RESOURCE-AWARE DEPLOYMENT, CONFIGURATION, AND ADAPTATI® FOR
FAULT-TOLERANT DISTRIBUTED REAL-TIME EMBEDDED SYSTEMS

By

Jaiganesh Balasubramanian

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in
Computer Science
December, 2009

Nashville, Tennessee

Approved:

Dr. Douglas C. Schmidt
Dr. Aniruddha Gokhale
Dr. Chenyang Lu
Dr. Christopher Gill
Dr. Gautam Biswas

Dr. Janos Sztipanovits

To Amma and Appa for their love and encouragement over thrs yea

ACKNOWLEDGMENTS

My stay in graduate school at the University of Californiajine, and the Vanderbilt
University has been a long, and exciting journey that hasemnaglemotions travel through
many valleys, and a few peaks. | would not have been able tpletethis journey without
the help, support, and encouragement of the following iddials and | am ever grateful to
them.

First and foremost, | would like to thank my advisors and roes)tDr. Douglas C. Schm-
idt, and Dr. Aniruddha Gokhale, for providing me an oppoityito work with them at
the Distributed Object Computing (DOC) group at Irvine, daiegr at Nashville. | thank
Prof. Schmidt for providing me tremendous support, advarel guidance for my grad-
uate study, research, and career development. Prof. Sthasdecome my role model
and has set a perfect example | can follow through my prafessiareer to work hard
and become an insightful scholar and a successful leadez &s th am deeply indebted
to Dr. Gokhale for all the countless hours and tireless tfierhas spent for me. More
importantly, Dr. Gokhale taught me how to think indepentieand present my research in
numerous occasions. All the walks around the Vanderbilwvehsity that | have had with
Dr. Gokhale have helped me in concretizing my research jéeakthose ideas have inturn
translated to many conference and journal publications.

| would like to express my thanks to the rest of my committeeniners, Dr. Janos Szti-
panovits, Dr. Gautam Biswas, Dr. Chenyang Lu, and Dr. Chpiser Gill, for agreeing to
serve on my dissertation committee, for their researctabolations, for their insightful
suggestions, ideas, and questions, and for their timetibiaek. | am especially grateful for
the time Dr. Lu devoted to reviewing my research thoughtskaaaontructive feedbacks
have greatly improved the quality of my dissertation.

Over the years, my graduate study has been supported byean@ragencies and com-

panies. | would like to take this opportunity to thank thddaling people: Richard Schantz

and Joe Loyall at BBN Technologies for providing the initrabtivation on my work on
fault-tolerance for real-time systems; Patrick Lardi@gutam Thaker, and Thomas Dami-
ano at Lockheed Martin Advanced Technology Laboratorieségporting the work on
dynamic resource management that emerged as the fountiicks for my dissertation;
Paul Werme at US Navy Dahlgren for funding the initial prgpm of my research and pro-
viding many usecases and example scenarios; Balakrishasar&thy at Telcordia Tech-
nologies for providing me with many insightful suggestiamsl feedback for my research;
Dipa Suri and Adam Howell at Lockheed Martin Advanced Ted¢bgy Center for collab-
orating with us on many projects and providing us with mangrnesting and challenging
scenarios that are used as case studies in this dissertation

My stay as a graduate student at Irvine was very enjoyabledadiie following people:
Maulik Oza, Akshay Verma, Shireesh Verma, Sundararajarriggan, Mayur Deshpande,
Kartik Muktinutalapati, Manish Prasad, Priyanka Gontlajkdsh Rajan, Krishna Raman,
Mark Panahi, Raymond Klefstad. | would like to thank Ossantfan@n, Carlos O’'Ryan,
Nanbor Wang, and Angelo Corsaro for their insights and cansve feedback to my ideas
over the years. Special thanks are to Dr. Raymond Klefstaguwling me and intellectu-
ally and financially supporting me through my graduate statdyvine.

After my move to Nashville, | have been fortunate to intewaith the following individ-
uals: Hariharan Kannan, Swaminathan Ramkumar, PrakadtoRagachar, Divya Prakash,
Nagabhushan Mahadevan, Deepa Janakiraman, Abhishek Adigya Agrawal, Sachin M-
ajumdar, Sujata Majumdar, Manish Kushwaha, Amogh Kavimandharati Gokhale,
Anantha Narayanan, Roopa Pundaleeka. |1 would like to theffilParsons for many enjoy-
able discussions and movie nights that we have had over #rs.\alachandran Natarajan
welcomed me at the airport, helped me settle down in Naghalhd has been a friend,
guide, and an advisor over the years. Krishnakumar Balasudmian and Arvind Krishna
provided company for countless breaks that served as the lypound for endless cri-

tiques on anything from cricket to politics to movies. Sum&ambe, Akshay Dabholkar,

and Nilabja Roy provided company for many "coffee sessitimat' served as the breeding
ground for creating graduate study jokes that alleviategtins of the long and tiring PhD
journey.

Finally, I would like to thank my entire family for providing loving environment for
me to pursue my graduate study. Most importantly, | would li& thank my parents for
their endless love, understanding, and gratuitous sup@onhe. To them, | dedicate this

thesis.

TABLE OF CONTENTS

Page
DEDICATION e e il
ACKNOWLEDGMENTS e e e e ii
LISTOFTABLES e e e e e e e e iX
LISTOFFIGURES s e e e e e e X
Chapter
l. INTRODUCTION e e e 1
I.1. Overview of the Problem Space 1
I.2. Contemporary Mechanisms: QoS-enablers in Middleware. . 2
I.3. Technical Gaps: Overview of Missing Middleware Cagibs . 3
l.4. Research Approach and Contributions 9
I.5. Research Contributions 11
|.6. Dissertation Organization 12
Il. RELATED WORK e 13
Il.1. Resource-aware Fault-tolerance by Design 14
[I.1.1. UnresolvedChallenges. 15
I1.2. Deployment and Configuration Mechanisms in Middlesvar . . 16
[1.2.1. Unresolved Challenges. 18
I1.3. Resource-aware, Adaptive Fault-tolerance for Op&ELBystems 19
[1.3.1. UnresolvedChallenges. 21
Il DEPLOYMENT-TIME RESOURCE-AWARE FAULT-TOLERANCE FOR
DRE SYSTEMS 24
[Il.1. Introduction 25
l1l.2. Problem Definition and System Model 27
[11.2.1. DRE SystemModel 28
[11.2.2. Problem Motivation and Research Challenges . . . 29
[11.3. The Structure and Functionality of DeCoRAM 32
[11.3.1. DeCoRAM'’s Resource-aware Task Allocation Alghm 32
[11.3.2. DeCoRAM Allocation Engine 39
[11.3.3. DeCoRAM Deployment and Configuration (D&C) En-
gine 41
l1l.4. Evaluationof DeCoRAM 43

111.4.1. Effectiveness of the DeCoRAM Allocation Heurrsti . 43

Vi

I11.4.2. Validation of Real-time Performance 47
[11.4.3. Evaluating DeCoRAM'’s Automation Capabilities ... 49

lII.5. ConcludingRemarks 50
IV. SCALABLE QOS PROVISIONING, DEPLOYMENT, AND CONFIGU-

RATION OF FAULT-TOLERANT DRE SYSTEMS 52
IV.1. Introduction 53
IV.2. Motivating NetQoPE’s QoS Provisioning Capabilities. 55
IV.2.1. Smart Office Environment Case Study 55

IV.2.2. Challenges in Provisioning and Managing QoS in the
SmartOffice 58

IV.3. NetQoPE'’s Multistage Network QoS Provisioning Angdture . 60
IV.3.1. NetQoS: Supporting Physics-aware CPU and Network

QoS Requirements Specification 62
IV.3.2. NetRAF: Alleviating Complexities in Network Resme
Allocation and Configuration 67
IV.3.3. NetCON: Alleviating Complexities in Network QoStSe
tings Configuration. 70
IV.4. Empirical Evaluation of NetQoPE 12
IV.4.1. Evaluation Scenario 12
IV.4.2. Evaluating NetQoPE’s Model-driven QoS Provision-
ing Capabilites 75

IV.4.3. Evaluating NetQoPE’s QoS Customization Capabsit 81
IV.4.4. Evaluating the Overhead of NetQoPE for Normal Op-

erations 84
IV5. Summary 86

V. RESOURCE-AWARE ADAPTIVE FAULT-TOLERANCE IN DISTRIBUTB
SYSTEMS e 88
V.1, Introduction 89
V.2. Systemand FaultModels 91
V.3. Design and Implementationof FLARe 92
V.3.1. FLARe Middleware Architecture 92
V.3.2. Load-aware and Adaptive Failover 95
V.3.3. Resource Overload Management and Redirection . .99.
V.3.4. Implementationof FLARe 102
V.4. Empirical Evaluationof FLARe 103
V.4.1. EvaluatingLAAF 104
V.4.2. EvaluatingROME 107
V.4.3. FailoverDelay 111
V.4.4. Overhead under Fault-Free Conditions 112
V5., Summary e 113

Vil

VI. MIDDLEWARE MECHANISMS FOR OVERLOAD MANAGEMENT

IN DISTRIBUTED SYSTEMS 114
VI.1. Introduction 115
VI.2. Case Study to Motivate Dynamic Component Updatingureq

MENTS e e e e 116
VI.2.1. Overviewof ITS 117

VI.2.2. Requirements for Dynamic Component Updates . .118
VI1.3. The SwapCIAO Dynamic Component Updating Framework ..120

V1.3.1. Providing Consistent and Uninterrupted UpdateSlients122

VI.3.2. Ensuring Efficient Client-transparent Dynamic Gom

ponentUpdates. 123
VI.3.3. Enabling (Re)connections of Components 125
VI.4. Empirical Results oL 126
VI.4.1. Measuring SwapCIAO’s Updatable Container Ovedhea
for Normal Operations 129
VI1.4.2. Measuring SwapCIAQO’s Updatable Container Ovedthea
for Updating Operations 130
V1.4.3. Measuring the Update Latency Experienced by Céierit33
VIS.Summary 136
VIL. CONCLUDINGREMARKS e 138
VII.1.Broader Impact and Future Research Directions 140
Appendix
A. Underlying Technologies 146
A.1l. Overview of Lightweight CCM 146
A.2. Overview of Component Middleware Deployment and Canfig
ration L 148
A.3. Overview of Generic Modeling Environment (GME) 150
A.4. Overview of Telcordia’s Bandwidth Broker 152
B. Listof Publications 155
B.1. Refereed Journal Publications 155
B.2. Refereed Conference Publications 156
B.3. Refereed Workshop Publications 158
B.4. Submitted for Publication 159
REFERENCES e 160

viii

Table

LIST OF TABLES

Page
Summary Of Research Contributions 11
Sample Ordered Task Setwith Replicas 29
Effort Comparison 49
Comparison of Manual Efforts Incurred in Conventionall fetQoPE
Approaches 80
Generated Linesof XML Code 81
Application Background Traffic 82
Experiment setup for LAAFo 105
ExperimentsetupforROME 108

Figure

10.
11.
12.

13.

14.
15.
16.
17.
18.
19.
20.

21.

LIST OF FIGURES

Lower Bound on Processors (NoFT Case)
Upper Bound on Processors (Active FTCase)
Allocation of Primary and Backup Replicas for TasksAandB. . . .
Feasible Allocationfor TaskC1
Determining Allocation of Backupsof C,DandE

Allocation of Sample Task Set

Architecture of the DeCoRAM Allocation Engine

Architecture of the DeCoRAM D&C Engine
Varying number of tasks with 10% maxload
Varying number of tasks with 15% maxload
Varying number of tasks with 20% maxload
Varying number of tasks with 25% maxload

DeCoRAM Empirical Validation.

Network Configuration in a Smart Office Environment
NetQoPE’s Multistage Architecture
Applying NetQoS Capabilities to the Case Study
Network QoS Models Supported by NetQoS
NetRAF’s Network Resource Allocation Capabilities
NetCON'’s Container Auto-configurations
Experimental Setup,

Average Latency under Different Network QoS Classes

..... 36

37

..... A4

.. ... 45

.. ... 46

Cen A7

... .48

57

61

63

.. ..ba

68

70

..... 73

83

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Jitter Distribution under Different Network QoS Classe 84

Overhead of NetQoPE’s Policy Framework 85
The FLARe Middleware Architecture 93
Load-aware Failover ExperimentSetup104
Utilization with Static Failover Strategy 106
Utilization with Adaptive Failover Strategy 107
Overload Redirection ExperimentSetup108
Utilizations with ROME Overload Management110
Client Response Times with ROME Overload Management 111
Failover delay and run-time overhead112
Key ComponentsinITS 118
Component Updating ScenarioinITS 119
Dynamic Interactions in the SwapCIAO framework121
Transparent Component Object Reference Update in S&@pC. . . . 124
Enabling (Re)connections of Components in SwapCIAO125
Component Interactioninthe ITS 127
Overhead of SwapCIAQO’s Updatable Container 130
Latency Measurements for Component Creation 132
Latency Measurements for Reconnecting Component €tons133
Latency Measurements for Component Removal 134

Client Experienced Incarnation Delays during Transpa€omponent

Updates e 135
Layered LWCCM Architecture 147
An Overview of OMG Deployment and Configuration Model 149

Xi

45.

46.

Overview of GME

Overview of Telcordia’s Bandwidth Broker

Xil

CHAPTER |

INTRODUCTION

I.1 Overview of the Problem Space

Distributed real-time and embedd€DRE) systems form the core of many mission-
critical domains, such as shipboard computing environsg@#tl], avionics mission com-
puting [145, multi-satellite missions159, intelligence, surveillance and reconnaissance
missions 44, and smart buildingsij4§.

Such systems are composed of services and client apphisdtiat are deployed across
networks that are normally the size of a local or metropolagea network. Often these
services and client applications are part of multiple eménid workflows that operate in
environments that are constrained in the number of ressyecg, CPU, network band-
width). These systems can predominantly be classified agystatic/closedif., fixed
system loads) or dynamic/opeire(, varying system loads), both of which may experience
fluctuating resource availabilities.g. due to resource failures or overloads). It is in such
operating conditions that each service within the workflomsst process periodic events
belonging to other services or clients while providing dyabdf service (Qo0S) assurances
in the form of reliability and timeliness.

To enable DRE systems to support the QoS demands of theiphewpplication work-
flows, all of which contend for resources, there is a strongated for techniques and
mechanisms that can efficiently and effectively manageithi#dd number of resources,
such as CPU and network, in the face of failures and workldehges. With the ad-
vent of low-cost high-speed processors, and large netwamklwidth availabilities, it may
appear conceptually simple to handle this problem by singplrprovisioning network
bandwidth and CPU resources. In practice, however, theires@rovisioning problem is

more complex due to the need to differentiate applicatiowsagpplication flows based on

varied criteria including priorities, urgencies and misscriticalities [LO0, 13§. A naive
resource overprovisioning solution is not a viable optimeast- and resource-constrained

environments in which DRE systems are often deployed.

[.2 Contemporary Mechanisms: QoS-enablers in Middleware

The responsibility of allocating resources to applicagiom a controlled manner has
historically being delegated to thmiddleware layerwhich acts as a bridge between the
application and the underlying system resources. A sigmfiamount of prior research
exists in developing novel middleware mechanisms to easedhelopment of DRE sys-
tems. Earlier efforts in middleware research focused onigiag location transparency,
portability and interoperability to satisfy the needs ofigeal-purpose DRE systems. These
efforts gave rise to middleware, such as CORRBAY|, Java [L52, and DCOM P§g]. Such
middleware simplify the development of DRE systems by lgdiomplexities associated
with low-level operating system and protocol-specific detaf network programming.

Subsequent research efforts building on the successess# thiddleware focused on
providing missing capabilities, such as features to supiha QoS needs of DRE sys-
tems. These efforts resulted in standards that have defmedaces, services and strate-
gies to enhance the timeliness and fault-tolerance capebibf DRE systems. For exam-
ple, RT-CORBA [113 and Distributed Real-time Jav&4] provide capabilities to ensure
predictable end-to-end behavior for remote object metinwdaations. Similarly, Fault-
Tolerant CORBA (FT-CORBA) 114 and Continuous Availability API for J2EE1R4
provide services and strategies to enhance the depengabidRE applications.

Additional prior research efforts have also focused on tewddre-based QoS man-
agement mechanisms including approaches that focus esadiu®n timeliness assur-
ances 89, 66, 78, 101, 123 157, 167, or others focusing only on high availability as-
surances]l, 13, 48, 92].

Providing both high availability and soft real-time perfmance simultaneously for

DRE systems using the above described technologies andamisais is complex for the

following reasons:

 Prior research on QoS mechanisms in middleware focus aessidg onlyoneQoS
dimension €.g, timeliness), but by no meam®thQoS dimensionsg(g, timeliness
and high availability) as expected by DRE systems. For exaniault-tolerance
solutions are often not designed to honor timeliness wieit®vering from failures,
whereas real-time solutions often do not account for fagand recovery times while

ensuring predictable end-to-end behavior for remote olojethod invocations.

* It is not straightforward to expect both availability arnichéliness assurances by
simply combining one or more of the existing solutioesy(FT-CORBA and RT-
CORBA) due to the syntactic and semantic differences betwlee interfaces, and
how the individual solutions are developed. Moreover, aslytgons along this ap-

proach result in systems that are brittle and hard to maistadl upgrade.

[.3 Technical Gaps: Overview of Missing Middleware Capabiities

We are interested in the development of middleware-basezhamésms that provide
both high availability and soft real-time performance ditameously for both the open
and closed types of DRE systems. For open systems, changstesloads and fluctu-
ating system resource availabilities make the problem sféirasg timeliness challenging
because the timeliness properties of client applicatioasiapendent on the performance
characteristics of the hardware nodes hosting the serpéicapons, which is continuously
varying with time. Hence, sophisticated, adaptive ressunanagement solutions at the
middleware-level are required that adapt QoS by dynanyicadinitoring the performance
characteristics at the hardware nodes in the system.

For closed system, all the properties associated withisysterkloads are invariant. As

a result, any QoS solution made at design/deployment-tonérwes to be valid even at

runtime as long as that solution covers all possibilitiesystem evolution. Suckhead-of-
time (i.e., at deployment-time rather than at runtime) decisions tallearesource failures
are essential since the highly resource-constrainedenafwtosed DRE offers very limited
scope for any sophisticated runtime solutions, which whove to be integral open DRE
systems.

Given the diversity of the solution needs for assuring midtQoS properties across a
range of DRE systems, @ne-size-fits-alapproach that is prevalent with standards-based
middleware 64, 110 113 154 will not suffice. Further, given the complexity of DRE
systems and the market forces that require system devetdmnd maintenance costs to
be kept low, it is not feasible to expect each and every agfitin to develop their own
proprietary solution to managing both the performance antt-tolerance requirements of
DRE systems.

Our goal is thus to address the issue of semantic differebeggeen multiple QoS
dimensions by enhancing existing standards-based middéewith novel features for de-
signing, developing, deploying, and configuring DRE systevith bothdeployment-time
as well asruntime QoS assurances. To realize these goals, there is a strorandeor
algorithms, architectures, and mechanisms within middtevthat overcomes the disad-

vantages of ane-size-fits-alsolution yet holistically offers to:

» work for closed environments, where it can allocate CPU ragtgvork resources to
contending applications at deployment-time and provigeéguired QoS subject to

the resource constraints imposed by the closed systems, and

» work for open environments, where it can react to changysgesn loads and re-
source fluctuations at runtime and maintain the required €ubg=ct to the resource

availabilities.

Supporting the vision of the middleware capabilities ot above leads to three key

open research issues that are identified and resolved bgisisisrtation. These three open

issues include:

1. Deployment-time, Resource-aware Fault-tolerance for DRESystems.

As noted earlier, DRE systems can benefit from middlewaré@4, 120, 128 174
that provides distributed software platforms for buildfaglt-tolerant DRE systems.
Server replication is a popular techniq@d][adopted by such middleware to provide
high availability assurances for DRE systemsTIVE andPASSIVE replication p1]
are two common approaches for building fault-tolerantriiated applications that
provide high availability and satisfactory response tirfeesperformance-sensitive

distributed applications operating in dynamic environtsen

In ACTIVE replication [L37], client requests are multicast and executed at all repli-
cas. Failure recovery is fast because if any replicas fad,rémaining replicas can
continue to provide the service to the clientsCTIVE replication, however, im-
poses high communication and processing overheads, whaghnot be viable in
resource-constrained environments. In contrastagsIVE replication R0] only one
replica—called the primary—handles all client requests| backup replicas do not
incur runtime overhead, except (in stateful applicatidosyeceiving state updates
from the primary. If the primary fails, a failover is trigget and one of the backups
becomes the new primary. Due to its low runtime overheadsIVE replication is

appealing for applications that cannot afford the cost ahtaiaing active replicas.

AlthoughpPAssiVvEreplication is desirable in resource-constrained systénsschal-
lenging to deliver soft real-time performance for applicas based orPASSIVE
replication. Specifically, the middlewar@,[104, 120, 128 174 implementingPAS-
SIVE replication schemes requires replica recovery decisisush(as per-replica
failover targets) to be configured statically at deployra@ne so that replica recov-

ery from failure can be quick and appropriate. To configueeappropriate replica

recovery decisions, per-replica node allocation decssiwed to be computed. Such
per-replica node allocation decisions need to be computadesource-awarenan-
ner, asad hocmappings can deliver fault-tolerance, but may not delresource-

effectivefault-tolerance with acceptable response time and load.

Determining such per-replica node allocation decisionsiatime is expensive and
time-consuming, particularly for closed DRE systems.dadt the invariant, known,
and fixed properties of closed DRE systems, such as the nuofilagplications,
their execution patterns, their timeliness and high alsditg requirements, and their
resource constraints should be leveraged to determinealoddation decisions at
deployment-timeather than atuntime Further, when multiple replicas are hosted
for each application and their replica node allocation sieais are computed to pro-

vide high availability for DRE systems, additional res@asg@re inherently required.

For closed DRE systems, however, there is often a premiuceg@lan the number of
resources usee.g, ~40% of a vehicle’s cost is attributed to electronid8|[It is
therefore necessary to minimize the number of resourcksadtiwhile deriving the
benefits of replication. Therefore, this dissertation td&s the need for developing
efficient passively replicated real-time fault-tolerarsmdutions that are driven by

replica allocation algorithms which incur low resource samption overhead.

. Scalable QoS Provisioning, Deployment, and Configuration foFault-Tolerant

DRE Systems.

Although middleware-based fault-tolerance solutidk® 128 are available for dis-
tributed systems, such solutions only deal with issuescéessal with the complexity
of managing replication and failures at runtime. As destibbove, such solutions
do not deal with the orthogonal issues associated with wtierepplications and
their replicas are deployed (as described above, thisidadiéctates the failure re-

covery behavior), and how the application-specified CPUratd/ork resources are

appropriately provisioned. In the past, significant resiedras been conducted in
designing and developing general purpose, as well as daspatific, resource man-

agement algorithms and mechanisms for DRE systems.

Examples of general purpose resource management algsrghchmechanisms in-
clude network quality of service (QoS) mechanisms, suchntegiated services
(IntServ) B1] and differentiated services (DiffServ)], which support a range of
network service levels for applications in DRE systems. ifaiy, to configure re-
quired CPU resources for applications, prior work has fedusn resource allocation
algorithms B1, 57] that satisfy timing requirements of applications in a DRB/&tem.
Further, real-time fault-tolerant task allocation algfmms have focused on both ac-
tive replication R4, 44, 54, 57] as well as passive replicatioh$, 53, 114, 125, 153
171 to simultaneously provide both soft real-time performaaad high availability

assurances for DRE systems.

Although substantial number of results on QoS mechaniss haen achieved,
there is still a significant question to be answered in howiegions can avail of

these mechanisms to satisfy their requirements. To pre@ndeto-end QoS for DRE
systems, both CPU and network resources need to be proetsidn the past, ap-
plications have conventionally used relatively low-leé¢lls provided by these QoS
mechanisms to provision required resources. However fonces frequent appli-
cation source code changes, as different deployments akiine application might

have different resource requirements.

Further, both CPU and network resources need to be proeditmgether. For exam-
ple, if a particular deployment of two applications acrogs tifferent physical hosts
do not satisfy the application’s network resource requeets, the applications need
to be deployed in different hosts. Addressing these linoitest requires higher-level
integrated CPU and network QoS provisioning technolodias decouple applica-

tion source code from the variabilities.q, different source and destination node

deployments, different QoS requirement specificationspaated with their QoS

requirements.

This decoupling enhances application reuse across a vadgerof deployment con-
texts €.g, different deployment instances each with different Qo@uirements),

thereby increasing deployment flexibility. Therefore sthissertation identifies the
following as an open issue, which deals with developing dayepent and configura-
tion middleware that can deploy and configure QoS for apfiina in an integrated

and non-intrusive manner.

. Resource-aware, Adaptive Fault-tolerance for Open DRE Sysms.

Current middleware mechanismR, 128 configurePASSIVE replication recovery
strategies in a static fashion, which allows timely cliegdirection. However, since
the failover targets are chosen statically, and withoutadge of the current system
resource availability, client failovers in dynamic enviroents could cause system
pollution, where different and uncorrelated processduffas cause multiple clients
to failover to the same processor. This could lead to casgadisource failures

thereby seriously affecting the real-time and fault taheeacapabilities of the system.

Further, current research,[56, 75] to provide adaptive fault tolerance do not focus
on overload management techniques, which are requirecctmfigure the system
after a client failover inPASSIVE replication. Lack of such overload management
techniques causes severe resource imbalance in the sysiemleads to inefficient
resource usage. Additionally, when both real-time and fal¢rance must be satis-
fied within the same system, it is rather likely that tradis-¢03 are made during

the composition.

For example, in conditions where overloads cannot be cliedirby migration, per-

formance needs to be compromised by operating tasks witlementations which

consume less resources but deliver a performance lowertligapossible capac-
ity. However, current fault tolerance solutions do not padevsupport for applying

algorithms for the automatic adaptation of the applicatiomthe changing system
conditions. Therefore, this dissertation identifies annosue, which deals with
developing efficient resource management algorithms tirabdapt to transient load
changes and fluctuating resource availabilities, and meanegpurces and failures
in a passively replicated distributed system, so that apptin performance is not

significantly affected before and after failures.

I.4 Research Approach and Contributions

To address the identified open issues related to the conylexsupporting perform-

ance-sensitive distributed applications basea®®sIVE replication, this dissertation de-

velops a comprehensive and novel middleware-based solut@ur solution comprises

resource management algorithms at bdéployment-timgto support closed DRE sys-

tems) and atuntime (to support open DRE systems) in conjunction with adaptare)

configurable, architectures and mechanisms that togethére the design, deployment,

configuration, and adaptation of fault-tolerant DRE system

In particular, this dissertation involves a combination of

» Deployment-time Resource-aware Real-time Fault-tolet&eplica Allocation Fra-
mework which includes a replica allocation engine (DeCoRAM) thses the tim-
ing and availability requirements of a closed DRE systemutoraatically determine
allocation decisions for all applications and their repsiavhile honoring the real-
time, resource minimization, and high availability reguirents. This research pro-
vides real-time fault-tolerant allocation algorithmstthee used to configure failure
recovery €.g, per-replica failover targets) and managemeng(per-replica state
synchronization frequency) behavior in real-time faoletant middlewareZ2, 102

128. Chapterlll describes DeCoRAM in detail.

» Scalable, Model-driven Deployment and Configuration Migavare which inclu-
des a domain specific model-drivet38 QoS provisioning engine (NetQoPE) that
simplifies resource provisioning for applications by sthilety application develop-
ers from the complexities of programming the lower-levellC&nd network QoS
mechanisms. NetQoPE provides mechanisms for applicatiosintrusive resource
requirements specification, allocation, and enforcemBms research helps applica-
tions to implement and realize the QoS-specific decisiondentiy domain-specific

resource allocation algorithm81, 57]. ChapterV describes NetQoPE in detail.

» Adaptive Real-time Fault-tolerant Middleware and Architeure, which includes a
adaptive fault-tolerant middleware (FLARe) with algonth, architecture, and strate-
gies for providing runtime resource-aware fault-toleeafar DRE applications, and
a QoS-aware middleware (SwapCIAO) with application tramept mechanisms for
in-place updating of component implementations. FLARevigkes capabilities for
managing applications and their replicas, and making dymdault-tolerance de-
cisions that simultaneously support both performance agia &vailability require-
ments of applications. This research helps applicatiomedot to changing system
loads and system resource availabilities and maintainis boft real-time perfor-
mance and high availability by recomputing the failure ey and management
decisions that were configured at deployment-time in middte P2, 102 12§.
SwapCIAO provides capabilities for in-place updating ahgmnents which is useful
for providing overload management when multiple impleragohs of a component
that impose different loads on resources are availablept€h® describes FLARe

in detail while Chapte¥| describes SwapCIAO.

10

.5 Research Contributions

Our research on resource-aware fault-tolerance for DREesshas resulted in QoS-

aware middleware mechanisms that adaptively manage asgdicesources in an applica-

tion transparent manner. The key research contributiotigflissertation are summarized

in Tablel.

Category

Benefits

Real-time
Fault-tolerant
Allocation Framework
(DeCoRAM)

1. Provides a novel replica-node mapping algorithm thatl)sréal-time

aware,i.e., honors application timing deadlines, (2) failure-aware,

handles a user-specified number of multiple processorréglby de-
ploying multiple passive replicas such that each of thopdicas can
continue to meet client timing needs when processors faitl)

resource-aware,e., minimizes the number of processors used for re
cation.

. Provides a real-time fault-tolerance solution that redaw (1) resource

consumption overheadvhere application replicas are deployed acr
processors in a resource-aware manner, andi(2jme processing over
head where failure recovery decisions are made at deploynieret-t

pli-

0SS

Model-driven QoS
Provisioning Engine
(NetQoPE)

. Provides a domain specific modeling language (DSML) fecgping

per-application timeliness, network QoS, and high avditglrequire-
ments.

. Provides a middleware resource allocation frameworkdbaplements|

theoretical research on resource allocation and enabfdsyteent and
configuration of DRE systems

. Provides a real-time fault-tolerance solution that rsclow develop-

ment overheadwvhere application developers need not write applicati
specific code to obtain a real-time fault-tolerance sotutio

Adaptive Real-time
Fault-tolerant
Middleware (FLARe
and SwapCIAO)

. Provides a Load-aware and Adaptive Failover (LAAF) st that

adapts failover targets based on system load

. Provides a Resource Overload Management Redirector (Glat-

egy that dynamically enforces CPU utilization bounds tonten de-
sired server delays in face of concurrent failures and |teohges

. Provides an efficient fault-tolerant middleware ardtitee that supports

transparent failover to passive replicas

. Provides an efficient QoS-aware component middlewarestigports

application transparent swapping of component implentiemnis

n

Table 1: Summary Of Research Contributions

11

1.6 Dissertation Organization

The remainder of this dissertation is organized as folldBlsapter| describes the re-
search related to our work on algorithms, architectured,raiddleware mechanisms for
providing timeliness and high availability assurances BEDsystems and points out the
gap in existing research; Chaptlrpresents a deployment-time resource allocation frame-
work that leverages the ahead-of-time known and invariesygrties of closed distributed
real-time and embedded (DRE) systems (such as the numbpplidations together with
their timeliness and availability requirements) to enseed-time and fault-tolerance while
minimizing utilized resources; Chaptéf presents a model-driven middleware that shields
application developers from the complexities of programgnihe lower-level CPU and
network QoS mechanisms by simplifying activities relatedequirements specification,
resource allocation, and QoS enforcement, and provideslalde QoS-aware deployment
and configuration middleware for DRE systems; Chaptg@resents a fault-tolerant load-
aware real-time middleware that adjusts system faultrdolee configurations at runtime in
response to system load fluctuations and resource avéydbiprovide both high availabil-
ity and timeliness assurances for dynamic DRE systems;t€hdppresents a lightweight
middleware that supports dynamic updating of componenkimpntations for automating
the performance managemestd, overload management) of complex component-based
DRE systems; Chapterll provides a summary of the research contributions, presents

concluding remarks and outlines future research work.

12

CHAPTER I

RELATED WORK

Sectionl.3 described the urgent need for algorithms, architectuned,naechanisms
within middleware that can overcome the disadvantagesasfeasize-fits-alsolution for
providing both high availability and soft real-time penfwgince simultaneously for DRE
systems. There are three main challenges involved in degigimd developing a holistic

middleware solution that works together for both closed ak as open DRE systems:

» Deployment-time Resource-aware Fault-tolerance for DRE Bstems. The mid-
dleware should account for the invariant properties of@loBRE systems, such as
the number of applications, their execution patternsy timieliness and high avail-
ability requirements, and automatically determine howdbofigure the middleware
real-time fault-tolerance properties.g, replica-host mapping to honor timeliness
properties and client failover order to honor fault-toleza properties) to ensure that
the required deployment-time assurances for both higledobiy and timeliness are

provided for closed DRE systems.

