executions of the enhanced time-demand
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analysis [84]. Since the replica allocation algorithm allocates tasks according to non-

increasing RMS priority order, however, the time-demand analysis is not overly costly and

can be performed incrementally.

III.3.2 DeCoRAM Allocation Engine

The FERRARI algorithm presented in SectionIII.3.1 is one of many possible task al-

location algorithms that target different QoS requirements of DRE systems. Moreover, it

may be necessary to decouple an allocation algorithm from the feasibility test criteria. For

example, FERRARI can leverage other schedulability testing mechanisms beyond time-

demand analysis. To address these variabilities, Challenge 2 in SectionIII.2.2 highlighted

the need for a framework to evaluate multiple different algorithms that can work with dif-

ferent feasibility criteria.

The DeCoRAM Allocation Engine shown in Figure7 provides such a framework com-

prising multiple components, each designed for a specific purpose. DeCoRAM’s Alloca-

Figure 7: Architecture of the DeCoRAM Allocation Engine

tion Engine is implemented in∼6,500 lines of C++ and provides aplacement controller

componentthat can be strategized with different allocation algorithms, including FER-

RARI (see SectionIII.3.1). This component coordinates its activities with the following

other DeCoRAM components:
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1. Input manager. DRE system developers who need to deploy a system with a set ofreal-

time and fault-tolerance constraints express these requirements via QoS specifications that

include: (1) the name of each task in the DRE system, (2) the period, worst-case execution

time, and worst-case state synchronization time of each task, and (3) the number of proces-

sor failures to tolerate. Any technique for gathering theseQoS requirements can be used as

long as DeCoRAM can understand the information format. For the examples in this paper,

we used our CoSMIC modeling tool (www.dre.vanderbilt.edu/cosmic), which

supplies information to DeCoRAM as XML metadata. The input manager component

parses this XML metadata into an in-memory data structure tostart the replica allocation

process.

2. Node selector.To attempt a replica allocation, the allocation algorithm must select a can-

didate node,e.g., using efficient processor selection heuristics based on bin-packing [26].

Thenode selector componentcan be configured to select suitable processors based on first-

fit and best-fit bin packing heuristics [88] that reduce the total number of processors used,

though other strategies can also be configured.

3. Admission controller. Feasibility checks are required to allocate a replica to a processor.

As described above, the goal of DeCoRAM’s allocation algorithm is to ensure both real-

time and fault-tolerance requirements are satisfied when allocating a replica to a processor.

The admission controller componentcan be strategized by a feasibility testing strategy,

such as our enhanced time-demand analysis algorithm (see Section III.3.1.2).

4. Task replicator. The task replicator componentadds a set ofK replicas for each task

in the input task set and sorts the resultant task set according to a task ordering strategy to

facilitate applying the feasibility algorithm by the admission controller component. Since

FERRARI uses time-demand analysis [84] for its feasibility criteria, the chosen task or-

dering strategy is RMS prioritization, with the tasks sorted from highest to lowest rate to

facilitate easy application of the feasibility algorithm.Other task ordering criteria also can

be used by the task replicator component.
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For the closed DRE systems that we focus on in this paper, the output from the DeC-

oRAM Allocation Engine framework is (1) the replica-to-node mapping decisions for all

the tasks and their replicas in the system, and (2) the RMS priorities in which the primary

and backup replicas need to operate in each processor. This output format may change de-

pending on the type of algorithm and feasibility criteria used. The output serves as input to

the deployment and configuration (D&C) engine (described inSectionIII.3.3). This staged

approach helps automate the entire D&C process for closed DRE systems.

III.3.3 DeCoRAM Deployment and Configuration (D&C) Engine

The replica-to-node mapping decisions must be configured within the middleware,

which provides the runtime infrastructure for fault management in DRE systems. Chal-

lenge 3 in SectionIII.2.2 highlighted the need for a deployment and configuration capabil-

ity that is decoupled from the underlying middleware. This capability improves reuse and

decouples the task allocation algorithms from the middleware infrastructure.

The DeCoRAM D&C Engine automatically deploys tasks and replicas in their appro-

priate nodes and configures the underlying middleware using∼3,500 lines of C++. Figure8

shows how this D&C engine is designed using the Bridge pattern [51], which decouples

the interface of the DeCoRAM D&C engine from the implementation so that the latter

can vary. In our case, any real-time fault-tolerant component middleware can serve as

the implementation. By using a common interface, DeCoRAM can operate using various

component middleware, such as [104, 128].

The building blocks of DeCoRAM’s D&C engine are described below:

• XML parser. TheXML parser componentconverts the allocation decisions captured

in the deployment plan (which is the output of the allocationengine) into in-memory data

structures used by the underlying middleware.

•Middleware deployer. Themiddleware deployer componentinstantiates middleware-

specific entities on behalf of application developers, including essential building blocks of
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any fault tolerance solution, such as thereplication manager, which manages the replicas;

a per-process monitor, which checks liveness of a host; andstate transfer agent, which

synchronizes state of primary with backups.

• Middleware configurator. Themiddleware configurator componentconfigures the

QoS policies of the real-time fault-tolerant middleware toprepare the required operating

environment for the tasks that will be deployed. Examples ofthese QoS policies include

thread pools that are configured with appropriate threads and priorities,e.g., RMS priorities

for periodic tasks.

•Application installer. Theapplication installer componentinstalls and registers tasks

with the real-time fault-tolerant middleware,e.g., it registers the created object references

for the tasks with the real-time fault-tolerant middleware. Often these references are main-

tained by middleware entities, such as the replication manager and fault detectors. Client

applications also may be transparently notified of these object references.

Figure 8: Architecture of the DeCoRAM D&C Engine

DeCoRAM’s D&C engine provides two key capabilities: (1) application developers
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need not write code to achieve fault-tolerance, as DeCoRAM automates this task for the

application developer, and (2) applications need not be restricted to any particular fault-

tolerant middleware; for every different backend, DeCoRAMis required to support the

implementation of the bridge. This cost is acceptable sincethe benefits can be amortized

over the number of DRE systems that can benefit from the automation.

III.4 Evaluation of DeCoRAM

This section empirically evaluates DeCoRAM along several dimensions by varying the

synthetic workloads and the number of tasks/replicas.

III.4.1 Effectiveness of the DeCoRAM Allocation Heuristic

By executing FERRARI on a range of DRE system tasks and QoS requirements, we

demonstrate the effectiveness of DeCoRAM’s allocation heuristic in terms of reducing the

number of processors utilized.

Variation in input parameters.

We randomly generated task sets of different sizesN, whereN = {10,20,40,80,160}.

We also varied the number of failures we tolerated,K, whereK = {1,2,3,4}. DRE systems

often consist of hundreds of applications, while passivelyreplicated systems often use 3

replicas, which make these input parameters reflect real-world systems. For each run of the

allocation engine, we varied a parameter calledmax load, which is the maximum utilization

load of any task in the experiment. Our experiments variedmax loadbetween 10%, 15%,

20%, and 25%.

For each task in our experiments, we chose task periods that were uniformly distributed

with a minimum period of 1 msec and a maximum period of 1,000 msec. After the task

period was obtained, each task load was picked at random froma uniformly distributed

collection with a minimum task load of 0% up to the specified maximum task load, which

determines the worst-case execution times of each task.

43



We applied a similar methodology to pick the worst-case state synchronization times for

all tasks between 1% and 2% of the worst-case execution timesof each task. The deadline

of each task was set to be equal to its period. Our objective invarying these parameters as

outlined above was to understand how effectively DeCoRAM reduces resources and how

each input parameter impacts the result.

Figure 9: Varying number of tasks with 10% max load

Evaluation criteria. To determine how many resources FERRARI was able to save, we

defined two baseline bounds:

• Lower bound, where FERRARI determined the lower bound on processors needed

by implementing the allocation heuristic [35] that is known to allocate tasks without fault

tolerance (No-FT) in the minimal number of processors.

• Upper bound, where FERRARI determined the upper bound on number of processors

44



needed by allocatingK replicas for each task using the same heuristic [35] (we make sure

that no two replicas of a task are in the same processor). Thisconfiguration represents

active replication fault-tolerance (AFT) with the minimalnumber of processors used.

We then strategized FERRARI to use the first-fit (FF-FT) and best-fit (BF-FT) alloca-

tion techniques, and computed the number of processors needed. SectionIII.3.2 showed

how the node selector component in the DeCoRAM Allocation Engine can be strategized

with these techniques.

Figure 10: Varying number of tasks with 15% max load

Analysis of results.Figures9, 10, 11, and 12show the number of processors used when

each of the allocation heuristics attempts to allocate varying number of tasks with varying

max loadfor a task set. AsN andK increase, the number of processors used also increased

exponentially forAFT. This exponential increase in processors is due to the behavior of the
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active replication scheme, which executes all the replicasto provide fast failure recovery

on a processor failure.

Figure 11: Varying number of tasks with 20% max load

In contrast, when DeCoRAM uses theFF-FT or theBF-FT allocation heuristics, the

rate of increase in number of processors used in comparison with the No-FT allocation

heuristic is slower compared toAFT. For example, whenK is equal to 1, the number of

processors used by both theFF-FT andBF-FT allocation heuristics is only slightly larger

than those used by theNo-FT allocation heuristics.

As the number of tasks and processor failures to tolerate increases, the ratio of the

number of processors used by theFF-FT and theBF-FT allocation heuristics to those used

by theNo-FT allocation heuristic increases, but at a rate much slower than the increase in

the case ofAFT. Particularly for largeN as well asK (for example, see Figure12, 160 tasks
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Figure 12: Varying number of tasks with 25% max load

and 4 backups for each task), the number of processors used bytheFF-FT and theBF-FT

allocation heuristics is only half the number of processorsused byAFT.

This result is a direct consequence of the relaxation criteria described in SectionIII.3.1.2.

As the number of tasks to allocate and number of backup replicas increases, the look ahead

step finds more opportunities for passive overbooking of backups on a processor for FF-FT

and BF-FT allocation heuristics.

III.4.2 Validation of Real-time Performance

We now empirically validate the real-time and fault-tolerance properties of an experi-

mental DRE system task set deployed and configured using DeCoRAM. The experiment

was conducted in the ISISlab testbed (www.dre.vanderbilt.edu/ISISlab) using

10 blades (each with two 2.8 GHz CPUs, 1GB memory, and a 40 GB disk) and running the
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Fedora Core 6 Linux distribution with real-time preemptionpatches (www.kernel.org-

/pub/linux/kernel/projects/rt) for the kernel. Our experiments used one CPU

per blade and the blades were connected via a CISCO 3750G switch to a 1 Gbps LAN.

The experimental setup and task allocation follows the model presented in Figure6 and

Table2. For our experiment we implemented the Bridge pattern [51] in the DeCoRAM

D&C engine for our FLARe middleware [7]. Clients of each of the 5 tasks are hosted in 5

separate blades. FLARe’s middleware replication manager ran in the remaining blade.

The experiment ran for 300 seconds. We introduced 2 processor failures (processors

P1 and P2 in Figure6) 100 and 200 seconds, respectively, after the experiment was started.

We used a fault injection mechanism where server tasks call theexit()system call (crashing

the process hosting the server tasks) while the clientsCLIENT-A or CLIENT-B make invo-

cations on server tasks. The clients receiveCOMM_FAILURE exceptions and then failover

to replicas according to the order chosen by DeCoRAM.

Figure13 shows the response times observed by the clients despite thefailures of 2

processors. As shown by the labelA in Figure13, at 100 seconds when replica A1 fails
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(processor P1 fails, thereby failing B1 as well), clientCLIENT-A experiences a momentary

increase of 10.6 milliseconds in its end-to-end response time, which is the combined time

for failure detection and subsequent failover but stabilizes immediately, thereby ensuring

soft real-time requirements. The same behavior is also observed at 200 seconds (see label

B) when P2 fails.

These results demonstrate that irrespective of the overbooking of the passive replicas,

DeCoRAM can still assure real-time and fault-tolerance forapplications.

III.4.3 Evaluating DeCoRAM’s Automation Capabilities

We now define a metric that counts the number of steps per deployment and configura-

tion activity to provide a qualitative evaluation of developer effort saved using DeCoRAM.

AssumingN number of tasks,K number of failures to tolerate, andM processors needed

to host the tasks, Table3 shows the efforts expended by the developer in conventional

approaches versus using DeCoRAM (we assume the use of our FLARe [7] real-time fault-

tolerant middleware).

Activity Effort (Steps Required)
Manual DeCoRAM

Specification N N
Allocation N*(K+1) 0
XML Parsing 1 0
Middleware Deployment 1 + N + 2*M 0
Middleware Configuration M 0
Application Installation 2*N*(K+1) 0

Table 3: Effort Comparison

The contents of the table are explained below. ForN tasks, both the conventional and

DeCoRAM approaches require developers to specify the QoS requirements. All steps in

DeCoRAM are then automated and hence no effort is expended bydevelopers. In contrast,

in a manual approach, developers must determine the allocation for K +1 replicas (primary

andK backups) of theN tasks followed by one step in parsing the XML output.
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Middleware deployment requires one step in deploying the FLARe middleware repli-

cation manager,N steps to install the FLARe client request interceptors on the N clients

of the servers, and 2 steps each to deploy the FLARe monitor and FLARe state transfer

agent on each of theM processors. One step is then necessary to configure the underlying

middleware (e.g., setting up thread pools with priorities) onM processors for a total ofM

steps. Finally, installation of each task requires two steps to register a task with the FLARe

middleware replication manager and FLARe state transfer agent for theN tasks withK +1

replicas each.

III.5 Concluding Remarks

This paper describes the structure, functionality, and performance of the DeCoRAM

deployment and configuration framework, which provides a novel replica allocation algo-

rithm called FERRARI that provides real-time and fault-tolerance to closed DRE systems

while significantly reducing resource utilization. DeCoRAM also provides a strategizable

allocation engine that is used to evaluate FERRARI’s ability to reduce the resources re-

quired in passively replicated closed DRE systems. Based onthe decisions made by FER-

RARI, DeCoRAM’s deployment and configuration engine automatically deploys applica-

tion components/replicas and configures the middleware in the appropriate nodes, thereby

eliminating manual tasks needed to implement replica allocation decisions. The results

from our experiments demonstrate how DeCoRAM provides cost-effective replication so-

lutions for resource-constrained, closed DRE systems.

Below is a summary of lessons learned from our work developing and empirically eval-

uating DeCoRAM:

• DeCoRAM requires a small number of additional processors to provide fault-tolerance,

particularly for smaller number of processor failures to tolerate,i.e., smaller values

of K.
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• As loads contributed by individual tasks increases, the gains in processor reduc-

tion increases when compared with active replication sinceDeCoRAM exploits the

failover order of backup replicas to overbook multiple backup replicas whose ranks

are high and whose lower ranked replicas are deployed acrossdifferent processors.

• The gains seen by FERRARI hold when the state synchronization overhead is a small

fraction of the worst case execution time. As the state synchronization overhead

approaches 50% or more of the WCET, the reduction seen in processors consumed is

no longer attractive, which indicates that such DRE systemsmay benefit from using

active replication.

DeCoRAM is available in open-source format atwww.dre.vanderbilt.edu/~jai-

DeCoRAM.
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CHAPTER IV

SCALABLE QOS PROVISIONING, DEPLOYMENT, AND CONFIGURATION
OF FAULT-TOLERANT DRE SYSTEMS

Coordinated allocation of both CPU as well as network resources are required by many

DRE systems to satisfy their end-to-end QoS requirements. Although CPU QoS mecha-

nisms, such as bin-packing algorithms, and network QoS mechanisms, such as differenti-

ated services (DiffServ), can manage a single resource in isolation, relatively little work has

been done on QoS-aware mechanisms for managing multiple heterogeneous resources in

a coordinated, integrated, and non-invasive manner to support end-to-end application QoS

requirements.

In this chapter, we present two contributions to the study ofmiddleware that sup-

ports QoS-aware deployment and configuration of applications in DRE systems. First,

we present a model-driven component middleware framework called NetQoPE and de-

scribe how it shields applications from the complexities oflower-level CPU and network

QoS mechanisms by simplifying (1) the specification of per-application CPU and per-flow

network QoS requirements, (2) resource allocation and validation decisions (such as ad-

mission control), and (3) the enforcement of per-flow network QoS at runtime. Second, we

empirically evaluate how NetQoPE provides QoS assurance for applications in distributed

real-time and embedded (DRE) systems. Our results demonstrate that NetQoPE provides

flexible and non-invasive QoS configuration and provisioning capabilities by leveraging

CPU and network QoS mechanisms without modifying application source code.

The rest of this chapter is organized as follows. SectionIV.1 introduces the research

problem and provides the motivation for our work; SectionIV.2 describes a case study that

motivates common requirements associated with provisioning QoS for DRE applications;
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SectionIV.3 explains how NetQoPE addresses those requirements via its multistage model-

driven middleware framework; SectionIV.4 empirically evaluates the capabilities provided

by NetQoPE in the context of a representative DRE application case study; Finally, Sec-

tion IV.5 provides a summary of our contributions.

IV.1 Introduction

Emerging trends and limitations. Distributed real-time and embedded systems (DRE),

such as smart buildings, high confidence medical devices andsystems, and traffic control

and safety systems consist of applications that participate in multiple end-to-end appli-

cation flows, operate in resource-constrained environments, and have varying quality-of-

service (QoS) requirements driven by the dynamics of the physical environment in which

they operate. For example, smart buildings can host different types of applications with di-

verse (1) CPU QoS requirements (e.g., personal desktop applications versus fire sensor data

analyzers), and (2) network QoS requirements (e.g., transport of e-mails versus transport

of security-related information). In such systems, there is a need to allocate CPU and net-

work resources to contending applications subject to the constraints on resources imposed

by the physical phenomena (e.g., a fire may partition a set of resources requiring rerouting

of network flows).

The QoS provisioning problem is complex due to the need to differentiate applications

and application flows at the processors and the underlying network elements, respectively,

so that mission-critical applications receive better performance than non-critical applica-

tions [100, 136]. Overprovisioning is often not a viable option in cost- andresource-

constrained environments where DRE applications deployed, e.g. in emerging markets that

cannot afford the expense of overprovisioning. DRE application developers must therefore

seek effective resource management mechanisms that can efficiently provision CPU and

network resources, and address the following two limitations in current research:

Limitation 1: Need for physics-aware integrated allocation of multiple resources.
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Prior work has focused predominantly on allocating and scheduling CPU [31, 57] or net-

work resources [18, 81] in isolation. While single resource QoS mechanisms have been

studied extensively, little work has focused on coordinated mechanisms that allocate mul-

tiple resources, particularly for DRE applications where the coordinated resource manage-

ment must be aware of the physical dynamics. In the absence ofsuch mechanisms, DRE

applications systems may not meet their QoS goals. For example, an application CPU al-

location algorithm [31, 158], could dictate multiple placement choices for application(s),

but not all placement choices may provide the networkand CPU QoS because physical

limitations may not permit certain allocations (e.g., the placement of a fire sensor impacts

its wireless network connectivity to nearby access points). Coordinated mechanisms are

therefore needed to allocate CPU and network resources in anintegrated manner.

Limitation 2: Need for a non-invasive application-level resource management fra-

mework. Even if an integrated, physics-aware multi-resource management framework

existed for DRE applications, developers would still incuraccidental complexities in us-

ing the low-level APIs of the framework. Moreover, application source code changes may

be needed whenever changes occur to the deployment contexts(e.g., source and destina-

tion nodes of applications), per-flow network resource requirements, per-application CPU

resource requirements, or IP packet identifiers.