» Scalable QoS Provisioning, Deployment, and Configuration foFault-Tolerant
DRE Systems.The middleware should shield application developers froenlow-
level complexities of accessing resource allocation algars, such as requirements
specification, resource allocation, and QoS enforcementhat application source
code development is simple, can just focus on the businggsdbthe applications,

but yet obtain access to resources to satisfy their QoS needs

» Resource-aware, Adaptive Fault-tolerance for Open DRE Syems. The mid-
dleware should adapt to the unpredictability of the dynaerigironments, obtain

current performance characteristics from the systempparfuntime modification

13

to the allocation of resources to applications they madesployment-time, and at
runtime maintain the simultaneous QoS assurances theydpgito applications at

deployment-time.

Since our desired middleware solution needs to providdisoisifor all the three chal-
lenges together, this chapter surveys alternate appredohsolutions for each of those
challenges, and discusses limitations of existing appresa providing these capabilities

in a holistic manner.

.1 Resource-aware Fault-tolerance by Design

Design and deployment mechanisms for fault-tolerance éoiopmance-sensitive sys-
tems can be classified along the following dimensions.

Real-time fault-tolerance for transient failures. Prior research has focused on alloca-
tion algorithms that consider real-time and fault-tol@@together. For example, transient
failures (failures that appear and disappear quickly) amdied in uniprocessoB] 29,

86, 118 122 170 as well as multiprocesso69, 85 systems. A common theme across
all of these research approaches is that failure recovedpng usingime redundancy
where extra time is reserved in the schedule for potenttaivery operations, such as task
re-execution within the same processor.

Real-time fault-tolerance for permanent failures. Prior research has focused on real-
time fault-tolerant task allocation algorithms that hangermanent failure2f, 44, 54,
57]. All of these approaches have focused on active replicatidnose resource consump-
tion overhead is not suitable for certain classes of DREesyst Prior research has also
focused on passively replicated real-time fault-toletask allocation algorithms that deal
with dynamic scheduling which exhibit extra overheads atirne 2, 53, 91, 153 171].
Prior research on static scheduling approaches has alssddon passively replicated
real-time fault-tolerant task allocation algorithms tllatal with only one processor fail-

ure [15, 114, 125.

14

Real-time fault-tolerant middleware systems Fault-tolerant middleware has emerged
as a core distributed software platform for developing@bPRE systems. For example,
MEAD [37, 104 105, AQUA [12§, TMO [74, 75, 76], Delta-4/XPA [12, 96, 120, AR-
MADA [1, 65, 151, 173 174, and MARS [77], are fault-tolerant middleware frameworks

that provide replication management capabilities in a DiREesn.

[I.L1.1 Unresolved Challenges

The advent of middleware that supports application-traresqt passive replicatioi,
22, 45| appears to simplify the development of fault-tolerant D&Etems. In practice,
however, simultaneously meeting real-time and faultreolee requirements is hard due to
the need to support fault-tolerance in a resource-awareendhat satisfies soft real-time
application requirementd (3. In particular, the following problems must be addressed
to deploy and configure (D&C) DRE systems which often becommitdtions of prior

research in this area:

» Application developers must determine how to configuredi@dare fault-tolerance
properties €.g, replica-host mapping and client failover order) to enshet DRE
system availability and performance requirements are rAdthocfault-tolerance
configurations can lead to unacceptable response timea$patis, and low-availabil-
ity applications. Prior research on real-time-, failuned @esource-aware middleware
does not address the automatic deployment and configuratiDRE systems with

the replica-node mappings.

In particular, existing solutions focus either on algangh[24, 44, 57] or on deploy-
ment and runtime code generati@2[58, 147, without considering fault-tolerance

as a QoS parameter and automating application deploymdraaariiguration.

» Even when algorithms focus on real-time and fault-toleeatogether, often they

do not focus on dealing with multiple processor failuresle/lgsionsidering passive

15

replication R0], which is ideal for resource-constrained DRE systems esditices

resource consumption when compared with active repliod0].

Chaptetll describes our approach to provide a deployment-time nesad fault-toleran-

ce solution that addresses these challenges.

II.2 Deployment and Configuration Mechanisms in Middleware

Deployment and configuration of a system is necessary tcatipealize the system.
Prior work in this area to support fault-tolerance for periance-sensitive systems can be
classified along the following dimensions.

Model-based design toolsModel-based design tools provide an intuitive level of ab-
straction for designing large systems. PICMIO] enables DRE system developers to de-
fine component interfaces, their implementations, andnalskes, facilitating deployment
of LWCCM-based applications. THembedded Systems Modeling Langu@g@ML) [70]
was developed at the Institute for Software Integratede®yst(ISIS) to provide a visual
metamodeling language based on GME that captures multiplesvof embedded sys-
tems, allowing a diagrammatic specification of complex nied&he modeling building
blocks include software components, component intemastioardware configurations, and
scheduling policies. Using these analyses, design dasi¢snich as component allocations
to the target execution platform) can be performed.

VEST [148 and AIRES pB0] analyze domain-specific models of embedded real-time
systems to perform schedulability analysis and providésraated allocation of compo-
nents to processors. SysWeaveg|[supports design-time timing behavior verification of
real-time systems and automatic code generation and wetrimultiple target platforms.

QoS management in middlewarePrior research has focused on adding various types
of QoS capabilities to middleware. For examplk§][describes J2EE container resource
management mechanisms that provide CPU availability asses to applications. Like-

wise, 2K [L67] provides QoS to applications from varied domains usingamanent-based

16

runtime middleware. In addition, 3] extends EJB containers to integrate QoS features
by providing negotiation interfaces which the applicatagvelopers need to implement
to receive desired QoS support. Synerg?9 describes a distributed stream processing
middleware that provides QoS to data streams in real timdfloyemt reuse of data streams
and processing components.

Network QoS management in middleware. Prior work has focused on integrating
network QoS mechanisms with middleware. Schantz et &l26[show how priority-
and reservation-based OS and network QoS management neukaan be coupled with
standards-based middleware to better support distribggstems with stringent end-to-
end requirements. Gendy et al40[41] intercept application remote communications by
adding middleware modules at the operating system kerekespnd dynamically reserve
network resources to provide network QoS for the applicat@mote invocations.

Schantz et al. 135 intercept application remote communications by usingdiad
ware proxies and provide network QoS for application renca@munications by using
both DiffServ and IntServ network QoS mechanisms. Yemiralet [166 focused on
providing middleware APIs to shield applications from ditg interacting with complex
network QoS mechanism APIs. Middleware frameworks traresily converted the spec-
ified application QoS requirements into lower-level netw@oS mechanism APIs and
provided network QoS assurances.

Deployment-time resource allocation. Prior work has focused on deploying appli-
cations at appropriate nodes so that their QoS requirenoamde met. For example,
prior work [87, 149 has studied and analyzed application communication acesacpat-
terns to determine collocated placements of heavily comcating components. Other
research 31, 57] has focused on intelligent component placement algosthimat maps

components to nodes while satisfying their CPU requirement

17

[1.2.1 Unresolved Challenges

Although the network and CPU QoS deployment and configuratiechanisms de-
scribed above are powerful, it is tedious and error-prorget@lop applications that inter-
act directly with low-level QoS mechanism APIs written imggvely in third-generation
languages, such as C++ or Java. For example, applicatioes mmake multiple invoca-
tions on network QoS mechanisms to accomplish key netwok &ivities, such as QoS
mapping, admission control, and packet marking.

To address part of this problem, middleware-based netwokgdovisioning solutions,
that were discussed in Sectidr2, have been developed that allow applications to specify
their coordinates (source and destination IP and port addsg and per-flow network QoS
requirements via higher-level frameworks. The middleweaeeworks—rather than the
applications—are thus responsible for converting higlellspecifications of QoS intent
into low-level network QoS mechanism APIs.

Although middleware frameworks alleviate many accideotahplexities of low-level
network QoS mechanism APIs, they can still be hard to evaikextend. In particular,

the following challenges remain:

1. Application source code changes may be necessary whettemeges occur to the
deployment contextse(g, source and destination nodes of applications), per-flow
requirements, IP packet identifiers, or middleware APIs.isTimits application
reusability as the same application source code could be fasemany different
deployment contexts, and each of those deployment contextisl have different

network and CPU resource requirements.

2. Applications must explicitly determine the optimal sceiand destination nodes be-
fore they can obtain network performance assurances viariderlying network
QoS mechanisms. Otherwise, network resource reservatimig be made between

two wrong pair of hosts, when applications could be deplagesbme other pair of

18

source and destination nodes. Further, resource allochaoktracking cannot be
made, when physical hosts in which the applications areogeplcould be changed
to try out newer set of network resource allocations to §a¢isd-to-end application

QoS requirements.

To address the limitations with current approaches desdrdbove, therefore, what
is needed are higher-level integrated CPU and network Qo$igioning technologies
that can completely decouple application source code fltoenvariabilities €.g, differ-
ent source and destination node deployments, different @qg&irement specifications)
associated with their QoS provisioning needs. This dedog@nhances application reuse
across a wider range of deployment contexg (different instance deployments each
with different QoS requirements), thereby increasing ogplent flexibility. ChaptetV
describes our approach to provide a model-driven QoS poowigy engine that addresses

these challenges.

II.3 Resource-aware, Adaptive Fault-tolerance for Open DRE Systems

Prior research in adaptive fault tolerance solutions faropystems can be classified
along the following dimensions.

CORBA-based fault-tolerant middleware systems Prior research has focused on
designing fault-tolerant middleware systems using CORBAurvey of the different ar-
chitectures, approaches, and strategies using whichtt@ahance capabilities can be pro-
vided to CORBA-based distributed applications is preskirte [45]. [13] describes a
CORBA portable interceptor-based fault-tolerant distidal system using passive replica-
tion and extends the interceptors to redirect clients wistadic client failover strategy.
MEAD [102, FTS [47] and IRL [11] use CORBA portable interceptors to provide fault-
tolerance for CORBA-based distributed systems using @céplication.

Scheduling algorithms Fundamental ideas and challenges in combining real-timde a

fault tolerance are described ibg(d, where imprecise computations are used to provide

19

degraded QoS to applications operating in the presencédwifds. [(6] proposes adaptive
fault tolerance mechanisms to choose a suitable redunddaratggy for dynamically ar-
riving aperiodic tasks based on system resource avathabilne Realize middlewaré}]
provides dynamic scheduling techniques that observesxgigon times, slack, and re-
source requirements of applications to dynamically sclestéisks that are recovering from
failure, and make sure that non-faulty tasks do not get &teby the recovering tasks.

Adaptive passive replication systemsPrior research has focused on adaptive passive
replication to reduce delays incurred by conventional ipas®plication during fault de-
tection, client failover, and fault recovery. For exampk,OW [22] uses fault-prediction
techniques to change the frequency of backup replica syathsonizations to minimize
state synchronization during failure recovery. SimilaMEAD [119 reduces fault de-
tection and client failover time by determining the podgifpof a primary replica failure
using simple failure prediction mechanisms and redirdasts to alternate servers before
failures occur. Other research uses simulation models to analyze multiple checkpoint-
ing intervals and their effects on fault recovery in fawlterant distributed systems.49
focuses on an adaptive dependability approach by medimtiagactions between middle-
ware and applications to resolve constraint consisteneiele improving availability of
distributed systems.

Load-aware adaptations of fault-tolerance configurations Prior research has fo-
cused on run-time adaptations of fault-tolerance configura [36]. For example, the
DARX framework P3] provides fault-tolerance for multi-agent software phauths by fo-
cusing on dynamic adaptations of replication schemes dsasekplication degree. Re-
search performed in AQUASD] dynamically adapts the number of replicas receiving a
client request in amCTIVE replication scheme so that slower replicas do not affect the
response times received by clients. Etergd@ [dynamically changes the locations of ac-
tive replicas by migrating soft real-time objects from hialoaded processors to lightly

loaded processors, thereby providing better response fionelients.

20

Quiality of service using generic interception frameworks Other projects have fo-
cused on interceptions above the middleware layer to adttyjed service (QoS) for
applications. For example, Qu@72 weaves in QoS aspects into applications at com-
pile time by wrapping application stubs and skeletons withctalized delegates that can
be used for intercepting application requests and replies. ACT project L33 provides
response to unanticipated behavior in applications by imgaadaptive code into ORBs
at runtime and provides fine-grained adaptations by inptireg application requests and
replies. CQoS§2] provides platform-dependent interceptors based on stubsskele-
tons, and QoS-specific service components, that work witlniierceptors to add QoS like
fault-tolerance to applications.

Real-time fault-tolerant systems Delta-4/XPA [L2Q provided real-time fault-tolerant
solutions to distributed systems by using the semi-acépéication model. MEAD 119
and its proactive recovery strategy for distributed CORB#Ilacations can minimize the
recovery time for DRE systems. The Time-triggered Mesgeaggered Objects (TMO)
project [75] considers replication schemes such as the primary-shad@ replication
(PSTR) scheme, for which recovery time bounds can be ga#wuéty established, and
real-time fault tolerance guarantees can be provided tbcapipns. AQUA [79] usesAc-
TIVE replication to provide both availability and timelinesgaailities for applications,
and optimizes the response times for applications by dyceliyideciding on the num-
ber of replicas executing the request. DAR¥] provides adaptive fault-tolerance for
multi-agent software platforms by dynamically changinglieation styles in response to

changing resource availabilities and application pertoroe.

[1.3.1 Unresolved Challenges

Existing solutions for providing fault-tolerance in dibuted systems demonstrate that

PASSIVE replication has a much simpler programming model thanive replication, and

21

has much lesser resource consumption overheadAbarve replication. HencepAs-
SIVE replication is naturally suited for providing both perfante and high availability
for applications - especially those operating in resowmestrained environments.
Although PASSIVE replication is desirable in a resource-constrained enwvient, it
is particularly challenging to support performance-siresdistributed applications based
on PASSIVE replication. Specifically, the following challenges in mi@ining acceptable
client response times and managing application utiliratiwhile recovering from a failure

remain unresolved:

1. After a failover, the client perceived response times$ edpend on the loads of the
processor hosting the new primary. Incorrect client rediioms could overload a
processor thereby affecting the response time(s) for tteaeed client(s) and other
clients that were already invoking remote operations ayetarhosted on that proces-
sor. If a client has multiple backup replica choices fordedr, load-aware failover
targetdecisions therefore must be made to determine the apprejpaakup replica

so that application performance is not affected after faihecovery.

2. Workload fluctuationse(g, deployment of new applications) and client failovers
from (possibly multiple) processor failures might resalbverloadsAdaptiveover-
load management decisions must be made to recover fronbadsrko that applica-

tion performance is not affected by fluctuating operatingremments.

3. Fault-tolerant middleware should mask failures froners and transparently redi-
rect them to appropriate alternate servers while supmpttia adaptive, load-aware
failover and overload management capabilities. As desdrédbove, however, load-
aware failover target selection and adaptive overload gemant decisions are need-
ed to maintain high availability and acceptable perfornegioc clients. Fault-tolerant
middleware therefore needs to support adaptive failovdras@rioad management

decisions so that clients are shielded from failures antkey$oad fluctuations.

22

Chapterv and ChapteN| describe our approach to provide an adaptive fault-toteran

real-time middleware that addresses these challenges.

23

CHAPTER IlI

DEPLOYMENT-TIME RESOURCE-AWARE FAULT-TOLERANCE FOR DRE
SYSTEMS

Developing large-scale distributed real-time and embed®4&RE) systems is hard in
part due to complex deployment and configuration issuedvadan satisfying multiple
quality for service (QoS) properties, such as real-tinesdghand fault tolerance. Effective
deployment requires developing and evaluating a ranges&fatiocation algorithms that
satisfy DRE QoS properties while reducing resources uségjective configuration re-
quires automated tuning of middleware QoS mechanisms tid &&dious and error-prone
manual configuration.

This chapter makes three contributions to the study of gepémt and configuration
middleware for DRE systems that satisfy multiple QoS proesr First, it describes a
novel task allocation algorithm for passively replicateBB systems to meet their real-
time and fault-tolerance QoS properties while consumiggicantly less resources. Sec-
ond, it presents the design of a strategizable allocatiginenthat enables application
developers to evaluate different allocation algorithmsird; it presents the design of a
middleware-agnostic configuration framework that usescation decisions to deploy ap-
plication components/replicas and configure the undeglymddleware automatically on
the chosen nodes. These contributions are realized in tk®BAM (Deployment and
Configuration Reasoning and Analysis via Modeling) middiesv Empirical results on a
distributed testbed demonstrate DeCoRAM’s ability to Hamaultiple failures and provide
efficient and predictable real-time performance.

The rest of this chapter is organized as follows. Seclibh introduces the research

problem and provides the motivation for our work; Sectihr2 describes the fault model

24

and system model that underlies our work on DeCoRAM; Sedtidhdescribes the struc-
ture and functionality of DeCoRAM; Sectidi.4 empirically evaluates DeCoRAM in the
context of distributed soft real-time applications witlryiag real-time and fault-tolerance
deployment and configuration requirements; Finally, $&dii.5 provides a summary of

our contributions.

[11.1 Introduction

Distributed real-time and embedded (DRE) systems oparai&source-constrained en-
vironments and are composed of tasks that must processevmhprovide soft real-time
performance. Examples include shipboard computing enments; intelligence, surveil-
lance and reconnaissance systems; and smart buildingscohddéey quality of service
(QoS) attribute of these DRE systemsfasilt-tolerancesince system unavailability can
degrade real-time performance and usability.

Fault-tolerant DRE systems are often built usangiveor passiveaeplication R0, 120.
Due to its low resource consumption, passive replicati@pgealing for soft real-time ap-
plications that cannot afford the cost of maintaining aetiplicas and do not require hard
real-time performancedp]. Despite improving availability, however, server reglion in-
variablyincreasegesource consumption, which is problematic for DRE systiratsplace
a premium on minimizing the resources usa]]

To address these concerns, DRE systems require solutiainsath exploit the benefits
of replication, but share the available resources amohgsapplications efficientlyi.g.,
to minimize the number and capacities of utilized resoyrc&dese solutions must also
provide both timeliness and high availability assurancesapplications. For a class of
DRE systems that ardosed(i.e., the number of tasks, their execution patterns, and their
resource requirements are known ahead-of-time and argantg such solutions may be
determined at design-time, which in turn can assure QoSeptiep at runtime.

The advent of middleware that supports application-trareqt passive replicatiod (4,

25

120 128 174 appears promising to provide such design-time QoS salstfor fault-
tolerant DRE systems. Unfortunately, conventional pase#plication schemes incur two
challenges for resource-constrained DRE systems: (1) tddleware must generate the
right replica-to-node mappings that meet both fault-tmbee and real-time requirements
with a minimum number of nodes, and (2) the replica-to-nod@pmng decisions and QoS
needs must be configured within the middleware. Developerst mtherwise manually
configure the middleware to host applications, which rezgigource code changes to ap-
plications whenever new allocation decisions are made @tieg decisions change to
handle new requirements. Due to differences in middlewat@tectures, thesad hocand
manual approaches are neither reusable nor reproducibtijsstedious and error-prone
effort must be repeated.

To address the challenges associated with passive réptidar DRE systems, this
chapter presents a resource-aware deployment and comifiguraddleware for DRE sys-
tems called DeCoRAMOeployment and Configuration Reasoning and Analysis via-Mod
eling). DeCoRAM automatically deploys and configures DRE systamseet the real-

time and fault-tolerance requirements via the followingelacapabilities:

» Aresource-aware task allocation algorithmthat improves the current state-of-the-
art in integrated passive replication and real-time talglcation algorithms15, 125
153 171] by providing a novel replica-node mapping algorithm callEERRARI
(Failurk, Real-time, and Resource Awareness Reconcihdtitelligencg. The nov-
elty of this algorithm are its simultaneous (fBal-time awarenesswhich honors
application timing deadlines, (Zailure awarenesswhich handles a user-specified
number of multiple processor failures by deploying mudiplassive replicas such
that each of those replicas can continue to meet client §meeds when processors
fail while also addressing state consistency requirememd (3)resource aware-

nesswhich reduces the number of processors used for replitatio

A strategizable allocation enginethat decouples the deployment of a DRE system

26

from a specific task allocation algorithm by providing a gahé&amework that can
be strategized by a variety of task allocation algorithnilsitad to support different
QoS properties of the DRE system. The novelty of DeCoRAMScaltion engine
stems from its ability to vary the task allocation algoritlused from the feasibility

test criteria.

» A deployment and configuration (D&C) enginethat takes the decisions computed
by the allocation algorithm and automatically deploys ks and their replicas in
their appropriate nodes and configures the underlying revdalle appropriately. The
novelty of DeCoRAM's D&C engine stems from the design of tbheoanated config-

uration capability, which is decoupled from the underlymgldleware architecture.

DeCoRAM’s allocation engine, and the deployment and condigon engine are im-
plemented in~10,000 lines of C++. This chapter empirically evaluates ¢apabili-
ties of DeCoRAM in a real-time Linux cluster to show how italiéime fault-tolerance
middleware incurs low (1l)yesource consumption overhea@here application replicas
are deployed across processors in a resource-aware masingrtie FERRARI algo-
rithm, (2) runtime processing overheadvhere failure recovery decisions are made at
deployment-time, and (3Jevelopment overheawhere application developers need not

write application-specific code to obtain a real-time fdalerance solution.

[11.2 Problem Definition and System Model

This section defines the problem definition for our work on DB&M in the context

of the task and fault system models used.

27

[11.2.1 DRE System Model

Our research focuses on a class of DRE systems where thensysteloads and the
number of tasks are knowa priori. Examples include system health monitoring appli-
cations found in the automotive domamg, periodic transmission of aggregated vehicle
health to a garage) or in industrial automatieng(periodic monitoring and relaying of
health of physical devices to operator consoles), or resonranagement in the software
infrastructure for shipboard computing. These systems désnonstrate stringent con-
straints on the resources that are available to supporigeceed workloads and tasks.
Task model. We consider a set ¢ long running soft real-time tasks (denotedsas { Ty,

Ty, ..., Tn}) deployed on a cluster of hardware nodes. Clients accesettasks periodically
via remote operation requests: each applicalios associated with its worst-case execu-
tion time (denoted aE;), its period (denoted d3), and its relative deadline (which is equal
to its period). On each processor, the rate monotonic sdingdalgorithm (RMS) B4] is
used to schedule each task and individual task prioritieslatermined based on their pe-
riods. We assume that the networks within this class of DR&esys provide bounded
communication latencies for application communicatiod da not fail or partition.

Fault model. We focus on fail-stop processor failures within DRE systehat prevent
clients from accessing the services provided by hostedagigins. We us@assive repli-
cation[20] to recover from fail-stop processor failures. In passiglication, only one
replica—called the primary—handles all client requestemthe application state main-
tained at the primary replica could change. Since backulespare not involved in pro-
cessing client’'s requests, their application state mussymehronized with the state of
the primary replica. We assume that the primary replica ¢iiexecutes for worst-case
execution timek;) uses non-blocking remote operation invocation mechasjisuch as
asynchronous messaging, to send state update propagtitres backup replica, while
immediately returning the response to the client.

Each backup replica of a tadk is associated with its worst-case execution time for

28

synchronizing stat&, which significantly reduces the response times for clidmis sup-
ports only “best effort” guarantees for state synchromiratReplica consistency may be
lost if the primary replica crashes after it responds to tient; but before it propagates
its state update to the backup replicas. This design tragedesirable in DRE systems
where state can be reconstructed using subsegegntsensor) data updates at the cost of

transient degradation of services.

[11.2.2 Problem Motivation and Research Challenges

The goal of DeCoRAM is to deploy and configure a passivelyicafgd DRE system
of N tasks that is tolerant to at madstfail-stop processor failures, while also ensuring that
soft real-time requirements are met. To satisfy fault tohee needs, no two replicas of
the same task can be collocated. To satisfy real-time rexpgints, the system also must
remain schedulable. These goals must be achieved whileiregdresource utilization. To
realize such a real-time fault-tolerant DRE system, a nurobeesearch questions arise,
which we examine below via an example used throughout therpap

Consider a sample task set with their individual periodshasvn in Table2. Assuming

I Task [E [S] R Juil]
<Al1,A2,A3> 20 | 0.2 50 40
<B1,B2,B3> 40 | 0.4 100 40
<C1,C2,C3>| 50 | 0.5 200 25
<D1,02,D3> | 200 2 500 40
<E1,E2,E3> | 250 | 2.5 | 1000 25

Table 2: Sample Ordered Task Set with Replicas

that the system being deployed must tolerate a maximum ofptwoessor failures, two
backup replicas of each task are needed as shown. The tablst@ws the execution
times taken by the primary replica, the state synchroropatimes taken by the backup
replicas, and the utilization of a primary replica.

Using bin packing algorithms2p, 34] (e.g, based on first-fit allocation) and ensuring

29

that no two replicas of the same task are collocated, we atifg the lower and upper
bounds on the number of processors required to host thensy$ter example, Figuré
shows the placement of the tasks, indicating a lower bourpt@ressors that is determined

using a bin packing algorithm when no faults are considefgdure 2 shows the upper

P1

o
=]

60

40

20

Percent Utilization

P1 P2
Processors

Figure 1. Lower Bound on Processors (No FT Case)

bound on processors needed when the system uses actiwatiepli This case represents

an upper bound because in active replication, all replicasribute WCET. Passive repli-

P1 P2 P3
< 100}
A1 A2 A3)
© 80f
81 B2 B3 N
= L
= 60
=
pa P5 P6 S 4o
c1 c2 Cc3 8
o 20!
o1 D2 D3 a
Ef £2 & 7Pt P2 P3 P4 P5 P6

Processors
Figure 2: Upper Bound on Processors (Active FT Case)

cation can reduce the number of resources used becausectwplyaplica in a passively
replicated system only contributes to the state synchatioiz overhead. Naturally, the
number of processors required for passive replicationlghmeiwithin the range identified

above.

30

Researchers and developers must address the followingansshen deploying and

configuring DRE systems that must assure key QoS properties:

e How can developers accurately pinpoint the number of ressurequired?

e Does this number depend on the task allocation algorithmuse

e How can application developers experiment with differélaication algorithms and eval-
uate their pros and cons?

e How can the results of the allocations be integrated withrtiméime infrastructures and
how much effort is expended on the part of an application lopez?

The three key challenges described below arise when aduydbgse questions.
Challenge 1: Reduction in resource needsSince backups contribute to state synchro-
nization overhead, a bin-packing algorithm can pack mopéaas, thereby reducing the
number of resources used. The resulting packing of replltasever, is a valid deploy-
ment only in no-failure scenarios, which is unrealisticElRE systems. On failures, some
backups will be promoted to primaries (thereby contribgitm WCET). Bin packing algo-
rithm cannot identify which backups will get promoted, hewe since failures are unpre-
dictable and these decisions are made entirely at runtintat VW& needed, therefore, is the
ability to identifya priori the potential failures in the system and determine whiclkias
will be promoted to primaries so as to determine the numbeesdurces needed. Sec-
tion 111.3.1 describes an algorithm that uses the bounded and invarnapegies of closed
DRE systems to address this challenge in a design-timeitigor
Challenge 2: Ability to evaluate different deployment algeithms. An algorithm for
task allocation has limited benefit if there is no capabitityintegrate it with produc-
tion systems where the algorithm can be executed for diffdd&RE system requirements.
Moreover, since different DRE systems may impose diffe@o$ requirements, any one
allocation algorithm is often limited in its applicabilitgr a broader class of systems. What

is needed, therefore, is a framework that can evaluatereifteask allocation algorithms

31

for a range of DRE systems. Sectitih3.2 discusses how the DeCoRAM framework
evaluates different task allocation algorithms.

Challenge 3: Automated configuration of applications on re&time fault-tolerant mid-
dleware. Even after the replica-to-node mappings are determinethslaallocation algo-
rithms, these decisions must be enforced within the runtiigglleware infrastructure for
DRE systems. Although developers often manually configueentiddleware, differences

in middleware architecture®.g, object-based vs. component-based vs. service-based)
and mechanisms(g, declarative vs. imperative) make manual configuratiorotesland
error-prone. What is needed, therefore, is a capabilitydha (1) decouple the configura-
tion process from the middleware infrastructure and (2)rdessly automate the configura-
tion process. Sectiolhl.3.3 describes how the DeCoRAM configuration engine automates

the configuration process.

[11.3 The Structure and Functionality of DeCoRAM

This section presents the structure and functionality c€&8RAM and shows how it

resolves the three challenges described in Setti@n?2.

[11.3.1 DeCoRAM’s Resource-aware Task Allocation Algorithm

Challenge 1 described in Sectiih2.2 is a well-known NP-hard problen24, 26, 54].
Although this problem is similar to bin-packing probler2§]} it is significantly harder due
to the added burden of satisfying both fault-tolerance aatitime system constraints. We
developed an algorithm calldehilurE, Real-time, and Resource Awareness Reconcifiatio
Intelligence(FERRARI) presented below to satisfy the real-time andtfalerance prop-
erties of DRE systems while reducing resource utilizatiBERRARI is explained using

the sample task set shown in TaBle

32

[11.3.1.1 Allocation Heuristic

Algorithm 1 describes the design of DeCoRAM's replica allocation &tbar called
FERRARI. Line 3 replicates the original task set corresponding toKhtault tolerance
requirements, and orders these tuples according to thetdsking strategy (Lind). For
example, to tolerate two processor failures, tasks couldrdered by RMS priorities and
the resulting set could contain tasks arranged with tuptas highest priority to lowest as

shown in a sample task set of Tal2le

Algorithm 1: Replica Allocation Algorithm
Input:
T « set ofN tasks to be deployed (not including replicas),
K «number of processor failures to tolerate,
Output:
Deployment plarDP < set of two tuples mapping a replica to a processor,
P:: resulting set of processors used
1 begin
2 Intially, DP = {}, P = default set of one processor
3 LetT' — {<tk >},1<i <N,1<k<K/ Replicate each tasks in T, K times so that T’ contains set of N K-tuples
4 Task Ordering(T’) // Order the tasks and replicas
5 foreachtuplg € T",1<i<Ndo
6
7
8
9

for k=1to K do
/I Allocate a task and all its K replicas before moving to the next
Proc_SelectPick a candidate processpg from the sef- not yet being evaluated for allocation
/* Check if allocation is feasible on this processor */

10 boolresult=Test Alloc_for_Feasibility(ti, K, pc,K)

11 if result==falsethen // Infeasible allocation

12 GoTo Proc_Seledbr selecting the next candidate processor for this replica
13 else// Update the deployment plan

14 DP «— DP | {< tik, pc >} // add this allocation

15 if no p, from set P is a feasible allocatiorthen

16 Add a new processor te-

17 GoTo Proc_SelegtAttempt allocation again with the new set of candidate processors
18 end

19 end

20 end

21 end

Lines5 and6 show how FERRARI allocates a task and all oftseplicas before allo-
cating the next task. For example, for the set of tasks inelaHirst all replicas belonging
to task A will be allocated followed by B and so on. To allocaseh replica, FERRARI
selects a candidate processor based on the configured ¢tkimgdneuristic (Line8). To
satisfy fault-tolerance requirements, FERRARI ensurasttie processor does not host an-

other replica of the same application being allocated wiedating a candidate processor.

33

For the candidate processor, FERRARI runs a feasibilityusieig novel enhancements
to the well-known time-demand analys®4], which is used to test feasibility (see Sec-
tion 111.3.1.2). We chose the time-demand analysis for its accuracy indsgdimg) multiple
tasks in a processor. Although the time-demand analysisades computationally expen-
sive, it is acceptable since DeCoRAM is a deployment-timetsm.

The feasibility criteria evaluates if the replica could Hle@ated to the processor subject
to the specified real-time and fault-tolerance constrdintse 10). If the test fails for the
current processor under consideration, a new candidategsor is chosen. For our sample
task set, after deploying task sets A and B along with th@ilicas (as shown in Figur®),

the next step is to decide a processor for the primary replidask C. Processor P1 is

P1 P2 P3
A1 A2 A3
B1 B2 B3

Figure 3: Allocation of Primary and Backup Replicas for Tasks A and B

determined an infeasible solution since the combinedzatiibn on the processor would
exceed 100% if C1 were allocated on P1 already hosting A1 dn@&+40+25=105).

If a feasible allocation is found, the output deploymenh@atDP is updated (Lind 4).
If no candidate processor results in a feasible allocatmyever, the set of candidate
processor$: is updated (Linel6) and the replica allocation is attempted again. As shown
in Sectionlll.3.1.2, C1 cannot be allocated to any of P1, P2 or P3, thereby reguan
additional processor (as shown in Figdle FERRARI completes after allocating all the

tasks and its replicas.

34

[11.3.1.2 Failure-Aware Look-Ahead Feasibility Algorith m

Challenge 1 implied exploring the state space for all pdsddilures in determining
the feasible allocations. The time-demand analysis onwts @annot determine this state
space. We therefore modify the well-known time-demandtiona;(t) for taskT, in time-

demand analysisf] as follows:

Sicil & 1Bk ifkis primary

t)=E+4 ~
SICATE1Se ifkis backup

for O<t<Rh
where the tasks are sorted in non-increasing order of RM&ifes. This condition is
checked for each task at an instant called theritical instant phasing84], which corre-
sponds to the instant when the task is activated along withealtasks that have a higher
priority thanT,. The task set is feasible if all tasks can be scheduled udecritical
instant phasing criteria.

Using this modified definition, we now enhance the feasipiiist criteria using the
following novel features:
(1) Necessary criteria: “lookahead” for failures. Sectionlll.2.1 explained how a task
being allocated can play the role of a primary (which conssimerst case execution time
E) or a backup replica (which consumes worst case state symiciation timeS). Due to
failures, some backups on a processor will get promoteditagpies and becauge >> S
the time-demand analysis method must consider failuressmenso that the task allocation
is determined feasible in both a non-failure and failureecd=r our sample task set, this
criteria implies that all possible failure scenarios muselplored for the snapshot shown
in Figure3 when allocating the primary replica for task i&2(C1).

For any two processor failure combinatiorsq, the failure of P1 and P2 or P1 and
P3), the backups of tasks A and B will be promoted to being aries. It is therefore no
longer feasible to allocate C1 on either P2 or P3 (using theesaasoning that eliminated

P1 as a choice). An enhancement to perform such a check musade available in the

35

P1 P2 P3

A1 A2 A3

B1 B2 B3

Figure 4: Feasible Allocation for Task C1

time-demand analysis, which then results in an extra psme® host C1, as shown in
Figure4.

(2) Relaxation criteria: assign “failover ordering” to min imize processors utilized.
Clause 1 above helps determine the placement of newly cenesicorimariesd.g, C1).

We next address the allocation of backups. One approachafiadcate C2 and C3 on
processors P5 and P6 (see FigRyeThis straightforward approach, however, requires the
same number of resources used in active replication, wkichntrary to the intuition that
passive replication utilizes fewer resources.

Using Clause 1, P1 can be eliminated as a choice to host b&&Rgince a failure of
P4 will make C2 a primary on P1, which is an infeasible allaatClause 1 provides only
limited information, however, on whether P2 and P3 are aat#g choices to host backups
of C (and also those of D and E since they form a group accotditige first-fit criteria).
We show this case via our sample task set.

Consider a potential feasible allocation in a non-faillasecthat minimizes resources,
as shown in Figur®. Using Clause 1, we lookahead for any 2-processor failunebco
nations. If P1 and P2 falil, the allocation is still valid stnanly A3 and B3 on P3 will be
promoted to primaries, whereas C1, D1 and E1 continue asapeson P4. If P2 and P3
were to fail, the allocation will still be feasible since thristing primaries on P1 and P4
are not affected.

An interesting scenario occurs when P1 and P4 fail. Therenar@ossibilities for how

backups are promoted. If the fault management system pesw® and B2 on processor

36

P1 P2 P3

C2 C3
A1 A2 A3

D2 D3
B1 B2 B3

E2 E3

Figure 5: Determining Allocation of Backups of C, D and E

P2, and C3, D3 and E3 on processor P3 to primaries the albooatll still be feasible and
there will be no correlation between the failures of induatitasks and/or processors. If the
fault management system promotes all of A2, B2, C2, D2 anap2iinaries on processor
P2, however, an infeasible allocation will result. The wtpctable nature of failures and
decisions made at runtime is the key limitation of Clause 1.

A potential solution is to have the runtime fault managensgstem identify situations
that lead to infeasible allocations and not enforce thene diawback with this approach,
however, is that the number of failure combinations incesasxponentially, thereby mak-
ing the runtime extremely complex and degrading perforraaas the system scale in-
creases. A complex runtime scheme is unaffordable for dI®fRE systems that place a
premium on resources. Moreover, despite many propertiefoeéd DRE systems being
invariant, the runtime cannot leverage these propertieptimize the performance.

It is possible to overcome the limitation of Clause 1 if thatrme fault management
system follows a specific order for failovers. Our algorittimerefore orders the failover
of the replicas according to their suffixes, which elimirsatiee possibility of infeasible
allocations at design-time. Naturally, the replica-t@aanapping and hence the time-
demand analysis must be enhanced to follow this ordering.

Based on this intuition, even witk processor failures it is unlikely that backups on
a live processor will be promoted all at once. In other worldy a subset of backups
on a given processor will be promoted in the worst case, witltausing an infeasible

allocation. The rest of the backups will continue to conttéonlySload, which enables

37

the overbooking of more backup replicas on a proce€s8)y fhereby reducing the number
of processors utilized.

These two criteria form the basis of the enhancements we moatle original time-
demand analysis, which underpins the feasibility test intask allocation algorithm FER-
RARI. Due to space considerations we do not show the fe#gitakt algorithm itself, but
the details are availablewatwv. i si s. vanderbi |l t. edu/sites/default/files/-
decoram tr09. pdf.

Figure 6 shows a feasible allocation determined by FERRARI for the@a set of
tasks and their replicas, which reduces the number of ressursed and supports real-

time performance even in the presence of up to two proceasords.

P1 P2 P3 P4
C3 c2 C1
A1 A2 — [A3 —
| s o2 o
B1 / \|B2| — | \|B3| — |
E3 E2 E1

Figure 6: Allocation of Sample Task Set

[11.3.1.3 DeCoRAM Algorithm Complexity

We now briefly discuss the complexity of FERRARI. The topelealgorithm (Algo-
rithm 1) comprises an ordering step on Lidewhich results inO(Nlog(N) for N tasks.
Allocation decision must then be made for each of khtasks, theilK replicas, and upto
M processors if the feasibility test fails fdt — 1 processors.

The overall complexity is thu®(N « K « M « feasibility test), where feasibility_test is
the failure-aware look-ahead feasibility algorithm désed in Sectiorll.3.1.2. Each exe-

cution of the feasibility test requires (1 (E)) executions of the enhanced time-demand

38

www.isis.vanderbilt.edu/sites/default/files/
decoram_tr09.pdf

analysis 84]. Since the replica allocation algorithm allocates tas&soading to non-
increasing RMS priority order, however, the time-demanalysis is not overly costly and

can be performed incrementally.

[11.3.2 DeCoRAM Allocation Engine

The FERRARI algorithm presented in Sectibin3.1 is one of many possible task al-
location algorithms that target different QoS requirerseftDRE systems. Moreover, it
may be necessary to decouple an allocation algorithm frenfethsibility test criteria. For
example, FERRARI can leverage other schedulability tgstiechanisms beyond time-
demand analysis. To address these variabilities, Chall@ng Sectionll.2.2 highlighted
the need for a framework to evaluate multiple different atons that can work with dif-
ferent feasibility criteria.

The DeCoRAM Allocation Engine shown in Figurgrovides such a framework com-

prising multiple components, each designed for a specifipgae. DeCoRAM’s Alloca-

Allocation Engine

Input Placement Task
Manager Controller Replicator

// \ Replica-host mapping

for all applications

Node Selector Admission Output acting as input to a
Controller Manager deployment and

configuration engine

Figure 7: Architecture of the DeCoRAM Allocation Engine

tion Engine is implemented ir6,500 lines of C++ and providesmacement controller
componenthat can be strategized with different allocation algen#h including FER-
RARI (see Sectionll.3.1). This component coordinates its activities with the failiog

other DeCoRAM components:

39

1. Input manager. DRE system developers who need to deploy a system with a sedlef
time and fault-tolerance constraints express these Emgeints via QoS specifications that
include: (1) the name of each task in the DRE system, (2) theghevorst-case execution
time, and worst-case state synchronization time of eash &asl (3) the number of proces-
sor failures to tolerate. Any technique for gathering th@e& requirements can be used as
long as DeCoRAM can understand the information format. Reretixamples in this paper,
we used our CoSMIC modeling toaMiw. dr e. vander bi | t . edu/ cosmi c), which
supplies information to DeCoRAM as XML metadata. The inpwnager component
parses this XML metadata into an in-memory data structusgaud the replica allocation
process.

2. Node selectorTo attempt a replica allocation, the allocation algorithomstrselect a can-
didate nodee.g, using efficient processor selection heuristics based mpacking R6.
Thenode selector componecdn be configured to select suitable processors based on first
fit and best-fit bin packing heuristic8§ that reduce the total number of processors used,
though other strategies can also be configured.

3. Admission controller. Feasibility checks are required to allocate a replica taagssor.

As described above, the goal of DeCoRAM’s allocation akioniis to ensure both real-
time and fault-tolerance requirements are satisfied wHenading a replica to a processor.
The admission controller componegan be strategized by a feasibility testing strategy,
such as our enhanced time-demand analysis algorithm (stiersiél.3.1.2).

4. Task replicator. Thetask replicator componergdds a set oK replicas for each task
in the input task set and sorts the resultant task set acgptdia task ordering strategy to
facilitate applying the feasibility algorithm by the admiisn controller component. Since
FERRARI uses time-demand analys8] for its feasibility criteria, the chosen task or-
dering strategy is RMS prioritization, with the tasks sdrieom highest to lowest rate to
facilitate easy application of the feasibility algorith@ther task ordering criteria also can

be used by the task replicator component.

40

www.dre.vanderbilt.edu/cosmic

For the closed DRE systems that we focus on in this paper,utpubfrom the DeC-
oRAM Allocation Engine framework is (1) the replica-to-rethapping decisions for all
the tasks and their replicas in the system, and (2) the RMS8ifpes in which the primary
and backup replicas need to operate in each processor. Jtpistdormat may change de-
pending on the type of algorithm and feasibility criteri@dsThe output serves as input to
the deployment and configuration (D&C) engine (describeslaationlll.3.3). This staged

approach helps automate the entire D&C process for closdel §Rtems.

[11.3.3 DeCoRAM Deployment and Configuration (D&C) Engine

The replica-to-node mapping decisions must be configurdgdiwithe middleware,
which provides the runtime infrastructure for fault managat in DRE systems. Chal-
lenge 3 in Sectioml.2.2 highlighted the need for a deployment and configuration loigpa
ity that is decoupled from the underlying middleware. Thapability improves reuse and
decouples the task allocation algorithms from the middievifrastructure.

The DeCoRAM D&C Engine automatically deploys tasks andiceglin their appro-
priate nodes and configures the underlying middleware us$)§00 lines of C++. Figur8
shows how this D&C engine is designed using the Bridge pa{tel], which decouples
the interface of the DeCoRAM D&C engine from the implemeiotatso that the latter
can vary. In our case, any real-time fault-tolerant compomeiddleware can serve as
the implementation. By using a common interface, DeCoRAM @pgerate using various
component middleware, such d9f, 12§.

The building blocks of DeCoRAM's D&C engine are describetbie

e XML parser. The XML parser componerdonverts the allocation decisions captured
in the deployment plan (which is the output of the allocagmgine) into in-memory data
structures used by the underlying middleware.

¢ Middleware deployer. Themiddleware deployer componenstantiates middleware-

specific entities on behalf of application developers,udoig essential building blocks of

41

any fault tolerance solution, such as teelication managerwhich manages the replicas;
a per-process monitgrwhich checks liveness of a host; asthte transfer agentwhich
synchronizes state of primary with backups.

e Middleware configurator. The middleware configurator componecbnfigures the
QoS policies of the real-time fault-tolerant middlewareptepare the required operating
environment for the tasks that will be deployed. Examplethese QoS policies include
thread pools that are configured with appropriate threadpearities,e.g, RMS priorities
for periodic tasks.

e Application installer. Theapplication installer componeimstalls and registers tasks
with the real-time fault-tolerant middleware.g, it registers the created object references
for the tasks with the real-time fault-tolerant middlewaddéten these references are main-
tained by middleware entities, such as the replication manand fault detectors. Client

applications also may be transparently notified of theseatlgferences.

From DeCoRAM Lagend —— Actual communication
Allocation: Engine e Logical communication
——In-memory data structure—» Middleware-specific
XML Parser > !
aree D&C Mechanisms -
Middleware N Replica State Xfer Host
Deployer "Eéa)" -=-1===-%| Manager | | Manager || Monitor
;---Ir?;;':;»- % Component Component }‘ @
Middleware
Configurator ~ feenfigurer=sp==-byoccess-- - Ll
@
Prio=100| | Prio=200
Application Container
Installer @ """" Component Server
Interface bridge Implementation

Figure 8: Architecture of the DeCoRAM D&C Engine

DeCoRAM’s D&C engine provides two key capabilities: (1) apation developers

42

need not write code to achieve fault-tolerance, as DeCoRAMmates this task for the
application developer, and (2) applications need not biicted to any particular fault-

tolerant middleware; for every different backend, DeCoRAdVrequired to support the
implementation of the bridge. This cost is acceptable sithedbenefits can be amortized

over the number of DRE systems that can benefit from the adioma

[11.4 Evaluation of DeCoRAM

This section empirically evaluates DeCoRAM along seveirakthsions by varying the

synthetic workloads and the number of tasks/replicas.

[11.4.1 Effectiveness of the DeCoRAM Allocation Heuristic

By executing FERRARI on a range of DRE system tasks and Qo3resgents, we
demonstrate the effectiveness of DeCoRAM’s allocatiorriséa in terms of reducing the
number of processors utilized.

Variation in input parameters.

We randomly generated task sets of different sidewhereN = {10,20,40, 80, 160}.
We also varied the number of failures we toleratégwhereK = {1, 2, 3,4}. DRE systems
often consist of hundreds of applications, while passiveplicated systems often use 3
replicas, which make these input parameters reflect reddwgstems. For each run of the
allocation engine, we varied a parameter cafteak load which is the maximum utilization
load of any task in the experiment. Our experiments vamed loadbetween 10%, 15%,
20%, and 25%.

For each task in our experiments, we chose task periods gratumiformly distributed
with a minimum period of 1 msec and a maximum period of 1,00@an#fter the task
period was obtained, each task load was picked at random dramiformly distributed
collection with a minimum task load of 0% up to the specifiedkimaum task load, which

determines the worst-case execution times of each task.

43

We applied a similar methodology to pick the worst-caseestghchronization times for
all tasks between 1% and 2% of the worst-case execution tiresch task. The deadline
of each task was set to be equal to its period. Our objectivanying these parameters as
outlined above was to understand how effectively DeCoRANuces resources and how

each input parameter impacts the result.

60
Varying Number of Tasks & Backups with 10% Max Load
50 .
2 10 Tasks :
o m 20 Tasks :
& 40 — . :
= B 40 Tasks E -
5 : :
p =80 Tasks : :
E 30 -— w160 Tasks : ;
a ; b
Q 2
2 : E
< 20 e B f |
)
£
R) i
3 10
0 -
No- | FF- | BF- | AFT | No- | FF- | BF- |AFT | No- | FF- | BF- | AFT | No- | FF- | BF- |AFT
FT | FT | FT FT | FT | FT FT | FT | FT FT | FT | FT
1 Backups 2 Backups 3 Backups 4 Backups

Figure 9: Varying number of tasks with 10% max load

Evaluation criteria. To determine how many resources FERRARI was able to save, we
defined two baseline bounds:

e Lower boundwhere FERRARI determined the lower bound on processordetkee
by implementing the allocation heuristi8d] that is known to allocate tasks without fault
tolerance (No-FT) in the minimal number of processors.

e Upper boundwhere FERRARI determined the upper bound on number of peace

44

needed by allocating replicas for each task using the same heurigt (we make sure
that no two replicas of a task are in the same processor). cdmBguration represents
active replication fault-tolerance (AFT) with the minimmalmber of processors used.

We then strategized FERRARI to use the first-fit (FF-FT) anst-fie(BF-FT) alloca-
tion techniques, and computed the number of processorede&kctionll.3.2 showed
how the node selector component in the DeCoRAM Allocatiogif® can be strategized

with these techniques.

70
Varying Number of Tasks & Backups with 15% Max Load

60

@ 10 Tasks

m 20 Tasks "
So IS [— :

@ 80 Tasks :
40 1| =160 Tasks :

Number of processors utilized

2 :
10 +—4 :
0 ad
No- | FF- | BF- |AFT|No- AFT|No- | FF- | BF- |AFT|No- | FF-
FT |FT | FT FT | FT | FT FT |FT | FT
1 Backups 2 Backups 3 Backups 4 Backups

Figure 10: Varying number of tasks with 15% max load

Analysis of results.Figures9, 10, 11, and 12 show the number of processors used when
each of the allocation heuristics attempts to allocateimgrgumber of tasks with varying
max loadfor a task set. AN andK increase, the number of processors used also increased

exponentially forAFT. This exponential increase in processors is due to the mataithe

45

active replication scheme, which executes all the repliocgzovide fast failure recovery

on a processor failure.

100
i Varying Number of Tasks & Backups with 20% Max Load
£ 10 Tasks E
- 80 T w20 Tasks :
@ N 40 Tasks _ E_
:% 70 1] moomasts : :
> 60 -] ®160Tasks
w 90 : i
3 : B
e 40 -
a
5 30 : - | 0]
g i
E 20] n L
=
< 10 4 i
0 .
No-| FF- | BF- |AFT|No- | FF-| BF- |AFT|No-| FF- | BF- |[AFT[No- | FF- | BF- |AFT
ET | BT |'ET ET'| ET | ET ETi [[ET |ET ET | ET| ET
1 Backups 2 Backups 3 Backups 4 Backups

Figure 11: Varying number of tasks with 20% max load

In contrast, when DeCoRAM uses th&-FT or the BF-FT allocation heuristics, the
rate of increase in number of processors used in comparigbntine No-FT allocation
heuristic is slower compared #®FT. For example, wheiK is equal to 1, the number of
processors used by both tR&-FT andBF-FT allocation heuristics is only slightly larger
than those used by tlido-FT allocation heuristics.

As the number of tasks and processor failures to tolerateases, the ratio of the
number of processors used by fie-FT and theBF-FT allocation heuristics to those used
by theNo-FT allocation heuristic increases, but at a rate much slowaar the increase in

the case oAFT. Particularly for largeN as well aK (for example, see FigurE2, 160 tasks

46

120

Varying Number of Tasks & Backups with 25% Max Load
100
. @10 Tasks
9 m 20 Tasks
= 80 40 Tasks :
§ @ 80 Tasks :
- & 160 Tasks :
@ :
7] 60 :
0 E
° m
3 5 E E
'g' 40 B H
: %
]
: E
E 2054 ; g
z
0 2
No- | FF- | BF- |AFT|No-| FF-| BF-|AFT|No- | FF- | BF- |[AFT|No-| FF- | BF-|AFT
ET | ET | ET ET | BT ET ET | BT (T ET | ET'| ET
1 Backups 2 Backups 3 Backups 4 Backups

Figure 12: Varying number of tasks with 25% max load

and 4 backups for each task), the number of processors usbé Bi-FT and theBF-FT
allocation heuristics is only half the number of processisied byAFT.

This resultis a direct consequence of the relaxation aitiscribed in Sectioll.3.1.2.
As the number of tasks to allocate and number of backup eepiireases, the look ahead
step finds more opportunities for passive overbooking okbps on a processor for FF-FT

and BF-FT allocation heuristics.

I11.4.2 Validation of Real-time Performance

We now empirically validate the real-time and fault-toleza properties of an experi-
mental DRE system task set deployed and configured using B&RMo The experiment
was conducted in the ISISlab testbeawy. dr e. vander bi | t. edu/ | SI Sl ab) using
10 blades (each with two 2.8 GHz CPUs, 1GB memory, and a 40 &8 dnd running the

a7

www.dre.vanderbilt.edu/ISISlab

Fedora Core 6 Linux distribution with real-time preemptpaiches\iww. ker nel . or g-
/ pub/ 1'i nux/ kernel / proj ect s/ rt)forthe kernel. Our experiments used one CPU
per blade and the blades were connected via a CISCO 37506hgwia 1 Gbps LAN.

The experimental setup and task allocation follows the mpidsented in Figuré and
Table2. For our experiment we implemented the Bridge patt&dj [n the DeCoRAM
D&C engine for our FLARe middlewarée’]. Clients of each of the 5 tasks are hosted in 5
separate blades. FLARe’s middleware replication managenrthe remaining blade.

The experiment ran for 300 seconds. We introduced 2 procésitares (processors
P1 and P2 in Figuré) 100 and 200 seconds, respectively, after the experimenstasted.
We used a fault injection mechanism where server taskssit() system call (crashing
the process hosting the server tasks) while the clientENT-A or CLIENT-B make invo-
cations on server tasks. The clients receizaiM_FAILURE exceptions and then failover
to replicas according to the order chosen by DeCoRAM.

Figure 13 shows the response times observed by the clients despifailines of 2

processors. As shown by the lalrein Figure 13, at 100 seconds when replica Al fails

3 120

[

(@]

© 100 :
2 (CLIENT-B)
é SO [Nkl bl p i s
[¢D)

£ 607

|_

(0] i
g 40 W _® (CLIENT-A)
2 20

[¢D)

oY

50 100 150 200 250 300

Time (sec)
Figure 13: DeCoRAM Empirical Validation

48

www.kernel.org
/pub/linux/kernel/projects/rt

(processor P1 fails, thereby failing B1 as well), clientENT-A experiences a momentary
increase of 10.6 milliseconds in its end-to-end respomse,twhich is the combined time
for failure detection and subsequent failover but stabédizmmediately, thereby ensuring
soft real-time requirements. The same behavior is alsoreédet 200 seconds (see label
B) when P2 fails.

These results demonstrate that irrespective of the ovknbgof the passive replicas,

DeCoRAM can still assure real-time and fault-toleranceafgplications.

[11.4.3 Evaluating DeCoRAM'’s Automation Capabilities

We now define a metric that counts the number of steps peryg®eglat and configura-
tion activity to provide a qualitative evaluation of devedw effort saved using DeCoRAM.
AssumingN number of tasksKk number of failures to tolerate, aM processors needed
to host the tasks, Tabl@ shows the efforts expended by the developer in conventional
approaches versus using DeCoRAM (we assume the use of olR&[Areal-time fault-

tolerant middleware).

Activity Effort (Steps Required)

Manual | DeCoRAM
Specification N N
Allocation N*(K+1) 0
XML Parsing 1 0
Middleware Deployment | 1+ N + 2*M 0
Middleware Configuration M 0
Application Installation 2*N*(K+1) 0

Table 3: Effort Comparison

The contents of the table are explained below. IRdaasks, both the conventional and
DeCoRAM approaches require developers to specify the Qg@rements. All steps in
DeCoRAM are then automated and hence no effort is expendde\mlopers. In contrast,
in a manual approach, developers must determine the abbodat K + 1 replicas (primary

andK backups) of thé\ tasks followed by one step in parsing the XML output.

49

Middleware deployment requires one step in deploying thAR& middleware repli-
cation managem\ steps to install the FLARe client request interceptors @Ntclients
of the servers, and 2 steps each to deploy the FLARe monitbFaARe state transfer
agent on each of thigl processors. One step is then necessary to configure thdyinger
middleware €.g, setting up thread pools with priorities) & processors for a total dfl
steps. Finally, installation of each task requires twostepegister a task with the FLARe
middleware replication manager and FLARe state transfentaigr theN tasks withK + 1

replicas each.

1.5 Concluding Remarks

This paper describes the structure, functionality, andoperance of the DeCoRAM
deployment and configuration framework, which provides @ehceplica allocation algo-
rithm called FERRARI that provides real-time and faultet@ince to closed DRE systems
while significantly reducing resource utilization. DeCoRAlso provides a strategizable
allocation engine that is used to evaluate FERRARI's abilitreduce the resources re-
quired in passively replicated closed DRE systems. BasdHeodecisions made by FER-
RARI, DeCoRAM'’s deployment and configuration engine autbcadly deploys applica-
tion components/replicas and configures the middlewarearappropriate nodes, thereby
eliminating manual tasks needed to implement replica atlon decisions. The results
from our experiments demonstrate how DeCoRAM provides-etisttive replication so-
lutions for resource-constrained, closed DRE systems.

Below is a summary of lessons learned from our work devebtpaid empirically eval-

uating DeCoRAM:

» DeCoRAM requires a small number of additional processopsadvide fault-tolerance,
particularly for smaller number of processor failures tietate,i.e., smaller values

of K.

50

» As loads contributed by individual tasks increases, thesgga processor reduc-
tion increases when compared with active replication sibe€oRAM exploits the
failover order of backup replicas to overbook multiple bazkeplicas whose ranks

are high and whose lower ranked replicas are deployed agiffsient processors.

» The gains seen by FERRARI hold when the state synchronizatierhead is a small
fraction of the worst case execution time. As the state symihation overhead
approaches 50% or more of the WCET, the reduction seen irgsocs consumed is
no longer attractive, which indicates that such DRE systexang benefit from using

active replication.

DeCoRAM is available in open-source formatatw. dr e. vander bi | t . edu/ ~j ai -

De CoRAM

51

www.dre.vanderbilt.edu/~jai
DeCoRAM

CHAPTER IV

SCALABLE QOS PROVISIONING, DEPLOYMENT, AND CONFIGURATION
OF FAULT-TOLERANT DRE SYSTEMS

Coordinated allocation of both CPU as well as network resesiare required by many
DRE systems to satisfy their end-to-end QoS requiremenihodgh CPU QoS mecha-
nisms, such as bin-packing algorithms, and network QoS aresims, such as differenti-
ated services (DiffServ), can manage a single resourceletisn, relatively little work has
been done on QoS-aware mechanisms for managing multipgedgeineous resources in
a coordinated, integrated, and non-invasive manner tostippd-to-end application QoS
requirements.

In this chapter, we present two contributions to the studynaddleware that sup-
ports QoS-aware deployment and configuration of applinatio DRE systems. First,
we present a model-driven component middleware framewalled NetQoPE and de-
scribe how it shields applications from the complexitiesovfer-level CPU and network
QoS mechanisms by simplifying (1) the specification of ggplgation CPU and per-flow
network QoS requirements, (2) resource allocation andlaatin decisions (such as ad-
mission control), and (3) the enforcement of per-flow net@oS at runtime. Second, we
empirically evaluate how NetQoPE provides QoS assurancapfolications in distributed
real-time and embedded (DRE) systems. Our results denavastrat NetQoPE provides
flexible and non-invasive QoS configuration and provisigntapabilities by leveraging
CPU and network QoS mechanisms without modifying applicesiource code.

The rest of this chapter is organized as follows. Sechibh introduces the research
problem and provides the motivation for our work; Sectid2 describes a case study that

motivates common requirements associated with provisgp@QioS for DRE applications;

52

SectionlV.3 explains how NetQoPE addresses those requirements vialiistage model-
driven middleware framework; Sectiévi.4 empirically evaluates the capabilities provided
by NetQoPE in the context of a representative DRE applinatese study; Finally, Sec-

tion IV.5 provides a summary of our contributions.

V.1 Introduction

Emerging trends and limitations. Distributed real-time and embedded systems (DRE),
such as smart buildings, high confidence medical devicesgsteéms, and traffic control
and safety systems consist of applications that partieipatmultiple end-to-end appli-
cation flows, operate in resource-constrained environspemd have varying quality-of-
service (QoS) requirements driven by the dynamics of thesighl/environment in which
they operate. For example, smart buildings can host difféyges of applications with di-
verse (1) CPU QoS requiremenésd, personal desktop applications versus fire sensor data
analyzers), and (2) network QoS requiremestg (transport of e-mails versus transport
of security-related information). In such systems, thera need to allocate CPU and net-
work resources to contending applications subject to timstcaints on resources imposed
by the physical phenomenea.§, a fire may partition a set of resources requiring rerouting
of network flows).

The QoS provisioning problem is complex due to the need ferdiftiate applications
and application flows at the processors and the underlyitwgank elements, respectively,
so that mission-critical applications receive better genfance than non-critical applica-
tions [100, 136. Overprovisioning is often not a viable option in cost- ams$ource-
constrained environments where DRE applications deplagdn emerging markets that
cannot afford the expense of overprovisioning. DRE appboadevelopers must therefore
seek effective resource management mechanisms that ceiereffi provision CPU and
network resources, and address the following two limitaim current research:

Limitation 1: Need for physics-aware integrated allocation of multiple resources.

53

Prior work has focused predominantly on allocating and galeg CPU B1, 57] or net-
work resources]8, 81] in isolation. While single resource QoS mechanisms hawnbe
studied extensively, little work has focused on coordidateechanisms that allocate mul-
tiple resources, particularly for DRE applications whére toordinated resource manage-
ment must be aware of the physical dynamics. In the absensecbf mechanisms, DRE
applications systems may not meet their QoS goals. For eeamp application CPU al-
location algorithm 81, 158, could dictate multiple placement choices for applicafg),
but not all placement choices may provide the netwaimkl CPU QoS because physical
limitations may not permit certain allocations.g, the placement of a fire sensor impacts
its wireless network connectivity to nearby access poin®jordinated mechanisms are
therefore needed to allocate CPU and network resourcesiitiegrated manner.

Limitation 2: Need for a non-invasive application-level resource management fra-
mework. Even if an integrated, physics-aware multi-resource meament framework
existed for DRE applications, developers would still inaegcidental complexities in us-
ing the low-level APIs of the framework. Moreover, applioatsource code changes may
be needed whenever changes occur to the deployment cofgextsource and destina-
tion nodes of applications), per-flow network resource meguents, per-application CPU
resource requirements, or IP packet identifiers.

Middleware frameworks that perform CPQB9, 78, 101, 123 157 or network [30,
40, 136, 166 QoS provisioning often shield application developersifrthese acciden-
tal complexities. Despite these benefits, DRE applicateamsstill be hard to evolve and
extend when the APIs change and middleware evolve. Addmgsbese limitations re-
quires higher-level integrated CPU and network QoS prowisig technologies that de-
couple application source code from the variabilitieg)(different source and destination

node deployments, different QoS requirement specificaliassociated with their QoS

54

requirements. This decoupling enhances application recigess a wider range of deploy-
ment contextsd.qg, different deployment instances each with different Qagir@ments),
thereby increasing deployment flexibility.

Solution approach— Model-driven deployment and configuration middleware for
DRE applications. To simplify the development of DRE applications, we develbm
multistage, model-driven deployment and configuratiomieork calledNetwork QoS
Provisioning Enging[NetQoPE) that integrates CPU and network QoS provisioriag
declarative domain-specific modeling languages (DSML7].[NetQoPE leverages the
strengths of middleware while simultaneously shieldingetigpers from specific mid-
dleware APIs. This design allows system engineers and addtdevelopers to perform
reusabledeployment-time analysis (such as schedulability ana[$8]) of non-functional
system properties (such as CPU and network QoS assuranmoesdido-end application
flows). The result is enhanced deployment-time assuraratetie QoS requirements of

DRE applications will be satisfied.

IV.2 Motivating NetQoPE’s QoS Provisioning Capabilities
This section presents a case study of a representative Diti€atpn from the domain
of smart office environments. We use this case study thrautghe chapter to motivate and
evaluate NetQoPE’s model-driven, middleware-guided CRireetwork QoS provisioning

capabilities.

IV.2.1 Smart Office Environment Case Study

Smart offices belong to a domain of systems caadart Buildingd 146 and show-
case state-of-the-art computing and communication itrfresure in its offices and meeting
rooms, as shown in Figur®4. Sensors and actuators pervade across a smart office enter-
prise, and control different functionality within the ergase.

For example, ventilation and air conditioning systems ametrolled by sensors that

55

monitor and send current room temperatures to an air condiiy service in the com-
mand and operations center using the communication infictstres of the smart office
enterprise. The air conditioning service analyzes the@grdata and automatically con-
figures the actuators in response to control room tempestdin addition to the network
traffic associated with the sensors, actuators, and otlaedeembedded systems, the com-
munication infrastructure of a smart office enterprise soahared by the network traffic
associated with the day-to-day enterprise operationseoéthployeesd.g, e-mail, video
conferencing).

Below we describe the cyber physical traits of the smart ®ffinvironment, focusing
on the development and deployment challenges DRE applicakevelopers face when
ensuring the integration between the cyber and physicalcaspf the system.

¢ Fire and smoke managemetetectors are placed in different rooms to send periodic
sensory information to a fire and smoke management servicéhel event of a fire, this
service should activate the sprinkler system in the rigatgs$, activate the public address
system announcing the right evacuation paths for occupzntse building, and notify
external entities, such as fire stations and hospitals dhttident with the right details.