Middleware frameworks that perform CPU [39, 78, 101, 123, 157] or network [30,

40, 136, 166] QoS provisioning often shield application developers from these acciden-

tal complexities. Despite these benefits, DRE applicationscan still be hard to evolve and

extend when the APIs change and middleware evolve. Addressing these limitations re-

quires higher-level integrated CPU and network QoS provisioning technologies that de-

couple application source code from the variabilities (e.g., different source and destination

node deployments, different QoS requirement specifications) associated with their QoS
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requirements. This decoupling enhances application reuseacross a wider range of deploy-

ment contexts (e.g., different deployment instances each with different QoS requirements),

thereby increasing deployment flexibility.

Solution approach→Model-driven deployment and configuration middleware for

DRE applications. To simplify the development of DRE applications, we developed a

multistage, model-driven deployment and configuration framework calledNetwork QoS

Provisioning Engine(NetQoPE) that integrates CPU and network QoS provisioningvia

declarative domain-specific modeling languages (DSML) [97]. NetQoPE leverages the

strengths of middleware while simultaneously shielding developers from specific mid-

dleware APIs. This design allows system engineers and software developers to perform

reusabledeployment-time analysis (such as schedulability analysis [59]) of non-functional

system properties (such as CPU and network QoS assurances for end-to-end application

flows). The result is enhanced deployment-time assurance that the QoS requirements of

DRE applications will be satisfied.

IV.2 Motivating NetQoPE’s QoS Provisioning Capabilities

This section presents a case study of a representative DRE application from the domain

of smart office environments. We use this case study throughout the chapter to motivate and

evaluate NetQoPE’s model-driven, middleware-guided CPU and network QoS provisioning

capabilities.

IV.2.1 Smart Office Environment Case Study

Smart offices belong to a domain of systems calledSmart Buildings[146] and show-

case state-of-the-art computing and communication infrastructure in its offices and meeting

rooms, as shown in Figure14. Sensors and actuators pervade across a smart office enter-

prise, and control different functionality within the enterprise.

For example, ventilation and air conditioning systems are controlled by sensors that
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monitor and send current room temperatures to an air conditioning service in the com-

mand and operations center using the communication infrastructures of the smart office

enterprise. The air conditioning service analyzes the sensory data and automatically con-

figures the actuators in response to control room temperatures. In addition to the network

traffic associated with the sensors, actuators, and other related embedded systems, the com-

munication infrastructure of a smart office enterprise is also shared by the network traffic

associated with the day-to-day enterprise operations of the employees (e.g., e-mail, video

conferencing).

Below we describe the cyber physical traits of the smart office environment, focusing

on the development and deployment challenges DRE application developers face when

ensuring the integration between the cyber and physical aspects of the system.

• Fire and smoke management.Detectors are placed in different rooms to send periodic

sensory information to a fire and smoke management service. In the event of a fire, this

service should activate the sprinkler system in the right places, activate the public address

system announcing the right evacuation paths for occupantsof the building, and notify

external entities, such as fire stations and hospitals of theincident with the right details.

While designing and deploying this capability, developersmust ensure the delivery of

sensory data to the management service—and the outgoing traffic from this service—is

high priority, i.e., it should always obtain the desired CPU and network resources, even

though the emergency mode operation (e.g., in the event of a fire) of this service is infre-

quent. Moreover, sensory and actuation traffic must be reliable. The service should also

adapt its policies of routing information to other resources when the current set of resources

become unavailable,e.g., due to fire or other adverse event.

• Security surveillance.This service uses a feed from cameras and audio sensors in

different rooms and performs appropriate audio and video processing to sense physical

movements and other intrusions. To notify the security control room, developers must

ensure that the input feed from these sensors obtain high bandwidth for their multimedia
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Figure 14: Network Configuration in a Smart Office Environment

traffic, while the outgoing alert notifications and activation of door controls are provided

high priority. The image processing task must also be allocated its required CPU resources

to perform intrusion detection.

• Air conditioning and lighting control.The air conditioning and lighting control ser-

vice maintains appropriate ambient temperatures and lighting, respectively, in different

parts of a building, including business offices, conferencerooms and server rooms. It also

turns off lights when rooms are not occupied to save energy. This service receives sensory

data from thermostats and motion sensors, and controls the air conditioning vents and light

switches. This service must be assured reliable transmission of information, though it does

not necessarily require high priority.
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• Multimedia video and teleconferencing.Offices often provide several multimedia-

enabled conference rooms to conduct meetings simultaneously. These multimedia confer-

ences require high bandwidth provisioning. A moderator of each meeting submits a request

for bandwidth to this service, which must be reliably transmitted to the service. The service

in turn must provision the appropriate bandwidth for the multimedia traffic. This service

may also need to actuate a public address system informing people of a meeting. Since

resources are finite, developers must make tradeoffs and assign this category of public ad-

dress announcements to the best effort class of traffic, though that announcements about

evacuations must be treated with high priority.

• Email and other web traffic.Offices also involve a number of other kinds of traffic

including email, calendar management, and web traffic. Thisservice must manage these

best effort class of traffic on behalf of the people.

IV.2.2 Challenges in Provisioning and Managing QoS in the Smart Office

We now describe the challenges encountered when implementing the QoS provisioning

and managing steps described above in the DRE applications that comprise our case study:

• Challenge 1: Physics-aware QoS requirements specification. Manually modifying

application source code to specify both CPU and network QoS requirements is tedious,

error-prone, and non-scalable. In particular, applications could have different resource re-

quirements depending on the physical context in which they are deployed. For example, in

our smart office case study, fire sensors have different importance levels (e.g., fire sensors

deployed in the parking lot have lower importance than thosein the server room). The

sensor to monitor flows thus have different network QoS requirements, even though the

software controllers managing the fire sensor and the monitor are reusable units of func-

tionality. It may be hard to envision at development time allthe contexts in which source

code will be deployed; if such information is readily available, application source code can

be modified to specify resource requirements for each of those contexts.
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The need to know source and destination addresses of an application—coupled with

the fact that multiple choices are possible for deploying applications—makes changing ap-

plication source code to specify resource requirements inflexible and non-scalable. Sec-

tion IV.3.1 describes how NetQoPE provides a solution to this challengeby providing

a domain-specific modeling language (DSML) to support design-time application non-

invasive specification of per-application network and CPU QoS requirements.

•Challenge 2: Application resource allocation.Manual modifications to source code

to reserve resources tightly couple application components with a network QoS mechanism

API (e.g., Telcordia’s Bandwidth Broker [28]). This coupling complicates deploying the

same application component with resources reserved using adifferent network QoS mech-

anism API (e.g., GARA Bandwidth Broker [46]). Similarily, source code modifications are

also required when the same application is deployed with different network QoS require-

ments (e.g., requesting more bandwidth on its application flows).

Moreover, network QoS mechanism APIs that allocate networkresources require IP

addresses for hosts where the resources are allocated. Components that require network

QoS must therefore know the physical node placement of the components with which they

communicate. This component deployment information may beunknown at development

time since deployments are often not finalized until CPU allocation algorithms decide them.

Maintaining such deployment information at the source codelevel or querying it at runtime

is unnecessarily complex.

Ideally, network resources should be allocated without modifying application source

code and should handle complexities associated with specifying application source and

destination nodes, which could vary depending on the deployment context. SectionIV.3.2

describes how NetQoPE provides a solution to this challengeby providing a resource allo-

cator framework that supports resource reservation for each application and all its applica-

tion flows in a non-invasive and transparent manner.
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• Challenge 3: Application QoS configuration.Application developers have histori-

cally written code that instructs the middleware to providethe appropriate runtime services,

e.g., DSCP markings in IP packets [136]. Since applications can be deployed in different

contexts, modifying application code to instruct the middleware to add network QoS set-

tings is tedious, error-prone, and non-scalable.

Application-transparent mechanisms are therefore neededto configure the middleware

to add these network QoS settings depending on the application deployment context. Sec-

tion IV.3.3 describes how NetQoPE provides a solution to this challengeby providing a

network QoS configurator that provides deployment-time configuration of component mid-

dleware containers to automatically add flow-specific identifiers to support router layer QoS

differentiations.

IV.3 NetQoPE’s Multistage Network QoS Provisioning Architecture

This section describes how NetQoPE addresses the challenges from SectionIV.2.2 as-

sociated with allocating and providing network and CPU QoS in tandem to DRE applica-

tions. NetQoPE deploys and configures component middleware-based DRE applications

and enforces their network and CPU QoS requirements using the multistage (i.e., design-,

pre-deployment-, deployment-, and run-time) architecture shown in Figure15. NetQoPE’s

multistage architecture consists of the following elements in the workflow, which automates

the task of QoS provisioning for DRE applications.

• TheNetwork QoS specification language(NetQoS), which is a DSML that supports

design-time specification of per-application CPU resourcerequirements, as well as per-

flow network QoS requirements, such as bandwidth and delay across a flow. NetQoPE

uses NetQoS to resolveChallenge 1of SectionIV.2.2, as described in SectionIV.3.1.

• TheNetwork Resource Allocation Framework(NetRAF), which is a middleware-

based resource allocator framework that uses the network QoS requirements captured by
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NetQoSas input at pre-deployment time to help guide QoS provisioning requests on the un-

derlying network and CPU QoS mechanisms at deployment time.NetQoPE uses NetRAF

to resolveChallenge 2of SectionIV.2.2, as described in SectionIV.3.2.

Figure 15: NetQoPE’s Multistage Architecture

• TheNetwork QoS Configurator (NetCON), which is a middleware-based network

QoS configurator that provides deployment-time configuration of component middleware

containers. NetCON adds flow-specific identifiers (e.g., DSCPs) to IP packets at runtime

when applications invoke remote operations. NetQoPE uses NetCON to resolveChallenge

3 of SectionIV.2.2, as described in SectionIV.3.3.

NetQoPE implementation technologies.We developed a prototype of the smart office

environment case study using the Lightweight CORBA Component Model [165]. We also

used a Bandwidth Broker [28] to allocate per-application-flow network resources using

DiffServ network QoS mechanisms. In addition, we used the Generic Modeling Envi-

ronment (GME) [71] to create domain-specific modeling languages (DSMLs) [10] that
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simplify the development and deployment of smart office environment applications (see

AppendixA for an overview of all these technologies).

The remainder of this section describes each element in the NetQoPE’s multistage ar-

chitecture and explains how they provide the functionalityrequired to meet the end-to-end

QoS requirements of DRE applications. Although the case study in this chapter leverages

LwCCM and DiffServ, NetQoPE can be used with other network QoS mechanisms (e.g.,

IntServ) and component middleware technologies (e.g., J2EE).

IV.3.1 NetQoS: Supporting Physics-aware CPU and Network QoS Requirements

Specification

To resolveChallenge 1of SectionIV.2.2, NetQoPE enables DRE application develop-

ers to specify their resource requirements at application deployment-time using a DSML

called theNetwork QoS Specification Language(NetQoS). NetQoS is built using the Generic

Modeling Environment (GME) [71] and works in concert with thePlatform Independent

Component Modeling Language(PICML) [10]. NetQoS provides applications with an

application-independent, declarative (as opposed to application-intrusive [30], middleware-

dependent [39], and OS-dependent [95]) mechanism to specify multi-resource require-

ments simultaneously that can account for the physical context in which the system is

deployed.

NetQoS also allows specifying resource requirements as applications are deployed and

configured in the target environment. Its declarative mechanisms (1) decouple this respon-

sibility from application source code, and (2) specialize the process of specifying resource

requirements for the particular deployment and usecase. Below we describe the steps in

using NetQoS’ capabilities.

1. Declarative specification of resource requirements.DRE applications developers

can use NetQoS to (1) model application elements, such as interfaces, components, con-

nections, and component assemblies, (2) specify CPU utilization of components, and (3)
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Figure 16: Applying NetQoS Capabilities to the Case Study

specify the network QoS classes, such asHIGH PRIORITY (HP), HIGH RELIABILITY (HR),

MULTIMEDIA (MM ), andBEST EFFORT(BE), bi-directional bandwidth requirements on the

modeled application elements.1 NetQoS’s network QoS classes correspond to the DiffServ

levels supported by an underlying network-level resource allocator, such as the Bandwidth

Broker [28] we used in our case study.2 For example, theHP class represents the high-

est importance and lowest latency traffic (e.g., fire detection reporting in the server room)

whereas theHR class represents traffic with low drop rate (e.g., surveillance data). Fig-

ure16 show how NetQoS was used to model the QoS requirements of our case study.

2. Flexible enforcement of network QoS.In certain application flows in the smart office

1Middleware such as the Lightweight CORBA Component Model allow components to communicate us-
ing ports that provide application-level communication endpoints.NetQoS provides capabilities to annotate
communication ports with the network QoS requirement specification capabilities.

2NetQoS’s DSML capabilities can also be extended to provide requirements specification conforming to
other network QoS mechanisms, such as IntServ.
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case study, (e.g., a monitor requesting location coordinates from a fire sensor) clients con-

trol the network priorities at which requests/replies are sent. In other application flows (e.g.,

a temperature sensor sending temperature sensory information to monitors), the servers

control the reception and processing of client requests. Ifsuchdesign intentsare not cap-

tured, applications could potentially misuse network resources at runtime, and also affect

the performance of other applications that share the network.

To support both models of communication (i.e., whether clients or servers control net-

work QoS for a flow), NetQoS supports annotating each bi-directional flow using either:

(1) the CLIENT_PROPAGATED network priority model, which allows clients to request

real-time network QoS assurance even in the presence of network congestion, or (2) the

SERVER_DECLARED network priority model, which allows servers to dictate theservice

that they wish to provide to the clients to prevent clients from wasting network resources

on non-critical communication.

NetQoS initiates the allocation of CPU and network resources on behalf of applica-

tions by triggering the next stage of the workflow. SectionIV.3.3 describes how NetQoPE

uses component middleware frameworks at runtime torealizethe design intent captured by

NetQoS andenforcenetwork QoS for applications.

3. Early detection of QoS specification errors.Defining network and CPU QoS speci-

fications in source code or through NetQoS is a human-intensive process. Errors in these

specifications may remain undetected until later lifecyclestages (such as deployment and

runtime) when they are more costly to identify and fix. To identify common errors in net-

work QoS requirement specification early in the developmentphase, NetQoS uses built-in

constraints specified via the OMG Object Constraint Language (OCL) that check the ap-

plication model annotated with network and CPU priority models.

For example, NetQoS detects and flags specification network resource specification

errors, such as negative or zero bandwidth. It also enforcesthe semantics of network prior-

ity models via syntactic constraints in its DSML. For example, theCLIENT_PROPAGATED
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model can be associated with ports in the client role only (e.g., required interfaces), whereas

the SERVER_DECLARED model can be associated with ports in the server role only (e.g.,

provided interfaces). Figure17shows other examples of network priority models supports

by NetQoS.

Figure 17: Network QoS Models Supported by NetQoS

4. Preparation for allocating CPU and network resources. After a model has been

created and checked for type violations using NetQoS’s built-in constraints, network re-

sources must be allocated using a network QoS mechanism [28, 46]. As described in

SectionIV.2.2, this process requires determination of source and destination IP addresses

of the applications.

NetQoS allows the specification of CPU utilization requirements of each component

and also the target environment where components are deployed. NetQoS’s model inter-

preter traverses CPU requirements of each application component and generates a set of
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feasible deployment plans algorithms, such asfirst fit, best fit, andworst fit, as well asmax

anddecreasingvariants of these algorithms. NetQoS can be used to choose the desired

CPU allocation algorithm and to generate the appropriate deployment plans automatically,

thereby shielding developers from tedious and error-pronemanual component-to-node al-

locations.

To perform network resource allocations (see SectionIV.3.2), NetQoS’s model inter-

preter captures the details about (1) the components, (2) their deployment locations (deter-

mined by the CPU allocation algorithms), and (3) the networkQoS requirements for each

application flow in which the components participate.

Application to the case study.Figure16shows a NetQoS model that highlights many ca-

pabilities described above. In this model, multiple instances of the same reusable applica-

tion components (e.g., FireSensorParking and FireSensorServer components) areannotated

with different QoS attributes using drag-and-drop.

Our case study has scores of application flows with differentclient- and server-dictated

network QoS specifications, which are modeled usingCLIENT_PROPAGATED and SER-

VER_DECLARED network priority models, respectively. The well-formedness of these

specifications are checked using NetQoS’s built-in constraints. In addition, the same QoS

attribute (e.g., HR_1000 in Figure16) can be reused across multiple connections, which

increases the scalability of expressing requirements for anumber of connections prevalent

in large-scale DRE applications, such as our smart office environment case study.

NetQoS’s ability to plug-in different bin-packing algorithms to determine CPU alloca-

tions also decouples applications from the responsibilityof manually specifying all possible

allocations to allocate network resources. This feature—coupled with NetQoS’s declara-

tive mechanisms to specify resource requirements—shieldsapplications (and hence mod-

ifications to their source code) from the complexities of QoSspecification and allocation.

SectionIV.4.2 empirically evaluates these capabilities provided by NetQoS.

66



IV.3.2 NetRAF: Alleviating Complexities in Network Resource Allocation and Con-

figuration

NetQoPE’sNetwork Resource Allocator Framework(NetRAF) is a resource allocator

engine that allocates network resources for DRE applications using DiffServ network QoS

mechanisms, which resolvesChallenge 2described in SectionIV.2.2.. NetRAF allocates

network resources for application flows on behalf of the applications (recall how NetQoS

invokes NetRAF on behalf of the applications as part of theirworkflow) and shields appli-

cations from interacting with complex network QoS mechanism APIs. To ensure compati-

bility with different implementations of network QoS mechanisms (e.g., multiple DiffServ

Bandwidth Broker implementations [28, 46]), NetRAF uses XML descriptors that capture

CPU and network resource requirement specifications (whichwere specified using NetQoS

in the previous stage) inQoS-independentmanner. These specifications are then mapped

to QoS-specificparameters depending on the chosen network QoS mechanism. The task of

enforcing those QoS specifications are then left to the underlying network QoS mechanism,

such as DiffServ, IntServ, and RSVP.

NetRAF provides a clean separation of functionality between resource reservation (pro-

vided by NetRAF) and QoS enforcement (done by underlying network elements), as de-

scribed in the following steps:

1. Network resource allocations.Figure18 shows how NetRAF’sNetwork Resource Al-

locator Manageraccepts application QoS requests at pre-deployment-time.It processes

these requests in conjunction with aDiffServ Allocator, using deployment specific infor-

mation (e.g., source and destination nodes) of components and per-flow network QoS re-

quirements embedded in the deployment plan created by NetQoS. This capability shields

applications from interacting directly with complex APIs of network QoS mechanisms

thereby enhancing the flexibility NetQoPE for a range of deployment contexts. Moreover,

since NetRAF provides the capability to request network resource allocations on behalf of

components, developers need not write source code to request network resource allocations
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for all applications flows, which simplifies the creation andevolution of application logic

(see SectionIV.4.2).