While designing and deploying this capability, developersst ensure the delivery of
sensory data to the management service—and the outgoifig fram this service—is
high priority, i.e,, it should always obtain the desired CPU and network ressireven
though the emergency mode operatierg(in the event of a fire) of this service is infre-
guent. Moreover, sensory and actuation traffic must behieliaThe service should also
adapt its policies of routing information to other resograden the current set of resources
become unavailable,g, due to fire or other adverse event.

e Security surveillanceThis service uses a feed from cameras and audio sensors in
different rooms and performs appropriate audio and videxgssing to sense physical
movements and other intrusions. To notify the security mdnmbom, developers must

ensure that the input feed from these sensors obtain higivbdth for their multimedia

56

Surveillance
Business [}
activities
=

Fire &
smoke

Video
conference
21
AC |SSE b
b Security & IT
" ~ Operations
e, — ==
Smart Office Enterprise Services
. .
=l ==]] | [revena
’ ’ ’ Software
E components
b . = =
"Z ‘-‘”_- = Network
’ ’ routers
Deployment of Services & QoS Classification > Physical
Fire and Smoke control: High Priority E’ hosts
Temp control, Intruder detection: High Reliability
Videoconferencing: Multimedia
Email, calendar mgmt: Best Effort

Figure 14: Network Configuration in a Smart Office Environment

traffic, while the outgoing alert notifications and actieatiof door contro
high priority. The image processing task must also be aléutas required

to perform intrusion detection.

e Air conditioning and lighting control.The air conditioning and lighting control ser-
vice maintains appropriate ambient temperatures anditightespectively, in different
parts of a building, including business offices, conferemcens and server rooms. It also
turns off lights when rooms are not occupied to save enerfgis Jervice receives sensory

data from thermostats and motion sensors, and controlsrtberalitioning vents and light

switches. This service must be assured reliable transmnisgiinformation,

not necessarily require high priority.

57

Is are provided

CPU resources

though it does

e Multimedia video and teleconferencin@ffices often provide several multimedia-
enabled conference rooms to conduct meetings simultalyedisese multimedia confer-
ences require high bandwidth provisioning. A moderatotaahemeeting submits a request
for bandwidth to this service, which must be reliably trarnted to the service. The service
in turn must provision the appropriate bandwidth for the tmedia traffic. This service
may also need to actuate a public address system informiogig@ef a meeting. Since
resources are finite, developers must make tradeoffs aighdbss category of public ad-
dress announcements to the best effort class of traffic gththat announcements about
evacuations must be treated with high priority.

e Email and other web trafficOffices also involve a number of other kinds of traffic
including email, calendar management, and web traffic. $&érgice must manage these

best effort class of traffic on behalf of the people.

IV.2.2 Challenges in Provisioning and Managing QoS in the St Office

We now describe the challenges encountered when implengght QoS provisioning
and managing steps described above in the DRE applicatiahsamprise our case study:

¢ Challenge 1: Physics-aware QoS requirements specificatioManually modifying
application source code to specify both CPU and network @ofirements is tedious,
error-prone, and non-scalable. In particular, applicegticould have different resource re-
guirements depending on the physical context in which theylaployed. For example, in
our smart office case study, fire sensors have different itapoe levels€.g, fire sensors
deployed in the parking lot have lower importance than thosthe server room). The
sensor to monitor flows thus have different network QoS meguénts, even though the
software controllers managing the fire sensor and the moaitoreusable units of func-
tionality. It may be hard to envision at development timetladl contexts in which source
code will be deployed; if such information is readily avaiky, application source code can

be modified to specify resource requirements for each okthoatexts.

58

The need to know source and destination addresses of arcatppii—coupled with
the fact that multiple choices are possible for deployingliaations—makes changing ap-
plication source code to specify resource requirementsxiffle and non-scalable. Sec-
tion IV.3.1 describes how NetQoPE provides a solution to this challdngeroviding
a domain-specific modeling language (DSML) to support desiige application non-
invasive specification of per-application network and CPaSQ@equirements.

e Challenge 2: Application resource allocation Manual modifications to source code
to reserve resources tightly couple application compawith a network QoS mechanism
API (e.g, Telcordia’s Bandwidth Broker28]). This coupling complicates deploying the
same application component with resources reserved udgliifpeent network QoS mech-
anism API €.g, GARA Bandwidth Broker46]). Similarily, source code modifications are
also required when the same application is deployed wiflergifit network QoS require-
ments €.g, requesting more bandwidth on its application flows).

Moreover, network QoS mechanism APIs that allocate netweskurces require IP
addresses for hosts where the resources are allocated. d@entp that require network
QoS must therefore know the physical node placement of thgpoaents with which they
communicate. This component deployment information mayrideown at development
time since deployments are often not finalized until CPUcatmn algorithms decide them.
Maintaining such deployment information at the source dedel or querying it at runtime
is unnecessarily complex.

Ideally, network resources should be allocated without ifgody application source
code and should handle complexities associated with spegifipplication source and
destination nodes, which could vary depending on the depéoy context. Sectioh/.3.2
describes how NetQoPE provides a solution to this chall&ygeoviding a resource allo-
cator framework that supports resource reservation fdr epplication and all its applica-

tion flows in a non-invasive and transparent manner.

59

e Challenge 3: Application QoS configuration.Application developers have histori-
cally written code that instructs the middleware to proviteappropriate runtime services,
e.g, DSCP markings in IP packet$3q. Since applications can be deployed in different
contexts, modifying application code to instruct the meddhre to add network QoS set-
tings is tedious, error-prone, and non-scalable.

Application-transparent mechanisms are therefore netdeohfigure the middleware
to add these network QoS settings depending on the applicdéployment context. Sec-
tion 1V.3.3 describes how NetQoPE provides a solution to this challdnygproviding a
network QoS configurator that provides deployment-timdigamnation of component mid-
dleware containers to automatically add flow-specific idiens to support router layer QoS

differentiations.

IV.3 NetQoPE'’s Multistage Network QoS Provisioning Architecture

This section describes how NetQoPE addresses the challéoge SectionV.2.2 as-
sociated with allocating and providing network and CPU Qo&ndem to DRE applica-
tions. NetQoPE deploys and configures component middlebased DRE applications
and enforces their network and CPU QoS requirements usengnthtistagei(e., design-,
pre-deployment-, deployment-, and run-time) architecgirown in Figurd5. NetQoPE’s
multistage architecture consists of the following elera@émthe workflow, which automates
the task of QoS provisioning for DRE applications.

e TheNetwork QoS specification languag€NetQoS), which is a DSML that supports
design-time specification of per-application CPU resousmglirements, as well as per-
flow network QoS requirements, such as bandwidth and delassa@ flow. NetQoPE
uses NetQoS to resolvghallenge lof SectionlV.2.2, as described in Sectidw.3.1.

e The Network Resource Allocation Framework (NetRAF), which is a middleware-

based resource allocator framework that uses the netwogr@guirements captured by

60

NetQoSas input at pre-deployment time to help guide QoS provisigneéquests on the un-
derlying network and CPU QoS mechanisms at deployment the¢QoPE uses NetRAF
to resolveChallenge 2of SectionlV.2.2, as described in SectidN.3.2.

Design-time
Deployment

pPI:n Stage 2 solutions
Application g NetRAF Pre-deployment-

network QoS time solutions

requirements

Deployment-time
Allocates solutions

network - Runtime
resources solutions

Software
=l Component

Deployment
Plan

Deploys and P
configures CPS
system 1

Add network QoS
settings

Figure 15: NetQoPE’s Multistage Architecture

e TheNetwork QoS Configurator (NetCON), which is a middleware-based network
QoS configurator that provides deployment-time configaratif component middleware
containers. NetCON adds flow-specific identifieegg(DSCPS) to IP packets at runtime
when applications invoke remote operations. NetQoPE us&SON to resolv&hallenge
3 of SectionlV.2.2, as described in SectidN.3.3.

NetQoPE implementation technologies.We developed a prototype of the smart office
environment case study using the Lightweight CORBA CompbModel [165. We also
used a Bandwidth Broker2f] to allocate per-application-flow network resources using
DiffServ network QoS mechanisms. In addition, we used theede Modeling Envi-

ronment (GME) 1] to create domain-specific modeling languages (DSMU€) [hat

61

simplify the development and deployment of smart office emment applications (see
AppendixA for an overview of all these technologies).

The remainder of this section describes each element in ¢h@MPE’s multistage ar-
chitecture and explains how they provide the functionaktyuired to meet the end-to-end
QoS requirements of DRE applications. Although the casgystuthis chapter leverages
LwCCM and DiffServ, NetQoPE can be used with other networlS@uechanisms(g,

IntServ) and component middleware technologeeg,(J2EE).

IV.3.1 NetQoS: Supporting Physics-aware CPU and Network Q8 Requirements
Specification

To resolveChallenge 1of SectionlV.2.2, NetQoPE enables DRE application develop-
ers to specify their resource requirements at applicateplayment-time using a DSML
called theNetwork QoS Specification LanguadetQoS). NetQoS is built using the Generic
Modeling Environment (GME)71] and works in concert with th@latform Independent
Component Modeling Languad®ICML) [10]. NetQoS provides applications with an
application-independent, declarative (as opposed tacgtn-intrusive B0, middleware-
dependent3d9], and OS-dependenB%]) mechanism to specify multi-resource require-
ments simultaneously that can account for the physicalesonbh which the system is
deployed.

NetQoS also allows specifying resource requirements dgcapipns are deployed and
configured in the target environment. Its declarative meismas (1) decouple this respon-
sibility from application source code, and (2) specialize process of specifying resource
requirements for the particular deployment and usecastawBge describe the steps in
using NetQoS’ capabilities.

1. Declarative specification of resource requirements.DRE applications developers
can use NetQoS to (1) model application elements, such edanés, components, con-

nections, and component assemblies, (2) specify CPU atiiz of components, and (3)

62

SERVER DECLARED, SERVER
CLIENT H!gh Priority, 5000 KBps, Associated DECLARED,
PROPAGATED, with Event Consumer. . High Reliabilty,
High Priority, /. |(OCL checks aggregate bandwidth) 1000 Kbps,
iODO i_<Btp:. . v e /.| Associated with
ssociated wi = I Event Source
Event Source HP_S900._MAX. i &9
HR 1000
TemperatureSensor -
HP_ 2000
- ‘ @ ——— data ® i
Same application Papkﬁfﬁé&bﬁw MonitorController3 ;
code — Different | | glire: r MonitorController2
network QoS
requirements [\ -
1 datai - ------ @< :=::azlelidata
ery ‘BFiréS@n@b‘[I ServerCamera i | MonitorController1
CLIENT ; ;
PROPAGATED, | MM 5000
High Priority, . -
3000 KBps, HP_3000 BEPR
Associated with Model of a
Event Source Component ParkingCamera |CLIENT PROPAGATED,
Instance MultiMedia Diffserv, 5000 KBps,

Associated with Required Interface

Figure 16: Applying NetQoS Capabilities to the Case Study

specify the network QoS classes, sucliasH PRIORITY (HP), HIGH RELIABILITY (HR),
MULTIMEDIA (MM), andBEST EFFORT(BE), bi-directional bandwidth requirements on the
modeled application elementd\etQoS’s network QoS classes correspond to the DiffServ
levels supported by an underlying network-level resouliceator, such as the Bandwidth
Broker [28] we used in our case studyFor example, theip class represents the high-
est importance and lowest latency trafficd, fire detection reporting in the server room)
whereas thediR class represents traffic with low drop rated, surveillance data). Fig-
ure 16 show how NetQoS was used to model the QoS requirements ohsarstudy.

2. Flexible enforcement of network QoSiIn certain application flows in the smart office

IMiddleware such as the Lightweight CORBA Component Modelvatomponents to communicate us-
ing portsthat provide application-level communication endpoiiNstQoS provides capabilities to annotate
communication ports with the network QoS requirement gjmation capabilities.

°NetQoS’s DSML capabilities can also be extended to provédgirements specification conforming to
other network QoS mechanisms, such as IntServ.

63

case study,g.g, a monitor requesting location coordinates from a fire sgrdients con-
trol the network priorities at which requests/replies amtsin other application flow®(g,

a temperature sensor sending temperature sensory informtatmonitors), the servers
control the reception and processing of client requestsudhdesign intentsre not cap-
tured, applications could potentially misuse network teses at runtime, and also affect
the performance of other applications that share the n&twor

To support both models of communicatiare(, whether clients or servers control net-
work QoS for a flow), NetQoS supports annotating each bietliwaal flow using either:
(1) the CLIENT_PROPAGATED network priority model, which allows clients to request
real-time network QoS assurance even in the presence obrietengestion, or (2) the
SERVER DECLARED network priority model, which allows servers to dictate Hegvice
that they wish to provide to the clients to prevent clientsrfrwasting network resources
on non-critical communication.

NetQosS initiates the allocation of CPU and network rescauime behalf of applica-
tions by triggering the next stage of the workflow. Sectid13.3 describes how NetQoPE
uses component middleware frameworks at runtinreatizethe design intent captured by
NetQoS anenforcenetwork QoS for applications.

3. Early detection of QoS specification errors.Defining network and CPU QoS speci-
fications in source code or through NetQoS is a human-intensicess. Errors in these
specifications may remain undetected until later lifecytéges (such as deployment and
runtime) when they are more costly to identify and fix. To iggrcommon errors in net-
work QoS requirement specification early in the developmpease, NetQoS uses built-in
constraints specified via the OMG Object Constraint Langu&CL) that check the ap-
plication model annotated with network and CPU priority reksd

For example, NetQoS detects and flags specification netvesdurce specification
errors, such as negative or zero bandwidth. It also enfaheesemantics of network prior-

ity models via syntactic constraints in its DSML. For exag)pheCLIENT_PROPAGATED

64

model can be associated with ports in the client role oaly,(required interfaces), whereas
the SERVER DECLARED model can be associated with ports in the server role anty, (

provided interfaces). Figurk7 shows other examples of network priority models supports

by NetQoS.
Network Priority Models of SERVER CLIENT Semantics
NetQoS DECLARED PROPAGATED Enforced Using
OCL
Application | Provided Interface Allowed Disallowed Yes
Modeling Required Interface Disallowed Allowed Yes
Elements
(ports) Event Source Allowed Disallowed Yes
Event Consumer Disallowed Allowed Yes
Network Ingress and Egress Non-zero, Non-zero, positive Yes
Priority Model Bandwidth positive KB/sec KB/sec
Options Network Level Allowed Allowed Yes
QoS (aggregate
checking)
Best Effort QoS Allowed Allowed Yes
(no aggregate
checking)

Figure 17: Network QoS Models Supported by NetQoS

4. Preparation for allocating CPU and network resources. After a model has been
created and checked for type violations using NetQoS'd-buitonstraints, network re-
sources must be allocated using a network QoS mechari8mif]. As described in
SectionlV.2.2, this process requires determination of source and déstmi® addresses
of the applications.

NetQoS allows the specification of CPU utilization requiegnts of each component
and also the target environment where components are dzpldyetQoS’s model inter-

preter traverses CPU requirements of each application coerd and generates a set of

65

feasible deployment plans algorithms, suchiiiess fit, best fit andworst fit as well agmax
and decreasingvariants of these algorithms. NetQoS can be used to choeséettired
CPU allocation algorithm and to generate the approprigiogienent plans automatically,
thereby shielding developers from tedious and error-proaaual component-to-node al-
locations.

To perform network resource allocations (see Secfib8.2), NetQoS’s model inter-
preter captures the details about (1) the components, éi)dbployment locations (deter-
mined by the CPU allocation algorithms), and (3) the netw@d§S requirements for each
application flow in which the components participate.

Application to the case study.Figure16 shows a NetQoS model that highlights many ca-
pabilities described above. In this model, multiple ins&mof the same reusable applica-
tion componentsq.g, FireSensorParking and FireSensorServer componenahactated
with different QoS attributes using drag-and-drop.

Our case study has scores of application flows with diffeckant- and server-dictated
network QoS specifications, which are modeled usingENT_PROPAGATED and SER-
VER_DECLARED network priority models, respectively. The well-formedaeof these
specifications are checked using NetQoS’s built-in comdgaln addition, the same QoS
attribute €.g, HR_1000 in Figurel6) can be reused across multiple connections, which
increases the scalability of expressing requirements famaber of connections prevalent
in large-scale DRE applications, such as our smart office@mwent case study.

NetQoS’s ability to plug-in different bin-packing algdrihs to determine CPU alloca-
tions also decouples applications from the responsilafitpanually specifying all possible
allocations to allocate network resources. This featuredpted with NetQoS’s declara-
tive mechanisms to specify resource requirements—shaggdbcations (and hence mod-
ifications to their source code) from the complexities of @pScification and allocation.

SectionlV.4.2 empirically evaluates these capabilities provided by N&Q

66

IV.3.2 NetRAF: Alleviating Complexities in Network Resource Allocation and Con-

figuration

NetQoPE’sNetwork Resource Allocator Framewao(iMetRAF) is a resource allocator
engine that allocates network resources for DRE applioatising DiffServ network QoS
mechanisms, which resolv&hallenge 2described in SectiofV.2.2.. NetRAF allocates
network resources for application flows on behalf of the mpgibns (recall how NetQoS
invokes NetRAF on behalf of the applications as part of tharkflow) and shields appli-
cations from interacting with complex network QoS mechianisPls. To ensure compati-
bility with different implementations of network QoS meciems €.g, multiple DiffServ
Bandwidth Broker implementation28, 46]), NetRAF uses XML descriptors that capture
CPU and network resource requirement specifications (wherke specified using NetQoS
in the previous stage) iQoS-independemhanner. These specifications are then mapped
to QoS-specifiparameters depending on the chosen network QoS mechartientagdk of
enforcing those QoS specifications are then left to the uyidgmetwork QoS mechanism,
such as DiffServ, IntServ, and RSVP.

NetRAF provides a clean separation of functionality betwesource reservation (pro-
vided by NetRAF) and QoS enforcement (done by underlyingvaoit elements), as de-
scribed in the following steps:

1. Network resource allocations.Figure18 shows how NetRAF'&Network Resource Al-
locator Manageraccepts application QoS requests at pre-deployment-tlhygrocesses
these requests in conjunction witiDaffServ Allocator using deployment specific infor-
mation €.g, source and destination nodes) of components and per-flomorie QoS re-

guirements embedded in the deployment plan created by NetQas capability shields
applications from interacting directly with complex API$ metwork QoS mechanisms
thereby enhancing the flexibility NetQoPE for a range of dgplent contexts. Moreover,
since NetRAF provides the capability to request networkuese allocations on behalf of

components, developers need not write source code to ratpiesrk resource allocations

67

for all applications flows, which simplifies the creation aablution of application logic

(see Sectiohv.4.2).

Si=tan i NetRAF
Designer
CPS System Network
model Deployer . Resource
D&C concerns | Parsers Allocator
B P?g‘f(i:le Ll
(o = | per-flow QoS ,
NetQoS - . - ¥ requirements ="\
/ : DSCP
create D&C 4 DiffServ Bt
profile ¥ network QoS Allocator ;
/| mechanism API o
Dac. ’ ‘Ar-ﬂow 5
Bandwidth DSCP IntServ
MDE with NetQoS Broker Allocator
configure

routers : t
4 ntServ
DiffServ
Nstwork Network

Figure 18: NetRAF’s Network Resource Allocation Capabilities

2. Integrated CPU and network QoS provisioning.While interacting with network QoS

mechanism specific allocators.g, a Bandwidth Broker), NetRAF’'s Network Resource
Allocator Manager may need to handle exceptional condtisach as infeasible resource
allocation errors. Although NetQoS checks the well-formest of network requirement
specifications at application level, it cannot identify gvgituation that may lead to scenar-
ios with infeasible resource allocations, since theseni@pe the dynamics of the physical

environment.

To handle such scenarios, NetRAF provides hints to regen&@RU allocations for

68

components using the CPU allocation algorithm selecteddpfiGation developers us-
ing NetQoS. For example, if network resource allocatiotis far a pair of components
deployed in a particular source and destination node, NEtR&uests revised CPU allo-
cations by adding a constraint to not deploy the componaerttse same source and desti-
nation nodes. After the revised CPU allocations are congpidetRAF will (re)attempt to
allocate network resources for the components.

NetRAF automates the network resource allocation procgstelating over the set
of deployment plans until a deployment plan is found thasias both types of require-
ments {.e., both the CPU and network resource requirements) therebgli§ying sys-
tem deployment via the following two-phase protocol: (linitokes the API of the QoS
mechanism-specific allocator, providing it one flow at a twighout actually reserving
network resources, and (2) it commits the network resoufeesl only if the first phase is
completely successful and resources for all the flows cambeessfully reserved.

This protocol prevents the delay that would otherwise barred if resources allocated
for a subset of flows must be released due to failures ocgpuatia later allocation stage. If
no deployment plan yields a successful resource allocatiemetwork QoS requirements
of component flows must be reduced using NetQoS.

Application to the case study. Since our case study is based on DiffServ, NetRAF uses
its DiffServ Allocatorto allocate network resources, which in turn invokes thedgadth
Broker’s admission control capabilitie2g] by feeding it one application flow at a time.
NetRAF’s DiffServ Allocator instructs the Bandwidth Braki reserve bi-directional re-
sources in the specified network QoS classes, as descril&&ettionlV.3.1. The Band-
width Broker determines the bi-directional DSCPs and NdiRAcodes those values as
connection attributes in the deployment plan. This chaggsumes the underlying network
QoS mechanisme(g, the Bandwidth Broker) is responsible for configuring thetess to

provide the per-hop behavio2§].

69

IV.3.3 NetCON: Alleviating Complexities in Network QoS Setings Configuration

NetQoPE’sNetwork QoS ConfiguratoiNetCON) resolveLhallenge 3described in
SectionlV.2.2 by enabling the auto-configuration of component middlewametainers,
which provide a hosting environment for application comganfunctionality. Through
NetCON auto-configuration, containers can add DSCPs to ¢Regtss when applications
invoke remote operations. The current version of NetCONeigetbped for the LwWCCM

component middleware and is shown in Figige

Component Server
P . NetRAF
Container
] Component
o Specific Communication DSCP values
§_, CRmtaxt | Policy ¥ for all flows
il CCMContext
DSCP values for
components in NetCON
this container
rRequests >
A\

Middleware Bus Remote Host m
IP packets with DSCP | Requests | wccm
markings Application

Figure 19: NetCON's Container Auto-configurations

During deployment, NetCON parses the deployment plan (whow includes both
the CPU allocations and network DSCP tags for the connegitimndetermine (1) source
and destination components, (2) the network priority madalse for their communica-
tion, (3) the bi-directional DSCP values (obtained via N&HR and (4) the target nodes
on which the components are deployed. NetCON deploys th@onents on their respec-

tive containers and creates the associated object reBsdacuse by clients in a remote

invocation.

70

NetCON'’s container programming model can transparenty28CPs and enforce the
network priority models (see Figufié). To support theSERVER DECLARED hetwork pri-
ority model, NetCON encodessERVER DECLARED policy and the associated request/-
reply DSCPs on the server’s object reference. When a clieokies a remote operation
with this object reference, the client-side middlewareotisehe policy on the object refer-
ence, decodes the request DSCP, and includes it in the tdguasckets. Before sending
the reply, the server-side middleware checks the policyneaad the reply DSCP is added
to the associated IP packets.

To support theeLIENT_PROPAGATEDNetwork priority model, NetCON configures the
containers to apply aLIENT_PROPAGATEDpolicy at the point of binding an object refer-
ence with the client. In contrast to tl®ERVER DECLARED policy, theCLIENT_PROPA
GATED policy allows clients to control the network priorities Witvhich their requests and
replies traverse the underlying network and differentntBecan access the servers with
different network priorities. When the source componexbkes a remote operation us-
ing the policy-applied object reference, NetCON adds t®aated forward and reverse
DSCP markings on the IP packets, thereby providing netwarg @ the application flow.
A NetQoPE-enabled container can therefore transparedtlybath forward and reverse
DSCP values when components invoke remote operations thergpntainer services.
Application to the case study. In our case study shown in Figude, the FireSensor
software controller component is deployed in two differgrstances to control the oper-
ation of the fire sensors in the parking lot and the server rodtmere is a single Mon-
itorController software component (MonitorController8kigure17) that communicates
with the deployed FireSensor components. Due to diffeeinténportance of the Fire-
Sensor components deployed, however, the MonitorCoatretiftware component uses
CLIENT_PROPAGATED network priority model to communicate with the FireSensame
ponents with different network QoS requirements.

After the first two stages of NetQoPE, NetCON configuresdbetainerhosting the

71

MonitorController3 component with theLIENT_PROPAGATEDpolicy, which corresponds
to theCLIENT_PROPAGATEDNetwork priority model defined on the component by NetQoS.
This capability is provided automatically by containersettsure that appropriate DSCP
values are added at runtime to both forward and reverse comcation paths when the
MonitorController3 component communicates with either BireSensorParking or Fire-
SensorServer component. Communication between the M@uaitdroller3 and the Fire-
SensorParking or FireSensorServer components thus escie required network QoS
since NetRAF configures the routers between the Moniton©tet3 and FireSensorPark-
ing components with the source IP address, destinationdrRead, and DSCP tuple.
NetCON thus allows developers of DRE applications to focnostleeir application
component logic€.g, the MonitorController component in the case study), nathan
wrestling with low-level mechanisms for provisioning netk QoS. Moreover, NetCON
provides these capabilities without modifying applicatmnde, and minimizing runtime

overhead thereby simplifying resource provisioning aghedéd in SectionV.4.4.

IV.4 Empirical Evaluation of NetQoPE
This section empirically evaluates NetQoPE's capabditie provide CPU and net-
work QoS assurance to end-to-end application flows. We fastahstrate how NetQoPE’s
model-driven QoS provisioning capabilities can signifibaneduce application develop-
ment effort compared with conventional approaches. We tlatidate that NetQoPE’s
automated model-driven approach can provide differesdiaietwork performance for a

variety of DRE applications, such as our case study in SetiQ.

IV.4.1 Evaluation Scenario

Hardware and software testbed Our empirical evaluation of NetQoPE was conducted
on ISISlab \wwv. dr e. vander bi | t. edu/ | SI SI ab), which consists of (1) 56 dual-
CPU blades running 2.8 GHz XEONs with 1 GB memory, 40 GB disksl 4 NICs per

72

www.dre.vanderbilt.edu/ISISlab

blade, and (2) 6 Cisco 3750G switches with 24 10/100/1000 &% per switch. Our
experiments were conducted on 15 of dual CPU blades in IB)8lhere (1) 7 blades (A,
B, D, E, F, G, and H) hosted our smart office enterprise casty aftware components
(e.g, a fire sensor software controller) and (2) 8 other blade®(R, S, T, U, V, and W)

hosted Linux router software. Figug® depicts these details.

CcS -- Camera

2D

) -
controller E’ Routers
Component
g -- Server
& Host
BB A2 ' A=) S1s,cs
CN WD
—MS = Swms
D s
Fs .. Firesensor IS - Temperature
controller sensor
Bandwidth controller
andwi .
58~ Broker ms - Monitor
controller

Figure 20: Experimental Setup

The software controller components were developed usenGtAO middleware, which
is an open-source LwWCCM implementation developed atop At real-time CORBA ob-
jectrequest brokedR 3. Our evaluations used DiffServ QoS and the associated\Biaitial
Broker [28] software was hosted on bla@e All blades ran Fedora Core 4 Linux distribu-
tion configured using the real-time scheduling class. Thedsd were connected over a 1
Gbps LAN via virtual 100 Mbps links.

Evaluation scenaria In this scenario six sensory and imagery software comir®kbent

73

their monitored information to three monitor controllecsteat appropriate control actions
could be performed by enterprise supervisors monitoringehal events. For example,
Figure20 shows twdfire sensor controllecomponents deployed on hosts A and B. These
components sent their monitored informatiomtonitor controllercomponents deployed
on hosts D and F. Each of these software controller compsreve their own CPU re-
source requirements and the physical node allocationhtiget components were deter-
mined by the CPU allocation algorithms employed by NetQa8tHer, communication
between these software controllers used one of the tratigses€.g, HIGH PRIORITY
(HP)) defined in SectionV.3.1 with the following capacities on all links:ip = 20 Mbps,

HR = 30 Mbps, andum = 30 Mbps. ThesE class used the remaining available bandwidth
in the network.

To emulate the CPU and network behavior of the software obets when different
QoS requirements are provisioned, we createdTiaet Net QoPE performance bench-
mark suite> We usedTest Net Q0PE to evaluate the flexibility, overhead, and perfor-
mance of using NetQoPE to provide CPU and network QoS asseitarend-to-end appli-
cation flows. In particular, we uséelest Net QOPE to specify and measure diverse CPU
and network QoS requirements of the different software aomepts that were deployed
via NetQoPE, such as the application flow betweenfitleesensor controllecomponent
on host A and thenonitor controllercomponent on host D. These tests create a session
for component-to-component communication with configleakandwidth consumption
(components also consume a configurable percentage of GBuUroe on their hosted pro-
cessors). High-resolution timer probes were used to measundtrip latency accurately

for each client invocation.

3Test Net QQPE can be downloaded as part of the CIAO open-source middlewssediable at
(www. dr e. vander bi | t. edu/ Cl AO.

74

www.dre.vanderbilt.edu/CIAO

IV.4.2 Evaluating NetQoPE’s Model-driven QoS Provisionirg Capabilities

Rationale. This experiment evaluates the effort application develsspend using Net-
QOPE to (re)deploy applications and provision QoS and coespthis effort against the
effort needed to provision QoS for applications via conardl approaches.
Methodology. We first identified four flows from Figur20 whose network QoS require-
ments are described as follows:

e A fire sensor controller component on host A uses the highbgily (HR) class to
send potential fire alarms in the parking lot to the monitortoaller component on host D.

e A fire sensor controller component on host B uses the highifyrigiP) class to send
potential fire alarms in the server room to the monitor cdl@raomponent on host F.

e A camera controller component on host E uses the multimedig class and sends
imagery information from the break room to the monitor coldr component on host G.

e A temperature sensor controller component on host A uselsdasieeffort) class
and sends temperature readings to the monitor controltepoaent on host F.

The clients dictated the network priority for requests agplies in all flowsexceptfor
the temperature sensor and monitor controller component Wiliere the server dictated
the priority. TCP was used as the transport protocol and 2pauih forward and reverse
bandwidth was requested for each type of network QoS traffic.

To evaluate the effort saved using NetQoPE, we developesamdany of technolo-
gies that provide CPU and network QoS assurances to enadet®RBE application flows.
This taxonomy is used to compare NetQoPE’s methodologymfipioning integrated net-
work and CPU QoS for these flows with conventional approacimetuding (1) object-
oriented 10, 136, 166, (2) aspect-orientedp], and (3) component middleware-basaa,[
144 approaches.

Below we describe how each approach provides the followimgtionality needed to
leverage network QoS mechanism capabilities:

e QO0S Requirements specification In conventional approaches applications use (1)

75

middleware-based APIg), 164, (2) contract definition language$3q, (3) runtime as-
pects B8], or (4) specialized component middleware container fates B0] to specify
QoS requirements. These approaches do not, however, proaphbilities to specify both
CPU and network requirements and assume that physical fadenpent for all compo-
nents are decided.€., applications are already deployed in appropriate hog&)ré the
network resource allocations are requested using the ppat® APIs. This assumption
allows those applications to specify the source and degim#& addresses of the applica-
tions when requesting network resources for an end-to-pplication flow.

In such approaches, application source code must changeewdrethe deployment
context €.g, different physical node allocations, component deplaytrier a different
usecase) and the associated QoS requiremerds CPU or network resource require-
ments) change, which limits reusability. In contrast, N&BQrovides domain-specific,
declarative techniques that increase reusability acrofseht deployment contexts and
alleviate the need to specify QoS requirements prograncaibti as described in Sec-
tion IV.3.1.

e Resource allocation Conventional approaches require application deployrhent
fore their per-flow network resource requirements can beigianed by network QoS
mechanisms. Recall that appropriate hosts for each agiplce determined by intelli-
gent CPU allocation algorithm8]] before their per-flow network resource requirements
can be provisioned by network QoS mechanisms. If the requie¢work resources cannot
be allocated for these applications after a CPU allocatexisibn is made, however, the
following steps occur: (1) the applications must be stopp2dtheir source code must be
modified to specify new resource requiremetg{ either source and destination nodes of
the components can be changed, forcing application resgiep@nts as well or for the same
pair of source and destination nodes the network resoueeereznents could be changed,
and (3) the resource reservation process must be restarted.

This approach is tedious since applications may be deplagdde-deployed multiple

76

times, potentially on different nodes. In contrast, NetR#dles deployment changes via
NetQoS models (see Sectitvi3.2) at pre-deployment,e., beforeapplications have been
deployed, thereby reducing the effort needed to changeyeyant topology or application
QoS requirements.

e Network QoS enforcement Conventional approaches modify application source
code [L36 or programming modeldQ] to instruct the middleware to enforce runtime QoS
for their remote invocations. Applications must therefoesdesigned to handle two differ-
ent usecases—to enforce QoS and when no QoS is requiredebyheniting application
reusability. In contrast, NetCON uses a container programgmodel that transparently
enforces runtime QoS for applications without changingyth@urce code or programming
model, as described in Sectitvi3.3.

Based on this taxonomy, we now compare the effort requirgaduision end-to-end
QoS to the 4 end-to-end application flows described aboveyusinventional manual ap-
proaches vs. the NetQoPE model-driven approach. We deamtp effort across the
following general steps: (Inplementationwhere software developers write code to spec-
ify resource requirements and allocate needed resourZedeploymentwhere system
deployers map (or stop) application components on thegetanodes, and (Inodeling
tool use where application developers use NetQoPE to model a DREcappn struc-
ture, specify per-application CPU resource and per-floowask resource requirements,
and allocate needed CPU and network resources.

To compare NetQoPE with other conventional efforts, we skbia realistic scenario
for the 4 end-to-end application flows described above. ilgbenario, three sets of ex-
periments were conducted with the following deploymentarats?

¢ Baseline deployment This variant configured all 4 end-to-end application flovithw
the CPU and network QoS requirements as described abovemaheal effort required

using conventional approaches for the baseline deploymeaiived 10 steps: (1) modify

4In each of the experiment variants, we kept the same peieagiph CPU resource requirements, but
varied the network resource requirements for the apptindtows.

77

source code for each of the 8 components to specify their @pdnements (8 implemen-
tation steps — note that CPU allocation algorithms were tsel@termine the appropriate
physical node allocations for the applications before netwesources were requested for
each application flow), (2) deploy all components (1 deplegtrstep), and (3) shutdown
all components (1 deployment step).

In contrast, the effort required using NetQoPE involveditilewing 4 steps: (1) model
the DRE application structure of all 4 end-to-end applaafiows using NetQoS (1 mod-
eling step), (2) annotate QoS specifications on each apiplicand each end-to-end appli-
cation flow (1 modeling step), (3) deploy all components (dldgment step — this step also
involved allocation of both CPU and network resources faguliaptions using NetRAF’s
two step allocation process described in Sechiv8.2), and (4) shutdown all components
(1 deployment step).

e QoS modification deployment This variant demonstrated the effect of changes
in QoS requirements on manual efforts by modifying the badttwrequirements from
20 Mbps to 12 Mbps for each end-to-end flow. As with the baseliariant above, the
effort required using a conventional approach for the seéctmployment was 10 steps since
source code modifications were needed as the deploymerexterwhanged (in this case
the bandwidth requirements changed across 4 differenbgeg@nt contexts — however,
the CPU resource requirements did not change, and hencephieation physical node
allocations did not change as well).

In contrast, the effort required using NetQoPE involvedepst (1) annotate QoS spec-
ifications on each end-to-end application flow (1 modeliegxt(2) deploy all components
(1 deployment step), and (3) shutdown all components (logepnt step). Application
developers also reused NetQoS’ application structure huodated for the initial deploy-
ment, which helped reduce the required efforts by a step.

e Resource (re)reservation deploymentThis variant demonstrated the effect of chan-

gesin QoS requirements and resource (re)reservationstiagether on manual efforts. We

78

modified bandwidth requirements of all flows from 12 Mbps taMijps. We also changed
the temperature sensor controller component to use theréligibility (HR) class instead
of the best efforBEe class. Finally, we increased the backgrowmrdclass traffic across the
hosts so that the resource reservation request for the flomeba temperature sensor and
monitor controller components fails. In response, depleynhtontexts€.g, bandwidth
requirements, source and destination nodes) were changaeésource re-reservation was
performed.

The effort required using a conventional approach for thel ttheployment involved
13 steps: (1) modify source code for each of the 8 componergpécify their QoS re-
guirements (8 implementation steps), (2) deploy all conepds (1 deployment step), (3)
shutdown the temperature sensor component (1 deploynemt-stote that the resource
allocation failed for the component), (4) modify source ead temperature sensor com-
ponent back to usBe network QoS class (deployment context change) (1 impleatient
step), (5) redeploy the temperature sensor component (byheent step — note that the
CPU allocation algorithms were rerun to change physicakralbcations), and (6) shut-
down all components (1 deployment step).

In contrast, the effort required using NetQoPE for the tldeployment involved 4
steps: (1) annotate QoS specifications on each end-to-gitatpn flow (1 modeling
step), (2) begin deployment of all components, though N&RAre-deployment-time al-
location capabilities determined the resource allocaadare and prompted the NetQoPE
application developer to change the QoS requirements (Hgpyment step), (3) re-
annotate QoS requirements for the temperature sensor campfiow (1 modeling step)
(4) deploy all components (1 deployment step), and (5) sivatdall components (1 de-
ployment step).

Table4 summarizes the step-by-step analysis described abovee Tésults show that

conventional approaches incurred roughly an order of ntadaimore effort than NetQoPE

79

Approaches | # Steps in Experiment Variants
First | Second] Third

NetQoPE 4 3 5
Conventional| 10 10 13
Table 4: Comparison of Manual Efforts Incurred in Conventional and NetQoPE A p-

proaches

to provide CPU and network QoS assurance for end-to-endcapiph flows. Closer exam-
ination shows that in conventional approaches, applinat@velopers spend substantially
more effort developing software that can work across difiedeployment contexts. More-
over, this process must be repeated when deployment cerdegttheir associated QoS
requirements change. In addition, conventional implewrt@nts are complex since the re-
quirements are specified directly using middlewdr@q and/or network QoS mechanism
APIs [81].

Application (re)deployments are also required wheneveemation requests fail. In
this experiment only 1 flow required re-reservation and ihatrred additional effort of 3
steps. If there are large number of flows—and DRE system®likease study often have
scores of flows—conventional approaches require significamore effort.

In contrast, NetQoPE’s ability to “write once, deploy mplé times for different QoS
requirements” increases deployment flexibility and extality in environments that de-
ploy many reusable software components. To provide thisbiléy, NetQoS generates
XML-based deployment descriptors that capture contegtifip QoS requirements of ap-
plications. For our experiment, communication betweersgmsor and monitor controllers
was deployed in multiple deployment contexi®,, with bandwidth reservations of 20
Mbps, 12 Mbps, and 16 Mbps. In DRE applications such as our sagly, however,
the same communication patterns between components coclal m many deployment
contexts.

For example, the same communication patterns could usefahg toour network QoS

80

Deployment contexts

Number of communications
u r of co unicati 2|5|10|20

1 23 | 50 | 95 | 185
5 47 | 110 | 215 | 425
10 77 | 185| 365 | 725
20 137 | 335 | 665 | 1325

Table 5: Generated Lines of XML Code

classesHP, HR, MM, andBE). The communication patterns that use the same network
QoS class could make different forward and reverse bantdwettervationsd.g, 4, 8, or

10 Mbps). As shown in Tablg, NetQoS auto-generates over 1,300 lines of XML code for
these scenarios, which would otherwise be handcrafted plcapion developers. These
results demonstrate that NetQoPE’s model-driven CPU atwdonke QoS provisioning ca-
pabilities significantly reduce application developmefireé compared with conventional
approaches. Moreover, NetQoPE also provides increasadilitgxwhen deploying and
provisioning multiple application end-to-end flows in miplé deployment and diverse QoS

contexts.

IV.4.3 Evaluating NetQoPE’s QoS Customization Capabilites
Rationale. This experiment empirically evaluates the benefits of treeftexibility and
decoupling resulting from NetQoPE’s multi stage architeet and whether the DRE ap-
plications indeed obtain their required QoS.
Methodology. From Figure20, the four flows that were described in Sectidtd.2 were
modeled with the same set of network and CPU QoS requirenusitig NetQoS. The
CLIENT_PROPAGATED hetwork policy was used for all flows, except for the tempaet
sensor and monitor controller component flow, which useds#t®VER DECLARED net-
work policy.

We executed two variants of this experiment. The first vaiged TCP as the transport

protocol and requested 20 Mbps of forward and reverse baltkvior each type of QoS

81

traffic. Test Net QoPE configured each application flow to generate a load of 20 Mhds a
the average roundtrip latency over 200,000 iterations vaé=utated. The second variant
used UDP as the transport protocol arest Net QoPE was configured to makeneway
invocations with a payload of 500 bytes for 100,000 itersgioWe used high-resolution
timer probes to measure the network delay for each invatatiothe receiver side of the
communication.

At the end of the second experiment we recorded 100,000 netseday values (in
milliseconds) for each network QoS class. Those networ&ydehlues were then sorted
in increasing order and every value was subtracted from ithemam value in the whole
sample,i.e., they were normalized with respect to the respective clasgmm latency.
The samples were divided into fourteen buckets based onrt#®ilting values. For exam-
ple, the 1 ms bucket contained only samples thakarto 1 ms in their resultant value, the

2 ms bucket contained only samples whose resultant values<we2 ms but> 1 ms, etc.

Background Traffic in Mbps

Traffic T

ACPe BE T AP | HR | MM
BE (TS - MS) | 85 10 100
HP (FS-MS) | 3010 40 2810 33| 2810 33

HR(FS-MS) | 301040 | 12t0 20| 14to 15| 30 to 31
MM (CS - MS) | 30t040 | 12t0 20| 14to 15| 30 to 31

Table 6: Application Background Traffic

To evaluate application performance in the presence ofgradkd network loads, sev-
eral other applications were run in both experiments, asrited in Table6 (in this ta-
ble TS stands for “temperature sensor controller,” MS stdod“monitor controller”, FS
stands for “fire sensor controller,” and CS stands for “carmmntroller”). NetRAF de-
termined the DSCP values which were then enforced in eagomg packet through the

container auto-configuration effected by NetCON.

82

200,000 -+ -5 eresere s 187,805

1501000 """""""""""""""""""""""""" 132,644 """"

100,000

Latency (microseconds)

50,000

HR MM BE
Network QoS classes

Figure 21: Average Latency under Different Network QoS Classes

Analysis of results. Figure 21 shows the results of experiments when the deployed ap-
plications were configured with different network QoS cémsand sent TCP traffic. This
figure shows that irrespective of the heavy background ¢ratfie average latency expe-
rienced by the fire sensor controller component usingHth@etwork QoS class is lower
than the average latency experienced by all other compsnentontrast, the traffic from
the BE class is not differentiated from the competing backgrouatfit and thus incurs a
high latency {.e., throughput is very low). Moreover, the latency increasegewsing the

HR andmmMm classes when compared to the class.

Figure22shows the (1) cardinality of the network delay groupinggifferent network
QoS classes under different ms buckets and (2) losses @tchyreach network QoS class.
These results show that the jitter values experienced bgpp#cation using thee class
are spread across all the buckets, are highly unpredictable. When combined with packet
or invocation losses, this property is undesirable in DRBliagtions. In contrast, the
predictability and loss-ratio improves when using Hreclass, as evidenced by the spread
of network delays across just two buckets. The applicaiptér is almost constant and is
not affected by heavy background traffic.

The results in Figur@2 also show that the application using the class experienced

more predictable latency than applications usa®yand HR class. Approximately 94%

83

Multimedia Best Effort

| B1 02 03 m4 05 26 m7 @8 B9 010 011 m12 m13 m 14
mili second buckets

High Priority High Reliability

Total Number of Packets Received
HP : 99991; HR : 99998; MNM : 94901; BE : 89924

Figure 22: Jitter Distribution under Different Network QoS Classes

of the Mmm class invocations had their normalized delays within 1 misis Tesult occurs
because the queue size at the routers is smaller fomthelass than the queue size for
theHR class, so UDP packets sent by the invocations do not experi@n much queuing
delay in the core routers as packets belonging teithelass. Thedr class provides better
loss-ratio, however, because the queue sizes at the r@reefarge enough to hold more
packets when the network is congested.

These results demonstrate that NetQoPE can provide sigmifftexibility and cus-

tomizability, while ensuring that applications obtainittrequired QoS.

IV.4.4 Evaluating the Overhead of NetQoPE for Normal Operatons

Rationale. This experiment evaluates the runtime performance oagrbtusing NetQoPE
to enforce network QoS.

Methodology. NetCON and NetRAF are design-/deployment-time cap#slithat incur
no runtime overhead. In contrast, NetCON configures compan&ldleware containers at
post-deployment-time by adding DSCP markings to IP packéesn applications invoke

remote operations (see Sectibn3.3). NetCON may therefore incur runtime overhead,

84

e.g, when containers apply a network policy models to provigesthurce application with
an object reference to the destination application.

To measure NetCON'’s overhead, we conducted an experimdateamine the runtime
overhead of the container when it performs extra work toagh@ policies that add DSCPs
to IP packets. This experiment had the following variant3:tle client container was not
configured by NetCON (no network QoS required), (2) the tlgemtainer was configured
by NetCON to apply thecLIENT_PROPAGATED network policy, and (3) the client con-
tainer was configured by NetCON to apply theRVER DECLARED network policy. This

experiment had no background network load to isolate trextsffof each variant.

Latency (miliseconds)

No-0o0S CP SD

Figure 23: Overhead of NetQoPE’s Policy Framework

Our experiment had no network congestion, so QoS supporthuasiot needed The
network priority models were therefore configured with DSGRues of 0 for both the
forward and reverse direction flow$est Net QoPE was configured to make 200,000 in-

vocations that generated a load of 6 Mbps and average raoraltency was calculated

S0Our experimentation goal was to measure the runtime ovdriassing NetQoPE middleware to enforce
network QoS. So we wanted to remove other effects in the @rpat such as network congestion.

85

for each experiment variant. The routers were not configtogerform DiffServ process-
ing (provide routing behavior based on the DSCP markingshcsedge router processing
overhead was incurred. We configured the experiment to pihpaly the overhead of the
container no other entities in the path of client remote camications.

Analysis of results Figure23shows the average roundtrip latencies experienced bytglien
in the three experiment variants (in this figwze is the CLIENT_PROPAGATED network
priority model andsD is the SERVER DECLARED model). To honor the network policy
models, the NetQoPE middleware added the request/replyPB$&the IP packets. The
latency results shown in Figu8 are all similar, which shows that NetCON is efficient
and adds negligible overhead to applications. If anotheamtof the experiment was run
with background network loads, network resources will Hecalted and the appropriate
DSCP values used for those application flows. The NetCONmanbverhead will remain
the same, however, since the same middleware infrastaugwsed, only with different

DSCP values.

IV.5 Summary

This chapter described the design and evaluation of NetQwRigh is a model-driven
middleware framework that manages CPU and network QoS fdE Bpplications. The
lessons we learned developing NetQoPE and applying it tpr@sentative DRE applica-
tion case study thus far include:

e NetQoPE’s domain-specific modeling languages{ NetQoS) help capture per-
deployment QoS requirements of applications so that CPUnatwlork resources can be
allocated appropriately. Application business logic @ngently need not be modified to
specify deployment-specific QoS requirements, therelrgasing software reuse and flex-
ibility across a range of deployment contexts, as shown ati@elV.3.1.

e Programming network QoS mechanisms directly in applicatiode requires the de-

ployment and execution of applications before they canrdete if the required network

86

resources are available to meet QoS needs. Converselydimgpthese capabilities via
NetQoPE’s model-driven, middleware framework helps gued®urce allocation strategies
beforeapplication deployment, thereby simplifying validatiameadaptation decisions, as
shown in SectionV.3.2.

e NetQoPE’s model-driven deployment and configuration tbelp configure the un-
derlying component middleware transparently on behalfpifliaations to add context-
specific network QoS settings. These settings can be exfbrcBletQoPE’s runtime mid-
dleware framework without modifying the programming modséd by applications. Ap-
plications therefore need not change how they communit¢atenime since network QoS
settings can be added transparently, as shown in Sdsti®:3.

e NetQoPE'’s strategy of allocating network resources befe@oyment may be too
limiting for certain types of DRE applications. In partiaul because of the physical nature
of the systems, faults might occur at runtime, and appbecetimight not consume all their
resource allotment at runtime. Similarily, applicationopen systems might require dy-
namic provisioning of resources based on application deim@nr future work is therefore
extending NetQoPE to overprovision resources for appiinaton the assumption that not
all applications will use their allotment.

NetQoPE’s model-driven middleware platforms and toolsdbed in this chapter and
used in the experiments are available in open-source fdromatww. dr e. vander bi | -

t . edu/ cosm c andinthe CIAO component middleware availableaatv. dr e. vande-

rbi | t. edu. The Bandwidth Broker is a product licensed by Telcordia.

87

www.dre.vanderbil
t.edu/cosmic
www.dre.vande
rbilt.edu

CHAPTER V

RESOURCE-AWARE ADAPTIVE FAULT-TOLERANCE IN DISTRIBUTED
SYSTEMS

Supporting uninterrupted services for distributed sadi-tane applications is hard in
resource-constrained and dynamic environments, wheegsor or process failures and
system workload changes are common. Fault-tolerant migatkefor these applications
must achieve high service availability and satisfactogpomse times for client applica-
tions. Although passive replication is a promising fauletance strategy for resource-
constrained systems, conventional client failover apgiea are non-adaptive and load-
agnostic, which can cause system overloads and signifjdactiease response times after
failure recovery.

In this chapter, we present four contributions to the stufipassive replication for
distributed soft real-time applications. First, we ddserhow our Fault-tolerant Load-
aware and Adaptive middlewaRe (FLARe) dynamically adjtetever targets at runtime
in response to system load fluctuations and resource aW#jlalSecond, we describe
how FLARe’s overload management strategy proactivelyreefdesired CPU utilization
bounds by redirecting clients from overloaded processdtsrd, we present the design
and implementation of FLARe’s lightweight middleware atebture that manages fail-
ures and overloads transparently to clients. Finally, ves@nt experimental results on a
distributed Linux testbed that demonstrate how FLARe adelytmaintains soft real-time
performance for clients operating in the presence of faguand overloads with negligible
runtime overhead.

The rest of this chapter is organized as follows. Sec¥dnintroduces the research

problem and provides the motivation for our work; Sectibd describes the system and

88

fault models that form the basis for our work on FLARe; Satii3 describes the struc-
ture and functionality of FLARe; Sectiovi4 empirically evaluates FLARe in the context
of distributed soft real-time applications with dynamigpégation arrivals and failures;

Finally, SectionV.5 provides a summary of our contributions.

V.1 Introduction

Distributed real-time middleware, such as Real-time CORRAJ and Distributed
Real-time Javad4], has been used to develop a range of distributed soft ireal-appli-
cations, such as online stock trading systems and supgrvwismtrol and data acquisi-
tion (SCADA) systems. Such applications operate in dynanigronments where system
loads and resource availabilities fluctuate significantlyuatime due to service request
arrivals and processor failures. In such environments iiniportant for applications to
maintain both system availability and desired soft remletiperformance. For example, in
SCADA systems for power grid monitoring, remote terminaitsimust continue to pro-
cess updates from sensors monitoring power grid failukes) hen load fluctuations and
failures occur.

ACTIVE andPASSIVE replication p1] are two common approaches for building fault-
tolerant distributed applications. KCTIVE replication [L37)], client requests are multicast
and executed at all replicas. Failure recovery is fast smr#uany replicas fail, the re-
maining replicas can continue to provide the service to tlents. ACTIVE replication
imposes high communication and processing overhead, lreywekich may not be viable
in resource-constrained syster@g)|

In PASSIVE replication R1] only one replica—called the primary—handles all client
requests, and backup replicas do not incur runtime overheazbpt for receiving state
updates from the primary. If the primary fails, a failovetriggered and one of the backups

becomes the new primary. Due to its low resource consumprie®sIVE replication is

89

appealing for soft real-time applications that cannotralffihe cost of maintaining active
replicas and need not assure hard real-time performance.

Although PASSIVE replication is desirable in resource-constrained systé@nschal-
lenging to deliver soft real-time performance for applicas based omASSIVE replica-
tion. In particular, conventional client failover soluti® [L3, 45] in PASSIVE replication
are non-adaptive and load-agnostic, which can cause post«ry system overloads and
significantly increase response times for clients. Moredabe middleware must dynami-
cally handle overload conditions caused by workload fluxna and concurrent failures.
Therefore, a lightweight middleware architecture is nelettet can handle failures and
overloads transparently from the applications.

To address this need, we have developed=thét-tolerant, Load-aware and Adaptive
middlewaRe (FLARe)hich maintains service availability and soft real-timefpemance
in dynamic environments. This chapter evaluates the fatigwontributions to developing

distributed soft real-time applications:

e A Load-aware Adaptive Failover (LAAF) strategy, which dynamically adjusts
failover targets in response to load fluctuations and psmrgsrocess failures based

on current CPU utilization.

» A Resource Overload Management rEdirector (ROME) strategy which dynam-
ically enforces schedulable utilization bounds by proestyi redirecting clients from

overloaded processors.

* A lightweight adaptive middleware architecture, which handles failures and over-

loads transparently from applications.

FLARe has been implemented atop the TAO Real-time CORBA levdare (3, 142

90

and evaluated empirically in the ISISlab testbeas. dr e. vanderbi I t. edu/l SI S
ab). The experimental results reported in this chapter detnateshow FLARe can dynam-
ically maintain both system availability and desired setlttime performance for clients,

while incurring negligible run-time overhead.

V.2 System and Fault Models

FLARe supports distributed systems where applicationesergrovide multiple long-
running services on a cluster of computing nodes. The ses\ita system are invoked by
clients periodically via remote operation requests. Fartthese types of systems experi-
encedynamicworkloads when clients start and stop services at runtimientS demand
both soft real-time performance as well as system avaitghbliéspite workload fluctuations
and processor and process failures.

The end-to-end delay of a remote operation request consgedays on the server, the
client, and the network. FLARe is designed to bound sertentaes, which often domi-
nate in distributed real-time systenesq, SCADA systems) equipped with high-speed net-
works. To meet desired server latencies FLARe allows usespécify a utilization bound
for each CPU on the servers. The utilization bound can beose¢low the schedulable
utilization bound of the real-time scheduling polie/q, rate monotonic) supported by the
middleware scheduling service. At run time FLARe maintalasired server latencies by
dynamically enforcing the utilization bounds on the sester

Processors and processes may experience fail-$8# failures and concurrent fail-
ures in multiple processors or processes can occur. Togedghtweight fault-tolerance,
FLARe employsPASSIVE replication R0], where services are replicated and deployed
across multiple processors. We assume that networks grdoodnded communication
latencies and do not fail or partition. This assumption ssonable for many soft real-

time systems, such as SCADA systems, where nodes are cedr®chighly redundant

'FLAREe is targeted atoftreal-time applications and does not provide hard guararieeneeting every
deadline

91

www.dre.vanderbilt.edu/ISIS
ab

high-speed networks. Relaxing this assumption througkgnation of our middleware
with network-level fault tolerance and QoS managementtegtes p] is an area of future

work.

V.3 Design and Implementation of FLARe

This section describes the design and implementation offfle.AThe key design goals
of FLARe are to (1) mask clients from processor and procagsda through transpar-
ent client failover, (2) alleviate post recovery overloadough load-aware failover target
selection, and (3) maintain desired soft real-time pertoroe by dynamically enforcing

suitable CPU utilization bounds on the servers throughloadrmanagement.

V.3.1 FLARe Middleware Architecture

FLARe’s architecture, shown in Figugl, has four main components: theddleware
replication managerthe client failover managefor each client process, thmonitoron
each processor hosting servers, andstage transfer agerdn each process hosting servers.
FLARe achieves fault-tolerance throughssiVvEe replication of CORBA objects, where
the primary and backup replicas are deployed across diff@recessors in the distributed
system.

Middleware replication manager. FLARe’s middleware replication managéMRM) al-
lows server objects to provide information about (1) thecpssors and processes in which
their primaries and backups are hosted, (2) the CPU uibzahat they will require to
serve client requests should they become primary, and €B)ititeroperable object refer-
ence (IOR) so that clients can invoke remote operations em twwhen the server objects
are added to the system. To manage the primary and backugaepland to make adap-
tive failover target decisions—FLARe’s MRM usesranitoron each processor to track
failures and CPU utilizations of all processors hostingghmary and backup replicas of

each server object.

92

As highlighted by labeh in Figure24, FLARe’'s MRM employs d_.oad-Aware and

Adaptive Failove(LAAF) target selection algorithm (described in SectMB.2) to pre-

pare an rank-ordered list of failover targets for epdmary object in the system. The rank

list includes multiple failover targets in order to handlaltiple failures of the same server

object. In some situations the currgimary replica can become overloadezlg, due

to sudden workload fluctuations and multiple failures. FIe2RMRM employs theRe-

source Overload Management rEdireci®OME) algorithm (described in Sectidn3.3)

to redirect clients from overload processors to maintaendbsired soft real-time perfor-

mance. The LAAF and ROME strategies are detailed in Sedati8r2 and SectiorV.3.3,

respectively. Finally, MRM could be co-located with serebjects (.e., Host 1 or Host 2

in Figure24) as the computation load of the LAAF and ROME algorithms iempénted in

MRM is relatively low compared to that of the server objects.

Monitoring

State
Transfer

@ Primary Server
@ Replica Server @

Middleware
Replication
Manager

Monitor

State Transfer
Agent

I° W Host 1
Client Requesté Sl N
Client j«—=» |nterceptor B >
....... X,
Client Failoverf || X0 __ -7 o—.. @ -—
Manager ¢ - 3 Failover Target
-1 Updates
Rank-list [7] o
TH--—-t Host 2
IORs |77 . . @ os
Redirection “‘\E\E \:'"-.@
Client Agent ' :\ ~_ ‘._(- >
Process T, @ :
\ S SA [e—
f Failover Target | «—E
/" D— Updates
Failover Target H
B m ost 3 A
LEGEND Updates — MRM | |
————— Cached IORs o, Active | \/ HOSG;’;gIéZHOH I
e..—..—s Liveliness Communication |
|

Host 4
- -. -

Replica MRM

Figure 24: The FLARe Middleware Architecture

93

Monitors. The liveliness of the processes hosting the server objadt€&U utilization of
the hosts is probed by monitors co-located with the servgrtd Failures of processes, if
any, are communicated instantaneously to the MRM wherea€RBU utilization is com-
municated at a configurable sampling rate. We do not, howesguire fine-grained time
synchronization since the sampling period is typicallygenthan the task periods. For
instance, the task periods in the experiments describeelatiddV.4 vary from one second
to one-tenth of a second whereas the monitor sampling perigicbater than one second.
Client failover manager. As highlighted by labeB in Figure24, FLARe’s client failover
managercontains aedirection agenthat is updated with failover and redirection targets
so clients can recover transparently from failures andloads, respectively. To handle
failures, as highlighted by labelin Figure24, FLARe’s client request interceptaratches
failure exceptions and instead of propagating the exceptiche client application, the
client request interceptor redirects the client invogatio the appropriate failover target
provided by the redirection agent.
State transfer agent As highlighted by labeb in Figure 24, FLARe’s state transfer
agentallows server objects to inform it about changes to appboastates. Thestate
transfer agents updated with per-server-object failover targets by FIieARMRM. When
aprimary replica in a process informs it about application state ghathestate transfer
agentutilizes interfaces provided by the server object to obthanew state. Thstate
transfer agensynchronizes the state of thackupreplicas with the new state, by making
remote invocations on theackupreplicas using the provided failover target references as
highlighted by labeE in Figure24.

FLARe schedules state update propagations from the primegrjca to the backup
replicas using remote operation requests, from the statesfer agent on the primary

replica to one of the backup replicas. The period of the siptiate task is equal to the

94

period of the primary task. In the current implementati@clestate update task is sched-
uled on the processor hosting the backup replicas at thetgraetermined by the rate-
monotonic scheduling algorithm.

To support distributed soft real-time applications in FL&Rheprimary replica up-
dates the states of itsackupreplicasafter it sends its response to the client. This design
choice significantly reduces the response times for clignissupports only “best effort”
guarantees for state synchronization. Replica consigteay be lost if thgrimaryreplica
crashes after it responds to the client, but before it prafesgyts state update to thackup
replicas. This design tradeoff is desirable in many disteld soft real-time applications
where state can be reconstructed using subsegegntsensor) data updates at the cost of

transient degradation of services.

V.3.2 Load-aware and Adaptive Failover

As described in SectioW.3.1, FLARe’s MRM collects periodic measurement updates
from the monitors about CPU utilizations and liveness ofcpssors/processes. FLARe
provides doad-aware, adaptive failover (LAARarget selection algorithm that uses these
measurements to select per-object failover targets. LAgdsuthe following inputs: (1) the
list of processors and the list of processes in each progd&3dhe list of primary object
replicas operating in each process, (3) the list of backppaaes for each primary object
replica and the processors hosting those replicas, andh¢4durrent CPU utilizations of
all processors in the system. This algorithm is executechever there is a change in the
CPU utilization by ahreshold(e.g, + 10%) in any of the processors in the system since
FLARe must react to such dynamic changes.

The output of LAAF is a ranked list of failover targets for bgarimary object replica
in the system. To deal with concurrent failures, FLARe neiimg an ordered list of failover
targets, instead of only the first one. When both the primeplica and some of its backup

replicas fail concurrently, the client can failover to thestfibackup replica in the list that is

95

still alive. LAAF estimates the post-failover CPU utilizats of processors hosting backup
replicas for a primary object, assuming the primary objadsf The backup replicas are
then ordered based on the estimated CPU utilizations ofrih@epsors hosting them, and
the backup replica whose host has the lowest estimated GR44tidn is the first failover

target of the replica. To balance the load after a processturé, LAAF redirects the

clients of different primary objects located on the samecgssor to replicas on different
processors. Finally, the references (IORs) to those &phbee collected in a list and pro-
vided to the redirection agents for use during failure recgvTo reduce the failover delay,

MRM proactivelyupdates a client whenever its failover target list changes.

Algorithm 2. LAAF Target Selection Algorithm
Input:

P < Set of processes on processor
Oj « Set of primary replica objects in procegs
Ry < list of processors hosting backup replicas for a primargcid
Cu, < current utilization of processaor
ey < expected utilization of processbafter failovers
Ix < CPU utilization attributed to primary object k

1 begin

2 for every processordo

3 ey =cuy /l reset expected utilization

4 for every process jinjRlo

5 for every primary object k in ©do

6 Il sort Ry in increasing order of expected CPU utilization

7 Il ey += |, where processor X is the head of the sorted list Ry
8 end

9 end

10 end

11 end

Algorithm 2 depicts the steps in the LAAF target selection algorithme éery pro-
cessor in the system (line 2), LAAF iterates through all dgirocesses (line 4), and the
primary replicas that are hosted in those processes (ling=6) every primary replica,

the algorithm determines the processors hosting its balcas and the least loaded of

96

those processors (line 6). The algorithm then adds the lb#tegrimary object replica
(known to FLARe’s MRM because of the registration procesg@dained in SectioN.3.1)
to the load of least loaded processor and defines that & geeted utilizatioof that pro-
cessor (line 12) were such a failover to occur.

The algorithm repeats the process described above for etleey primary replica ob-
ject hosted in the same process (Lines 5-7). The least |dadeder processor is deter-
mined by considering the expected utilizations of the pseoes (line 6). This decision
allows the algorithm to consider the failover of co-locapetnary replica objects within
a processor while determining the failover targets of ofirenary replica objects hosted
in the same processor. The failover target selection dlgartherefore makes decisions
not only based on the dynamic load conditions in the systelnicfware determined by the
monitors), but also based on load additions that may be dadwséailovers of co-located
primary objects. The failover targets are then used forreeting a client if any failure
occurs before the next time LAAF is run.

LAAF is optimized for multiple process failures or singleopessor failures. It may
result in suboptimal failover targets, however, when nplétiprocessors fail concurrently.
In this case, clients of objects located on different fapedcessors may failover to a same
processor, thereby overloading it. Similarly, LAAF mayaatgsult in suboptimal failover
targets when process/processor failures and workloadufition occur concurrently,e.,
before FLARe’s MRM receives the updated CPU utilizatiomirthe monitors. To handle
such overload situations FLARe employs the ROME algoritiaies¢ribed next in Sec-
tion V.3.3) to redirect clients of overloaded processors, proagtiteless loaded proces-
Sors.

e Analysis of the LAAF target selection algorithm. The failover targets determined by
the LAAF algorithm could be incorrect under certain circtiamees. For example, those
circumstances could be:

New resource additions and dynamic workloads As described in SectioN.3.2, the

97

LAAF algorithm is executed when the monitor in any of the @esors senses a load change
or a failure. However, if a failure occurs, before the MRM badapt to the change, clients
would failover using targets that were determined befoomanting the new change. Such
a failover could affect the response times clients recefte a failover, as the clients could
have potentially failed over to a processor that is overalat that gets overloaded after a
failover.

For example, if the change involves a dynamic workload &mldiE.g, deployment of a
new service), and the subsequent failover is to the samegsoc then the processor could
get overloaded - client response times are also affectedtaft failover. Such an overload
needs to be immediately handled to restore satisfactoporess times of all the affected
clients. Similarly, if the change involves addition of a nprocessor or a rejuvenation of
a failed processor, then new replicas (both primary andugacéplicas) are added into the
system, which could be potentially used as failover targétewever, since the failover
occurred before the replication manager could utilize ¢hwosw replicas, clients could po-
tentially be wasting a chance to utilize replicas that aggaed in processors with much
lesser CPU utilization than the processor they are cugr@mélking remote invocations on.
Such a CPU utilization imbalance between processors lpstjplicas of the samtype
should be quickly detected, so that clients could be ret#iteto appropriate replicas.
Simultaneous multiple processor failures Note that, in line 3 of the LAAF algorithm,
the expected utilization of all the processors is reset ¢outilization that is determined
by the monitors. This means that when failover target desgsare made for a processor,
the algorithm does not account for the expected CPU utidimahcreases that could arise
because of the failure of another processor in the system.dekision leads to a possibility
of two or more services picking the same processor as thmdgsh of their failover target
replicas.