Figure 18: NetRAF’s Network Resource Allocation Capabilities

2. Integrated CPU and network QoS provisioning.While interacting with network QoS

mechanism specific allocators (e.g., a Bandwidth Broker), NetRAF’s Network Resource

Allocator Manager may need to handle exceptional conditions, such as infeasible resource

allocation errors. Although NetQoS checks the well-formedness of network requirement

specifications at application level, it cannot identify every situation that may lead to scenar-

ios with infeasible resource allocations, since these depend on the dynamics of the physical

environment.

To handle such scenarios, NetRAF provides hints to regenerate CPU allocations for
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components using the CPU allocation algorithm selected by application developers us-

ing NetQoS. For example, if network resource allocations fails for a pair of components

deployed in a particular source and destination node, NetRAF requests revised CPU allo-

cations by adding a constraint to not deploy the components in the same source and desti-

nation nodes. After the revised CPU allocations are computed, NetRAF will (re)attempt to

allocate network resources for the components.

NetRAF automates the network resource allocation process by iterating over the set

of deployment plans until a deployment plan is found that satisfies both types of require-

ments (i.e., both the CPU and network resource requirements) thereby simplifying sys-

tem deployment via the following two-phase protocol: (1) itinvokes the API of the QoS

mechanism-specific allocator, providing it one flow at a timewithout actually reserving

network resources, and (2) it commits the network resourcesif and only if the first phase is

completely successful and resources for all the flows can be successfully reserved.

This protocol prevents the delay that would otherwise be incurred if resources allocated

for a subset of flows must be released due to failures occurring at a later allocation stage. If

no deployment plan yields a successful resource allocation, the network QoS requirements

of component flows must be reduced using NetQoS.

Application to the case study.Since our case study is based on DiffServ, NetRAF uses

its DiffServ Allocatorto allocate network resources, which in turn invokes the Bandwidth

Broker’s admission control capabilities [28] by feeding it one application flow at a time.

NetRAF’s DiffServ Allocator instructs the Bandwidth Broker to reserve bi-directional re-

sources in the specified network QoS classes, as described inSectionIV.3.1. The Band-

width Broker determines the bi-directional DSCPs and NetRAF encodes those values as

connection attributes in the deployment plan. This chapterassumes the underlying network

QoS mechanism (e.g., the Bandwidth Broker) is responsible for configuring the routers to

provide the per-hop behavior [28].
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IV.3.3 NetCON: Alleviating Complexities in Network QoS Settings Configuration

NetQoPE’sNetwork QoS Configurator(NetCON) resolvesChallenge 3described in

SectionIV.2.2 by enabling the auto-configuration of component middlewarecontainers,

which provide a hosting environment for application component functionality. Through

NetCON auto-configuration, containers can add DSCPs to IP packets when applications

invoke remote operations. The current version of NetCON is developed for the LwCCM

component middleware and is shown in Figure19.

Figure 19: NetCON’s Container Auto-configurations

During deployment, NetCON parses the deployment plan (which now includes both

the CPU allocations and network DSCP tags for the connections) to determine (1) source

and destination components, (2) the network priority modelto use for their communica-

tion, (3) the bi-directional DSCP values (obtained via NetRAF), and (4) the target nodes

on which the components are deployed. NetCON deploys the components on their respec-

tive containers and creates the associated object references for use by clients in a remote

invocation.
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NetCON’s container programming model can transparently add DSCPs and enforce the

network priority models (see Figure16). To support theSERVER_DECLARED network pri-

ority model, NetCON encodes aSERVER_DECLARED policy and the associated request/-

reply DSCPs on the server’s object reference. When a client invokes a remote operation

with this object reference, the client-side middleware checks the policy on the object refer-

ence, decodes the request DSCP, and includes it in the request IP packets. Before sending

the reply, the server-side middleware checks the policy again and the reply DSCP is added

to the associated IP packets.

To support theCLIENT_PROPAGATEDnetwork priority model, NetCON configures the

containers to apply aCLIENT_PROPAGATEDpolicy at the point of binding an object refer-

ence with the client. In contrast to theSERVER_DECLARED policy, theCLIENT_PROPA-

GATED policy allows clients to control the network priorities with which their requests and

replies traverse the underlying network and different clients can access the servers with

different network priorities. When the source component invokes a remote operation us-

ing the policy-applied object reference, NetCON adds the associated forward and reverse

DSCP markings on the IP packets, thereby providing network QoS to the application flow.

A NetQoPE-enabled container can therefore transparently add both forward and reverse

DSCP values when components invoke remote operations usingthe container services.

Application to the case study. In our case study shown in Figure16, the FireSensor

software controller component is deployed in two differentinstances to control the oper-

ation of the fire sensors in the parking lot and the server room. There is a single Mon-

itorController software component (MonitorController3 in Figure17) that communicates

with the deployed FireSensor components. Due to differences in importance of the Fire-

Sensor components deployed, however, the MonitorController software component uses

CLIENT_PROPAGATEDnetwork priority model to communicate with the FireSensor com-

ponents with different network QoS requirements.

After the first two stages of NetQoPE, NetCON configures thecontainerhosting the
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MonitorController3 component with theCLIENT_PROPAGATEDpolicy, which corresponds

to theCLIENT_PROPAGATEDnetwork priority model defined on the component by NetQoS.

This capability is provided automatically by containers toensure that appropriate DSCP

values are added at runtime to both forward and reverse communication paths when the

MonitorController3 component communicates with either the FireSensorParking or Fire-

SensorServer component. Communication between the MonitorController3 and the Fire-

SensorParking or FireSensorServer components thus receives the required network QoS

since NetRAF configures the routers between the MonitorController3 and FireSensorPark-

ing components with the source IP address, destination IP address, and DSCP tuple.

NetCON thus allows developers of DRE applications to focus on their application

component logic (e.g., the MonitorController component in the case study), rather than

wrestling with low-level mechanisms for provisioning network QoS. Moreover, NetCON

provides these capabilities without modifying application code, and minimizing runtime

overhead thereby simplifying resource provisioning as validated in SectionIV.4.4.

IV.4 Empirical Evaluation of NetQoPE

This section empirically evaluates NetQoPE’s capabilities to provide CPU and net-

work QoS assurance to end-to-end application flows. We first demonstrate how NetQoPE’s

model-driven QoS provisioning capabilities can significantly reduce application develop-

ment effort compared with conventional approaches. We thenvalidate that NetQoPE’s

automated model-driven approach can provide differentiated network performance for a

variety of DRE applications, such as our case study in Section IV.2.

IV.4.1 Evaluation Scenario

Hardware and software testbed. Our empirical evaluation of NetQoPE was conducted

on ISISlab (www.dre.vanderbilt.edu/ISISlab), which consists of (1) 56 dual-

CPU blades running 2.8 GHz XEONs with 1 GB memory, 40 GB disks,and 4 NICs per
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blade, and (2) 6 Cisco 3750G switches with 24 10/100/1000 MPSports per switch. Our

experiments were conducted on 15 of dual CPU blades in ISISlab, where (1) 7 blades (A,

B, D, E, F, G, and H) hosted our smart office enterprise case study software components

(e.g., a fire sensor software controller) and (2) 8 other blades (P,Q, R, S, T, U, V, and W)

hosted Linux router software. Figure20depicts these details.

Figure 20: Experimental Setup

The software controller components were developed using the CIAO middleware, which

is an open-source LwCCM implementation developed atop the TAO real-time CORBA ob-

ject request broker [123]. Our evaluations used DiffServ QoS and the associated Bandwidth

Broker [28] software was hosted on bladeC. All blades ran Fedora Core 4 Linux distribu-

tion configured using the real-time scheduling class. The blades were connected over a 1

Gbps LAN via virtual 100 Mbps links.

Evaluation scenario. In this scenario six sensory and imagery software controllers sent
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their monitored information to three monitor controllers so that appropriate control actions

could be performed by enterprise supervisors monitoring abnormal events. For example,

Figure20 shows twofire sensor controllercomponents deployed on hosts A and B. These

components sent their monitored information tomonitor controllercomponents deployed

on hosts D and F. Each of these software controller components have their own CPU re-

source requirements and the physical node allocations for those components were deter-

mined by the CPU allocation algorithms employed by NetQoS. Further, communication

between these software controllers used one of the traffic classes (e.g., HIGH PRIORITY

(HP)) defined in SectionIV.3.1 with the following capacities on all links:HP = 20 Mbps,

HR = 30 Mbps, andMM = 30 Mbps. TheBE class used the remaining available bandwidth

in the network.

To emulate the CPU and network behavior of the software controllers when different

QoS requirements are provisioned, we created theTestNetQoPE performance bench-

mark suite.3 We usedTestNetQoPE to evaluate the flexibility, overhead, and perfor-

mance of using NetQoPE to provide CPU and network QoS assurance to end-to-end appli-

cation flows. In particular, we usedTestNetQoPE to specify and measure diverse CPU

and network QoS requirements of the different software components that were deployed

via NetQoPE, such as the application flow between thefire sensor controllercomponent

on host A and themonitor controllercomponent on host D. These tests create a session

for component-to-component communication with configurable bandwidth consumption

(components also consume a configurable percentage of CPU resource on their hosted pro-

cessors). High-resolution timer probes were used to measure roundtrip latency accurately

for each client invocation.
3TestNetQoPE can be downloaded as part of the CIAO open-source middlewareavailable at

(www.dre.vanderbilt.edu/CIAO).
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IV.4.2 Evaluating NetQoPE’s Model-driven QoS Provisioning Capabilities

Rationale. This experiment evaluates the effort application developers spend using Net-

QoPE to (re)deploy applications and provision QoS and compares this effort against the

effort needed to provision QoS for applications via conventional approaches.

Methodology. We first identified four flows from Figure20 whose network QoS require-

ments are described as follows:

• A fire sensor controller component on host A uses the high reliability (HR) class to

send potential fire alarms in the parking lot to the monitor controller component on host D.

• A fire sensor controller component on host B uses the high priority (HP) class to send

potential fire alarms in the server room to the monitor controller component on host F.

• A camera controller component on host E uses the multimedia (MM ) class and sends

imagery information from the break room to the monitor controller component on host G.

• A temperature sensor controller component on host A uses thebest effort (BE) class

and sends temperature readings to the monitor controller component on host F.

The clients dictated the network priority for requests and replies in all flowsexceptfor

the temperature sensor and monitor controller component flow, where the server dictated

the priority. TCP was used as the transport protocol and 20 Mbps of forward and reverse

bandwidth was requested for each type of network QoS traffic.

To evaluate the effort saved using NetQoPE, we developed a taxonomy of technolo-

gies that provide CPU and network QoS assurances to end-to-end DRE application flows.

This taxonomy is used to compare NetQoPE’s methodology of provisioning integrated net-

work and CPU QoS for these flows with conventional approaches, including (1) object-

oriented [40, 136, 166], (2) aspect-oriented [38], and (3) component middleware-based [30,

144] approaches.

Below we describe how each approach provides the following functionality needed to

leverage network QoS mechanism capabilities:

• QoS Requirements specification. In conventional approaches applications use (1)
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middleware-based APIs [40, 166], (2) contract definition languages [136], (3) runtime as-

pects [38], or (4) specialized component middleware container interfaces [30] to specify

QoS requirements. These approaches do not, however, provide capabilities to specify both

CPU and network requirements and assume that physical node placement for all compo-

nents are decided (i.e., applications are already deployed in appropriate hosts) before the

network resource allocations are requested using the appropriate APIs. This assumption

allows those applications to specify the source and destination IP addresses of the applica-

tions when requesting network resources for an end-to-end application flow.

In such approaches, application source code must change whenever the deployment

context (e.g., different physical node allocations, component deployment for a different

usecase) and the associated QoS requirements (e.g., CPU or network resource require-

ments) change, which limits reusability. In contrast, NetQoS provides domain-specific,

declarative techniques that increase reusability across different deployment contexts and

alleviate the need to specify QoS requirements programmatically, as described in Sec-

tion IV.3.1.

• Resource allocation. Conventional approaches require application deploymentbe-

fore their per-flow network resource requirements can be provisioned by network QoS

mechanisms. Recall that appropriate hosts for each application is determined by intelli-

gent CPU allocation algorithms [31] before their per-flow network resource requirements

can be provisioned by network QoS mechanisms. If the required network resources cannot

be allocated for these applications after a CPU allocation decision is made, however, the

following steps occur: (1) the applications must be stopped, (2) their source code must be

modified to specify new resource requirements (e.g., either source and destination nodes of

the components can be changed, forcing application re-deployments as well or for the same

pair of source and destination nodes the network resource requirements could be changed,

and (3) the resource reservation process must be restarted.

This approach is tedious since applications may be deployedand re-deployed multiple
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times, potentially on different nodes. In contrast, NetRAFhandles deployment changes via

NetQoS models (see SectionIV.3.2) at pre-deployment,i.e., beforeapplications have been

deployed, thereby reducing the effort needed to change deployment topology or application

QoS requirements.

• Network QoS enforcement. Conventional approaches modify application source

code [136] or programming model [30] to instruct the middleware to enforce runtime QoS

for their remote invocations. Applications must thereforebe designed to handle two differ-

ent usecases—to enforce QoS and when no QoS is required—thereby limiting application

reusability. In contrast, NetCON uses a container programming model that transparently

enforces runtime QoS for applications without changing their source code or programming

model, as described in SectionIV.3.3.

Based on this taxonomy, we now compare the effort required toprovision end-to-end

QoS to the 4 end-to-end application flows described above using conventional manual ap-

proaches vs. the NetQoPE model-driven approach. We decompose this effort across the

following general steps: (1)implementation, where software developers write code to spec-

ify resource requirements and allocate needed resources, (2) deployment, where system

deployers map (or stop) application components on their target nodes, and (3)modeling

tool use, where application developers use NetQoPE to model a DRE application struc-

ture, specify per-application CPU resource and per-flow network resource requirements,

and allocate needed CPU and network resources.

To compare NetQoPE with other conventional efforts, we devised a realistic scenario

for the 4 end-to-end application flows described above. In this scenario, three sets of ex-

periments were conducted with the following deployment variants:4

• Baseline deployment. This variant configured all 4 end-to-end application flows with

the CPU and network QoS requirements as described above. Themanual effort required

using conventional approaches for the baseline deploymentinvolved 10 steps: (1) modify

4In each of the experiment variants, we kept the same per-application CPU resource requirements, but
varied the network resource requirements for the application flows.

77



source code for each of the 8 components to specify their QoS requirements (8 implemen-

tation steps – note that CPU allocation algorithms were usedto determine the appropriate

physical node allocations for the applications before network resources were requested for

each application flow), (2) deploy all components (1 deployment step), and (3) shutdown

all components (1 deployment step).

In contrast, the effort required using NetQoPE involved thefollowing 4 steps: (1) model

the DRE application structure of all 4 end-to-end application flows using NetQoS (1 mod-

eling step), (2) annotate QoS specifications on each application and each end-to-end appli-

cation flow (1 modeling step), (3) deploy all components (1 deployment step – this step also

involved allocation of both CPU and network resources for applications using NetRAF’s

two step allocation process described in SectionIV.3.2), and (4) shutdown all components

(1 deployment step).

• QoS modification deployment. This variant demonstrated the effect of changes

in QoS requirements on manual efforts by modifying the bandwidth requirements from

20 Mbps to 12 Mbps for each end-to-end flow. As with the baseline variant above, the

effort required using a conventional approach for the second deployment was 10 steps since

source code modifications were needed as the deployment contexts changed (in this case

the bandwidth requirements changed across 4 different deployment contexts – however,

the CPU resource requirements did not change, and hence the application physical node

allocations did not change as well).

In contrast, the effort required using NetQoPE involved 3 steps: (1) annotate QoS spec-

ifications on each end-to-end application flow (1 modeling step), (2) deploy all components

(1 deployment step), and (3) shutdown all components (1 deployment step). Application

developers also reused NetQoS’ application structure model created for the initial deploy-

ment, which helped reduce the required efforts by a step.

•Resource (re)reservation deployment. This variant demonstrated the effect of chan-

ges in QoS requirements and resource (re)reservations taken together on manual efforts. We
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modified bandwidth requirements of all flows from 12 Mbps to 16Mbps. We also changed

the temperature sensor controller component to use the highreliability (HR) class instead

of the best effortBE class. Finally, we increased the backgroundHR class traffic across the

hosts so that the resource reservation request for the flow between temperature sensor and

monitor controller components fails. In response, deployment contexts (e.g., bandwidth

requirements, source and destination nodes) were changed and resource re-reservation was

performed.

The effort required using a conventional approach for the third deployment involved

13 steps: (1) modify source code for each of the 8 components to specify their QoS re-

quirements (8 implementation steps), (2) deploy all components (1 deployment step), (3)

shutdown the temperature sensor component (1 deployment step – note that the resource

allocation failed for the component), (4) modify source code of temperature sensor com-

ponent back to useBE network QoS class (deployment context change) (1 implementation

step), (5) redeploy the temperature sensor component (1 deployment step – note that the

CPU allocation algorithms were rerun to change physical node allocations), and (6) shut-

down all components (1 deployment step).

In contrast, the effort required using NetQoPE for the thirddeployment involved 4

steps: (1) annotate QoS specifications on each end-to-end application flow (1 modeling

step), (2) begin deployment of all components, though NetRAF’s pre-deployment-time al-

location capabilities determined the resource allocationfailure and prompted the NetQoPE

application developer to change the QoS requirements (1 pre-deployment step), (3) re-

annotate QoS requirements for the temperature sensor component flow (1 modeling step)

(4) deploy all components (1 deployment step), and (5) shutdown all components (1 de-

ployment step).

Table4 summarizes the step-by-step analysis described above. These results show that

conventional approaches incurred roughly an order of magnitude more effort than NetQoPE
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Approaches # Steps in Experiment Variants
First Second Third

NetQoPE 4 3 5
Conventional 10 10 13

Table 4: Comparison of Manual Efforts Incurred in Conventional and NetQoPE A p-
proaches

to provide CPU and network QoS assurance for end-to-end application flows. Closer exam-

ination shows that in conventional approaches, application developers spend substantially

more effort developing software that can work across different deployment contexts. More-

over, this process must be repeated when deployment contexts and their associated QoS

requirements change. In addition, conventional implementations are complex since the re-

quirements are specified directly using middleware [166] and/or network QoS mechanism

APIs [81].

Application (re)deployments are also required whenever reservation requests fail. In

this experiment only 1 flow required re-reservation and thatincurred additional effort of 3

steps. If there are large number of flows—and DRE systems likeour case study often have

scores of flows—conventional approaches require significantly more effort.

In contrast, NetQoPE’s ability to “write once, deploy multiple times for different QoS

requirements” increases deployment flexibility and extensibility in environments that de-

ploy many reusable software components. To provide this flexibility, NetQoS generates

XML-based deployment descriptors that capture context-specific QoS requirements of ap-

plications. For our experiment, communication between firesensor and monitor controllers

was deployed in multiple deployment contexts,i.e., with bandwidth reservations of 20

Mbps, 12 Mbps, and 16 Mbps. In DRE applications such as our case study, however,

the same communication patterns between components could occur in many deployment

contexts.

For example, the same communication patterns could use any of the four network QoS
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Deployment contexts
Number of communications

2 5 10 20

1 23 50 95 185
5 47 110 215 425
10 77 185 365 725
20 137 335 665 1325

Table 5: Generated Lines of XML Code

classes (HP, HR, MM , and BE). The communication patterns that use the same network

QoS class could make different forward and reverse bandwidth reservations (e.g., 4, 8, or

10 Mbps). As shown in Table5, NetQoS auto-generates over 1,300 lines of XML code for

these scenarios, which would otherwise be handcrafted by application developers. These

results demonstrate that NetQoPE’s model-driven CPU and network QoS provisioning ca-

pabilities significantly reduce application development effort compared with conventional

approaches. Moreover, NetQoPE also provides increased flexibility when deploying and

provisioning multiple application end-to-end flows in multiple deployment and diverse QoS

contexts.