For example, let us assurffeandP; be theprimary replicas of two different services

andC; andC; be their respective clients. The rank list maintained bgraiCi’s redirection

98

agent is represented by the tup{&1,Ri2, - - ,Rin); whereR;; represents the most appro-
priate failover target anBi\ represents the least appropriate failover target detewaity
the LAAF algorithm, and N represents the number of replidathe service. ClienCj’s
redirection agent also maintains a similar rank list forphenary replicaP;.

Now assume thaR1 operates in the least loaded processor among all the porsess
hosting replicas of therimary replicaR. Similarly, Rj; operates in the least loaded pro-
cessor amongst all the processors hosting replicas obpringary replicaP;. If R and
Rj1 operate in the same processor, then the failover targettegiealgorithm would have
picked that processor as the failover target for bothptti@ary replicasP, andP;. In other
words, the effective utilization increments are not coasd for two or more processors in
the LAAF algorithm. At runtime, if botlprimaryreplicasP, andP; fail together, the clients
of the failed services will be redirected to the same backopgssor. These multiple redi-
rections can cause an overload on the backup processoddegrasponse times for the
clients.

The above observation does not mean that LAAF cannot supipouitaneous multiple
processor failures. In the above example, it so happenédRthandR;; were located in
the same processor, and were also the least loaded tarfyiits.réplicas were located in
different nodes, then LAAF would have been able to handleubkaneous multiple pro-
cessor failures. We assume that, such kind of applicatiacgphents and configurations
are rare, and hence we did not accommodate handling suctokiiadures in our LAAF
algorithm. In the next section, we describe our adaptiventiiedirection strategy that can

handle the overloads and processor CPU utilization imlcasilustrated above.

V.3.3 Resource Overload Management and Redirection

FLARe’s MRM employs th&kesource Overload Management and rEdirection (ROME)
algorithm to enforce desired CPU utilization and serviclagldoounds. FLARe allows

users to specify a per-procesadtlization boundbased on the schedulable utilization

99

bound of the real-time scheduling policg.g, rate monotonic) supported by the middle-
ware scheduling service. A processor whose CPU utilizagiaeeds thetilization bound
is considered overloaded.

ROME is needed to resolve processor overload since CPUasiatumay cause system
failure due to kernel starvatio®9]. Distributed soft real-time applications can use ROME
to specify the overload threshold based on the suitabledsdhigle utilization boundslj3
needed to achieve satisfactory response times. ROME dtsosalisers to specify a per-
objectmigration thresholdo redirect clients of primary objects hosted in currentviga
loaded (but not overloaded) processor to the least loadembpsor hosting a replica of that
object. Balancing processor CPU utilization helps redineeresponse times and avoid
overload on a subset of processors in the system. FLARe tbes ROME to handle
CPU overload and load imbalance as special cases of fafloréléstributed soft real-time
applications.

In the case of failures, the clients are redirected to apatepfailover targets based on
decisions made by LAAF, as described in Secti2. In the case of overloads, clients of
the current primary replicas are redirected automaticaltite chosen new backup replicas.
We refer to this load redistribution mechanismligbtweight migrationsince we migrate
theloads(through client redirection) of objects as opposed to the &fficient alternative
of migrating theobjectsthemselves. Moreover, ROME leverages existing replicak an
effectively utilizes them for maintaining satisfactorgpense times for clients.

Algorithm 3 depicts the steps ROME uses to handle CPU overload and Idzdance,
respectively.

Handling overloads When the CPU utilization at any of the processor crossestiliea-
tion bound FLARe’s MRM triggers ROME to react to the overloads. FLAR=aimines
the primary objects whose clients need to be redirectedthamiictarget hosts, using ROME.

Given an overloaded processoe(whose CPU utilization exceeds thglization bound,

100

Algorithm 3: Determine Load-redistributing Targets
Input:
O; < list of primary objects in an overloaded procesisor
R;j < list of processors hosting objegs replicas
Cu, < current utilization of processaor
ey < expected utilization of processpafter migrations
lj < CPU utilization of primary object
t; <— upper bound for processds CPU utilization
ey = cy; for every processor i
1 begin
2 for every overloaded processodo
3 sortQ; in decreasing order of their CPU utilizations
4 for every object j in the sorted list@o
5 min: processor in R; with lowest CPU utilization
6
7
8
9

if (Ij + €Umin) < tmin then
migrate the load of objedtto j’s replica inmin

EUnin += 1
ey -=I;
10 end
11 if ey < tj then
12 processor is no longer overloaded; stop
13 else
14 migrate another primary obje¢tin the processar
15 end
16 end
17 end

ROME considers the primary objects on the processor in deirg order of CPU utiliza-
tion (line 3), and attempts to migrate the load generatedhbge objects to the least-loaded
processor hosting their backup replicas (lines 5 throughrg attempt fails if the least-
loaded processor of the backup replicas would exceedtiliwation boundf the migration
occurs. ROME attempts migrations until (1) the processooi®nger overloaded or (2) all
clients of primary objects in the overloaded processor haen considered for redirection.
Similar to LAAF, ROME also uses thexpected CPU utilizatioto spread the load of
multiple objects on an overloaded processor to differestdioThe expected CPU utiliza-

tion accounts for the load change due to the redirectiorste affecting the overloaded

101

processor. After new reconfigurations are identified, ezfion agents are updated to redi-
rect existing clients from the current primary replica te selected backup replica at the
start of the next remote invocation. Clients are thus retick to new targets with less

perturbations.

V.3.4 Implementation of FLARe

FLARe has been implemented atop the TAO Real-time CORBA levdale. It is im-
plemented in~9,000 lines of C++ source code (excluding the code in TAO)JoBeave
highlight several key aspects of the FLARe implementatsomfre detailed description of
FLARe appears ind]).

Monitoring CPU utilization and processor failures. On Linux, FLARe’smonitor
process uses thiepr oc/ st at file to estimate the CPU utilization.¢., the fraction of
time when the CPU is not idle) in each sampling period. We ehtosneasure the CPU
utilization online, rather than relying on the estimatedJdRilization provided by users to
account for estimation errors and for other activities mthiddleware and OS kernel.

To detect the failure of a process quickly, each applicgiimtess on a processor opens
up a passive POSIX local socket (also known as a UNIX domatketpand registers the
port number with the monitor. The monitor connects to th&ksband performs a blocking
read. If an application process crashes, the socket anghtéreed port will be invalidated,
in which case the monitor receives an invalid read error ensibcket that indicates the
process crash. Fault tolerance of the monitor processdsdsaahieved through passive
replication. If theprimary monitor replica fails to send updated information or to egp
to FLARe’s middleware replication managddescribed below) within a timeout period,
FLARe suspects that the processor has crashed.

Middleware replication manager. FLARe’s middleware replication manages de-
signed using the Active Object patted¥{J to decouple the reporting of a load change or a

failure from the process. This decoupling allows severatioos to register with FLARe’s

102

middleware replication managerhile allowing synchronized access to its internal data
structures. Moreover, FLARe can be configured with the LAAE &OME algorithms
via the Strategy patterrdl]. FLARe’s middleware replication manages replicated us-
ing SEMI_ACTIVE replication p5] (provided by the TAO middleware), with regular state
updates to the backup replicas.

Client failover manager. As shown in Figure?4, the client’s failover manager com-
prises a CORBA portable interceptor-basgi@nt request interceptofl64 and a redi-
rection agent, which together coordinate to handle faslimea manner transparent to the
client application logic. Whenever a primary fails, theeirtieptor catches the CORBA
COMM_FAILURE exception. Since portable interceptors are not remotgbydable objects,
it was not feasible for an external entity (such as a MRM) todsthie rank list information
to the interceptor, which is necessary to determine the fadgtver target. The redirec-
tion agent is therefore a CORBA object that runs in a sepdnadad from the interceptor
thread. The interceptor consults the redirection agenthi@rfailover target from the rank
list it maintains. The interceptor will then reissue theuest to the new target. The rank list
is propagated to the redirection agpnbactivelyby FLARe’s MRM whenever the failover

target list changes.

V.4 Empirical Evaluation of FLARe

We empirically evaluated FLARe in ISISlatmfw. dr e. vander bi |l t. edu/ 1 SI S
| ab) on a testbed of 14 blades. Each blade has two 2.8 GHz CPUsnigaiory, a 40 GB
disk, and runs the Fedora Core 4 Linux distribution. Our expents used one CPU per
blade and the blades were connected via a CISCO 3750G switch il Gbps LAN. 12 of
the blades ran Real-time CORBA applications on FLARe. FLARERM and its backup
replicas ran in the other 2 blades. To emulate distributéidreal-time applications, the
clients in these experiments used threads running in thexuieal-time scheduling class to

invoke operations on server objects at periodic intervalsoperations and state updates

103

www.dre.vanderbilt.edu/ISIS
lab

on the servers were executed according to the rate monaoneduling policy supported

by the TAO scheduling service.

V.4.1 Evaluating LAAF

The first experiment was designed to evaluate FLARe’s LAAfoathm (described in
SectionV.3.2) and compare it with the optimatatic client failover strategy. In the static
client failover strategy, the client middleware is initzd with astaticlist of IORs of the
backup replicas, ranked based on the CPU utilization of irecessors ateployment time
The list is not updated at run-time based on the current CRidations in the system (the
failover targets are optimal at deployment time, but atatic failover target can become
suboptimal at run-time in face of dynamic workloads). In trast, LAAF dynamically
recomputes failover targets whenever there is a change @Rt utilization by @hreshold

(e.g, = 10%) in any of the processors in the system.

: - Monitor
- ‘ DY-1 B.- Updates
Failover
(m)

SIRION LAMBADA LINDY — —» Target

Updates

ANGO Redirection

@ — @ i
CORBA

«{M) CHARLIE PANTERA o
O Process

B e for)] e
ACE . Dynamic
- ‘@ SHIVA service

@ deployment

KAPPA | _ _ _ _— —— —- '

—— —

L N B

PRINCE

Figure 25: Load-aware Failover Experiment Setup

Experiment setup. Figure25 and Table? illustrate our experimental setup. The ex-

periment ran for 300 seconds. To evaluate FLARe in the poesefdynamic workload

104

changesat 50 seconds after the experiment was started, we inteaciiymamic invocations
on two server objectey-1 andby-2, using client objects;L-5, andcL-6, respectively.
The staticfailover strategy selects failover targets that are optahaeployment time, as
follows: if A-1 fails, contacta-3 followed byA-2; if B-1 fails, contacB-3 followed by

B-2.

Client | Server| Invocation | Server
Object
Object | Object| Rate (Hz) | Utilization

Static Loads

cL-1 A-1 10 40%

CL-2 B-1 5 30%

CcL-3 c-1 2 20%

cL-4 D-1 1 10%
Dynamic Loads

CcL-5 DY-1 5 50%

CL-6 DY-2 10 50%

Table 7: Experiment setup for LAAF

We emulated a process failure 150 seconds after the expdrsteted. We used a
fault injection mechanism, where when clieats-1 or cL-2 make invocations on server
objectsAa-1 or B-1, respectively, the server objects calls &t (1) command, crashing
the process hosting server objeatd andB-1 on processorANGO. The clients receive
COMM_FAILURE exceptions, and then failover to replicas chosen by theviail strategy.

Analysis of results. Figure26 shows the CPU utilizations at all the processors, when
clients used the static client failover strategy. At 50 s&ls) server®y-1 andby-2 were
invoked by clientscL-5 andcL-6 causing the CPU utilizations at procesSoAsMBADA
andCHARLIE to increase from 0% to 50%.

At 150 seconds when process hosting both ands-1 fails on the processaANGO,
clientscL-1 andcL-2 failover to the statically configured replicas3 at processorAMm -

BADA andB-3 at processSOCHARLIE respectively. As a result, the CPU utilizations at

105

Static Strategy With Dynamic Load

100))) "(LAMBADA)'
<)
R
o
v A A A A
S 80 (TANGO) (CHARLIE)
S
= 60 | (LAMBADA, CHARLIE) 1
D Ao A
-
S 40 | :
O
Q ALPHA
o) ()
= 20 I+ ~ ~ ~ ~ ~ ~ ~ ~ ~
(o
O o e e N e R et o A—v~v—]
(BETA)
O 1 1 1

50 100 150 200 250
Time (sec)

Figure 26: Utilization with Static Failover Strategy

processoreAMBADA andCHARLIE increase to 90% and 80% respectively. Note that 90%
CPU utilization is highly undesirable in middleware syssapecause it is close to saturat-
ing the CPU which may result in kernel starvation and systeaslcB9]. The high CPU
utilizations on processoHARLIE andLAMBADA occur, because thsaticclient failover
strategy did not account fatynamicsystem loads while determining client failover targets.
In contrast, FLARe’s MRM triggers LAAF to recompute the aikr targets in response
to load changes. At 50 seconds, LAAF changed the failovegetaof the primary replica
A-1 from A-3 to A-2, in response to the load increase on process®BADA (host of
A-3). Similarly, LAAF also changed the failover targetsfl fromB-3 toB-2 in response
to the load increase on processMARLIE (host ofB-3). At 150 seconds, clientsL-1
andcL-2 failover to backup replicaa-2 andB-2 respectively. As shown in Figui&?,

none of the processor utilizations is greater than 60% #itefailover of clientscL-1 and

106

Adaptive Strategy With Dynamic Load

100 L] L] L] L] L]
<
= 80 (TANGO)]
-E (ALPHA)
= 60 (LAMBADA, CHARLIE))))
o
8 40 - [y YT YT Y Y v
g (BETA)
(&)
S (ALPHA)
i 20 1
| GE™)
O 1 1 1
50 100 150 200 250

Time (sec)

Figure 27: Utilization with Adaptive Failover Strategy

cL-2. This result shows that LAAF effectively alleviates pessor overloads after failure

recovery, due to its adaptive and load-aware failoveregnat

V.4.2 Evaluating ROME

We designed two more experiments to evaluate the ROME #tgodescribed in Sec-
tion V.3.3. We stress-tested ROME under overloads caused by dynamiktoad changes
and multiple failures.

Experiment setup. Figure28 and Table8 show the experimental setup. The utilization
bound on every processor was set to 70%, which is below thedisddible utilization bound
(based on the number of tasks) for the rate monotonic polippsrted by the middleware

scheduling service. The required server delay for eacheg@sklled its invocation period.

107

(sl |

Concurrent Workload Change and Process Failure.We emulated a failure 50 sec-
onds after the experiment started. We used a fault injectiechanism, where when client

cL-1 makes invocations on server objeetll, the server object calls thexit (1)command,

PRINCE

i o s

| SIRION M) LINDY

: TANGO (M)+ BETA

-

- (@). (-

| SANNA \) LAMBADA | |EQUUS

awm B

| ALPHA @.@
ACE

: ~{M)— priNce | LSHIVA I

- il o '

L KAPPA CHARLIE (M) T

Figure 28: Overload Redirection Experiment Setup

Client | Server| Invocation | Server
Object

Object | Object| Rate (Hz) | Utilization

Static Loads

cL-1 A-1 10 40%

CL-2 B-1 5 30%

CcL-3 c-1 2 30%

CcL-4 D-1 1 10%

Dynamic Loads
cl-5 | H-1 | 10 |50%

Table 8: Experiment setup for ROME

Monitor
updates
Failover
— —» Target
Updates
Redirection
Agent

CORBA
Object

O Process
D Host

Dynamic
service

deployment

crashing the process hosting server obped on the processarANGO. The clientcL-1

receives &£OMM_FAILURE exception due to the failure @f-1, and then consults its rank

list to make a failover decision, whichAs2. At the same time, a clieatL-5 starts making

invocations on a new service 1.

108

As a result of the concurrent failure and workload change,ldad on the processor
BETA rises to 90% (highlighted by poimt in the Figure29), which exceeds the speci-
fied utilization bound (70%) and consequently triggers RONRBDME then performs a
lightweight migration of the clients ok-2 and redirects all of its clients t@-3, which
is hosted in the least loaded of all the processors hostimgleca ofA-1. Within 1 sec-
ond, the utilization of process@ETA decreases to 50%, while the utilization of processor
LAMBADA increases to 40% due 163 becoming the new primary replica.

At this stage, the CPU utilizations of all processors ar@wei0%. We also plot the
measured end-to-end response times perceived by thescirerigure30. After ROME
redirected the client’s requests, the end-to-end respiomss of all the clients drop below
the required server delays, indicating that every servgroblachieved its required server
delay (which is a part of the corresponding end-to-end nesptimes). This result demon-
strated that ROME can handle overload effectively and effitty.

Concurrent Failures. We then stress-tested ROME further with concurrent fadure
Since the CPU utilizations in the system have changed dysaiyi FLARe’'s MRM also
employs LAAF to redetermine the failover targets for all gnenary objects in the system.
The recomputed failover targets are as follows: (1)Aet, it is (A-4,A-2) (2) for B-1, it
is (B-2,B-3), and (3) forp-1, it is (D-2)

We emulated a failure 150 seconds after the experimentdtaif/e used a fault in-
jection mechanism, where when cliets-1 andcL-2 make invocations on server objects
A-3 andB-1, respectively, the server objects call éxit (1)command, crashing the process
hosting server objects-3 on processotAMBADA andB-1 on processoCHARLIE. The
clients receivecOMM_FAILURE exceptions, and then fail over to replicas chosen by the
failover strategy. Using the failover targets computed BAE, client cL-1 fails over to
A-4 while clientcL-2 fails over toB-2, both of which end up starting on the same processor
ALPHA, which is already hosting a primapy1.

As a result, the CPU utilization of the processaPHA jumps to 80% (as highlighted

109

Overload Management

100 L] L] L] L] L]
< - A
=80} ~—® :
©
§ - (PRINCE)
% (BETA)
5 40 (TANGO) (LAMBADA)
g (ALPHA)
S (PRINCE, CHARLIE)
S0t .
o (ALPHA)
N ANARA
0 (TANGO = 0%) (CHARLIE, LAMBADA = 0%)
50 100 150 200 250 300

Time (sec)

Figure 29: Utilizations with ROME Overload Management

by pointB in Figure29), while the clientcL-1, CL-2, andCL-4 see an increase in response
times (as shown in Figur80). FLARe’s MRM triggers ROME once again to resolve the
overload, starting with the most heavily loaded serviee4, but clients ofa-4 cannot
be moved, as that would again overload the processoa. Hence, ROME redirects all
clients ofB-2 (which is the next most heavily loaded object) to its regpl-3 on processor
PRINCE. As a result, the CPU utilizations of all the processordesétlow 70% as shown
by point @ in Figure29), while the end-to-end response times (and hence the silagrs)
drop below the required server delays.

This experiment demonstrates that ROME can effectivelgresfthe specified utiliza-
tion bound and server delays by dynamically handling oweldocaused by concurrent

failures and workload changes.

110

Overload Management

=250
©
c
o PR ssnschrcsmah it
® 200 | .
2 (CL-3)
E i i)
—150 .
) <—(B)
=
CL-4 CL-4
'q‘) 100 Ol EED
2 (CL-2) (CL-2)
O LAl " ol ek b il ol y .l VIO (I I Lt 1
§ 50 B " Ly A‘AA AAA‘; ““‘ “‘ | - - Ayl “‘“ “‘
(CL-1)

50 100 150 200 250 300
Time (sec)

Figure 30: Client Response Times with ROME Overload Management

V.4.3 Failover Delay

To empirically evaluate the failover delays under Htatic and theadaptivefailover
strategies, we ran an experiment with client1 invoking 10,000 requests on server object
A-1. No other processes operated in the processor hostihgso that the response time
will equal the execution time of the server. A fault was ingetto kill the server while
executing the D01 request. The clients then failover to backup server obje@swhich
execute the remaining 5,000 requests (including the onerexing the failure).

The left side of Figur81 shows the different response times perceived by clieft
in the presence of server object failures. The failoverygefar thestatic and adaptive
failover strategies are similar because under the staitegty the client knows the failover
decisiona priori, while under the LAAF strategy, FLARe’s MRM proactively slnthe

updated failover targets to the client so they are also keadailable when a failover

111

Without FLARe
50 With FLARe s -

39.25 39.26

40

milliseconds

Failover Delay Runtime Overhead

Figure 31: Failover delay and run-time overhead

occurs. Our results indicate that FLARe’s proactive faglostrategy achieves fast failover

with a failover delay comparable to the static strategy.

V.4.4 Overhead under Fault-Free Conditions

FLARe uses a CORBA client request interceptor to catolvm_FAILURE exceptions
and transparently redirect clients to suitable failovegets. To evaluate the runtime over-
head of these per-request interceptions during normairé&ftee conditions, we ran a sim-
ple experiment with clientL-1 making invocations on server objectl with and without
client request interceptors.

We ran this experiment for 50,000 iterations and measure@vkrage response time
perceived bycL-1. The right side of Figur81 shows that the average response time per-
ceived bycL-1 increased by only 8 microseconds when using the clieniggtgnterceptor.
This result shows that interceptors add negligible ovedtiedahe normal operations of an

application.

112

V.5 Summary

This chapter presents the Fault-tolerant Load-aware aagt#e middlewaRe (FLARe)
for distributed soft real-time applications. FLARe feasii(1) the Load-aware and Adap-
tive Failover (LAAF) strategy that adapts failover targbtssed on system load; (2) the
Resource Overload Management Redirector (ROME) strategtydynamically enforces
CPU utilization bounds to maintain desired server delaytage of concurrent failures
and load changes; and (3) an efficient fault-tolerant middte architecture that supports
transparent failover to passive replicas. FLARe has be@temented on top of the TAO
RT-CORBA middleware as open-source software. Empiricaluation on a distributed
testbed demonstrates FLARe’s capability to maintain systeailability and soft real-time
performance in the face of dynamic workload and failuredavhtroducing only negligible
run-time overhead.

It is possible to conceive of overload management schemasriae of in-place re-
placement of component implementations wherein perfoomaan be traded off by re-
placing a resource-intensive implementation with an inm@etation that consumes less

resources but demonstrates degraded performance. IneCWapte describe this capabil-

ity.

113

CHAPTER VI

MIDDLEWARE MECHANISMS FOR OVERLOAD MANAGEMENT IN
DISTRIBUTED SYSTEMS

Component technologies are increasingly being used tdajeeed deploy distributed
real-time and embedded (DRE) systems. To enhance fleyihititl performance, devel-
opers of DRE systems need middleware mechanisms that decoupponent logic from
the binding of a component to an application, i.e., they reegaport for dynamic updating
of component implementations in response to changing madeésperational contexts.
This chapter presents three contributions to R&D on dynaimoioponent updating. First,
it describes an inventory tracking system (ITS) as a reptatige DRE system case study
to motivate the challenges and requirements of updatingpooent implementations dy-
namically. Second, it describes how our SwapCIAO middlevsupports dynamic updat-
ing of component implementations via extensions to theesgyortion of the Lightweight
CORBA Component Model. Third, it presents the results ofeexpents that systemati-
cally evaluate the performance of SwapCIAO in the contexbwfITS case study. Our
results show that SwapCIAO improves the flexibility and perfance of DRE systems,
without affecting the client programming model or clieetiger interoperability.

The rest of this chapter is organized as follows. Sec¥ad introduces the research
problem and provides the motivation for our work; Secttir? describes the structure and
functionality of an inventory tracking system, which is a BRystem case study that moti-
vates the need for dynamic component implementation upgtaBectionV1.2.2 describes
the key design challenges in provisioning the dynamic campbimplementation updat-
ing capability in QoS-enabled component middleware syst&uactionv1.3 describes the
design of SwapCIAQO, which provides dynamic component iim@etation updating capa-

bility for Lightweight CCM [111]; SectionV1.4 analyzes the results from experiments that

114

systematically evaluate the performance of SwapCIAO folous types of DRE applica-

tions in our ITS case study; Finally, Sectiwh5 provides a summary of our contributions.

VI.1 Introduction

Component middleware is increasingly being used to dewatdleploy next-generation
distributed real-time and embedded (DRE) systems, suchipls@ard computing environ-
ments [L41], inventory tracking systemd4.pg), avionics mission computing systenisif],
and intelligence, surveillance and reconnaissance sgqtetd. These DRE systems must
adapt to changing modes, operational contexts, and resauailabilities to sustain the ex-
ecution of critical missions. However, conventional magare platforms, such as J2EE,
CCM, and .NET, are not yet well-suited for these types of DR&ems since they do not
facilitate the separation of quality of service (QoS) pekcfrom application functional-
ity [161].

To address limitations of conventional middlewa@)S-enabled component middle-
ware, such as CIAO1659, Qedo [L3]], and PRiISm 132, explicitly separates QoS aspects
from application functionality, thereby yielding systethsit are less brittle and costly to
develop, maintain, and extentld5. Our earlier work on QoS-enabled component mid-
dleware has focused on (1) identifying patterns for commmpsomponent-based middle-
ware B, 140, (2) applying reflective middlewarel §3 techniques to enable mechanisms
within the component-based middleware to support diffe@ot aspectslb?, (3) config-
uring real-time aspectd 65 within component middleware to support DRE systems, and
(4) developing domain-specific modeling languages thatigeodesign-time capabilities
to deploy and configure component middleware applicati®hsIis chapter extends our
prior work byevaluating middleware techniques for updating componeaptémentations
dynamically and transparently (i.e., without incurringssgm downtime) to optimize system
behavior under diverse operating contexts and mode changes

A component 156 is a unit of composition with well-defined provided and reqd

115

interfaces and interactions between components happegc@nnectors that bind required
interfaces to provided interfaces. Traditional objectshef conventional middleware can
access components using the standard interfaces providdtelzomponents. The key
forces associated with providing dynamic implementatipdate capabilities in a QoS-
enabled component middleware involve wrestling with dradles unseen in conventional
middleware such as handling component-connections witbreal non-component and
component clients to provide capabilities to upgrade camepts in a transparent manner
without incurring a system downtime.

Our dynamic component updating techniques have been ateshintoSwapCIAQ
which is a QoS-enabled component middleware frameworkethalbles application devel-
opers to create multiple implementations of a componentugathte (e. “swap”) them
dynamically. SwapCIAO extends CIAO, which is an open-setimplementation of the
OMG Lightweight CCM [L0g, Deployment and Configuration (D&CWLD9, and Real-
time CORBA [117 specifications (see Appendifor an overview of these technologies).

The key capabilities that SwapCIAO adds to CIAO include (Echmanisms for updat-
ing component implementations dynamically without intugrsystem downtime and (2)
mechanisms that transparently redirect clients of an iegistomponent to the new up-
dated component implementation. As discussed in this ehalgty technical challenges
associated with providing these capabilities involve tipdecomponent implementations
without incurring significant overhead or losing invocatathat are waiting for or being

processed by the component.

VI.2 Case Study to Motivate Dynamic Component Updating Reqirements
To examine SwapCIAQ’s capabilities in the context of a repreative DRE system, we
developed amventory tracking systerfiTS), which is a warehouse management infras-

tructure that monitors and controls the flow of goods andtasgihin a storage facility.

1SwapCIAO and CIAO are available fromww. dr e. vander bi | t . edu/ Cl AQ

116

www.dre.vanderbilt.edu/CIAO

Users of an ITS include couriers (such as UPS, DHL, and Fea@érgort baggage han-
dling systems, and retailers (such as Walmart and Targétis Section describes (1) the
structure/functionality of our ITS case study and (2) the teguirements that SwapCIAO
dynamic component updating framework had to address. BlatuswapCIAO’s capabil-

ities can be applied to many DRE systems — we focus on the I1$&stady in this chapter

to make our design discussions and performance experiro@ntsete.

VI.2.1 Overview of ITS

An ITS provides mechanisms for managing the storage and meweof goods in a
timely and reliable manner. For example, an ITS should enabiman operators to con-
figure warehouse storage organization criteria, mainteririventory throughout a highly
distributed system (which may span organizational andonatiboundaries), and track
warehouse assets using decentralized operator consolefnjunction with colleagues
at SiemensJ07], we have developed the ITS shown in Fig@&2using SwapCIAO. This

figure shows how our ITS consists of the following three ssbays:

» Warehouse managementwhose high-level functionality and decision-making com-
ponents calculate the destination locations of goods aledjdie the remaining de-
tails to other ITS subsystems. In particular, the warehangeagement subsystem
does not provide capabilities like route calculation f@anportation or reservation

of intermediate storage units.

» Material flow control , which handles all the details (such as route calculatranst
portation facility reservation, and intermediate storeggervation) needed to trans-
port goods to their destinations. The primary task of thissggtem is to execute the

high-level decisions calculated by the warehouse managfesnbsystem.

» Warehouse hardware which deals with physical devices (such as sensors) and

transportation units (such as conveyor belts, forklifte] aranes).

117

Operator Console

- Chil
. Chi I — — it
“Child=———— ﬂg

Warehouse Management

o GoodRepo DestinationCalculator SystemState

NewGood Finish

R

new_good
Good
Repository

Waorkflow
Manager

Storage
Manager

Material Flow Control Warehouse Hardware
changed RouteCalculator NewGood Finish
changed i goeod_hara order_complale
Storage Transportation TranspRepo Good Location Transport
Facility Repo Faclty | oo Saian: Unit © TControl
position
'

Storage Goods Workflow
Facility Repository Definition

Figure 32: Key Components in ITS

Transportation
Facility

VI.2.2 Requirements for Dynamic Component Updates

Throughout the lifetime of an ITS, new physical devices mayaldded to support the
activities in the warehouse. Likewise, new models of emgsiphysical devices may be
added to the warehouse, as shown in Figd8e

This figure shows the addition of a new conveyor belt that lemnbeavier goods in
a warehouse. The ITS contains many software controllershndollectively manage the
entire system. For example, a software controller compiomanages each physical device
controlled by the warehouse hardware subsystem. When a@@eeds introduced, a new
component implementation must be loaded dynamically ih®ITS. Likewise, when a
new version of a physical device arrives, the componentdbatrols this device should
be updated so the software can manage the new version. |Id®ngeare responsible for

providing these new implementations.

118

Gom:po-nent‘Repository Conveyor Belt

Conveyor Belt Conveyor Belt Conveyor Belt

* Remove

Lldala component

Component -
L

Cache
. connections
orkrlow | during
Manager ' update

— | Finished
TOrder @D. TControl

Servant Block and Servant

resend .

Container | POA [BAEEE Container POA
during
update

Middleware Bus

?Transparent redirection to new
component

CORBA Services External Non-component clients

Figure 33: Component Updating Scenario in ITS

As shown in Figure33, a workflow manager component is connected to a conveyor
belt component using a facet/receptacle pair and an evartedgsink pair. To support this
scenario, the ITS needs middleware that can satisfy thevolg three requirements:

1. Consistent and uninterrupted updates to clients As part of the dynamic update pro-
cess, a component’s implementation is deactivated, reth@rel updated. To ensure that
the ITS remains consistent and uninterrupted during tlisgss, the middleware must en-
sure that (1) ongoing invocations between a component anigra are completed and
(2) new invocations from clients to a component are blockatd its implementation has
been updated. Figui@3 shows that when a conveyor belt's component implementation
updated, pending requests from the workflow manager to theegor belt component to
move a new good to a storage system should be available foegsmmg after the imple-

mentation is updated. Secti®df.3.1 explains how SwapCIAO supports this requirement.

119

2. Efficient client-transparent dynamic component updates After a component is up-
dated, the blocked invocations from clients should be estid to the new component
implementation. This reconfiguration should be transpacealients,i.e., they should not
need to know when the change occurred, nor should they inmgupeogramming effort
or runtime overhead to communicate with the new componepkementation. Figur83
shows how a client accessing an ITS component should besotelit to the updated com-
ponent transparently when dynamic reconfiguration occ8extionV1.3.2 explains how
SwapCIAO supports this requirement.

3. Efficient (re)connections of componentsComponents being updated may have con-
nections to other components through the ports they expbise.connected components
and the component being updated share a requires/proe@@i®nship by exchanging in-
vocations through the ports. In Lightweight CCM, these @mtions are established at
deployment time using data provided to the deployment freonie in the form of XML
descriptors. During dynamic reconfiguration, therefdres hecessary to cache these con-
nections so they can be restored immediately after recaatign. Figure33 shows how,
during the update of a conveyor belt component, its conoestio the workflow manager
component must be restored immediately after the new ugaateveyor belt component
implementation is started. Sectidt.3.3 explains how SwapCIAO supports this require-

ment.

VI.3 The SwapCIAO Dynamic Component Updating Framework
This section describes the design of SwapCIAO, which is aftamework that extends
CIAO to support dynamic component updates. Figd¢#shows the following key elements

in the SwapCIAO framework:

» SwapCIAO’scomponent implementation language definiti@DL) compiler sup-
ports theupdatableoption, which triggers generation of “glue code” that (1jides

a factory interface to create new component implementsti¢?) provides hooks

120

Load Executor

i |

Component Server \\ /
\(Executors) { Executors) (Execmurs)/
e %, !
Container 9 P y
Component
Specific Component Server
CIDL Context Updatable Locate -
Compiler Component Executor Repository
Factory Manager
CCMContext
Select
Generate Servant Executor
i Remote Host
using
“updatable” < POA
option -
Update Client
Requests Requests Client
\ _Requests
Middleware Bus e% » CORBA Object
\ ¥ Update
Requests

Figure 34: Dynamic Interactions in the SwapCIAO framework

for server application developers to choose which compingslementation to de-
ploy, (3) creates, installs, and activates componentsnvitportable object adapter
(POA) [63, 117 chosen by an application, and (4) manages the port cormeoctif

an updatable component.