IV.4.3 Evaluating NetQoPE’s QoS Customization Capabilities

Rationale. This experiment empirically evaluates the benefits of the the flexibility and

decoupling resulting from NetQoPE’s multi stage architecture, and whether the DRE ap-

plications indeed obtain their required QoS.

Methodology. From Figure20, the four flows that were described in SectionIV.4.2 were

modeled with the same set of network and CPU QoS requirementsusing NetQoS. The

CLIENT_PROPAGATED network policy was used for all flows, except for the temperature

sensor and monitor controller component flow, which used theSERVER_DECLARED net-

work policy.

We executed two variants of this experiment. The first variant used TCP as the transport

protocol and requested 20 Mbps of forward and reverse bandwidth for each type of QoS
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traffic. TestNetQoPE configured each application flow to generate a load of 20 Mbps and

the average roundtrip latency over 200,000 iterations was calculated. The second variant

used UDP as the transport protocol andTestNetQoPE was configured to makeoneway

invocations with a payload of 500 bytes for 100,000 iterations. We used high-resolution

timer probes to measure the network delay for each invocation on the receiver side of the

communication.

At the end of the second experiment we recorded 100,000 network delay values (in

milliseconds) for each network QoS class. Those network delay values were then sorted

in increasing order and every value was subtracted from the minimum value in the whole

sample,i.e., they were normalized with respect to the respective class minimum latency.

The samples were divided into fourteen buckets based on their resulting values. For exam-

ple, the 1 ms bucket contained only samples that are<= to 1 ms in their resultant value, the

2 ms bucket contained only samples whose resultant values were<= 2 ms but> 1 ms, etc.

Background Traffic in Mbps
Traffic Type

BE HP HR MM

BE (TS - MS) 85 to 100
HP (FS - MS) 30 to 40 28 to 33 28 to 33
HR (FS - MS) 30 to 40 12 to 20 14 to 15 30 to 31
MM (CS - MS) 30 to 40 12 to 20 14 to 15 30 to 31

Table 6: Application Background Traffic

To evaluate application performance in the presence of background network loads, sev-

eral other applications were run in both experiments, as described in Table6 (in this ta-

ble TS stands for “temperature sensor controller,” MS stands for “monitor controller”, FS

stands for “fire sensor controller,” and CS stands for “camera controller”). NetRAF de-

termined the DSCP values which were then enforced in each outgoing packet through the

container auto-configuration effected by NetCON.
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Figure 21: Average Latency under Different Network QoS Classes

Analysis of results. Figure21 shows the results of experiments when the deployed ap-

plications were configured with different network QoS classes and sent TCP traffic. This

figure shows that irrespective of the heavy background traffic, the average latency expe-

rienced by the fire sensor controller component using theHP network QoS class is lower

than the average latency experienced by all other components. In contrast, the traffic from

the BE class is not differentiated from the competing background traffic and thus incurs a

high latency (i.e., throughput is very low). Moreover, the latency increases while using the

HR andMM classes when compared to theHP class.

Figure22shows the (1) cardinality of the network delay groupings fordifferent network

QoS classes under different ms buckets and (2) losses incurred by each network QoS class.

These results show that the jitter values experienced by theapplication using theBE class

are spread across all the buckets,i.e., are highly unpredictable. When combined with packet

or invocation losses, this property is undesirable in DRE applications. In contrast, the

predictability and loss-ratio improves when using theHP class, as evidenced by the spread

of network delays across just two buckets. The application’s jitter is almost constant and is

not affected by heavy background traffic.

The results in Figure22 also show that the application using theMM class experienced

more predictable latency than applications usingBE and HR class. Approximately 94%
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Figure 22: Jitter Distribution under Different Network QoS Classes

of the MM class invocations had their normalized delays within 1 ms. This result occurs

because the queue size at the routers is smaller for theMM class than the queue size for

the HR class, so UDP packets sent by the invocations do not experience as much queuing

delay in the core routers as packets belonging to theHR class. TheHR class provides better

loss-ratio, however, because the queue sizes at the routersare large enough to hold more

packets when the network is congested.

These results demonstrate that NetQoPE can provide significant flexibility and cus-

tomizability, while ensuring that applications obtain their required QoS.

IV.4.4 Evaluating the Overhead of NetQoPE for Normal Operations

Rationale. This experiment evaluates the runtime performance overhead of using NetQoPE

to enforce network QoS.

Methodology. NetCON and NetRAF are design-/deployment-time capabilities that incur

no runtime overhead. In contrast, NetCON configures component middleware containers at

post-deployment-time by adding DSCP markings to IP packetswhen applications invoke

remote operations (see SectionIV.3.3). NetCON may therefore incur runtime overhead,
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e.g., when containers apply a network policy models to provide the source application with

an object reference to the destination application.

To measure NetCON’s overhead, we conducted an experiment todetermine the runtime

overhead of the container when it performs extra work to apply the policies that add DSCPs

to IP packets. This experiment had the following variants: (1) the client container was not

configured by NetCON (no network QoS required), (2) the client container was configured

by NetCON to apply theCLIENT_PROPAGATED network policy, and (3) the client con-

tainer was configured by NetCON to apply theSERVER_DECLARED network policy. This

experiment had no background network load to isolate the effects of each variant.
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Figure 23: Overhead of NetQoPE’s Policy Framework

Our experiment had no network congestion, so QoS support wasthus not needed.5 The

network priority models were therefore configured with DSCPvalues of 0 for both the

forward and reverse direction flows.TestNetQoPE was configured to make 200,000 in-

vocations that generated a load of 6 Mbps and average roundtrip latency was calculated

5Our experimentation goal was to measure the runtime overhead of using NetQoPE middleware to enforce
network QoS. So we wanted to remove other effects in the experiment such as network congestion.
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for each experiment variant. The routers were not configuredto perform DiffServ process-

ing (provide routing behavior based on the DSCP markings), so no edge router processing

overhead was incurred. We configured the experiment to pinpoint only the overhead of the

container no other entities in the path of client remote communications.

Analysis of results. Figure23shows the average roundtrip latencies experienced by clients

in the three experiment variants (in this figureCP is the CLIENT_PROPAGATED network

priority model andSD is the SERVER_DECLARED model). To honor the network policy

models, the NetQoPE middleware added the request/reply DSCPs to the IP packets. The

latency results shown in Figure23 are all similar, which shows that NetCON is efficient

and adds negligible overhead to applications. If another variant of the experiment was run

with background network loads, network resources will be allocated and the appropriate

DSCP values used for those application flows. The NetCON runtime overhead will remain

the same, however, since the same middleware infrastructure is used, only with different

DSCP values.

IV.5 Summary

This chapter described the design and evaluation of NetQoPE, which is a model-driven

middleware framework that manages CPU and network QoS for DRE applications. The

lessons we learned developing NetQoPE and applying it to a representative DRE applica-

tion case study thus far include:

• NetQoPE’s domain-specific modeling languages (e.g., NetQoS) help capture per-

deployment QoS requirements of applications so that CPU andnetwork resources can be

allocated appropriately. Application business logic consequently need not be modified to

specify deployment-specific QoS requirements, thereby increasing software reuse and flex-

ibility across a range of deployment contexts, as shown in Section IV.3.1.

• Programming network QoS mechanisms directly in application code requires the de-

ployment and execution of applications before they can determine if the required network
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resources are available to meet QoS needs. Conversely, providing these capabilities via

NetQoPE’s model-driven, middleware framework helps guideresource allocation strategies

beforeapplication deployment, thereby simplifying validation and adaptation decisions, as

shown in SectionIV.3.2.

• NetQoPE’s model-driven deployment and configuration toolshelp configure the un-

derlying component middleware transparently on behalf of applications to add context-

specific network QoS settings. These settings can be enforced by NetQoPE’s runtime mid-

dleware framework without modifying the programming modelused by applications. Ap-

plications therefore need not change how they communicate at runtime since network QoS

settings can be added transparently, as shown in SectionIV.3.3.

• NetQoPE’s strategy of allocating network resources beforedeployment may be too

limiting for certain types of DRE applications. In particular, because of the physical nature

of the systems, faults might occur at runtime, and applications might not consume all their

resource allotment at runtime. Similarily, applications in open systems might require dy-

namic provisioning of resources based on application demand. Our future work is therefore

extending NetQoPE to overprovision resources for applications on the assumption that not

all applications will use their allotment.

NetQoPE’s model-driven middleware platforms and tools described in this chapter and

used in the experiments are available in open-source formatfromwww.dre.vanderbil-

t.edu/cosmicand in the CIAO component middleware available atwww.dre.vande-

rbilt.edu. The Bandwidth Broker is a product licensed by Telcordia.
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CHAPTER V

RESOURCE-AWARE ADAPTIVE FAULT-TOLERANCE IN DISTRIBUTED
SYSTEMS

Supporting uninterrupted services for distributed soft real-time applications is hard in

resource-constrained and dynamic environments, where processor or process failures and

system workload changes are common. Fault-tolerant middleware for these applications

must achieve high service availability and satisfactory response times for client applica-

tions. Although passive replication is a promising fault tolerance strategy for resource-

constrained systems, conventional client failover approaches are non-adaptive and load-

agnostic, which can cause system overloads and significantly increase response times after

failure recovery.

In this chapter, we present four contributions to the study of passive replication for

distributed soft real-time applications. First, we describe how our Fault-tolerant Load-

aware and Adaptive middlewaRe (FLARe) dynamically adjustsfailover targets at runtime

in response to system load fluctuations and resource availability. Second, we describe

how FLARe’s overload management strategy proactively enforces desired CPU utilization

bounds by redirecting clients from overloaded processors.Third, we present the design

and implementation of FLARe’s lightweight middleware architecture that manages fail-

ures and overloads transparently to clients. Finally, we present experimental results on a

distributed Linux testbed that demonstrate how FLARe adaptively maintains soft real-time

performance for clients operating in the presence of failures and overloads with negligible

runtime overhead.

The rest of this chapter is organized as follows. SectionV.1 introduces the research

problem and provides the motivation for our work; SectionV.2 describes the system and
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fault models that form the basis for our work on FLARe; Section V.3 describes the struc-

ture and functionality of FLARe; SectionV.4 empirically evaluates FLARe in the context

of distributed soft real-time applications with dynamic application arrivals and failures;

Finally, SectionV.5 provides a summary of our contributions.

V.1 Introduction

Distributed real-time middleware, such as Real-time CORBA[113] and Distributed

Real-time Java [64], has been used to develop a range of distributed soft real-time appli-

cations, such as online stock trading systems and supervisory control and data acquisi-

tion (SCADA) systems. Such applications operate in dynamicenvironments where system

loads and resource availabilities fluctuate significantly at runtime due to service request

arrivals and processor failures. In such environments, it is important for applications to

maintain both system availability and desired soft real-time performance. For example, in

SCADA systems for power grid monitoring, remote terminal units must continue to pro-

cess updates from sensors monitoring power grid failures, even when load fluctuations and

failures occur.

ACTIVE andPASSIVE replication [61] are two common approaches for building fault-

tolerant distributed applications. InACTIVE replication [137], client requests are multicast

and executed at all replicas. Failure recovery is fast because if any replicas fail, the re-

maining replicas can continue to provide the service to the clients. ACTIVE replication

imposes high communication and processing overhead, however, which may not be viable

in resource-constrained systems [22].

In PASSIVE replication [21] only one replica—called the primary—handles all client

requests, and backup replicas do not incur runtime overhead, except for receiving state

updates from the primary. If the primary fails, a failover istriggered and one of the backups

becomes the new primary. Due to its low resource consumption, PASSIVE replication is
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appealing for soft real-time applications that cannot afford the cost of maintaining active

replicas and need not assure hard real-time performance.

Although PASSIVE replication is desirable in resource-constrained systems, it is chal-

lenging to deliver soft real-time performance for applications based onPASSIVE replica-

tion. In particular, conventional client failover solutions [13, 45] in PASSIVE replication

are non-adaptive and load-agnostic, which can cause post-recovery system overloads and

significantly increase response times for clients. Moreover, the middleware must dynami-

cally handle overload conditions caused by workload fluctuations and concurrent failures.

Therefore, a lightweight middleware architecture is needed that can handle failures and

overloads transparently from the applications.

To address this need, we have developed theFault-tolerant, Load-aware and Adaptive

middlewaRe (FLARe)which maintains service availability and soft real-time performance

in dynamic environments. This chapter evaluates the following contributions to developing

distributed soft real-time applications:

• A Load-aware Adaptive Failover (LAAF) strategy, which dynamically adjusts

failover targets in response to load fluctuations and processor/process failures based

on current CPU utilization.

• A Resource Overload Management rEdirector (ROME) strategy, which dynam-

ically enforces schedulable utilization bounds by proactively redirecting clients from

overloaded processors.

• A lightweight adaptive middleware architecture, which handles failures and over-

loads transparently from applications.

FLARe has been implemented atop the TAO Real-time CORBA middleware [63, 142]
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and evaluated empirically in the ISISlab testbed (www.dre.vanderbilt.edu/ISIS-

ab). The experimental results reported in this chapter demonstrate how FLARe can dynam-

ically maintain both system availability and desired soft real-time performance for clients,

while incurring negligible run-time overhead.

V.2 System and Fault Models

FLARe supports distributed systems where application servers provide multiple long-

running services on a cluster of computing nodes. The services in a system are invoked by

clients periodically via remote operation requests. Further, these types of systems experi-

encedynamicworkloads when clients start and stop services at runtime. Clients demand

both soft real-time performance as well as system availability despite workload fluctuations

and processor and process failures.

The end-to-end delay of a remote operation request comprises delays on the server, the

client, and the network. FLARe is designed to bound server latencies, which often domi-

nate in distributed real-time systems (e.g., SCADA systems) equipped with high-speed net-

works. To meet desired server latencies FLARe allows users to specify a utilization bound

for each CPU on the servers. The utilization bound can be set to below the schedulable

utilization bound of the real-time scheduling policy (e.g., rate monotonic) supported by the

middleware scheduling service. At run time FLARe maintainsdesired server latencies by

dynamically enforcing the utilization bounds on the servers1.

Processors and processes may experience fail-stop [137] failures and concurrent fail-

ures in multiple processors or processes can occur. To provide lightweight fault-tolerance,

FLARe employsPASSIVE replication [20], where services are replicated and deployed

across multiple processors. We assume that networks provide bounded communication

latencies and do not fail or partition. This assumption is reasonable for many soft real-

time systems, such as SCADA systems, where nodes are connected by highly redundant

1FLARe is targeted atsoftreal-time applications and does not provide hard guarantees on meeting every
deadline
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high-speed networks. Relaxing this assumption through integration of our middleware

with network-level fault tolerance and QoS management techniques [5] is an area of future

work.

V.3 Design and Implementation of FLARe

This section describes the design and implementation of FLARe. The key design goals

of FLARe are to (1) mask clients from processor and process failures through transpar-

ent client failover, (2) alleviate post recovery overload through load-aware failover target

selection, and (3) maintain desired soft real-time performance by dynamically enforcing

suitable CPU utilization bounds on the servers through overload management.

V.3.1 FLARe Middleware Architecture

FLARe’s architecture, shown in Figure24, has four main components: themiddleware

replication manager, the client failover managerfor each client process, themonitor on

each processor hosting servers, and thestate transfer agenton each process hosting servers.

FLARe achieves fault-tolerance throughPASSIVE replication of CORBA objects, where

the primary and backup replicas are deployed across different processors in the distributed

system.

Middleware replication manager. FLARe’smiddleware replication manager(MRM) al-

lows server objects to provide information about (1) the processors and processes in which

their primaries and backups are hosted, (2) the CPU utilization that they will require to

serve client requests should they become primary, and (3) their interoperable object refer-

ence (IOR) so that clients can invoke remote operations on them when the server objects

are added to the system. To manage the primary and backup replicas—and to make adap-

tive failover target decisions—FLARe’s MRM uses amonitoron each processor to track

failures and CPU utilizations of all processors hosting theprimary and backup replicas of

each server object.
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As highlighted by labelA in Figure24, FLARe’s MRM employs aLoad-Aware and

Adaptive Failover(LAAF) target selection algorithm (described in SectionV.3.2) to pre-

pare an rank-ordered list of failover targets for eachprimaryobject in the system. The rank

list includes multiple failover targets in order to handle multiple failures of the same server

object. In some situations the currentprimary replica can become overloaded,e.g., due

to sudden workload fluctuations and multiple failures. FLARe’s MRM employs theRe-

source Overload Management rEdirector(ROME) algorithm (described in SectionV.3.3)

to redirect clients from overload processors to maintain the desired soft real-time perfor-

mance. The LAAF and ROME strategies are detailed in SectionV.3.2 and SectionV.3.3,

respectively. Finally, MRM could be co-located with serverobjects (i.e.,Host 1 or Host 2

in Figure24) as the computation load of the LAAF and ROME algorithms implemented in

MRM is relatively low compared to that of the server objects.

Figure 24: The FLARe Middleware Architecture
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Monitors. The liveliness of the processes hosting the server objects and CPU utilization of

the hosts is probed by monitors co-located with the server objects. Failures of processes, if

any, are communicated instantaneously to the MRM whereas the CPU utilization is com-

municated at a configurable sampling rate. We do not, however, require fine-grained time

synchronization since the sampling period is typically longer than the task periods. For

instance, the task periods in the experiments described in SectionV.4 vary from one second

to one-tenth of a second whereas the monitor sampling periodis greater than one second.

Client failover manager. As highlighted by labelB in Figure24, FLARe’sclient failover

managercontains aredirection agentthat is updated with failover and redirection targets

so clients can recover transparently from failures and overloads, respectively. To handle

failures, as highlighted by labelC in Figure24, FLARe’sclient request interceptorcatches

failure exceptions and instead of propagating the exception to the client application, the

client request interceptor redirects the client invocation to the appropriate failover target

provided by the redirection agent.

State transfer agent. As highlighted by labelD in Figure 24, FLARe’s state transfer

agentallows server objects to inform it about changes to application states. Thestate

transfer agentis updated with per-server-object failover targets by FLARe’s MRM. When

a primary replica in a process informs it about application state change, thestate transfer

agentutilizes interfaces provided by the server object to obtainthe new state. Thestate

transfer agentsynchronizes the state of thebackupreplicas with the new state, by making

remote invocations on thebackupreplicas using the provided failover target references as

highlighted by labelE in Figure24.

FLARe schedules state update propagations from the primaryreplica to the backup

replicas using remote operation requests, from the state transfer agent on the primary

replica to one of the backup replicas. The period of the stateupdate task is equal to the
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period of the primary task. In the current implementation, each state update task is sched-

uled on the processor hosting the backup replicas at the priority determined by the rate-

monotonic scheduling algorithm.

To support distributed soft real-time applications in FLARe, theprimary replica up-

dates the states of itsbackupreplicasafter it sends its response to the client. This design

choice significantly reduces the response times for clients, but supports only “best effort”

guarantees for state synchronization. Replica consistency may be lost if theprimaryreplica

crashes after it responds to the client, but before it propagates its state update to thebackup

replicas. This design tradeoff is desirable in many distributed soft real-time applications

where state can be reconstructed using subsequent (e.g., sensor) data updates at the cost of

transient degradation of services.

V.3.2 Load-aware and Adaptive Failover

As described in SectionV.3.1, FLARe’s MRM collects periodic measurement updates

from the monitors about CPU utilizations and liveness of processors/processes. FLARe

provides aload-aware, adaptive failover (LAAF)target selection algorithm that uses these

measurements to select per-object failover targets. LAAF uses the following inputs: (1) the

list of processors and the list of processes in each processor, (2) the list of primary object

replicas operating in each process, (3) the list of backup replicas for each primary object

replica and the processors hosting those replicas, and (4) the current CPU utilizations of

all processors in the system. This algorithm is executed whenever there is a change in the

CPU utilization by athreshold(e.g., ± 10%) in any of the processors in the system since

FLARe must react to such dynamic changes.

The output of LAAF is a ranked list of failover targets for each primary object replica

in the system. To deal with concurrent failures, FLARe maintains an ordered list of failover

targets, instead of only the first one. When both the primary replica and some of its backup

replicas fail concurrently, the client can failover to the first backup replica in the list that is
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still alive. LAAF estimates the post-failover CPU utilizations of processors hosting backup

replicas for a primary object, assuming the primary object fails. The backup replicas are

then ordered based on the estimated CPU utilizations of the processors hosting them, and

the backup replica whose host has the lowest estimated CPU utilization is the first failover

target of the replica. To balance the load after a processor failure, LAAF redirects the

clients of different primary objects located on the same processor to replicas on different

processors. Finally, the references (IORs) to those replicas are collected in a list and pro-

vided to the redirection agents for use during failure recovery. To reduce the failover delay,

MRM proactivelyupdates a client whenever its failover target list changes.

Algorithm 2 : LAAF Target Selection Algorithm
Input :

Pi ← Set of processes on processori
O j ← Set of primary replica objects in processj
Rk← list of processors hosting backup replicas for a primary objectk
cui ← current utilization of processori
eui ← expected utilization of processori after failovers
lk← CPU utilization attributed to primary object k

begin1

for every processor ido2

eui = cui // reset expected utilization3

for every process j in Pi do4

for every primary object k in Oj do5

// sort Rk in increasing order of expected CPU utilization6

// eux += lk, where processor x is the head of the sorted list Rk7

end8

end9

end10

end11

Algorithm 2 depicts the steps in the LAAF target selection algorithm. For every pro-

cessor in the system (line 2), LAAF iterates through all hosted processes (line 4), and the

primary replicas that are hosted in those processes (line 5). For every primary replica,

the algorithm determines the processors hosting its backupreplicas and the least loaded of
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those processors (line 6). The algorithm then adds the load of the primary object replica

(known to FLARe’s MRM because of the registration process asexplained in SectionV.3.1)

to the load of least loaded processor and defines that as theexpected utilizationof that pro-

cessor (line 12) were such a failover to occur.

The algorithm repeats the process described above for everyother primary replica ob-

ject hosted in the same process (Lines 5–7). The least loadedfailover processor is deter-

mined by considering the expected utilizations of the processors (line 6). This decision

allows the algorithm to consider the failover of co-locatedprimary replica objects within

a processor while determining the failover targets of otherprimary replica objects hosted

in the same processor. The failover target selection algorithm therefore makes decisions

not only based on the dynamic load conditions in the system (which are determined by the

monitors), but also based on load additions that may be caused by failovers of co-located

primary objects. The failover targets are then used for redirecting a client if any failure

occurs before the next time LAAF is run.

LAAF is optimized for multiple process failures or single processor failures. It may

result in suboptimal failover targets, however, when multiple processors fail concurrently.

In this case, clients of objects located on different failedprocessors may failover to a same

processor, thereby overloading it. Similarly, LAAF may also result in suboptimal failover

targets when process/processor failures and workload fluctuation occur concurrently,i.e.,

before FLARe’s MRM receives the updated CPU utilization from the monitors. To handle

such overload situations FLARe employs the ROME algorithm (described next in Sec-

tion V.3.3) to redirect clients of overloaded processors, proactively to less loaded proces-

sors.

• Analysis of the LAAF target selection algorithm. The failover targets determined by

the LAAF algorithm could be incorrect under certain circumstances. For example, those

circumstances could be:

New resource additions and dynamic workloads. As described in SectionV.3.2, the
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LAAF algorithm is executed when the monitor in any of the processors senses a load change

or a failure. However, if a failure occurs, before the MRM could adapt to the change, clients

would failover using targets that were determined before accounting the new change. Such

a failover could affect the response times clients receive after a failover, as the clients could

have potentially failed over to a processor that is overloaded or that gets overloaded after a

failover.

For example, if the change involves a dynamic workload addition (e.g., deployment of a

new service), and the subsequent failover is to the same processor, then the processor could

get overloaded - client response times are also affected after the failover. Such an overload

needs to be immediately handled to restore satisfactory response times of all the affected

clients. Similarly, if the change involves addition of a newprocessor or a rejuvenation of

a failed processor, then new replicas (both primary and backup replicas) are added into the

system, which could be potentially used as failover targets. However, since the failover

occurred before the replication manager could utilize those new replicas, clients could po-

tentially be wasting a chance to utilize replicas that are deployed in processors with much

lesser CPU utilization than the processor they are currently making remote invocations on.

Such a CPU utilization imbalance between processors hosting replicas of the sametype

should be quickly detected, so that clients could be redirected to appropriate replicas.

Simultaneous multiple processor failures. Note that, in line 3 of the LAAF algorithm,

the expected utilization of all the processors is reset to the utilization that is determined

by the monitors. This means that when failover target decisions are made for a processor,

the algorithm does not account for the expected CPU utilization increases that could arise

because of the failure of another processor in the system. This decision leads to a possibility

of two or more services picking the same processor as the destination of their failover target

replicas.

For example, let us assumePi andPj be theprimary replicas of two different services

andCi andCj be their respective clients. The rank list maintained by clientCi ’s redirection
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agent is represented by the tuple:〈Ri1,Ri2, · · · ,RiN〉; whereRi1 represents the most appro-

priate failover target andRiN represents the least appropriate failover target determined by

the LAAF algorithm, and N represents the number of replicas of the service. ClientCj ’s

redirection agent also maintains a similar rank list for theprimary replicaPj .

Now assume thatRi1 operates in the least loaded processor among all the processors

hosting replicas of theprimary replicaPi. Similarly, Rj1 operates in the least loaded pro-

cessor amongst all the processors hosting replicas of theprimary replicaPj . If Ri1 and

Rj1 operate in the same processor, then the failover target selection algorithm would have

picked that processor as the failover target for both theprimary replicasPi andPj . In other

words, the effective utilization increments are not considered for two or more processors in

the LAAF algorithm. At runtime, if bothprimaryreplicasPi andPj fail together, the clients

of the failed services will be redirected to the same backup processor. These multiple redi-

rections can cause an overload on the backup processor degrading response times for the

clients.

The above observation does not mean that LAAF cannot supportsimultaneous multiple

processor failures. In the above example, it so happened that Ri1 andRj1 were located in

the same processor, and were also the least loaded targets. If the replicas were located in

different nodes, then LAAF would have been able to handle simultaneous multiple pro-

cessor failures. We assume that, such kind of application placements and configurations

are rare, and hence we did not accommodate handling such kindof failures in our LAAF

algorithm. In the next section, we describe our adaptive client redirection strategy that can

handle the overloads and processor CPU utilization imbalances illustrated above.

V.3.3 Resource Overload Management and Redirection

FLARe’s MRM employs theResource Overload Management and rEdirection (ROME)

algorithm to enforce desired CPU utilization and service delay bounds. FLARe allows

users to specify a per-processorutilization boundbased on the schedulable utilization
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bound of the real-time scheduling policy (e.g., rate monotonic) supported by the middle-

ware scheduling service. A processor whose CPU utilizationexceeds theutilization bound

is considered overloaded.

ROME is needed to resolve processor overload since CPU saturation may cause system

failure due to kernel starvation [89]. Distributed soft real-time applications can use ROME

to specify the overload threshold based on the suitable schedulable utilization bounds [143]

needed to achieve satisfactory response times. ROME also allows users to specify a per-

objectmigration thresholdto redirect clients of primary objects hosted in current heavily

loaded (but not overloaded) processor to the least loaded processor hosting a replica of that

object. Balancing processor CPU utilization helps reduce the response times and avoid

overload on a subset of processors in the system. FLARe thus uses ROME to handle

CPU overload and load imbalance as special cases of failuresfor distributed soft real-time

applications.

In the case of failures, the clients are redirected to appropriate failover targets based on

decisions made by LAAF, as described in SectionV.3.2. In the case of overloads, clients of

the current primary replicas are redirected automaticallyto the chosen new backup replicas.

We refer to this load redistribution mechanism aslightweight migrationsince we migrate

the loads(through client redirection) of objects as opposed to the less efficient alternative

of migrating theobjectsthemselves. Moreover, ROME leverages existing replicas and

effectively utilizes them for maintaining satisfactory response times for clients.

Algorithm 3 depicts the steps ROME uses to handle CPU overload and load imbalance,

respectively.

Handling overloads. When the CPU utilization at any of the processor crosses theutiliza-

tion bound, FLARe’s MRM triggers ROME to react to the overloads. FLARe determines

the primary objects whose clients need to be redirected, andtheir target hosts, using ROME.

Given an overloaded processor (i.e., whose CPU utilization exceeds theutilization bound),
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Algorithm 3 : Determine Load-redistributing Targets
Input :

Oi ← list of primary objects in an overloaded processori
Rj ← list of processors hosting objectj ’s replicas
cui ← current utilization of processori
eui ← expected utilization of processori after migrations
l j ← CPU utilization of primary object j
ti ← upper bound for processori’s CPU utilization
eui = cui for every processor i

begin1

for every overloaded processor ido2

sortOi in decreasing order of their CPU utilizations3

for every object j in the sorted list Oi do4

min : processori in Rj with lowest CPU utilization5

if (l j + eumin) < tmin then6

migrate the load of objectj to j ’s replica inmin7

eumin += l j8

eui -= l j9

end10

if eui < ti then11

processori is no longer overloaded; stop12

else13

migrate another primary objectj in the processori14

end15

end16

end17

ROME considers the primary objects on the processor in decreasing order of CPU utiliza-

tion (line 3), and attempts to migrate the load generated by those objects to the least-loaded

processor hosting their backup replicas (lines 5 through 9). The attempt fails if the least-

loaded processor of the backup replicas would exceed theutilization boundif the migration

occurs. ROME attempts migrations until (1) the processor isno longer overloaded or (2) all

clients of primary objects in the overloaded processor havebeen considered for redirection.

Similar to LAAF, ROME also uses theexpected CPU utilizationto spread the load of

multiple objects on an overloaded processor to different hosts. The expected CPU utiliza-

tion accounts for the load change due to the redirection decisions affecting the overloaded
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processor. After new reconfigurations are identified, redirection agents are updated to redi-

rect existing clients from the current primary replica to the selected backup replica at the

start of the next remote invocation. Clients are thus redirected to new targets with less

perturbations.

V.3.4 Implementation of FLARe

FLARe has been implemented atop the TAO Real-time CORBA middleware. It is im-

plemented in∼9,000 lines of C++ source code (excluding the code in TAO). Below we

highlight several key aspects of the FLARe implementation (a more detailed description of

FLARe appears in [6]).

Monitoring CPU utilization and processor failures. On Linux, FLARe’smonitor

process uses the/proc/stat file to estimate the CPU utilization (i.e., the fraction of

time when the CPU is not idle) in each sampling period. We chose to measure the CPU

utilization online, rather than relying on the estimated CPU utilization provided by users to

account for estimation errors and for other activities in the middleware and OS kernel.

To detect the failure of a process quickly, each applicationprocess on a processor opens

up a passive POSIX local socket (also known as a UNIX domain socket) and registers the

port number with the monitor. The monitor connects to the socket and performs a blocking

read. If an application process crashes, the socket and the opened port will be invalidated,

in which case the monitor receives an invalid read error on the socket that indicates the

process crash. Fault tolerance of the monitor processes is also achieved through passive

replication. If theprimary monitor replica fails to send updated information or to respond

to FLARe’s middleware replication manager(described below) within a timeout period,

FLARe suspects that the processor has crashed.

Middleware replication manager. FLARe’s middleware replication manageris de-

signed using the Active Object pattern [140] to decouple the reporting of a load change or a

failure from the process. This decoupling allows several monitors to register with FLARe’s
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middleware replication managerwhile allowing synchronized access to its internal data

structures. Moreover, FLARe can be configured with the LAAF and ROME algorithms

via the Strategy pattern [51]. FLARe’s middleware replication manageris replicated us-

ing SEMI_ACTIVE replication [55] (provided by the TAO middleware), with regular state

updates to the backup replicas.

Client failover manager. As shown in Figure24, the client’s failover manager com-

prises a CORBA portable interceptor-basedclient request interceptor[164] and a redi-

rection agent, which together coordinate to handle failures in a manner transparent to the

client application logic. Whenever a primary fails, the interceptor catches the CORBA

COMM_FAILURE exception. Since portable interceptors are not remotely invocable objects,

it was not feasible for an external entity (such as a MRM) to send the rank list information

to the interceptor, which is necessary to determine the nextfailover target. The redirec-

tion agent is therefore a CORBA object that runs in a separatethread from the interceptor

thread. The interceptor consults the redirection agent forthe failover target from the rank

list it maintains. The interceptor will then reissue the request to the new target. The rank list

is propagated to the redirection agentproactivelyby FLARe’s MRM whenever the failover

target list changes.

V.4 Empirical Evaluation of FLARe

We empirically evaluated FLARe in ISISlab (www.dre.vanderbilt.edu/ISIS-

lab) on a testbed of 14 blades. Each blade has two 2.8 GHz CPUs, 1GBmemory, a 40 GB

disk, and runs the Fedora Core 4 Linux distribution. Our experiments used one CPU per

blade and the blades were connected via a CISCO 3750G switch into a 1 Gbps LAN. 12 of

the blades ran Real-time CORBA applications on FLARe. FLARe’s MRM and its backup

replicas ran in the other 2 blades. To emulate distributed soft real-time applications, the

clients in these experiments used threads running in the Linux real-time scheduling class to

invoke operations on server objects at periodic intervals.All operations and state updates
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on the servers were executed according to the rate monotonicscheduling policy supported

by the TAO scheduling service.

V.4.1 Evaluating LAAF

The first experiment was designed to evaluate FLARe’s LAAF algorithm (described in

SectionV.3.2) and compare it with the optimalstaticclient failover strategy. In the static

client failover strategy, the client middleware is initialized with astatic list of IORs of the

backup replicas, ranked based on the CPU utilization of their processors atdeployment time.

The list is not updated at run-time based on the current CPU utilizations in the system (the

failover targets are optimal at deployment time, but anystatic failover target can become

suboptimal at run-time in face of dynamic workloads). In contrast, LAAF dynamically

recomputes failover targets whenever there is a change in the CPU utilization by athreshold

(e.g.,± 10%) in any of the processors in the system.

Figure 25: Load-aware Failover Experiment Setup

Experiment setup. Figure25 and Table7 illustrate our experimental setup. The ex-

periment ran for 300 seconds. To evaluate FLARe in the presence of dynamic workload
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changes, at 50 seconds after the experiment was started, we introduced dynamic invocations

on two server objectsDY-1 andDY-2, using client objects,CL-5, andCL-6, respectively.

Thestatic failover strategy selects failover targets that are optimal at deployment time, as

follows: if A-1 fails, contactA-3 followed byA-2; if B-1 fails, contactB-3 followed by

B-2.

Client Server Invocation Server
Object

Object Object Rate (Hz) Utilization

Static Loads
CL-1 A-1 10 40%
CL-2 B-1 5 30%
CL-3 C-1 2 20%
CL-4 D-1 1 10%

Dynamic Loads
CL-5 DY-1 5 50%
CL-6 DY-2 10 50%

Table 7: Experiment setup for LAAF

We emulated a process failure 150 seconds after the experiment started. We used a

fault injection mechanism, where when clientsCL-1 or CL-2 make invocations on server

objectsA-1 or B-1, respectively, the server objects calls theexit (1) command, crashing

the process hosting server objectsA-1 andB-1 on processorTANGO. The clients receive

COMM_FAILURE exceptions, and then failover to replicas chosen by the failover strategy.

Analysis of results. Figure26 shows the CPU utilizations at all the processors, when

clients used the static client failover strategy. At 50 seconds, serversDY-1 andDY-2 were

invoked by clientsCL-5 andCL-6 causing the CPU utilizations at processorsLAMBADA

andCHARLIE to increase from 0% to 50%.

At 150 seconds when process hosting bothA-1 andB-1 fails on the processorTANGO,

clientsCL-1 andCL-2 failover to the statically configured replicasA-3 at processorLAM -

BADA and B-3 at processorCHARLIE respectively. As a result, the CPU utilizations at
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Figure 26: Utilization with Static Failover Strategy

processorsLAMBADA andCHARLIE increase to 90% and 80% respectively. Note that 90%

CPU utilization is highly undesirable in middleware systems because it is close to saturat-

ing the CPU which may result in kernel starvation and system crash [89]. The high CPU

utilizations on processorsCHARLIE andLAMBADA occur, because thestaticclient failover

strategy did not account fordynamicsystem loads while determining client failover targets.

In contrast, FLARe’s MRM triggers LAAF to recompute the failover targets in response

to load changes. At 50 seconds, LAAF changed the failover target of the primary replica

A-1 from A-3 to A-2, in response to the load increase on processorLAMBADA (host of

A-3). Similarly, LAAF also changed the failover target ofB-1 from B-3 to B-2 in response

to the load increase on processorCHARLIE (host of B-3). At 150 seconds, clientsCL-1

and CL-2 failover to backup replicasA-2 andB-2 respectively. As shown in Figure27,

none of the processor utilizations is greater than 60% afterthe failover of clientsCL-1 and
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Figure 27: Utilization with Adaptive Failover Strategy

CL-2. This result shows that LAAF effectively alleviates processor overloads after failure

recovery, due to its adaptive and load-aware failover strategy.

V.4.2 Evaluating ROME

We designed two more experiments to evaluate the ROME algorithm described in Sec-

tion V.3.3. We stress-tested ROME under overloads caused by dynamic workload changes

and multiple failures.

Experiment setup.Figure28and Table8 show the experimental setup. The utilization

bound on every processor was set to 70%, which is below the schedulable utilization bound

(based on the number of tasks) for the rate monotonic policy supported by the middleware

scheduling service. The required server delay for each taskequalled its invocation period.
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Figure 28: Overload Redirection Experiment Setup

Client Server Invocation Server
Object

Object Object Rate (Hz) Utilization

Static Loads
CL-1 A-1 10 40%
CL-2 B-1 5 30%
CL-3 C-1 2 30%
CL-4 D-1 1 10%

Dynamic Loads
CL-5 H-1 10 50%

Table 8: Experiment setup for ROME

Concurrent Workload Change and Process Failure.We emulated a failure 50 sec-

onds after the experiment started. We used a fault injectionmechanism, where when client

CL-1 makes invocations on server objectA-1, the server object calls theexit (1)command,

crashing the process hosting server objectA-1 on the processorTANGO. The clientCL-1

receives aCOMM_FAILURE exception due to the failure ofA-1, and then consults its rank

list to make a failover decision, which isA-2. At the same time, a clientCL-5 starts making

invocations on a new serviceH-1.
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As a result of the concurrent failure and workload change, the load on the processor

BETA rises to 90% (highlighted by pointA in the Figure29), which exceeds the speci-

fied utilization bound (70%) and consequently triggers ROME. ROME then performs a

lightweight migration of the clients ofA-2 and redirects all of its clients toA-3, which

is hosted in the least loaded of all the processors hosting a replica ofA-1. Within 1 sec-

ond, the utilization of processorBETA decreases to 50%, while the utilization of processor

LAMBADA increases to 40% due toA-3 becoming the new primary replica.