* The updatable containeprovides an execution environment in which component
implementations can be instantiated, removed, updateti(rajexecuted. An up-
datable container enhances the standard Lightweight G€ddion contain€rl39
to support additional mechanisms through which compone@tion and activation

can be controlled by server application developers.

» The updatable component factogreates components and implements a wrapper
facade 14Q that provides a portable interface used to implement then@ment
Configurator patternlj4Q, which SwapCIAO uses to open and load dynamic link

libraries (DLLs) on heterogeneous run-time platforms.

121

» Therepository managestores component implementations. SwapCIAO’s updatable
component factory uses the repository manager to searcts @bt locate compo-

nent implementations that require updating.

The remainder of this section describes how the SwapCIACpom@nts in Figurd4 ad-

dress the requirements presented in SedibR.2.

VI1.3.1 Providing Consistent and Uninterrupted Updates to dients

Problem. Dynamic updates of component implementations can occulewfteractions
are ongoing between components and their clients. For eeampring the component
update process, clients can initiate new invocations onngpoment — there may also be
ongoing interactions between components. If these saare not handled properly by
the middleware some computations can be lost, yielding stabnsistencies.

Solution — Reference counting operation invocationsin SwapCIAQ, all operation in-
vocations on a component are dispatched by the standartitegiht CCM portable object
adapter (POA), which maintainsdispatching tablehat tracks how many requests are be-
ing processed by each component in a thread. SwapCIAO umedast POA reference
counting and deactivation mechanisrhi24] to keep track of the number of clients making
invocations on a component. After a server thread finishesgsssing the invocation, it
decrements the reference count in the dispatching table.

When a component is about to be removed during a dynamic ejpitia@t POA does not
deactivate the component until its reference count becaeesi.e., until the last invoca-
tion on the component is processed. To prevent new invatafrom arriving at the com-
ponent while it is being updated, SwapCIAQO’s updatable @oet blocks new invocations
for this component in the server ORB using standard CORBAapte interceptorsl64].
Applying the solution to ITS. In the ITS case study, when the conveyor belt component
implementation is being updated, the warehouse hardwatersycould be issuing requests

to the conveyor belt component to move goods. The updatabkainer (which runs in the

122

same host as the conveyor belt component) instructs the @A&@pmiddleware to block
those requests. After the requests are blocked by SwapGheupdatable container’s
POA deactivates the conveyor belt component only when gllgsts it is processing are

completedj.e, when its reference count drops to zero.

V1.3.2 Ensuring Efficient Client-transparent Dynamic Component Updates

Problem. As shown in the Figur84, many clients can access a component whose imple-
mentation is undergoing updates during the dynamic recoraigpn process. In Lightweight
CCM, a client holds an object reference to a component. Aftesmponent implementa-
tion is updated, old object references are no longer valige dynamic reconfiguration of
components needs to be transparent to clients, howevédrasdlients using old references
to access updated component do not receive “invalid retefeexceptions. Such excep-
tions would complicate client application programming amctease latency by incurring
additional round-trip messages, which could unduly perthe QoS of component-based
DRE systems.
Solution — Use servant activators to redirect clients to update compaents trans-
parently. Figure 35 shows how SwapCIAO redirects clients transparently to ahated
component implementation. During the component updatnoggss, the old component
implementation is removed. When a client makes a requestsooiti object reference after
a component has been removed, the POA associated with thélnbeicontainer intercepts
the request via aervant activator This activator is a special type of intercepter that can
dynamically create a component implementation if it is nett gvailable to handle the re-
guest. Since the component has been removed, the POAs attject map will have no
corresponding entry, so the servant activator will createva component implementation
dynamically.

SwapCIAO stores information in the POA's active object mapandle client requests

efficiently. It also uses CORBA-compliant mechanisms tovate servants via unique user

123

Target Host

Active Object

Map
Update T
Map Updated
Component
POA :
B —
A Incarnate

% Executors

\

\\@utors) (_Executors)f/

/
/
/

Updatable Locate Component Server
P Exegutor ;
Component " Repository
Factory Manager

1

\

Remote Host

Client

F!equestsa |

= |CORBIJA Object

|
Middleware Bus e
\

\

Figure 35: Transparent Component Object Reference Update in SwapCIAO

id’s that circumvent informing clients of the updated implentation. This design prevents

extra network round-trips to inform clients about an updatemponent’s implementation.

Applying the solution to ITS. In the ITS case study, when the conveyor belt component

implementation is being updated, the warehouse hardwatersycould be issuing requests

to the conveyor belt component to move goods. After the atixenveyor belt component

is removed, the servant activator in the updatable contalR©A intercepts requests from

the warehouse hardware subsystem clients to the conveltardmponent. The servant

activator then activates a new conveyor belt componentamphtation and transparently

redirects the requests from the warehouse hardware sebsysthis updated implementa-

tion. SwapCIAO uses these standard CORBA mechanisms tdeediffierent component

implementations to handle the requests from warehousevaaedsubsystem clients trans-

parently, without incurring extra round-trip overhead cogramming effort by the clients.

124

VI.3.3 Enabling (Re)connections of Components

Problem. As discussed in SectioA.1, Lightweight CCM applications use the standard
OMG Deployment and Configuration (D&CLQ9 framework to parse XML assembly
descriptors and deployment plans, extract connectiomnmdtion from them, and establish
connections between component ports. This connectiorepsotypically occurs during
DRE system initialization. When component implementatiare updated, it is therefore
necessary to record each component’s connections to itspegonents since their XML
descriptors may not be available to establish the connectgain. Even if the XML is
available, reestablishing connections can incur extradettip message exchanges across
the network.

Solution — Caching component connectiong-igure 36 shows how SwapCIAO handles

component connections during the component update probPessg the component up-

Runtime Phase Updating Phase
Analyze Cache event Deacti\;_atetand Retrieve event
component $ consumer object re:“’ ";a e cofnsumer
ports references acets references

Deployment Phase

Parse XML Start Connect Ports
descriptors > i‘:’:‘al::;“::;i B of the
components
Start Connect P
deployment Components

Figure 36: Enabling (Re)connections of Components in SwapCIAO

dating process, SwapCIAO caches component connectionsytofdts peer component

125

ports. SwapCIAO automatically handles the case where tdated component is a facet
and the connected component is a receptacle. Since thetaeleepould make requests
on the facet while the component implementation is beingatgi SwapCIAO uses the
mechanisms described in Sectigh3.1 to deactivate the facets properly, so that no in-
vocations are dispatched to the component. When the newauwnp is activated, the
facets are reactivated using the SwapCIAO’s POA servaiaaot mechanism discussed
in SectionVI1.3.2. For event source and event sinks, if the component beingtagds
the publisher, SwapCIAO caches the connections of all timmected consumers. When
the updated component implementation is reactivated,oiections are restored from
the cache. As a result, communication can be started imnedgisithout requiring extra
network overhead.

Applying the solution to ITS. In the ITS, a conveyor belt component in the warehouse
hardware subsystem is connected to many sensors thattassisinveyor belt in tracking
goods until they reach a storage system. When a conveyocdraiponent is updated, its
connections to sensor components are cached before @dgmetiwWhen the updated con-
veyor belt component implementation is reactivated, trelhed connections are restored
and communication with the sensors can start immediatelyaimequests blocked during

the update process will then be handled.

V1.4 Empirical Results
This section presents the design and results of experintleatsempirically evaluate
how well SwapCIAO’s dynamic component updating framewakaibed in Sectiol1.3
addresses the requirements discussed in Sedtidh2. We focus on the performance
and predictability of SwapCIAO’s component updating metgsims provided by version
0.4.6 of SwapCIAO. All experiments used a single 850 MHz CRtallPentium Il with
512 MB RAM, running the RedHat Linux 7.1 distribution, whislipports kernel-level

multi-tasking, multi-threading, and symmetric multipessing. The benchmarks ran in the

126

POSIX real-time thread scheduling cla3§][to increase the consistency of our results by
ensuring the threads created during the experiment werpraetnpted arbitrarily during
their execution.

Figure37 shows key component interactions in the ITS case study shoWwigure 32

that motivated the design of these benchmarks using SwapCIA

ConveyorBelt
/ ItemLocation
finished_moving() Sensor
T move_item() location location
orkflow
Manager
2 —finished() \)
{ ltemLocation
Crane Sensor
location location
finished_moving()
move_item() \ /

Figure 37: Component Interaction in the ITS

As shown in this figure, the workflow manager component of tlagemal flow con-
trol subsystem is connected to the conveyor belt and forklinsportation units of the
warehouse hardware subsystem. We focus on the scenarie wWigeworkflow manager
contacts the conveyor belt component usingrtbge_i t en() operation to instruct the
conveyor belt component to move an item frosoairce(such as a loading dock) tadesti-
nation(such as a warehouse storage location). finee_i t en() operation takes source
and destination locations as its input arguments. Whentéme is moved to its destina-

tion successfully, the conveyor belt component informswioekflow manager using the

127

fini shed_novi ng() event operation. The conveyor belt component is also cdedec
to various sensor components, which determine if itemsféthe conveyor belt. It is es-
sential that the conveyor belt component not lose connextio these sensor components
when component implementation updates occur.

During the component updating process, workflow managentdiexperience some
delay. Our benchmarks reported below measure the delaytgerd\vhich is the variation
of the delay) that workflow manager clients experience wingoking operations on con-
veyor belt component during the component update procédss; dilso measure how much
of the total delay is incurred by the various activities tBatapCIAO performs when up-
dating a component implementation. In our experimentgatiponents were deployed on
the same machine to alleviate the impact of network overireadr experimental results.

The core CORBA benchmarking software is based on the sthgéaded version of
the “Test SwapCl AO’ performance test distributed with CIAOThis benchmark creates
a session for a single client to communicate with a singlepmment by invoking a config-
urable number ofrove_i t en{) operations. The conveyor belt component is connected
to the sensor components using event source/sink ports.

SectionVI.3.3 describes how caching and reestablishing connectionseloquenpo-
nents are important steps in the component updating provésgherefore measured the
scalability of SwapCIAO when an updated component has upteeer components using
event source/sink ports. The tests can be configured to thee #ie standard Lightweight
CCM session containers or SwapCIAO’s updatable contafjdescribed in SectioN|1.3).
Test SwapCl AOuses the default configuration of TAO, which uses a reactwearrency

model to collect replies.

2The source code foFest SwapCl AQis available atww. dr e. vander bi | t . edu/ ~j ai / TAQ G
| AQ performance-tests/ SwapCl AQ

128

www.dre.vanderbilt.edu/~jai/TAO/C
IAO/performance-tests/SwapCIAO

VI.4.1 Measuring SwapCIAQO’s Updatable Container Overheadfor Normal Opera-

tions

Rationale. SectionVI.3 described how SwapCIAO extends Lightweight CCM and CIAO
to support dynamic component updates. DRE systems do nayalkequire dynamic com-
ponent updating, however. It is therefore useful to compaeeoverhead of SwapCIAO’s
updatable container versus the standard Lightweight CQdise container underormal
operationg(i.e., without any updates) to evaluate the tradeoffs assocvaitbdhis feature.
Methodology. This experiment was run with two variants: one using the SWAQP up-
datable container and the other using the standard ClAQosessntainer. In both ex-
periemnts, we used high-resolution timer probes to medkaratency ohove _item()
operation from the workflow manager component to the convbgti component. Since
SwapCIAO caches and restores a component’s connectioisgiear components, we var-
ied the number of sensor components connected to the canbieltoand then collected
latency data with 2, 4, 8, and 16 ports to determine whethep®AAO incurred any over-
head with additional ports during normal operating modee Tast SwapCl AO client
made 200,000 invocations abve it en{) operation to collect the data shown in Fig-
ure 38.
Analysis of results. Figure 38 shows the comparitive latencies experienced by the work-
flow manager client when making invocations on conveyordmtiponent created with the
session container versus the updatable container. Thadésrmdicate that no appreciable
overhead is incurred by SwapCIAQO’s updatable containendomal operations that do not
involve dynamic swapping.

The remainder of this section uses the results in Fig8aes thebaseline processing de-
lay to evaluate the delay experienced by workflow manager slihen dynamic updating

of a conveyor belt component occurs.

129

Latency Differences Between Session Container and

Updatable Container
2000

@ Session Container
B Updatable Container

1600

1200 +—

Latency in Microseconds

800 +—

400 T T
2 4 8 18
Number of Ports

Figure 38: Overhead of SwapCIAO’s Updatable Container

VI.4.2 Measuring SwapCIAQO’s Updatable Container Overheadfor Updating Oper-
ations
Rationale. Evaluating the efficiency, scalability, and predictalilif SwapCIAO’s com-
ponent updating mechanisms described in Sec#ib®.2 and SectiorV1.3.3 is essential
to understand the tradeoffs associated with updatablacmns. SwapCIAO’'somponent
update timancludes (1) theemoval time which is the time SwapCIAO needs to remove
the existing component from service, (2) ttreation time which is the time SwapCIAO
needs to create and install a new component, and (3gtimnect timgwhich is the time
SwapCIAO needs to restore a component’s port connectiats peer components.
Methodology. Since the number of port connections a component has affeatgjuickly
it can be removed and installed, we evaluated SwapCIAO’spom@ant update time by

varying the number of ports and measuring the component’s:

130

* Removal timgwhich was measured by adding timer probes to SwapCl&0M O
bj ect:: renpve() operation, which deactivates the component servant,sbisas
ciates the executor from the servant, and callsn passi vat e() on the compo-

nent.

» Creation timewhich was measured by adding timer probes to SwapCIROis ab-
| eServer:: Servant Activator::incarnate() operation, which creates

and installs a new component, as described in Sedtidh2.

» Reconnect timavhich was measured by adding timer probeS@ bj ect : : c-

cm act i vat e(), which establishes connections to ports.

We measured the times outlined above whenever a componédateupccurs during a
nmove_itemn() call for 200,000 iterations and then calculated the requisented be-
low.

Analysis of creation time. Figure39 shows the minimum, average, and maximum laten-
cies, as well as the 99% latency percentile, incurred by 8Mip’s servant activator to
create a new component, as the number of ports vary from 2a4d816. This figure shows
that latency grows linearly as the number of ports initedibyPor t abl eSer ver : : Se-
rvant Activator::incarnate() increases. It also shows that SwapCIAO’s ser-
vant activator spends a uniform amount of time creating apmrant and does not incur
significant overhead when this process is repeated 200i0@3.t SwapCIAQO’s creation
mechanisms described in Sectiddh3.2 are therefore efficient, predictable, and scalable in
ensuring efficient client-transparent dynamic compongaiates

Analysis of reconnect time.Figure40shows the minimum, average, and maximum laten-
cies, as well as 99% latency percentile, incurred by Swap@Aeconnect mechanisms
to restore a new component’s connections, as the numbents yary from 2, 4, 8, and
16. As shown in the figure, the reconnect time increasesrlynedth the number of ports

per component. These results indicate that SwapCIAO sresct mechanisms described

131

100%
EH Minimum
15000 - |®@Average .|
O Maximum

10000 N

L

4 8 16
Number of Paorts

20000

Latency
{microseconds)

(9]
o
o
o

-
&

16000

99%

8000 -

Latency

4000

12000

= Minimum
B Average
OMaximum

{microseconds)

Standard Deviation

o_mmﬁ

2 4 8
Number of Ports

w200

o @ Standard
é" § 150 Deviation 7
o 2 |
E g 100

"é’ 50 - —

= 0 : :

2 8 16

Number of Ports

Figure 39: Latency Measurements for Component Creation

in SectionV1.3.3 provideefficient (re)connection of componestsd do not incur any ad-

ditional roundtrip delays by propagating exceptions od#sg GIOPLOCATE_FORWARD

messages to restore connections to components.

Analysis of removal time. Figure41 shows the time used by SwapCIAO’s removal mech-
anisms to cache a component’s connections and remove thgooemt from service, as a
function of the number of its connected ports. This remawattincreases linearly with the
number of ports, which indicates that SwapCIAO performs m@stant amount of work to
manage the connection information for each port. SwapCéA&moval mechanisms de-

scribed in SectioW1.3.1 are therefore able farovide consistent and uninterrupted updates

to clients

132

16

5000 100% 4000 99%
EMinimum = Minimum
@ 4000 B Average) | |mAverage 1
>-§ OMaximum ag 3000 OMaximum
= 2 c 3
T 6 = @ 2000 g
-G -5
E £
E = 1000 - 0
0 \ =
2 4 8 16 2 4 8 16
Number of Poris Number of Por{s
Standard Deviation
__ 100
i M Standard
> € 75 71— Deviation —
Q5
628 50 +———— . i
oo
L 25
E
0 | |
2 4 8 16

Number of Ports

Figure 40: Latency Measurements for Reconnecting Component Connections

VI1.4.3 Measuring the Update Latency Experienced by Clients

Rationale. SectionVI1.3.2 describes how SwapCIAO’s component creation mechanisms
are transparent to clients, efficient, and predictable nfop@ing client-transparent dy-
namic component updates. SectMi4.2 showed that SwapCIAO’s standard POA mech-
anisms and the servant activator create new componentnmepitions efficiently and
predictably. We now determine whether SwapCIAO incurs argrleead — other than the
work performed by the SwapCIAO’s component creation meignas — that significantly
affects client latency.

Methodology. The incarnation delayis defined as the period of time experienced by a

client when (1) its operation request arrives at a server @R8 SwapCIAO has removed

133

100% 9g%,

o
I
o
o

o =
-g = Minimum @ 1800 & Minimum
b B Average =
g 8 1600 I g - g lAver_age
S 3 aximum g 3 1200 =0 Maximum W
D w S o
T O 2w
- IT) 800 T © e 600 1 —
= -5
0 - E
0 T T L

2 4 8 16

Number of Ports 2 4 8 16

Number of Ports

Standard Deviation

[+2}
=)

\l:l Standard Deviation |

Latency
(microseconds)
[}
<

=]

2 4 8 16
Number of Ports

Figure 41: Latency Measurements for Component Removal

the component and (2) itreceives the reply after SwapClA@tess the component, restores
the component’s connections to peer components, and atlevapdated component to
process the client’s request. The incarnation delay tbezahcludes thereation time
reconnect timeandprocessing delagwhich is the time a new component needs to process
the operation request and send a reply to the client). To uneascarnation delay, we
(1) removed a component and (2) started a high-resolutmartivhen the client invokes

a request on the component. We repeated the above expefimné&@0,000 invocations
and measured the latency experienced by the client for emcltation. We also varied
the number of ports between 2, 4, 8, and 16 as described imB8adt4.2 to measure
the extent to which SwapCIAQO’s component creation procesdfeécted by the number of

ports connected to a component.

134

100% 99%

— 20000 . 18000
2 = Minimum 2 = Minimum
- g 15000 W Average u . g W Average
295 O Maximum 20 12000 5 Maximum]
S & 10000 R
-5 | .~ 5 6000 B
el
0+ . T T 0 - : L
2 4 8

16 2 4 8 16

Number of Ports Number of Ports

300 Standard Deviation

§ \DStandard Deviation |
3§ 200 —
5o
2w
© o 100 —
- & ’—'

‘g' 0 T T T

2 4 8 16
Number of Poris

Figure 42: Client Experienced Incarnation Delays during Transparent Component
Updates

Analysis of results. Figure42 shows the delay experienced by a client as SwapCIAO cre-
ates a component with a varying number of connections toggoclient requests. By
adding the delays in Figurg9, Figure40, and Figure38 and comparing them with the
delays in Figure42, we show how the incarnation delay is roughly equal to the sfim
the creation time, reconnect time, and processing delggrdéess of whether the client
invokes an operation on a updating component with portsingrfigom 2, 4, 8, to 16.

These results validate our claim in Sectdh3.2 that SwapCIAO provides component
updates that are transparent to clients. In particulawd8CIAO’s servant activator did

not transparently create the component and process thestede client’s delay incurred

135

obtaining a new object reference would be larger than the cluthe creation time, re-
connect time, and the processing delay. We therefore cdadhat SwapCIAO provides

efficient and predictable client transparent updates.

VI.5 Summary
This chapter describes the design and implementation opSWeD, which is a QoS-
enabled component middleware framework based on Lightw&@gM that supports dy-
namic component updating. SwapCIAO is designed to handbarmic operating condi-
tions by updating component implementations that are apéichfor particular run-time
characteristics. The lessons learned while developingp&WeD and applying it to the

ITS case study include:

» Standard Lightweight CCM interfaces can be extended #jigh develop a scal-
able and flexible middleware infrastructure that suppoytsathic component updat-
ing. In particular, SwapCIAQO'’s extensions require miniroaénges to the standard
Lightweight CCM server programming model. Moreover, itewrt programming
model and client/server interoperability were unaffedbgdthe server extensions.
Developers of client applications in our ITS case study whezefore shielded en-

tirely from SwapCIAQO’s component updating extensions.

» By exporting componentimplementations as DLLs, SwapC#i@plifies the task of
updating components by enabling their implementationgtirtked into the address
space of a server late in its lifecycieg., during the deployment and reconfiguration
phases. These capabilities enabled developers in the BESstady to create multiple
component implementations rapidly and update dynamigaligsponse to changing

modes and operational contexts.

* SwapCIAO adds insignificant overhead to each dynamic compioupdating re-

guest. It can therefore be used even for normal operatiofifSrapplications that

136

do not require dynamic component updating. Moreover, duiéopredictability
and transparency provided by SwapCIAQ, it can be used eftlgiszghen operating

conditions trigger mode changes.

137

CHAPTER VII

CONCLUDING REMARKS

Timeliness and high availability are two key quality of seev(QoS) properties that
must be assured for the correct operation of distributedtime@ and embedded (DRE)
systems. DRE systems are composed of multiple servicesliamd @pplications that are
deployed across local or metropolitan networks. Oftendh&vices and client appli-
cations are part of multiple end-to-end workflows that opeera environments that are
constrained in the number of resourcegy(CPU, network bandwidth). Moreover, these
systems operate in environments that are highly dynamiondreate processor or process
failures and system workload changes are common. Systekioads in DRE systems
could range from being statically known (closed DRE systémbeing dynamic (open
DRE system).

Middleware is a key software capability needed to supporERgstems. Designing
middleware that satisfies the QoS requirements of DRE sysieimard because it needs
to (1) integrate real-time and fault-tolerance by desighicW is not straightforward due
to the conflicting demands each QoS dimension imposes orvéilalale resources, (2) be
lightweight so that it is suitable for resource-constrdimeployments, and (3) be adap-
tive so that availability and timeliness properties canueet dynamically at runtime to
maintain soft real-time and fault-tolerant performancatisSying these three requirements
needs a systematic and scientific approach to realizingauukldleware.

This dissertation describes the design, development apdriexental evaluation of
middleware-based mechanisms that provide both high diyeand soft real-time per-
formance simultaneously for both the open and closed typp&& systems. Specifically,
this research makes three contributions in the form of &@lgois, architectures, and mech-

anisms that together address the above-described chedleisgollows:

138

* First, it discusses a novel deployment and configuratiamé&work for fault-tolerant
DRE systems called DeCoRAM, which provides a novel replitecation algorithm
that is (1)failure-aware i.e., it handles multiple processor failures using passive
replication and considers primary replicas, backup regli@and state synchroniza-
tion cost in the replica allocation problem, (B)source-awargi.e., it minimizes
number of processors used by opportunistically overbapgiocessors with multi-
ple backup replicas after analyzing feasible failovergrats due to multiple proces-
sor failures, and (3)eal-time-awarei.e., meet real-time performance requirements

both in normal conditions and after multiple processoufas.

» Second, it presents the design and implementatidfedivork QoS Provisioning En-
gine (NetQoPE)which is a model-driven, component middleware framewabidt t
deploys and configures applications in the nodes chosen IoRAM'’s replica
allocation algorithm and eliminates manual tasks develbpeetofore used to im-
plement replica allocation decisions. NetQoPE provideskle and non-invasive
QoS configuration and provisioning capabilities by leverggPU and network QoS

mechanisms without modifying application source code.

* Third, it presents the Fault-tolerant, Load-aware andpiisa middlewaRe (FLARe)
for distributed soft real-time applications. FLARe feasi(1) the Load-aware and
Adaptive Failover (LAAF) strategy that adapts failoveigets based on system load;
(2) the Resource Overload Management Redirector (ROMB)esly that dynami-
cally enforces CPU utilization bounds to maintain desiredsar delays in face of
concurrent failures and load changes; and (3) an efficiert-falerant middleware

architecture that supports transparent failover to passplicas. The dissertation

139

also describes SwapCIAO, which is a QoS-enabled componieitieware frame-
work based on Lightweight CCM that supports dynamic compbuapdating. Swap-
CIAO is designed to handle dynamic operating conditions jpgating component

implementations that are optimized for particular rundiaomaracteristics.

VII.1 Broader Impact and Future Research Directions

Although this research was conducted in the context of DREesys, the principles are
applicable to a wider range of distributed systems. Moredties research is by no means
solving all the issues in the problem space. At the same timgens up new opportunities
for research. Below we present its broader applicabilit4 aome directions for future
research based on our experience in designing and deveglafgorithms, architectures,

and middleware mechanisms for fault-tolerant DRE systems.

1. Tunable application performance versus consistencyl he requirement to provide
both high availability as well as satisfactory responsestirfor clients in a passively
replicated environment is conflicting in many ways. For eglanto provide better
fault-tolerance, théackupreplica’s (there could be more than obackupreplica)
state must be made consistent every time the state girtheary replica changes.
This approach reduces failure recovery time since any orikeo@vailablebackup
replicas can be promoted to be the nexmary replica during failure recovery, and

the clients could be quickly redirected to the ngumary replica.

However, this approach also increases response timesyezt by client applications
since theprimary replica does not respond to the clients until the state othal
backupreplicas is made consistent with the state ofgtimaryreplica. The response
times perceived by the client applications depends on the taken to synchronize
the state of thdackupreplica operating in the slowest physical host. On the other
hand, to provide satisfactory response times for clients tanminimize usage of

available resources for fault-tolerance purposdémakupreplica’s state can be made

140

consistent only during failure recovery. Although, thigpegach reduces network
and CPU resource usage, it also incurs longer recovery timgsh might not be

acceptable for certain applications.

As described above, many different alternatives are avail@ synchronize the state
of thebackupreplicas, and each of the alternatives can be charactdvasetl on the
response times provided to the clients, the recovery tirter &ilures, and the re-
sources consumed. It is important to provide policies fadéoff between these three
different aspects and mechanisms to tune these policiasddiployment time, when
the applications and their replicas are deployed. Thisheilp quantify deployment-
time assurances on the consistency characteristics thdttecprovided to the appli-
cations via the middleware. Further, as the deployed agbics and their repli-
cas operate in dynamic environments (new applicationsegpkged; new hardware
hosts are introduced; failures occur), such charactesisted to be tuned adaptively

depending on the needs and importance of the applications.

. Resource-aware fault-tolerance through dynamic adaptatin. This dissertation
demonstrated how to use our FLARe middleware to dynamiealjyst failover tar-
gets at runtime in response to system load fluctuations audiree availability. We
also demonstrated how FLARe adaptively maintains softtiesd performance for
clients operating in the presence of failures and overladtts negligible runtime
overhead. We now discuss some of the challenges in extemdingvork to per-
form more adaptations to maintain high availability and seél-time performance

simultaneously.

Our adaptive and load-aware solution in FLARe is built upaeatralized monitor-
ing architecture, where a centralized replication manageks with all the moni-
tors in a distributed system to obtain and record performariaracteristics at all

the hardware nodes to make adaptive real-time fault-toteraecisions. Although,

141

this architecture is reasonably applicable for a large rematb DRE systems, this
assumption is not valid for certain DRE systems, where theonis fail causing

severe resource contention in the remaining links. To asdites problem, one po-
tential future approach to explore is to design and devetlgptve real-time fault-
tolerance solutions that are based on a decentralizeddekdiochitecture. Another
potential future approach is also to integrate FLARe withwoek fault-tolerance
techniques28, 150, so that a centralized architecture could still be adoptesv-

ever, with better network high availability assurances.

. Enhancements to resource overload managementhis dissertation also demon-
strated how our FLARe middleware employs tResource Overload Management
and rEdirection (ROMEJ}trategy to dynamically enforce CPU utilization bounds to
maintain desired server delays in face of concurrent fedland load changes. In the
case of overloads, clients of the current primary replicagedirected automatically
to the chosen new backup replicas. This overload managestrategy will succeed
only if the CPU utilization at the least-loaded processathefbackup replicas does
not exceed thachedulable utilization bound the migration occurs. In scenarios
where overloads cannot be mitigated using migrations, newerload management
solutions are required that work in conjunction with a riale fault-tolerant mid-

dleware to maintain application required QoS.

One potential future approach is to integrate FLARe withaabed overload man-
agement techniques suchragkfirm guaranteesl27]. m,kfirm guarantee techniques
control the behavior of applications by modifying the réate period B4] of their
invocations. Since DRE systems are composed of servicepdhicipate in end-to-
end flows, modifying the behavior of one of the services campact the behavior
(e.g, real-time period of those services) of other services énethd-to-end applica-

tion flows. If the real-time properties of end-to-end apgion flows are not managed

142

properly, application QoS assurances could be affectedcé]@another potential fu-
ture approach is to integrate FLARe with end-to-end utilaacontrol servicesdQ)],

so that overload management techniques could be desigdedaaeled using rigor-
ous control-theoretic techniques and can provide robuseaalytically sound QoS

assurance.

. Application to other replication schemes. ACTIVE and PASSIVE replication p1]

are two common approaches for building fault-tolerantriiated applications that
provide high availability and satisfactory response tirfeesperformance-sensitive
distributed applications operating in dynamic environtsem addition to DRE sys-
tems, fault-tolerance has also been studied in the confeother systemsi6, 17,
92,121,130 134, 16§ . In such systems, prior research efforts have focused en dy
namically trading consistency for availability so thatedls could be provided high

availability with high throughput and shorter responsestrir9, 80, 159, 169.

Chain replication159 is one alternate replication scheme that is developeducin s
systems§0, 92]. In contrast toaCTIVE andPASSIVE replication schemes, that group
replicas by their roles, chain replication groups replizaghe functionality provided
to the clients. The replicas are divided into two groupsad and write. All the
updates from the clients are forwarded to Write group, while all the read requests
from the clients are forwarded to tmead group. Weaker consistency is provided
by employing a state update protocol that propagates updiate thewrite group

to theread group using a chain, which connects all the replicas in tioegyr Client
read requests are not blocked as the state update propaayaddhis provides high

throughput for the clients.

One interesting future research agenda would be to expetithe effect of chain

replication schemes on the timeliness assurances for DREmyg. Specifically, the

143

performance of the client read requests could be made pabtkdy taking advan-
tage of a load balance4,[116, 117] (and by investigating new adaptive load balanc-
ing algorithms) that is built on top of middleware technoksgthat are most suited
for developing DRE systems. Another interesting futureaesh agenda would be to
dynamically control the size of thead andwrite groups depending on the request
patterns of the clients, there by providing predictabldgrerance for client read as

well as write requests.

. Fault-tolerance and scheduling in computational grids.Large and complex sci-
entific workflows rely on computational grids to have thengka compute as well
as data-intensive applications executed. With the largeessnd extremely hetero-
geneous nature of the computational grids, executing tappkcations in a timely
as well as a dependable manner becomes a huge challengentCauit-tolerance
strategies?5, 52] for executing such complex workflows in a highly availablamm
ner rely on regularly obtaining checkpoints as the workflewscute, and restart the

application from the last known checkpoint in case of a faild2, 43).

However, such reactive fault-tolerance schemes could isignificant performance
loss because of computation repetition, and slow faultvelgatime. Proactive fault-
tolerance techniqueg3, 82, 99 provide solutions for such problems by using failure
prediction techniques to predict when a processor is mé&sdylito fail, and sub-
sequently migrating computations from that processor b@ohealthy processors.
After computations are migrated, senders continue to sezgbages to those new
processors to continue the overall workflow. The whole f&altrance and fault re-
covery process is orchestrated by the underlying middiewesan application trans-
parent manner providing great flexibility in designing Higavailable computational

grid applications.

Many scientific applications and workflows are deadlinesitiand hence need to

144

finish their computations within a certain time period. Racls systems, even proac-
tive fault-tolerance solutions might not work, as the tiraken to complete a work-
flow depends on the processor that has been chosen for migrafiter a failover or
migration, the client perceived response times will depamthe loads of the proces-
sor hosting the new objects. Incorrect client redirectiomsld overload a processor
thereby affecting the response time(s) for the redirecteaht¢s) and other clients
that were already invoking remote operations on targettedam that processor. If
a proactive fault-tolerance scheme has multiple processeailable for migrating
objects from a processdgad-aware migratiordecisions need to be made to deter-
mine the appropriate processor so that application pegoo® is not affected after

migration.