At this stage, the CPU utilizations of all processors are below 70%. We also plot the

measured end-to-end response times perceived by the clients in Figure30. After ROME

redirected the client’s requests, the end-to-end responsetimes of all the clients drop below

the required server delays, indicating that every server object achieved its required server

delay (which is a part of the corresponding end-to-end response times). This result demon-

strated that ROME can handle overload effectively and efficiently.

Concurrent Failures. We then stress-tested ROME further with concurrent failures.

Since the CPU utilizations in the system have changed dynamically, FLARe’s MRM also

employs LAAF to redetermine the failover targets for all theprimary objects in the system.

The recomputed failover targets are as follows: (1) forA-1, it is 〈A-4,A-2〉 (2) for B-1, it

is 〈B-2,B-3〉, and (3) forD-1, it is 〈D-2〉

We emulated a failure 150 seconds after the experiment started. We used a fault in-

jection mechanism, where when clientsCL-1 andCL-2 make invocations on server objects

A-3 andB-1, respectively, the server objects call theexit (1)command, crashing the process

hosting server objectsA-3 on processorLAMBADA andB-1 on processorCHARLIE. The

clients receiveCOMM_FAILURE exceptions, and then fail over to replicas chosen by the

failover strategy. Using the failover targets computed by LAAF, client CL-1 fails over to

A-4 while clientCL-2 fails over toB-2, both of which end up starting on the same processor

ALPHA, which is already hosting a primaryD-1.

As a result, the CPU utilization of the processorALPHA jumps to 80% (as highlighted
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Figure 29: Utilizations with ROME Overload Management

by pointB in Figure29), while the clientsCL-1, CL-2, andCL-4 see an increase in response

times (as shown in Figure30). FLARe’s MRM triggers ROME once again to resolve the

overload, starting with the most heavily loaded service,A-4, but clients ofA-4 cannot

be moved, as that would again overload the processorBETA. Hence, ROME redirects all

clients ofB-2 (which is the next most heavily loaded object) to its replicaB-3 on processor

PRINCE. As a result, the CPU utilizations of all the processors settle below 70% as shown

by point (B in Figure29), while the end-to-end response times (and hence the serverdelays)

drop below the required server delays.

This experiment demonstrates that ROME can effectively enforce the specified utiliza-

tion bound and server delays by dynamically handling overloads caused by concurrent

failures and workload changes.
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Figure 30: Client Response Times with ROME Overload Management

V.4.3 Failover Delay

To empirically evaluate the failover delays under thestatic and theadaptivefailover

strategies, we ran an experiment with clientCL-1 invoking 10,000 requests on server object

A-1. No other processes operated in the processor hostingA-1, so that the response time

will equal the execution time of the server. A fault was injected to kill the server while

executing the 5,001st request. The clients then failover to backup server objectsA-2, which

execute the remaining 5,000 requests (including the one experiencing the failure).

The left side of Figure31 shows the different response times perceived by clientC-1

in the presence of server object failures. The failover delays for thestatic andadaptive

failover strategies are similar because under the static strategy the client knows the failover

decisiona priori, while under the LAAF strategy, FLARe’s MRM proactively sends the

updated failover targets to the client so they are also readily available when a failover
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Figure 31: Failover delay and run-time overhead

occurs. Our results indicate that FLARe’s proactive failover strategy achieves fast failover

with a failover delay comparable to the static strategy.

V.4.4 Overhead under Fault-Free Conditions

FLARe uses a CORBA client request interceptor to catchCOMM_FAILURE exceptions

and transparently redirect clients to suitable failover targets. To evaluate the runtime over-

head of these per-request interceptions during normal failure free conditions, we ran a sim-

ple experiment with clientCL-1 making invocations on server objectA-1 with and without

client request interceptors.

We ran this experiment for 50,000 iterations and measured the average response time

perceived byCL-1. The right side of Figure31 shows that the average response time per-

ceived byCL-1 increased by only 8 microseconds when using the client request interceptor.

This result shows that interceptors add negligible overhead to the normal operations of an

application.
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V.5 Summary

This chapter presents the Fault-tolerant Load-aware and Adaptive middlewaRe (FLARe)

for distributed soft real-time applications. FLARe features (1) the Load-aware and Adap-

tive Failover (LAAF) strategy that adapts failover targetsbased on system load; (2) the

Resource Overload Management Redirector (ROME) strategy that dynamically enforces

CPU utilization bounds to maintain desired server delays inface of concurrent failures

and load changes; and (3) an efficient fault-tolerant middleware architecture that supports

transparent failover to passive replicas. FLARe has been implemented on top of the TAO

RT-CORBA middleware as open-source software. Empirical evaluation on a distributed

testbed demonstrates FLARe’s capability to maintain system availability and soft real-time

performance in the face of dynamic workload and failures while introducing only negligible

run-time overhead.

It is possible to conceive of overload management schemes byvirtue of in-place re-

placement of component implementations wherein performance can be traded off by re-

placing a resource-intensive implementation with an implementation that consumes less

resources but demonstrates degraded performance. In ChapterVI we describe this capabil-

ity.
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CHAPTER VI

MIDDLEWARE MECHANISMS FOR OVERLOAD MANAGEMENT IN
DISTRIBUTED SYSTEMS

Component technologies are increasingly being used to develop and deploy distributed

real-time and embedded (DRE) systems. To enhance flexibility and performance, devel-

opers of DRE systems need middleware mechanisms that decouple component logic from

the binding of a component to an application, i.e., they needsupport for dynamic updating

of component implementations in response to changing modesand operational contexts.

This chapter presents three contributions to R&D on dynamiccomponent updating. First,

it describes an inventory tracking system (ITS) as a representative DRE system case study

to motivate the challenges and requirements of updating component implementations dy-

namically. Second, it describes how our SwapCIAO middleware supports dynamic updat-

ing of component implementations via extensions to the server portion of the Lightweight

CORBA Component Model. Third, it presents the results of experiments that systemati-

cally evaluate the performance of SwapCIAO in the context ofour ITS case study. Our

results show that SwapCIAO improves the flexibility and performance of DRE systems,

without affecting the client programming model or client/server interoperability.

The rest of this chapter is organized as follows. SectionVI.1 introduces the research

problem and provides the motivation for our work; SectionVI.2 describes the structure and

functionality of an inventory tracking system, which is a DRE system case study that moti-

vates the need for dynamic component implementation updating; SectionVI.2.2 describes

the key design challenges in provisioning the dynamic component implementation updat-

ing capability in QoS-enabled component middleware systems; SectionVI.3 describes the

design of SwapCIAO, which provides dynamic component implementation updating capa-

bility for Lightweight CCM [111]; SectionVI.4 analyzes the results from experiments that
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systematically evaluate the performance of SwapCIAO for various types of DRE applica-

tions in our ITS case study; Finally, SectionVI.5 provides a summary of our contributions.

VI.1 Introduction

Component middleware is increasingly being used to developand deploy next-generation

distributed real-time and embedded (DRE) systems, such as shipboard computing environ-

ments [141], inventory tracking systems [106], avionics mission computing systems [145],

and intelligence, surveillance and reconnaissance systems [144]. These DRE systems must

adapt to changing modes, operational contexts, and resource availabilities to sustain the ex-

ecution of critical missions. However, conventional middleware platforms, such as J2EE,

CCM, and .NET, are not yet well-suited for these types of DRE systems since they do not

facilitate the separation of quality of service (QoS) policies from application functional-

ity [161].

To address limitations of conventional middleware,QoS-enabled component middle-

ware, such as CIAO [165], Qedo [131], and PRiSm [132], explicitly separates QoS aspects

from application functionality, thereby yielding systemsthat are less brittle and costly to

develop, maintain, and extend [165]. Our earlier work on QoS-enabled component mid-

dleware has focused on (1) identifying patterns for composing component-based middle-

ware [8, 140], (2) applying reflective middleware [163] techniques to enable mechanisms

within the component-based middleware to support different QoS aspects [162], (3) config-

uring real-time aspects [165] within component middleware to support DRE systems, and

(4) developing domain-specific modeling languages that provide design-time capabilities

to deploy and configure component middleware applications [9]. This chapter extends our

prior work byevaluating middleware techniques for updating component implementations

dynamically and transparently (i.e., without incurring system downtime) to optimize system

behavior under diverse operating contexts and mode changes.

A component [156] is a unit of composition with well-defined provided and required
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interfaces and interactions between components happen using connectors that bind required

interfaces to provided interfaces. Traditional objects ofthe conventional middleware can

access components using the standard interfaces provided by the components. The key

forces associated with providing dynamic implementation update capabilities in a QoS-

enabled component middleware involve wrestling with challenges unseen in conventional

middleware such as handling component-connections with external non-component and

component clients to provide capabilities to upgrade components in a transparent manner

without incurring a system downtime.

Our dynamic component updating techniques have been integrated intoSwapCIAO,

which is a QoS-enabled component middleware framework thatenables application devel-

opers to create multiple implementations of a component andupdate (i.e. “swap”) them

dynamically. SwapCIAO extends CIAO, which is an open-source1 implementation of the

OMG Lightweight CCM [108], Deployment and Configuration (D&C) [109], and Real-

time CORBA [112] specifications (see AppendixA for an overview of these technologies).

The key capabilities that SwapCIAO adds to CIAO include (1) mechanisms for updat-

ing component implementations dynamically without incurring system downtime and (2)

mechanisms that transparently redirect clients of an existing component to the new up-

dated component implementation. As discussed in this chapter, key technical challenges

associated with providing these capabilities involve updating component implementations

without incurring significant overhead or losing invocations that are waiting for or being

processed by the component.

VI.2 Case Study to Motivate Dynamic Component Updating Requirements

To examine SwapCIAO’s capabilities in the context of a representative DRE system, we

developed aninventory tracking system(ITS), which is a warehouse management infras-

tructure that monitors and controls the flow of goods and assets within a storage facility.

1SwapCIAO and CIAO are available fromwww.dre.vanderbilt.edu/CIAO.
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Users of an ITS include couriers (such as UPS, DHL, and Fedex), airport baggage han-

dling systems, and retailers (such as Walmart and Target). This section describes (1) the

structure/functionality of our ITS case study and (2) the key requirements that SwapCIAO

dynamic component updating framework had to address. Naturally, SwapCIAO’s capabil-

ities can be applied to many DRE systems – we focus on the ITS case study in this chapter

to make our design discussions and performance experimentsconcrete.

VI.2.1 Overview of ITS

An ITS provides mechanisms for managing the storage and movement of goods in a

timely and reliable manner. For example, an ITS should enable human operators to con-

figure warehouse storage organization criteria, maintain the inventory throughout a highly

distributed system (which may span organizational and national boundaries), and track

warehouse assets using decentralized operator consoles. In conjunction with colleagues

at Siemens [107], we have developed the ITS shown in Figure32 using SwapCIAO. This

figure shows how our ITS consists of the following three subsystems:

• Warehouse management, whose high-level functionality and decision-making com-

ponents calculate the destination locations of goods and delegate the remaining de-

tails to other ITS subsystems. In particular, the warehousemanagement subsystem

does not provide capabilities like route calculation for transportation or reservation

of intermediate storage units.

• Material flow control , which handles all the details (such as route calculation, trans-

portation facility reservation, and intermediate storagereservation) needed to trans-

port goods to their destinations. The primary task of this subsystem is to execute the

high-level decisions calculated by the warehouse management subsystem.

• Warehouse hardware, which deals with physical devices (such as sensors) and

transportation units (such as conveyor belts, forklifts, and cranes).
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Figure 32: Key Components in ITS

VI.2.2 Requirements for Dynamic Component Updates

Throughout the lifetime of an ITS, new physical devices may be added to support the

activities in the warehouse. Likewise, new models of existing physical devices may be

added to the warehouse, as shown in Figure33.

This figure shows the addition of a new conveyor belt that handles heavier goods in

a warehouse. The ITS contains many software controllers, which collectively manage the

entire system. For example, a software controller component manages each physical device

controlled by the warehouse hardware subsystem. When a new device is introduced, a new

component implementation must be loaded dynamically into the ITS. Likewise, when a

new version of a physical device arrives, the component thatcontrols this device should

be updated so the software can manage the new version. ITS vendors are responsible for

providing these new implementations.
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Figure 33: Component Updating Scenario in ITS

As shown in Figure33, a workflow manager component is connected to a conveyor

belt component using a facet/receptacle pair and an event source/sink pair. To support this

scenario, the ITS needs middleware that can satisfy the following three requirements:

1. Consistent and uninterrupted updates to clients.As part of the dynamic update pro-

cess, a component’s implementation is deactivated, removed, and updated. To ensure that

the ITS remains consistent and uninterrupted during this process, the middleware must en-

sure that (1) ongoing invocations between a component and a client are completed and

(2) new invocations from clients to a component are blocked until its implementation has

been updated. Figure33 shows that when a conveyor belt’s component implementationis

updated, pending requests from the workflow manager to the conveyor belt component to

move a new good to a storage system should be available for processing after the imple-

mentation is updated. SectionVI.3.1 explains how SwapCIAO supports this requirement.
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2. Efficient client-transparent dynamic component updates. After a component is up-

dated, the blocked invocations from clients should be redirected to the new component

implementation. This reconfiguration should be transparent to clients,i.e., they should not

need to know when the change occurred, nor should they incur any programming effort

or runtime overhead to communicate with the new component implementation. Figure33

shows how a client accessing an ITS component should be redirected to the updated com-

ponent transparently when dynamic reconfiguration occurs.SectionVI.3.2 explains how

SwapCIAO supports this requirement.

3. Efficient (re)connections of components.Components being updated may have con-

nections to other components through the ports they expose.The connected components

and the component being updated share a requires/provides relationship by exchanging in-

vocations through the ports. In Lightweight CCM, these connections are established at

deployment time using data provided to the deployment framework in the form of XML

descriptors. During dynamic reconfiguration, therefore, it is necessary to cache these con-

nections so they can be restored immediately after reconfiguration. Figure33 shows how,

during the update of a conveyor belt component, its connections to the workflow manager

component must be restored immediately after the new updated conveyor belt component

implementation is started. SectionVI.3.3 explains how SwapCIAO supports this require-

ment.

VI.3 The SwapCIAO Dynamic Component Updating Framework

This section describes the design of SwapCIAO, which is a C++framework that extends

CIAO to support dynamic component updates. Figure34shows the following key elements

in the SwapCIAO framework:

• SwapCIAO’scomponent implementation language definition(CIDL) compiler sup-

ports theupdatableoption, which triggers generation of “glue code” that (1) defines

a factory interface to create new component implementations, (2) provides hooks
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Figure 34: Dynamic Interactions in the SwapCIAO framework

for server application developers to choose which component implementation to de-

ploy, (3) creates, installs, and activates components within a portable object adapter

(POA) [63, 112] chosen by an application, and (4) manages the port connections of

an updatable component.

• The updatable containerprovides an execution environment in which component

implementations can be instantiated, removed, updated, and (re)executed. An up-

datable container enhances the standard Lightweight CCMsession container[139]

to support additional mechanisms through which component creation and activation

can be controlled by server application developers.

• The updatable component factorycreates components and implements a wrapper

facade [140] that provides a portable interface used to implement the Component

Configurator pattern [140], which SwapCIAO uses to open and load dynamic link

libraries (DLLs) on heterogeneous run-time platforms.
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• Therepository managerstores component implementations. SwapCIAO’s updatable

component factory uses the repository manager to search DLLs and locate compo-

nent implementations that require updating.

The remainder of this section describes how the SwapCIAO components in Figure34 ad-

dress the requirements presented in SectionVI.2.2.

VI.3.1 Providing Consistent and Uninterrupted Updates to Clients

Problem. Dynamic updates of component implementations can occur while interactions

are ongoing between components and their clients. For example, during the component

update process, clients can initiate new invocations on a component – there may also be

ongoing interactions between components. If these scenarios are not handled properly by

the middleware some computations can be lost, yielding state inconsistencies.

Solution→ Reference counting operation invocations.In SwapCIAO, all operation in-

vocations on a component are dispatched by the standard Lightweight CCM portable object

adapter (POA), which maintains adispatching tablethat tracks how many requests are be-

ing processed by each component in a thread. SwapCIAO uses standard POA reference

counting and deactivation mechanisms [124] to keep track of the number of clients making

invocations on a component. After a server thread finishes processing the invocation, it

decrements the reference count in the dispatching table.

When a component is about to be removed during a dynamic update, the POA does not

deactivate the component until its reference count becomeszero,i.e., until the last invoca-

tion on the component is processed. To prevent new invocations from arriving at the com-

ponent while it is being updated, SwapCIAO’s updatable container blocks new invocations

for this component in the server ORB using standard CORBA portable interceptors [164].

Applying the solution to ITS. In the ITS case study, when the conveyor belt component

implementation is being updated, the warehouse hardware system could be issuing requests

to the conveyor belt component to move goods. The updatable container (which runs in the
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same host as the conveyor belt component) instructs the SwapCIAO middleware to block

those requests. After the requests are blocked by SwapCIAO,the updatable container’s

POA deactivates the conveyor belt component only when all requests it is processing are

completed,i.e, when its reference count drops to zero.

VI.3.2 Ensuring Efficient Client-transparent Dynamic Component Updates

Problem. As shown in the Figure34, many clients can access a component whose imple-

mentation is undergoing updates during the dynamic reconfiguration process. In Lightweight

CCM, a client holds an object reference to a component. Aftera component implementa-

tion is updated, old object references are no longer valid. The dynamic reconfiguration of

components needs to be transparent to clients, however, so that clients using old references

to access updated component do not receive “invalid reference” exceptions. Such excep-

tions would complicate client application programming andincrease latency by incurring

additional round-trip messages, which could unduly perturb the QoS of component-based

DRE systems.

Solution → Use servant activators to redirect clients to update components trans-

parently. Figure35 shows how SwapCIAO redirects clients transparently to an updated

component implementation. During the component updating process, the old component

implementation is removed. When a client makes a request on the old object reference after

a component has been removed, the POA associated with the updatable container intercepts

the request via aservant activator. This activator is a special type of intercepter that can

dynamically create a component implementation if it is not yet available to handle the re-

quest. Since the component has been removed, the POA’s active object map will have no

corresponding entry, so the servant activator will create anew component implementation

dynamically.

SwapCIAO stores information in the POA’s active object map to handle client requests

efficiently. It also uses CORBA-compliant mechanisms to activate servants via unique user
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Figure 35: Transparent Component Object Reference Update in SwapCIAO

id’s that circumvent informing clients of the updated implementation. This design prevents

extra network round-trips to inform clients about an updated component’s implementation.

Applying the solution to ITS. In the ITS case study, when the conveyor belt component

implementation is being updated, the warehouse hardware system could be issuing requests

to the conveyor belt component to move goods. After the current conveyor belt component

is removed, the servant activator in the updatable container’s POA intercepts requests from

the warehouse hardware subsystem clients to the conveyor belt component. The servant

activator then activates a new conveyor belt component implementation and transparently

redirects the requests from the warehouse hardware subsystem to this updated implementa-

tion. SwapCIAO uses these standard CORBA mechanisms to enable different component

implementations to handle the requests from warehouse hardware subsystem clients trans-

parently, without incurring extra round-trip overhead or programming effort by the clients.
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VI.3.3 Enabling (Re)connections of Components

Problem. As discussed in SectionA.1, Lightweight CCM applications use the standard

OMG Deployment and Configuration (D&C) [109] framework to parse XML assembly

descriptors and deployment plans, extract connection information from them, and establish

connections between component ports. This connection process typically occurs during

DRE system initialization. When component implementations are updated, it is therefore

necessary to record each component’s connections to its peer components since their XML

descriptors may not be available to establish the connections again. Even if the XML is

available, reestablishing connections can incur extra round-trip message exchanges across

the network.

Solution→ Caching component connectionsFigure36 shows how SwapCIAO handles

component connections during the component update process. During the component up-

Figure 36: Enabling (Re)connections of Components in SwapCIAO

dating process, SwapCIAO caches component connections to any of its peer component
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ports. SwapCIAO automatically handles the case where the updated component is a facet

and the connected component is a receptacle. Since the receptacle could make requests

on the facet while the component implementation is being updated, SwapCIAO uses the

mechanisms described in SectionVI.3.1 to deactivate the facets properly, so that no in-

vocations are dispatched to the component. When the new component is activated, the

facets are reactivated using the SwapCIAO’s POA servant activator mechanism discussed

in SectionVI.3.2. For event source and event sinks, if the component being updated is

the publisher, SwapCIAO caches the connections of all the connected consumers. When

the updated component implementation is reactivated, its connections are restored from

the cache. As a result, communication can be started immediately, without requiring extra

network overhead.

Applying the solution to ITS. In the ITS, a conveyor belt component in the warehouse

hardware subsystem is connected to many sensors that assistthe conveyor belt in tracking

goods until they reach a storage system. When a conveyor beltcomponent is updated, its

connections to sensor components are cached before deactivation. When the updated con-

veyor belt component implementation is reactivated, the cached connections are restored

and communication with the sensors can start immediately and all requests blocked during

the update process will then be handled.

VI.4 Empirical Results

This section presents the design and results of experimentsthat empirically evaluate

how well SwapCIAO’s dynamic component updating framework described in SectionVI.3

addresses the requirements discussed in SectionVI.2.2. We focus on the performance

and predictability of SwapCIAO’s component updating mechanisms provided by version

0.4.6 of SwapCIAO. All experiments used a single 850 MHz CPU Intel Pentium III with

512 MB RAM, running the RedHat Linux 7.1 distribution, whichsupports kernel-level

multi-tasking, multi-threading, and symmetric multiprocessing. The benchmarks ran in the
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POSIX real-time thread scheduling class [73] to increase the consistency of our results by

ensuring the threads created during the experiment were notpreempted arbitrarily during

their execution.

Figure37 shows key component interactions in the ITS case study shownin Figure32

that motivated the design of these benchmarks using SwapCIAO.

Figure 37: Component Interaction in the ITS

As shown in this figure, the workflow manager component of the material flow con-

trol subsystem is connected to the conveyor belt and forklift transportation units of the

warehouse hardware subsystem. We focus on the scenario where the workflow manager

contacts the conveyor belt component using themove_item() operation to instruct the

conveyor belt component to move an item from asource(such as a loading dock) to adesti-

nation(such as a warehouse storage location). Themove_item() operation takes source

and destination locations as its input arguments. When the item is moved to its destina-

tion successfully, the conveyor belt component informs theworkflow manager using the
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finished_moving() event operation. The conveyor belt component is also connected

to various sensor components, which determine if items falloff the conveyor belt. It is es-

sential that the conveyor belt component not lose connections to these sensor components

when component implementation updates occur.

During the component updating process, workflow manager clients experience some

delay. Our benchmarks reported below measure the delay and jitter (which is the variation

of the delay) that workflow manager clients experience when invoking operations on con-

veyor belt component during the component update process. They also measure how much

of the total delay is incurred by the various activities thatSwapCIAO performs when up-

dating a component implementation. In our experiments, allcomponents were deployed on

the same machine to alleviate the impact of network overheadin our experimental results.

The core CORBA benchmarking software is based on the single-threaded version of

the “TestSwapCIAO” performance test distributed with CIAO.2 This benchmark creates

a session for a single client to communicate with a single component by invoking a config-

urable number ofmove_item() operations. The conveyor belt component is connected

to the sensor components using event source/sink ports.

SectionVI.3.3 describes how caching and reestablishing connections to peer compo-

nents are important steps in the component updating process. We therefore measured the

scalability of SwapCIAO when an updated component has upto 16 peer components using

event source/sink ports. The tests can be configured to use either the standard Lightweight

CCM session containers or SwapCIAO’s updatable containers(described in SectionVI.3).

TestSwapCIAO uses the default configuration of TAO, which uses a reactive concurrency

model to collect replies.

2The source code forTestSwapCIAO is available atwww.dre.vanderbilt.edu/~jai/TAO/C-
IAO/performance-tests/SwapCIAO.
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VI.4.1 Measuring SwapCIAO’s Updatable Container Overheadfor Normal Opera-

tions

Rationale. SectionVI.3 described how SwapCIAO extends Lightweight CCM and CIAO

to support dynamic component updates. DRE systems do not always require dynamic com-

ponent updating, however. It is therefore useful to comparethe overhead of SwapCIAO’s

updatable container versus the standard Lightweight CCM session container undernormal

operations(i.e., without any updates) to evaluate the tradeoffs associatedwith this feature.

Methodology. This experiment was run with two variants: one using the SwapCIAO up-

datable container and the other using the standard CIAO session container. In both ex-

periemnts, we used high-resolution timer probes to measurethe latency ofmove_item()

operation from the workflow manager component to the conveyor belt component. Since

SwapCIAO caches and restores a component’s connections to its peer components, we var-

ied the number of sensor components connected to the conveyor belt and then collected

latency data with 2, 4, 8, and 16 ports to determine whether SwapCIAO incurred any over-

head with additional ports during normal operating mode. The TestSwapCIAO client

made 200,000 invocations ofmove_item() operation to collect the data shown in Fig-

ure38.

Analysis of results. Figure38 shows the comparitive latencies experienced by the work-

flow manager client when making invocations on conveyor beltcomponent created with the

session container versus the updatable container. These results indicate that no appreciable

overhead is incurred by SwapCIAO’s updatable container fornormal operations that do not

involve dynamic swapping.

The remainder of this section uses the results in Figure38as thebaseline processing de-

lay to evaluate the delay experienced by workflow manager clients when dynamic updating

of a conveyor belt component occurs.
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Figure 38: Overhead of SwapCIAO’s Updatable Container

VI.4.2 Measuring SwapCIAO’s Updatable Container Overheadfor Updating Oper-

ations

Rationale. Evaluating the efficiency, scalability, and predictability of SwapCIAO’s com-

ponent updating mechanisms described in SectionVI.3.2 and SectionVI.3.3 is essential

to understand the tradeoffs associated with updatable containers. SwapCIAO’scomponent

update timeincludes (1) theremoval time, which is the time SwapCIAO needs to remove

the existing component from service, (2) thecreation time, which is the time SwapCIAO

needs to create and install a new component, and (3) thereconnect time, which is the time

SwapCIAO needs to restore a component’s port connections toits peer components.

Methodology. Since the number of port connections a component has affectshow quickly

it can be removed and installed, we evaluated SwapCIAO’s component update time by

varying the number of ports and measuring the component’s:
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• Removal time, which was measured by adding timer probes to SwapCIAO’sCCM_O-

bject::remove() operation, which deactivates the component servant, disasso-

ciates the executor from the servant, and callsccm_passivate() on the compo-

nent.

• Creation time, which was measured by adding timer probes to SwapCIAO’sPortab-

leServer::ServantActivator::incarnate() operation, which creates

and installs a new component, as described in SectionVI.3.2.

• Reconnect time, which was measured by adding timer probes toCCM_Object::c-

cm_activate(), which establishes connections to ports.

We measured the times outlined above whenever a component update occurs during a

move_item() call for 200,000 iterations and then calculated the resultspresented be-

low.

Analysis of creation time. Figure39 shows the minimum, average, and maximum laten-

cies, as well as the 99% latency percentile, incurred by SwapCIAO’s servant activator to

create a new component, as the number of ports vary from 2, 4, 8, and 16. This figure shows

that latency grows linearly as the number of ports initialized byPortableServer::Se-

rvantActivator::incarnate() increases. It also shows that SwapCIAO’s ser-

vant activator spends a uniform amount of time creating a component and does not incur

significant overhead when this process is repeated 200,000 times. SwapCIAO’s creation

mechanisms described in SectionVI.3.2 are therefore efficient, predictable, and scalable in

ensuring efficient client-transparent dynamic component updates.

Analysis of reconnect time.Figure40shows the minimum, average, and maximum laten-

cies, as well as 99% latency percentile, incurred by SwapCIAO’s reconnect mechanisms

to restore a new component’s connections, as the number of ports vary from 2, 4, 8, and

16. As shown in the figure, the reconnect time increases linearly with the number of ports

per component. These results indicate that SwapCIAO’s reconnect mechanisms described
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Figure 39: Latency Measurements for Component Creation

in SectionVI.3.3 provideefficient (re)connection of componentsand do not incur any ad-

ditional roundtrip delays by propagating exceptions or sending GIOPLOCATE_FORWARD

messages to restore connections to components.

Analysis of removal time. Figure41shows the time used by SwapCIAO’s removal mech-

anisms to cache a component’s connections and remove the component from service, as a

function of the number of its connected ports. This removal time increases linearly with the

number of ports, which indicates that SwapCIAO performs a constant amount of work to

manage the connection information for each port. SwapCIAO’s removal mechanisms de-

scribed in SectionVI.3.1 are therefore able toprovide consistent and uninterrupted updates

to clients.
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Figure 40: Latency Measurements for Reconnecting Component Connections

VI.4.3 Measuring the Update Latency Experienced by Clients

Rationale. SectionVI.3.2 describes how SwapCIAO’s component creation mechanisms

are transparent to clients, efficient, and predictable in performing client-transparent dy-

namic component updates. SectionVI.4.2 showed that SwapCIAO’s standard POA mech-

anisms and the servant activator create new component implementations efficiently and

predictably. We now determine whether SwapCIAO incurs any overhead – other than the

work performed by the SwapCIAO’s component creation mechanisms – that significantly

affects client latency.

Methodology. The incarnation delayis defined as the period of time experienced by a

client when (1) its operation request arrives at a server ORBafter SwapCIAO has removed
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Figure 41: Latency Measurements for Component Removal

the component and (2) it receives the reply after SwapCIAO creates the component, restores

the component’s connections to peer components, and allowsthe updated component to

process the client’s request. The incarnation delay therefore includes thecreation time,

reconnect time, andprocessing delay(which is the time a new component needs to process

the operation request and send a reply to the client). To measure incarnation delay, we

(1) removed a component and (2) started a high-resolution timer when the client invokes

a request on the component. We repeated the above experimentfor 200,000 invocations

and measured the latency experienced by the client for each invocation. We also varied

the number of ports between 2, 4, 8, and 16 as described in Section VI.4.2 to measure

the extent to which SwapCIAO’s component creation process is affected by the number of

ports connected to a component.
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Figure 42: Client Experienced Incarnation Delays during Transparent Component
Updates

Analysis of results. Figure42 shows the delay experienced by a client as SwapCIAO cre-

ates a component with a varying number of connections to process client requests. By

adding the delays in Figure39, Figure40, and Figure38 and comparing them with the

delays in Figure42, we show how the incarnation delay is roughly equal to the sumof

the creation time, reconnect time, and processing delay, regardless of whether the client

invokes an operation on a updating component with ports ranging from 2, 4, 8, to 16.

These results validate our claim in SectionVI.3.2 that SwapCIAO provides component

updates that are transparent to clients. In particular, if SwapCIAO’s servant activator did

not transparently create the component and process the request, the client’s delay incurred
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obtaining a new object reference would be larger than the sumof the creation time, re-

connect time, and the processing delay. We therefore conclude that SwapCIAO provides

efficient and predictable client transparent updates.

VI.5 Summary

This chapter describes the design and implementation of SwapCIAO, which is a QoS-

enabled component middleware framework based on Lightweight CCM that supports dy-

namic component updating. SwapCIAO is designed to handle dynamic operating condi-

tions by updating component implementations that are optimized for particular run-time

characteristics. The lessons learned while developing SwapCIAO and applying it to the

ITS case study include:

• Standard Lightweight CCM interfaces can be extended slightly to develop a scal-

able and flexible middleware infrastructure that supports dynamic component updat-

ing. In particular, SwapCIAO’s extensions require minimalchanges to the standard

Lightweight CCM server programming model. Moreover, its client programming

model and client/server interoperability were unaffectedby the server extensions.

Developers of client applications in our ITS case study weretherefore shielded en-

tirely from SwapCIAO’s component updating extensions.

• By exporting component implementations as DLLs, SwapCIAOsimplifies the task of

updating components by enabling their implementations to be linked into the address

space of a server late in its lifecycle,i.e., during the deployment and reconfiguration

phases. These capabilities enabled developers in the ITS case study to create multiple

component implementations rapidly and update dynamicallyin response to changing

modes and operational contexts.

• SwapCIAO adds insignificant overhead to each dynamic component updating re-

quest. It can therefore be used even for normal operations inITS applications that
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do not require dynamic component updating. Moreover, due tothe predictability

and transparency provided by SwapCIAO, it can be used efficiently when operating

conditions trigger mode changes.
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CHAPTER VII

CONCLUDING REMARKS

Timeliness and high availability are two key quality of service (QoS) properties that

must be assured for the correct operation of distributed real-time and embedded (DRE)

systems. DRE systems are composed of multiple services and client applications that are

deployed across local or metropolitan networks. Often these services and client appli-

cations are part of multiple end-to-end workflows that operate in environments that are

constrained in the number of resources (e.g., CPU, network bandwidth). Moreover, these

systems operate in environments that are highly dynamic andwhere processor or process

failures and system workload changes are common. System workloads in DRE systems

could range from being statically known (closed DRE system)to being dynamic (open

DRE system).

Middleware is a key software capability needed to support DRE systems. Designing

middleware that satisfies the QoS requirements of DRE systems is hard because it needs

to (1) integrate real-time and fault-tolerance by design, which is not straightforward due

to the conflicting demands each QoS dimension imposes on the available resources, (2) be

lightweight so that it is suitable for resource-constrained deployments, and (3) be adap-

tive so that availability and timeliness properties can be tuned dynamically at runtime to

maintain soft real-time and fault-tolerant performance. Satisfying these three requirements

needs a systematic and scientific approach to realizing sucha middleware.

This dissertation describes the design, development and experimental evaluation of

middleware-based mechanisms that provide both high availability and soft real-time per-

formance simultaneously for both the open and closed types of DRE systems. Specifically,

this research makes three contributions in the form of algorithms, architectures, and mech-

anisms that together address the above-described challenges as follows:
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• First, it discusses a novel deployment and configuration framework for fault-tolerant

DRE systems called DeCoRAM, which provides a novel replica allocation algorithm

that is (1) failure-aware, i.e., it handles multiple processor failures using passive

replication and considers primary replicas, backup replicas, and state synchroniza-

tion cost in the replica allocation problem, (2)resource-aware, i.e., it minimizes

number of processors used by opportunistically overbooking processors with multi-

ple backup replicas after analyzing feasible failover patterns due to multiple proces-

sor failures, and (3)real-time-aware, i.e., meet real-time performance requirements

both in normal conditions and after multiple processor failures.

• Second, it presents the design and implementation ofNetwork QoS Provisioning En-

gine (NetQoPE), which is a model-driven, component middleware framework that

deploys and configures applications in the nodes chosen by DeCoRAM’s replica

allocation algorithm and eliminates manual tasks developer heretofore used to im-

plement replica allocation decisions. NetQoPE provides flexible and non-invasive

QoS configuration and provisioning capabilities by leveraging CPU and network QoS

mechanisms without modifying application source code.

• Third, it presents the Fault-tolerant, Load-aware and Adaptive middlewaRe (FLARe)

for distributed soft real-time applications. FLARe features (1) the Load-aware and

Adaptive Failover (LAAF) strategy that adapts failover targets based on system load;

(2) the Resource Overload Management Redirector (ROME) strategy that dynami-

cally enforces CPU utilization bounds to maintain desired server delays in face of

concurrent failures and load changes; and (3) an efficient fault-tolerant middleware

architecture that supports transparent failover to passive replicas. The dissertation
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also describes SwapCIAO, which is a QoS-enabled component middleware frame-

work based on Lightweight CCM that supports dynamic component updating. Swap-

CIAO is designed to handle dynamic operating conditions by updating component

implementations that are optimized for particular run-time characteristics.

VII.1 Broader Impact and Future Research Directions

Although this research was conducted in the context of DRE systems, the principles are

applicable to a wider range of distributed systems. Moreover, this research is by no means

solving all the issues in the problem space. At the same time it opens up new opportunities

for research. Below we present its broader applicability and some directions for future

research based on our experience in designing and developing algorithms, architectures,

and middleware mechanisms for fault-tolerant DRE systems.

1. Tunable application performance versus consistency.The requirement to provide

both high availability as well as satisfactory response times for clients in a passively

replicated environment is conflicting in many ways. For example, to provide better

fault-tolerance, thebackupreplica’s (there could be more than onebackupreplica)

state must be made consistent every time the state of theprimary replica changes.

This approach reduces failure recovery time since any one ofthe availablebackup

replicas can be promoted to be the newprimary replica during failure recovery, and

the clients could be quickly redirected to the newprimary replica.

However, this approach also increases response times perceived by client applications

since theprimary replica does not respond to the clients until the state of allthe

backupreplicas is made consistent with the state of theprimaryreplica. The response

times perceived by the client applications depends on the time taken to synchronize

the state of thebackupreplica operating in the slowest physical host. On the other

hand, to provide satisfactory response times for clients and to minimize usage of

available resources for fault-tolerance purposes, abackupreplica’s state can be made
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consistent only during failure recovery. Although, this approach reduces network

and CPU resource usage, it also incurs longer recovery times, which might not be

acceptable for certain applications.

As described above, many different alternatives are available to synchronize the state

of thebackupreplicas, and each of the alternatives can be characterizedbased on the

response times provided to the clients, the recovery time after failures, and the re-

sources consumed. It is important to provide policies for tradeoff between these three

different aspects and mechanisms to tune these policies allat deployment time, when

the applications and their replicas are deployed. This willhelp quantify deployment-

time assurances on the consistency characteristics that can be provided to the appli-

cations via the middleware. Further, as the deployed applications and their repli-

cas operate in dynamic environments (new applications are deployed; new hardware

hosts are introduced; failures occur), such characteristics need to be tuned adaptively

depending on the needs and importance of the applications.

2. Resource-aware fault-tolerance through dynamic adaptation. This dissertation

demonstrated how to use our FLARe middleware to dynamicallyadjust failover tar-

gets at runtime in response to system load fluctuations and resource availability. We

also demonstrated how FLARe adaptively maintains soft real-time performance for

clients operating in the presence of failures and overloadswith negligible runtime

overhead. We now discuss some of the challenges in extendingour work to per-

form more adaptations to maintain high availability and soft real-time performance

simultaneously.

Our adaptive and load-aware solution in FLARe is built upon acentralized monitor-

ing architecture, where a centralized replication managerworks with all the moni-

tors in a distributed system to obtain and record performance characteristics at all

the hardware nodes to make adaptive real-time fault-tolerance decisions. Although,
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this architecture is reasonably applicable for a large number of DRE systems, this

assumption is not valid for certain DRE systems, where the networks fail causing

severe resource contention in the remaining links. To address this problem, one po-

tential future approach to explore is to design and develop adaptive real-time fault-

tolerance solutions that are based on a decentralized feedback architecture. Another

potential future approach is also to integrate FLARe with network fault-tolerance

techniques [28, 150], so that a centralized architecture could still be adopted, how-

ever, with better network high availability assurances.

3. Enhancements to resource overload management.This dissertation also demon-

strated how our FLARe middleware employs theResource Overload Management

and rEdirection (ROME)strategy to dynamically enforce CPU utilization bounds to

maintain desired server delays in face of concurrent failures and load changes. In the

case of overloads, clients of the current primary replicas are redirected automatically

to the chosen new backup replicas. This overload managementstrategy will succeed

only if the CPU utilization at the least-loaded processor ofthe backup replicas does

not exceed theschedulable utilization boundif the migration occurs. In scenarios

where overloads cannot be mitigated using migrations, newer overload management

solutions are required that work in conjunction with a real-time fault-tolerant mid-

dleware to maintain application required QoS.

One potential future approach is to integrate FLARe with advanced overload man-

agement techniques such asm,kfirm guarantees [127]. m,kfirm guarantee techniques

control the behavior of applications by modifying the real-time period [84] of their

invocations. Since DRE systems are composed of services that participate in end-to-

end flows, modifying the behavior of one of the services couldimpact the behavior

(e.g., real-time period of those services) of other services in the end-to-end applica-

tion flows. If the real-time properties of end-to-end application flows are not managed
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properly, application QoS assurances could be affected. Hence, another potential fu-

ture approach is to integrate FLARe with end-to-end utilization control services [90],

so that overload management techniques could be designed and modeled using rigor-

ous control-theoretic techniques and can provide robust and analytically sound QoS

assurance.

4. Application to other replication schemes. ACTIVE andPASSIVE replication [61]

are two common approaches for building fault-tolerant distributed applications that

provide high availability and satisfactory response timesfor performance-sensitive

distributed applications operating in dynamic environments. In addition to DRE sys-

tems, fault-tolerance has also been studied in the context of other systems [16, 17,

92, 121, 130, 134, 168] . In such systems, prior research efforts have focused on dy-

namically trading consistency for availability so that clients could be provided high

availability with high throughput and shorter response times [79, 80, 159, 169].

Chain replication [159] is one alternate replication scheme that is developed for such

systems [80, 92]. In contrast toACTIVE andPASSIVE replication schemes, that group

replicas by their roles, chain replication groups replicasby the functionality provided

to the clients. The replicas are divided into two groups:read andwrite. All the

updates from the clients are forwarded to thewrite group, while all the read requests

from the clients are forwarded to theread group. Weaker consistency is provided

by employing a state update protocol that propagates updates from thewrite group

to thereadgroup using a chain, which connects all the replicas in the group. Client

read requests are not blocked as the state update propagates, and this provides high

throughput for the clients.

One interesting future research agenda would be to experiment the effect of chain

replication schemes on the timeliness assurances for DRE systems. Specifically, the
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performance of the client read requests could be made predictable by taking advan-

tage of a load balancer [4, 116, 117] (and by investigating new adaptive load balanc-

ing algorithms) that is built on top of middleware technologies that are most suited

for developing DRE systems. Another interesting future research agenda would be to

dynamically control the size of theread andwrite groups depending on the request

patterns of the clients, there by providing predictable performance for client read as

well as write requests.

5. Fault-tolerance and scheduling in computational grids.Large and complex sci-

entific workflows rely on computational grids to have their large compute as well

as data-intensive applications executed. With the large scale and extremely hetero-

geneous nature of the computational grids, executing thoseapplications in a timely

as well as a dependable manner becomes a huge challenge. Current fault-tolerance

strategies [25, 52] for executing such complex workflows in a highly available man-

ner rely on regularly obtaining checkpoints as the workflowsexecute, and restart the

application from the last known checkpoint in case of a failure [42, 43].

However, such reactive fault-tolerance schemes could incur significant performance

loss because of computation repetition, and slow fault recovery time. Proactive fault-

tolerance techniques [23, 82, 99] provide solutions for such problems by using failure

prediction techniques to predict when a processor is more likely to fail, and sub-

sequently migrating computations from that processor to other healthy processors.

After computations are migrated, senders continue to send messages to those new

processors to continue the overall workflow. The whole fault-tolerance and fault re-

covery process is orchestrated by the underlying middleware in an application trans-

parent manner providing great flexibility in designing highly available computational

grid applications.

Many scientific applications and workflows are deadline-driven and hence need to
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finish their computations within a certain time period. For such systems, even proac-

tive fault-tolerance solutions might not work, as the time taken to complete a work-

flow depends on the processor that has been chosen for migration. After a failover or

migration, the client perceived response times will dependon the loads of the proces-

sor hosting the new objects. Incorrect client redirectionscould overload a processor

thereby affecting the response time(s) for the redirected client(s) and other clients

that were already invoking remote operations on targets hosted on that processor. If

a proactive fault-tolerance scheme has multiple processors available for migrating

objects from a processor,load-aware migrationdecisions need to be made to deter-

mine the appropriate processor so that application performance is not affected after

migration.

Hence, one potential future approach is to extend current proactive fault-tolerance

schemes in the computational grids community with advancedload-awareoverload

as well as proactive fault-tolerance management schemes based on the adaptive re-

source management algorithms that have been designed and developed in the context

of this dissertation.
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APPENDIX A

UNDERLYING TECHNOLOGIES

This appendix summarizes the various technologies that areused to build the real-time

fault-tolerant middleware solutions that are described inthis thesis.

A.1 Overview of Lightweight CCM

The OMG Lightweight CCM (LwCCM) [108] specification standardizes the devel-

opment, configuration, and deployment of component-based applications. LwCCM uses

CORBA’s distributed object computing (DOC) model as its underlying architecture, so ap-

plications are not tied to any particular language or platform for their implementations.

Componentsin LwCCM are the implementation entities that export a set ofinterfaces us-

able by conventional middleware clients as well as other components. Components can

also express their intent to collaborate with other components by definingports, including

(1) facets, which define an interface that accepts point-to-point method invocations from

other components, (2)receptacles, which indicate a dependency on point-to-point method

interface provided by another component, and (3)event sources/sinks, which indicate a

willingness to exchange typed messages with one or more components. Homesare fac-

tories that shield clients from the details of component creation strategies and subsequent

queries to locate component instances.

Figure43 illustrates the layered architecture of LwCCM, which includes the following

entities:

• LwCCM sits atop anobject request broker (ORB) and providescontainers that

encapsulate and enhance the CORBA portable object adapter (POA) demultiplexing

mechanisms. Containers support various pre-defined hooks and strategies, such as
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Figure 43: Layered LwCCM Architecture

persistence, event notification, transaction, and security, to the components it man-

ages.

• A component serverplays the role of a process that manages the homes, containers,

and components.

• Each container manages one type of component and is responsible for initializing

instances of this component type and connecting them to other components and com-

mon middleware services.

• Thecomponent implementation framework (CIF) consists of patterns, languages

and tools that simplify and automate the development of component implementations

which are called asexecutors. Executors actually provide the component’s business

logic.
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• Component Implementation Definition Language (CIDL) is a text-based declarative

language that defines the behavior of the components. In order to shield the compo-

nent application developers from many complexities associated with programming

POAs like servant activation and deactivation, a CIDL compiler generates infras-

tructure glue code calledservants. Servants (1) activate components within the con-

tainer’s POA, (2) manage the interconnection of a component’s ports to the ports of

other components, (3) provide implementations for operations that allow navigation

of component facets, and (4) intercept invocations on executors to transparently enact

various policies, such as component activation, security,transactions, load balancing,

and persistence.

• To initialize a instance of a component type, a container creates a component home.

The component home creates instances of servants and executors and combines them

to export component implementations to external world.

• Executors use servants to communicate with the underlyingmiddleware and servants

delegate business logic requests to executors. Client invocations made on the com-

ponent are intercepted by the servants, which then delegatethe invocations to the

executors. Moreover, the containers can configure the underlying middleware to add

more specialized services such as integrating event channel to allow components to

communicate, add Portable Interceptors to intercept component requests, etc.

A.2 Overview of Component Middleware Deployment and Configuration

After components are developed and component assemblies are defined, they must

be deployed and configured properly by deployment and configuration (D&C) services.

The D&C process of component-based systems usually involves a number of service ob-

jects that must collaborate with each other. Figure44 gives an overview of the OMG

D&C model, which is standardized by OMG through the Deployment and Configuration
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(D&C) [109] specification to promote component reuse and allow complexapplications to

be built by assembling existing components. As shown in the figure, since a component-

based system often consists of many components that are distributed across multiple nodes,

in order to automate the D&C process, these service objects must be distributed across the

targeted infrastructure and collaborate remotely.

Figure 44: An Overview of OMG Deployment and Configuration Model

The run-time of the OMG D&C model standardizes the D&C process into a number of

serialized phases. The OMG D&C Model defines the D&C process as a two-level architec-

ture, one at the domain level and one at the node level. Since each deployment task involves

a number of subtasks that have explicit dependencies with each other, these subtasks must

be serialized and finished in different phases. Meanwhile, each deployment task involves a

number of node-specific tasks, so each task is distributed.
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A.3 Overview of Generic Modeling Environment (GME)

GME is a configurable toolkit for creating DSMLs and program synthesis environ-

ments. Third-generation programming languages, such as C++, Java, and C#, employ

imperative techniques for development, deployment, and configuration of systems. For

example, real-time QoS provisioning with object request brokers is conventionally done

using imperative techniques that specify the QoS policies at the same level of abstraction

as the mechanisms that implement those policies [123].

In contrast, GME-based DSMLs use a declarative approach that clearly separates the

specification of policies from the mechanisms used to enforce the policies. Policy specifica-

tion is done at a higher level of abstraction (and in less amount of detail),e.g., usingmodels

and declarative configuration languages. Declarative techniques help relieve users from the

intricacies of how the policies are mapped onto the underlying mechanisms implementing

them, thereby simplifying policy modifications.

GME-based DSMLs are described usingmetamodels, which specify the modeling para-

digm or language of the application domain. The modeling paradigm contains all the syn-

tactic, semantic, and presentation information regardingthe domain,e.g., which concepts

will be used to construct models, what relationships may exist among those concepts, how

the concepts may be organized and viewed by the modeler, and rules governing the con-

struction of models. The modeling paradigm defines the family of models that can be

created using the resultant modeling environment.

For example, a DSML might represent the different hardware elements of a radar

system and the relationships between them in a component middleware technology like

LwCCM. Likewise, it might represent the different elements, such asEJBComponent, EJB-

Home, EJBContainerandApplicationServer, that are present in a component middleware

technology like EJB. Developers use DSMLs to build applications using elements of the

type system captured by metamodels and express design intent declaratively rather than

imperatively.
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Figure 45: Overview of GME

To create metamodels and their associated DSMLs, GME uses a modular and compo-

nent-based architecture as shown in Figure45 (see [83] for a detailed overview of the

GME architecture). Application developers create new DSMLs using the following core

components of GME: (1)GME Editor, (2) Browser, (3) Constraint Manager, (4) Trans-

lator, andAdd-ons. To support building large-scale and complex systems, GME’s Editor

and the Browser provide basic building blocks to model different entities of the system

and express the relationships between those different entities. GME’s Constraint Manager

catches errors when models are constructed with incorrect relationships or associations.

GME’s Add-ons provide capabilities to extend the GME Editor, and its Translators sup-

port the analysis of models and synthesize various types of artifacts, such as source code,

deployment descriptors, or simulator input.
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A.4 Overview of Telcordia’s Bandwidth Broker

Telcordia has developed a network management solution for QoS provisioning called

the Bandwidth Broker [27], which leverages widely available mechanisms [18] that support

Layer-3 DiffServ (Differentiated Services) and Layer-2 Class of Service (CoS) features

in commercial routers and switches. DiffServ and CoS have two major QoS functional-

ity/enforcement mechanisms:

• At the ingress of the network, traffic belonging to a flow is classified based on the 5-

tuple (source IP address and port, destination IP address and port, and protocol) and

DSCP (assigned by the Bandwidth Broker) or any subset of thisinformation. The

classified traffic is marked/re-marked with a DSCP as belonging to a particular class

and may be policed or shaped to ensure that traffic does not exceed a certain rate or

deviate from a certain profile.

• In the network core, traffic is placed into different classes based on the DSCP mark-

ing and provided differentiated, but consistent per-classtreatment. Differentiated

treatment is achieved by scheduling mechanisms that assignweights or priorities to

different traffic classes (such as weighted fair queuing and/or priority queuing), and

buffer management techniques that include assigning relative buffer sizes for differ-

ent classes and packet discard algorithms, such as Random Early Detection (RED)

and Weighted Random Early Detection (WRED).

These two features by themselves are insufficient to ensure end-to-end network QoS be-

cause the traffic presented to the network must be made to match the network capacity.

What is also needed, therefore, is an adaptive admission control entity that ensures there

are adequate network resources for a given traffic flow on any given link that the flow may

traverse. The admission control entity should be aware of the path being traversed by each

flow, track how much bandwidth is being committed on each linkfor each traffic class, and
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estimate whether the traffic demands of new flows can be accommodated. In Layer-3 net-

works, there is more than one equal-cost between a source anddestination; so we employ

Dijkstra’s all-pair shortest path algorithms. In Layer-2 network, we discover the VLAN

tree to find the path between any two hosts.

Figure46 illustrates the architecture (described in detail in [27, 28, 50]) of the Band-

width Broker’s network management solution for providing application QoS. The four

Figure 46: Overview of Telcordia’s Bandwidth Broker

components of the QoS management architecture are (1)Bandwidth Broker, (2) Flow Pro-

visioner, (3) (Network) Performance Monitor, and (4)(Network) Fault Monitor. These

network QoS components provide adaptive admission controlthat ensures there are ade-

quate network resources to match the needs of admitted flows.

The Bandwidth Broker is responsible for admission control and assigning the appropri-

ate traffic class to each flow. It tracks bandwidth allocations on all network links, rejecting
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new flow requests when bandwidth is not available. The Flow Provisioner enforces Band-

width Broker admission control decisions by configuring ingress network elements to en-

sure that no admitted flow exceeds its allocated bandwidth. The Flow Provisioner translates

technology-independent configuration directives generated by the Bandwidth Broker into

vendor-specific router and switch commands to classify, mark, and police packets belong-

ing to a flow. The Fault Monitor is the main feedback mechanismfor adapting to network

faults and the Performance Monitor provides information onthe current performance infor-

mation of flows and traffic classes. The Bandwidth Broker usesthis information to adapt

its admission control decisions.

The Bandwidth Broker admission decision for a flow is not based solely on requested

capacity or bandwidth on each link traversed by the flow, but is also based on delay bounds

requested for the flow. The delay bounds for new flows must be assured without dam-

aging the delay bounds for previously admitted flows and without redoing the expensive

job of readmitting every previously admitted flow. Telcordia has developed computa-

tional techniques to provide both deterministic and statistical delay-bound assurance [28].

This assurance is based on relatively expensive computations of occupancy or utilization

bounds for various classes of traffic, performed only at the time of network configura-

tion/reconfiguration, and relatively inexpensive checking for a violation of these bounds at

the time of admission of a new flow.

154



APPENDIX B

LIST OF PUBLICATIONS

Research on FLARe, DeCoRAM, NetQoPE, and SwapCIAO has led tothe following

journal, conference and workshop publications.

B.1 Refereed Journal Publications

1. Aniruddha Gokhale, Krishnakumar Balasubramanian, Jaiganesh Balasubramanian,

Arvind Krishna, George T. Edwards, Gan Deng, Emre Turkay, Jeffrey Parsons and

Douglas C. Schmidt, “Model Driven Middleware: A New Paradigm for Deploy-

ing and Provisioning Distributed Real-time and Embedded Applications,” Elsevier

Journal of Science of Computer Programming: Special Issue on Foundations and

Applications of Model Driven Architecture (MDA), Volume 73, Issue 1, September

2008, Pages 39-58

2. Patrick Lardieri, Jaiganesh Balasubramanian, Douglas C. Schmidt, Gautam Thaker,

Aniruddha Gokhale and Thomas Damiano, “A Multi-layered Resource Management

Framework for Dynamic Resource Management in Enterprise DRE Systems,”Else-

vier Journal of Systems and Software: Special issue on Dynamic Resource Manage-

ment in Distributed Real-Time Systems, editors C. Cavanaugh and F. Drews and L.

Welch, Volume 80, Issue 7, July 2007, Pages 984-996

3. Venkita Subramonian, Gan Deng, Christopher Gill, Jaiganesh Balasubramanian, Li-

ang-Jui Shen, William Otte, Douglas C. Schmidt, Aniruddha Gokhale and Nanbor

Wang, “The Design and Performance of Component Middleware for QoS-enabled

Deployment and Configuration of DRE Systems,”Elsevier Journal of Systems and

155



Software, Special Issue on Component-Based Software Engineering of Trustworthy

Embedded Systems, Volume 80, Issue 5, May 2007, Pages 668-677
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dha Gokhale and Douglas C. Schmidt , “A Platform-Independent Component Mod-
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per to International Journal of Embedded Systems, Special Issue on Design and Ver-
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1. Jaiganesh Balasubramanian, Sumant Tambe, Chenyang Lu, Aniruddha Gokhale, Ch-

ristopher Gill and Douglas C. Schmidt, “Adaptive Failover for Real-time Middleware
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Schmidt, “Component Replication Based on Failover Units,”Proceedings of the 15th

IEEE International Conference on Embedded and Real-Time Computing Systems and
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Douglas C. Schmidt, “Deployment Automation with BLITZ’,”Proceedings of the

Emerging Results Track of the 31st International Conference on Software Engineer-

ing (ICSE 2009), Vancouver, Canada, May 2009
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Wang, “Towards Middleware for Fault-Tolerance in Distributed Real-time and Em-

bedded Systems,”Proceedings of the 8th IFIP WG 6.1 International Conference

on Distributed Applications and Interoperable Systems (DAIS 2008), Oslo, Norway,

June 2008

5. Jaiganesh Balasubramanian, Sumant Tambe, BalakrishnanDasarathy, Shrirang Gad-

gil, Frederick Porter, Aniruddha Gokhale and Douglas C. Schmidt, “NetQoPE: A
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time Middleware for Distributed Real-time and Embedded Systems,”Proceedings of
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Biswas, “A Framework for (Re)Deploying Components in Distributed Real-time and
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