Hence, one potential future approach is to extend currevdqgpive fault-tolerance
schemes in the computational grids community with advahoad-awareoverload

as well as proactive fault-tolerance management schensesl lmn the adaptive re-
source management algorithms that have been designed\aidied in the context

of this dissertation.

145

APPENDIX A

UNDERLYING TECHNOLOGIES

This appendix summarizes the various technologies thatseé to build the real-time

fault-tolerant middleware solutions that are describetthisthesis.

A.1 Overview of Lightweight CCM

The OMG Lightweight CCM (LwCCM) 10§ specification standardizes the devel-
opment, configuration, and deployment of component-bapptications. LWCCM uses
CORBA's distributed object computing (DOC) model as its ertging architecture, so ap-
plications are not tied to any particular language or platfdor their implementations.
Componentsn LWCCM are the implementation entities that export a sahtdrfaces us-
able by conventional middleware clients as well as otherpmmnts. Components can
also express their intent to collaborate with other comptsby definingports, including
(1) facets which define an interface that accepts point-to-point metinvocations from
other components, (2gceptacleswhich indicate a dependency on point-to-point method
interface provided by another component, andg@¢nt sources/sinksvhich indicate a
willingness to exchange typed messages with one or more @oemps. Homesare fac-
tories that shield clients from the details of componenatiom strategies and subsequent
gueries to locate component instances.

Figure43illustrates the layered architecture of LwCCM, which irdis the following

entities:

* LWCCM sits atop arpbject request broker (ORB) and providegontainers that
encapsulate and enhance the CORBA portable object ad&&y) demultiplexing

mechanisms. Containers support various pre-defined houkstaategies, such as

146

Component
(Servant)

@ o

) inargs S 2
Client speravong > @ B\@ 2| COMPONENT
] g % | MIDDLEWARE
wn
D TER
SKEL
Container
DISTRIBUTION
[Object Adapter MIDDLEWARE
LAYER
HOST
INFRASTRUCTURE

MIDDLEWARE LAYER
OS/KERNEL OS/KERNEL
PROTOCOLS PROTOCOLS
INTERFACE INTERFACE

Figure 43: Layered LwCCM Architecture

persistence, event notification, transaction, and sgttoithe components it man-

ages.

» A component servaslays the role of a process that manages the homes, comstainer

and components.

» Each container manages one type of component and is rebj@fa initializing
instances of this component type and connecting them te otimponents and com-

mon middleware services.

» Thecomponent implementation framework (CIF) consists of patterns, languages
and tools that simplify and automate the development of @orapt implementations
which are called aexecutors Executors actually provide the component’s business

logic.

147

» Component Implementation Definition Language (CIDL) iexttbased declarative
language that defines the behavior of the components. Im toédhield the compo-
nent application developers from many complexities assediwith programming
POAs like servant activation and deactivation, a CIDL cdempgenerates infras-
tructure glue code calleskervants Servants (1) activate components within the con-
tainer’'s POA, (2) manage the interconnection of a compdmentts to the ports of
other components, (3) provide implementations for openatthat allow navigation
of component facets, and (4) intercept invocations on eresto transparently enact
various policies, such as component activation, securégsactions, load balancing,

and persistence.

 To initialize a instance of a component type, a containeat®s a component home.

The component home creates instances of servants and esseandl combines them

to export component implementations to external world.

» Executors use servants to communicate with the undertyingleware and servants
delegate business logic requests to executors. Clientatams made on the com-
ponent are intercepted by the servants, which then delégatsvocations to the
executors. Moreover, the containers can configure the lyndigmiddleware to add
more specialized services such as integrating event chemalblow components to

communicate, add Portable Interceptors to intercept comparequests, etc.

A.2 Overview of Component Middleware Deployment and Configuation
After components are developed and component assembé&edefined, they must
be deployed and configured properly by deployment and canatigin (D&C) services.
The D&C process of component-based systems usually ins@waumber of service ob-
jects that must collaborate with each other. Figd#egives an overview of the OMG

D&C model, which is standardized by OMG through the Deplogitrand Configuration

148

(D&C) [109 specification to promote component reuse and allow comgdgtications to

be built by assembling existing components. As shown in thadi, since a component-
based system often consists of many components that anéulistl across multiple nodes,
in order to automate the D&C process, these service objecss Ioe distributed across the

targeted infrastructure and collaborate remotely.

D&C 'Execution manager|
Profile =
[Domain |
A Application
Deployer | Manager
Deploy components Deploy components
to node A to node B
) ' Node Manager 7 \ [Node Manager |
Node create [Node Node create |~ Node
P == i 5 — |
Application Application Application Application
i <= Create | Manager i ~ <>Create _ Manager
] containers = l contalners b EeEE
create create
Container B | | Container
C'-‘ ccm | [com | 4 [ccm |
Install —™ |Component | Component Component
components Install
components
POA POA
—_— 7S — v ‘
$ 2 _ > N
cio | ORB B cwo [ORB)

Deployment Target Host A Deployment Target Host B

Figure 44: An Overview of OMG Deployment and Configuration Model

The run-time of the OMG D&C model standardizes the D&C predato a number of
serialized phases. The OMG D&C Model defines the D&C procssstavo-level architec-
ture, one at the domain level and one at the node level. Saaedeployment task involves
a number of subtasks that have explicit dependencies with @ther, these subtasks must
be serialized and finished in different phases. Meanwhaeh &eployment task involves a

number of node-specific tasks, so each task is distributed.

149

A.3 Overview of Generic Modeling Environment (GME)

GME is a configurable toolkit for creating DSMLs and prograymtbesis environ-
ments. Third-generation programming languages, such as @ava, and C#, employ
imperative techniques for development, deployment, andigaration of systems. For
example, real-time QoS provisioning with object requesikbrs is conventionally done
using imperative techniques that specify the QoS policigeeasame level of abstraction
as the mechanisms that implement those polidé§|[

In contrast, GME-based DSMLs use a declarative approadictbarly separates the
specification of policies from the mechanisms used to egftire policies. Policy specifica-
tion is done at a higher level of abstraction (and in less arhoidetail),e.g, usingmodels
and declarative configuration languages. Declarativeiigcies help relieve users from the
intricacies of how the policies are mapped onto the undsglynechanisms implementing
them, thereby simplifying policy modifications.

GME-based DSMLs are described usmgtamodelsvhich specify the modeling para-
digm or language of the application domain. The modelinggigm contains all the syn-
tactic, semantic, and presentation information regartiiegdomaing.g, which concepts
will be used to construct models, what relationships magtexnong those concepts, how
the concepts may be organized and viewed by the modeler,udes governing the con-
struction of models. The modeling paradigm defines the fawilmodels that can be
created using the resultant modeling environment.

For example, a DSML might represent the different hardwadeenents of a radar
system and the relationships between them in a componenlienidre technology like
LWCCM. Likewise, it might represent the different elemersisch as£JBComponenEJB-
Home EJBContainerand ApplicationServerthat are present in a component middleware
technology like EJB. Developers use DSMLs to build appicat using elements of the
type system captured by metamodels and express design deelaratively rather than

imperatively.

150

Decorator Decorator

GME Editor
Browser: | P/ Constraint

Manager

Add-on(s) N ! _— .- Translator(s)

GME Modeling Environment Core

Figure 45: Overview of GME

To create metamodels and their associated DSMLs, GME useslalan and compo-
nent-based architecture as shown in Figdise(see B3] for a detailed overview of the
GME architecture). Application developers create new DSMking the following core
components of GME: (1ME Editor, (2) Browser (3) Constraint Manager(4) Trans-
lator, andAdd-ons To support building large-scale and complex systems, GNHEgitor
and the Browser provide basic building blocks to model déffee entities of the system
and express the relationships between those differertesntGME’s Constraint Manager
catches errors when models are constructed with incoredationships or associations.
GME's Add-ons provide capabilities to extend the GME Editond its Translators sup-
port the analysis of models and synthesize various typegitdas, such as source code,

deployment descriptors, or simulator input.

151

A.4 Overview of Telcordia’s Bandwidth Broker

Telcordia has developed a network management solution && @ovisioning called
the Bandwidth Brokerd7], which leverages widely available mechanishg that support
Layer-3 DiffServ (Differentiated Services) and Layer-2a€8 of Service (CoS) features
in commercial routers and switches. DiffServ and CoS hawertvajor QoS functional-

ity/enforcement mechanisms:

 Atthe ingress of the network, traffic belonging to a flow iasdified based on the 5-
tuple (source IP address and port, destination IP addrespah and protocol) and
DSCP (assigned by the Bandwidth Broker) or any subset ofitfiismation. The
classified traffic is marked/re-marked with a DSCP as beluntp a particular class
and may be policed or shaped to ensure that traffic does neeéx certain rate or

deviate from a certain profile.

* In the network core, traffic is placed into different clasbased on the DSCP mark-
ing and provided differentiated, but consistent per-clasatment. Differentiated
treatment is achieved by scheduling mechanisms that ags&myts or priorities to
different traffic classes (such as weighted fair queuing@matiority queuing), and
buffer management techniques that include assigningvelatiffer sizes for differ-
ent classes and packet discard algorithms, such as RanddynCegection (RED)
and Weighted Random Early Detection (WRED).

These two features by themselves are insufficient to ensutéceend network QoS be-
cause the traffic presented to the network must be made tdhrtfacnetwork capacity.
What is also needed, therefore, is an adaptive admissiamnot@mtity that ensures there
are adequate network resources for a given traffic flow on amndink that the flow may
traverse. The admission control entity should be awareeop#th being traversed by each

flow, track how much bandwidth is being committed on eachfarleach traffic class, and

152

estimate whether the traffic demands of new flows can be accolat®d. In Layer-3 net-
works, there is more than one equal-cost between a sourceestidation; so we employ
Dijkstra’s all-pair shortest path algorithms. In Layer-@twork, we discover the VLAN
tree to find the path between any two hosts.

Figure4é6 illustrates the architecture (described in detail &v,[28, 50]) of the Band-

width Broker's network management solution for providingpkcation QoS. The four

Applications

Performance
Monitor

Performance
N Reservation
& Resource E:
QoS
Problem Query
Event
Bandwidth

Broker Provisioner

Fault
Query

Monitor]

Figure 46: Overview of Telcordia’s Bandwidth Broker

components of the QoS management architecture agafidwidth Broker(2) Flow Pro-
visioner, (3) (Network) Performance Monitorand (4)(Network) Fault Monitor These
network QoS components provide adaptive admission cotitadlensures there are ade-
guate network resources to match the needs of admitted flows.

The Bandwidth Broker is responsible for admission contnal assigning the appropri-

ate traffic class to each flow. It tracks bandwidth allocation all network links, rejecting

153

new flow requests when bandwidth is not available. The FlawiBioner enforces Band-
width Broker admission control decisions by configuringregs network elements to en-
sure that no admitted flow exceeds its allocated bandwidib.Flow Provisioner translates
technology-independent configuration directives geeeral the Bandwidth Broker into

vendor-specific router and switch commands to classifykpaard police packets belong-
ing to a flow. The Fault Monitor is the main feedback mecharfisnadapting to network

faults and the Performance Monitor provides informatiothancurrent performance infor-
mation of flows and traffic classes. The Bandwidth Broker wkissinformation to adapt

its admission control decisions.

The Bandwidth Broker admission decision for a flow is not basaely on requested
capacity or bandwidth on each link traversed by the flow, $atso based on delay bounds
requested for the flow. The delay bounds for new flows must barad without dam-
aging the delay bounds for previously admitted flows and euthredoing the expensive
job of readmitting every previously admitted flow. Telc@dias developed computa-
tional techniques to provide both deterministic and diattdelay-bound assurancag].
This assurance is based on relatively expensive compuasatiboccupancy or utilization
bounds for various classes of traffic, performed only at tivee tof network configura-
tion/reconfiguration, and relatively inexpensive chegkior a violation of these bounds at

the time of admission of a new flow.

154

APPENDIX B

LIST OF PUBLICATIONS

Research on FLARe, DeCoRAM, NetQoPE, and SwapCIAO has I¢uetdollowing

journal, conference and workshop publications.

B.1 Refereed Journal Publications

1. Aniruddha Gokhale, Krishnakumar Balasubramanian,aleigh Balasubramanian,
Arvind Krishna, George T. Edwards, Gan Deng, Emre TurkaffteleParsons and
Douglas C. Schmidt, “Model Driven Middleware: A New Paradidor Deploy-
ing and Provisioning Distributed Real-time and Embeddeglisptions,” Elsevier
Journal of Science of Computer Programming: Special Issuéaundations and
Applications of Model Driven Architecture (MDA), Volume, TSsue 1, September
2008, Pages 39-58

2. Patrick Lardieri, Jaiganesh Balasubramanian, Dougl&c@midt, Gautam Thaker,
Aniruddha Gokhale and Thomas Damiano, “A Multi-layered ®tgse Management
Framework for Dynamic Resource Management in EnterprisE Bigstems, Else-
vier Journal of Systems and Software: Special issue on Dyn@desource Manage-
ment in Distributed Real-Time Systems, editors C. Cavamang F. Drews and L.

Welch, Volume 80, Issue 7, July 2007, Pages 984-996

3. Venkita Subramonian, Gan Deng, Christopher Gill, JaégarBalasubramanian, Li-
ang-Jui Shen, William Otte, Douglas C. Schmidt, AniruddhakiBale and Nanbor
Wang, “The Design and Performance of Component MiddlewaréoS-enabled

Deployment and Configuration of DRE System|$evier Journal of Systems and

155

Software, Special Issue on Component-Based Software &rgig of Trustworthy

Embedded Systems, Volume 80, Issue 5, May 2007, Pages 568-67

. Krishnakumar Balasubramanian, Jaiganesh Balasubramaleff Parsons, Anirud-
dha Gokhale and Douglas C. Schmidt , “A Platform-Indepeh@@mponent Mod-
eling Language for Distributed Real-time and Embeddede®ysf’'Elsevier Journal

of System and Software, Volume 73, Issue 2, March 2007, Rade$85

. Krishnakumar Balasubramanian, Arvind S. Krishna, Enugkady, Jaiganesh Bala-
subramanian, Aniruddha Gokhale and Douglas C. SchmidpiApg Model-Driven
Development to Distributed Real-time and Embedded Avi®Bigstems,nvited Pa-
per to International Journal of Embedded Systems, Spexsald on Design and Ver-

ification of Real-time Embedded Software, Volume 2, IssB8, Pages 142-155

B.2 Refereed Conference Publications

. Jaiganesh Balasubramanian, Sumant Tambe, Chenyangltuddha Gokhale, Ch-
ristopher Gill and Douglas C. Schmidt, “Adaptive Failover Real-time Middleware
with Passive ReplicationProceedings of the 15th IEEE Real-time and Embedded
Technology and Applications Symposium (RTAS 2009), Sarciseo, USA, April
2009

. Friedhelm Wolf, Jaiganesh Balasubramanian, Aniruddbkh@le, and Douglas C.
Schmidt, “Component Replication Based on Failover UnRsgceedings of the 15th
IEEE International Conference on Embedded and Real-Tinmeting Systems and

Applications (RTCSA 2009), August 2009

. Brian Dougherty, Jules White, Jaiganesh Balasubrama@aris Thompson and
Douglas C. Schmidt, “Deployment Automation with BLITZ'Proceedings of the
Emerging Results Track of the 31st International Confegemt Software Engineer-

ing (ICSE 2009), Vancouver, Canada, May 2009

156

. Jaiganesh Balasubramanian, Aniruddha Gokhale, Do@l&chmidt and Nanbor
Wang, “Towards Middleware for Fault-Tolerance in Distri&d Real-time and Em-
bedded SystemsProceedings of the 8th IFIP WG 6.1 International Conference
on Distributed Applications and Interoperable SystemsI@®2008), Oslo, Norway,
June 2008

. Jaiganesh Balasubramanian, Sumant Tambe, Balakri§rasarathy, Shrirang Gad-
gil, Frederick Porter, Aniruddha Gokhale and Douglas C.nddh “NetQoPE: A
Model-driven Network QoS Provisioning Engine for Distribd Real-time and Em-
bedded SystemsProceedings of the 14th IEEE Real-time and Embedded Technol
ogy and Applications Symposium (RTAS 2008), St. Louis, AjgA 2008

. Jaiganesh Balasubramanian, “FLARe: A Fault-toleraghtweight Adaptive Real-
time Middleware for Distributed Real-time and Embeddedt&ys,”Proceedings of
the 4th Middleware Conference Doctoral Symposium (MDS Raf@#located with
Middleware 2007, Newport Beach, California, USA, Decent¥)7

. Sumant Tambe, Jaiganesh Balasubramanian, Aniruddhbatoknd Tom Dami-
ano, “MDDPro: Model-Driven Dependability Provisioningkmterprise Distributed
Real-time and Embedded Systenf3rbceedings of the Annual International Service

Availability Symposium (ISAS 2007), Durham, NH, USA, M&/720

. Nishanth Shankaran, Jaiganesh Balasubramanian, BoGgBchmidt and Gautam
Biswas, “A Framework for (Re)Deploying Components in Dizited Real-time and
Embedded SystemsPProceedings of the 21st Annual ACM Symposium on Applied
Computing (SAC 2006), Dijon, France, April 2006

. Krishnakumar Balasubramanian, Jaiganesh Balasubramaleff Parsons, Anirud-
dha Gokhale and Douglas C. Schmidt, “A Platform-Indepeh@mponent Mod-

eling Language for Distributed Real-time and Embeddede®ysf’ Proceedings of

157

10.

11.

12.

the 11th IEEE Real-Time and Embedded Technology and ApplsaSymposium
(RTAS 2005), San Francisco, CA, March 2005

Jaiganesh Balasubramanian, Balachandran NatarefaRalsons, Douglas C. Sch-
midt and Aniruddha Gokhale, “Middleware Support for Dynar@iomponent Up-
dating,” Proceedings of the International Symposium on Distrib@egects and Ap-

plications (DOA 2005), Agia Napa, Cyprus, October 2005

Gan Deng, Jaiganesh Balasubramanian, Douglas C. Sadmdidniruddha Gokhale,
'DANCE: A QoS-enabled Component Deployment and Configanaingine,”Pro-
ceedings of the Third Working Conference on Component pamat (CD 2005),

Grenoble, France, November 2005

Jaiganesh Balasubramanian, Lawrence Dowdy, Dougl&ckmidt and Ossama
Othman, “Evaluating the Performance of Middleware LoadaBeing Strategies,”
Proceedings of the 8th International IEEE Enterprise Ohaited Object Computing
Conference (EDOC 2004), Monterey, CA, September 2004

B.3 Refereed Workshop Publications

. Jaiganesh Balasubramanian, Aniruddha Gokhale, Dowglé&chmidt and Sherif

Abdelwahed, “Investigating Survivability Strategies fditra Large Scale Systems,”
Proceedings of the NSF TRUST Project Winter Workshop, Wi, D.C, January,
2006

. Aniruddha Gokhale, Krishnakumar Balasubramanian,aleigh Balasubramanian,

Arvind Krishna and Gan Deng, “CoSMIC: Addressing the Depteynt and Con-
figuration Crosscutting Concerns of Distributed Real-temel Embedded Systems,”
Proceedings of the Companion to the 19th ACM SIGPLAN Camderen Object-
Oriented Programing, Systems, Languages and ApplicaO@PSLA 2004), Van-
couver, BC, Canada, October 2004

158

3. Arvind S. Krishna, Jaiganesh Balasubramanian, Anirad@lokhale, Douglas C.
Schmidt, Diego Sevilla and Gautam Thaker, “Empirically keeding CORBA Com-
ponent Model ImplementationsProceedings of the 18th ACM SIGPLAN Confer-
ence on Object-Oriented Programing, Systems, Languagé#pplications (OOP-
SLA 2003), Workshop on Middleware Benchmarking, Anaheify, @tober 26,
2003

4. Ossama Othman, Jaiganesh Balasubramanian and Dou@ebkr@idt, “The Design
of an Adaptive Middleware Load Balancing and Monitoring\Beg,” Proceedings of
the 3rd International Workshop on Self-Adaptive SoftwAréSAS 2003), Arlington,
VA, USA, June 9-11, 2003

B.4 Submitted for Publication
1. Jaiganesh Balasubramanian, Aniruddha Gokhale, Fiimdhelf, Abhishek Dubey,
Chenyang Lu, Christopher Gill and Douglas C. Schmidt, “Rese-Aware Deploy-
ment and Configuration of Fault-Tolerant Real-time Syste®gbmitted to the 16th
IEEE Real-Time and Embedded Technology and Applicationgp8sium (RTAS
2010), Stockholm, Sweden, April 2010

2. Jaiganesh Balasubramanian, Sumant Tambe, Aniruddhze&oBalakrishnan Dasa-
rathy, Shrirang Gadgil and Douglas C. Schmidt, “A Modelvdn QoS Provisioning
Engine for Cyber Physical SystemsSubmitted to the IEEE Transactions on Soft-

ware Engineering, October 2009

159

REFERENCES

[1] Tarek F. Abdelzaher, Scott Dawson, Wu chang Feng, Fadsmanian, Scott John-
son, Ashish Mehra, Todd Mitton, Anees Shaikh, Kang G. ShimgiZn Wang, Heng-
ming Zou, M. Bjorkland, and P. Marron. ARMADA Middleware a@@®mmunica-
tion ServicesReal-Time System$6(2-3):127-153, 1999.

[2] R. Al-Omari, A. K. Somani, and G. Manimaran. An adaptieheme for fault-
tolerant scheduling of soft real-time tasks in multipramgssystems.J. Parallel
Distrib. Comput, 65(5):595-608, 2005. ISSN 0743-7315. doi: http://dxaigi10.
1016/j.jpdc.2004.09.021.

[3] Hakan Aydin. Exact fault-sensitive feasibility analyf real-time tasks.|EEE
Trans. Comput.56(10):1372-1386, 2007. ISSN 0018-9340. doi: http:ddiorg/
10.1109/TC.2007.70739.

[4] Jaiganesh Balasubramanian, Douglas C. Schmidt, Laxer&owdy, and Ossama
Othman. Evaluating the Performance of Middleware Load Bzley Strategies. In
Proceedings of the 8th International IEEE Enterprise Dlzited Object Computing
ConferenceMontery, CA, September 2004. IEEE.

[5] Jaiganesh Balasubramanian, Sumant Tambe, BalakrisD@sarathy, Shrirang
Gadagil, Frederick Porter, Aniruddha Gokhale, and DouglaScbmidt. Netqope: A
model-driven network qos provisioning engine for disttémireal-time and embed-
ded systems. IRTAS’ 08 pages 113-122, 2008.

[6] Jaiganesh Balasubramanian, Sumant Tambe, Aniruddhddbs Chenyang Lu,
Christopher Gill, and Douglas C. Schmidt. FLARe: a Fauléftant Lightweight
Adaptive Real-time Middleware for Distributed Real-tinredeaEmbedded Systems.
Technical Report ISIS-08-812, Institute for Software greted Systems, Vanderbilt
University, Nashville, TN, October 2008.

[7] Jaiganesh Balasubramanian, Sumant Tambe, Chenyandnityddha Gokhale,
Christopher Gill, and Douglas C. Schmidt. Adaptive Faildee Real-time Middle-
ware with Passive Replication. Rroceedings of the 15th Real-time and Embedded
Applications Symposium (RTAPages 118-127, San Francisco, CA, April 2009.

[8] Krishnakumar Balasubramanian, Nanbor Wang, and DauglaSchmidt. Towards
composable distributed real-time and embedded softwa®QRDS '03: Proceed-
ings of the8™™ Workshop on Object-oriented Real-time Dependable Sysieamgss
226-233, Los Alamitos, CA, USA, 2003. IEEE Computer Society

[9] Krishnakumar Balasubramanian, Jaiganesh Balasubmamaleff Parsons, Anirud-

dha Gokhale, and Douglas C. Schmidt. A Platform-Indepen@emponent Mod-
eling Language for Distributed Real-Time and Embeddede®yst INRTAS '05:

160

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Proceedings of the 11th IEEE Real Time on Embedded TechnalabApplications
Symposiunpages 190-199, Washington, DC, USA, 2005. IEEE Computeego
ISBN 0-7695-2302-1. doi: http://dx.doi.org/10.1109/RFR005.4.

Krishnakumar Balasubramanian, Jaiganesh Balasubream, Jeff Parsons, Anirud-
dha Gokhale, and Douglas C. Schmidt. A Platform-Indepen@emponent Mod-
eling Language for Distributed Real-time and Embeddede®ystJournal of Com-
puter Systems Scienc&3(2):171-185, 2007. ISSN 0022-0000. doi: dx.doi.org/10
1016/j.jcss.2006.04.008.

Roberto Baldoni and Carlo Marchetti. Three-tier regtion for ft-corba infras-
tructures. Softw. Pract. Exper.33(8):767—797, 2003. ISSN 0038-0644. doi:
http://dx.doi.org/10.1002/spe.525.

P. Barrett, A. Hilborne, P. Bond, D. Seaton, P. Verissinh. Rodrigues, and
N. Speirs. The Delta-4 Extra Performance Architecture (XPAProceedings of the
20th Int. Symp. on Fault-Tolerant Computing Systems (FZQSpages 481-488,
June 1990.

T. Bennani, L. Blain, L. Courtes, J. C. Fabre M. O. KiHip, E. Marsden, and F. Ta-
iani. Implementing Simple Replication Protocols using 2RPortable Intercep-
tors and Java Serialization. Rroc. of DSN. (2004)

Taha Bennani, Laurent Blain, Ludovic Courtes, Jeaa(&s Fabre, Marc-Olivier
Killijian, Eric Marsden, and Francois Taiani. Implememgi8imple Replication Pro-
tocols using CORBA Portable Interceptors and Java Seatadiz. INDSN’ 04 pages
549-554, Florence, Italy, 2004.

Alan A. Bertossi, Luigi V. Mancini, and Federico RossinFault-tolerant rate-
monotonic first-fit scheduling in hard-real-time systeftsEE Trans. Parallel Dis-
trib. Syst, 10(9):934-945, 1999. ISSN 1045-9219. doi: dx.doi.org/109/71.
798317.

Bettina Kemme and Gustavo Alonso. A Suite of DatabaspliBation Protocols
based on Group Communication Primitives. Rroceedings of the IEEE Interna-
tional Conference on Distributed Computing Systems (ICDR&R)es 156-163, May
1998.

Ken Birman, Robbert van Renesse, and Werner Vogels. ingddigh availability
and autonomic behavior to web services. IGSE '04: Proceedings of the 26th
International Conference on Software Engineeripgges 17—-26, Washington, DC,
USA, 2004. IEEE Computer Society. ISBN 0-7695-2163-0.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, andWéiss. An Architecture
for Differentiated Services, 1998.

161

[19] Manfred Broy. Challenges in Automotive Software Erggning. InNICSE '06: Pro-
ceedings of the 28th international conference on Softwagneering pages 33—
42, Shanghai, China, 2006. ACM. ISBN 1-59593-375-1. ddp:hdoi.acm.org/10.
1145/1134285.1134292.

[20] Navin Budhiraja, Keith Marzullo, Fred B. Schneider,daam Toueg. The
Primary-backup Approach. IDistributed systems (2nd Edpages 199-216. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA939 ISBN 0-201-
62427-3.

[21] Navin Budhiraja, Keith Marzullo, Fred B. Schneiderda®am Toueg. The Primary-
backup Approach. IDistributed systems (2nd Edpages 199-216. 1993.

[22] Zhongtang Cai, Vibhore Kumar, Brian F. Cooper, GregBlsauer, Karsten Schwan,
and Robert E. Strom. Utility-Driven Proactive ManagemehtAgailability in
Enterprise-Scale Information Flows. Rroceedings of ACM/Usenix/IFIP Middle-
ware, pages 382—-403, 2006.

[23] Sayantan Chakravorty and L.V. Kale. A fault tolerancetpcol with fast fault recov-
ery. InParallel and Distributed Processing Symposium, 2007. IBD®O07. IEEE
International pages 1-10, March 2007. doi: 10.1109/IPDPS.2007.370310.

[24] Jian-Jia Chen, Chuan-Yue Yang, Tei-Wei Kuo, and Shaudseng. Real-Time
Task Replication for Fault Tolerance in Identical Multipessor Systems. IRTAS
'07: Proceedings of the 13th IEEE Real Time and Embeddeditéaty and Appli-
cations Symposiunpages 249-258, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 0-7695-2800-7. doi: http://dx.doi.org/lD09/RTAS.2007.30.

[25] Z. Chen, M. Yang, G. Francia, and J. Dongarra. Self adagpplication level
fault tolerance for parallel and distributed computing. Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE Internatigaaes 1-8, March
2007. doi: 10.1109/IPDPS.2007.370604.

[26] EG Coffman Jr, MR Garey, and DS Johnson. Approximatilgo@thms for bin
packing: a survey. 1996.

[27] B. Dasarathy, S. Gadgil, R. Vaidyanathan, K. ParmeanjaB. Coan, M. Conarty,
and V. Bhanot. Network qos assurance in a multi-layer adapésource manage-
ment scheme for mission-critical applications using thebaaniddleware frame-
work. INRTAS '05: Proceedings of the 11th IEEE Real Time on Embedststhdl-
ogy and Applications Symposiumages 246—-255, Washington, DC, USA, 2005.
IEEE Computer Society. ISBN 0-7695-2302-1. doi: http:/¢ibi.org/10.1109/
RTAS.2005.34.

[28] Balakrishnan Dasarathy, Shrirang Gadgil, Ravi Vaitgthan, Arnie Neidhardt,

162

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Brian Coan, Kirthika Parmeswaran, Allen Mcintosh, and Erezk Porter. Adap-
tive network qos in layer-3/layer-2 networks as a middlenservice for mission-
critical applications.J. Syst. Softw80(7):972—-983, 2007. ISSN 0164-1212. doi:
http://dx.doi.org/10.1016/}.jss.2006.09.030.

G. de A Lima and A. Burns. An optimal fixed-priority aseigent algorithm for
supporting fault-tolerant hard real-time systef@emputers, IEEE Transactions,on
52(10):1332-1346, Oct. 2003. ISSN 0018-9340. doi: 10.MMO2003.1234530.

Miguel A. de Miguel. Integration of qos facilities intmmponent container archi-
tectures. INNISORC '02: Proceedings of the Fifth IEEE International Sysipm
on Object-Oriented Real-Time Distributed Computipgge 394, Washington, DC,
USA, 2002. IEEE Computer Society.

Dionisio de Niz and Raj Rajkumar. Partitioning Bin-Ramg Algorithms for Dis-
tributed Real-time System#nternational Journal of Embedded Syste@&):196—
208, 2006.

Dionisio de Niz, Gaurav Bhatia, and Raj Rajkumar. MeBaked Development
of Embedded Systems: The SysWeaver ApproachRTAS '06: Proceedings of
the 12th IEEE Real-Time and Embedded Technology and AgiplsaSymposium
pages 231-242, Washington, DC, USA, 2006. IEEE Computeie§ocISBN O-
7695-2516-4. doi: http://dx.doi.org/10.1109/RTAS.2(BI6

Dionisio de Niz, Gaurav Bhatia, and Raj Rajkumar. MeBeked Development of
Embedded Systems: The SysWeaver ApproachPrat. of RTAS Oppages 231—
242, Washington, DC, USA, August 2006. ISBN 0-7695-251@idi: dx.doi.org/
10.1109/RTAS.2006.30.

S.K. Dhall and CL Liu. On a Real-time Scheduling Problédperations Research
pages 127-140, 1978.

S.K. Dhall and CL Liu. On a Real-time Scheduling Problédperations Research
26(1):127-140, 1978.

T. Dumitras and P. Narasimhan. Fault-Tolerant Middiesvand the Magical 1%n:
Proc. of Middleware (2005)2005.

T. Dumitras and P. Narasimhan. Fault-Tolerant Middiesvand the Magical 1%.
Middleware 2005: ACM/IFIP/USENIX 6th International Migavare Conference,
Grenoble, France, November 28-December 2, 2005: Procggd2005.

Gary Duzan, Joseph Loyall, Richard Schantz, Richardp8b, and John Zinky.
Building Adaptive Distributed Applications with Middlewaand Aspects. IAOSD
'04: Proceedings of the 3rd international conference on édgoriented software

163

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

developmenpages 66—73, New York, NY, USA, 2004. ACM Press. ISBN 1-53811
842-3.

E. Eide, T. Stack, J. Regehr, and J. Lepreau. Dynamicrgmagement for real-time,
middleware-based systems. RTAS '04: Proceedings of the 10th IEEE Real-Time
and Embedded Technology and Applications Symposnage 286, Washington,
DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2148-7.

M. EI-Gendy, A. Bose, S.-T. Park, and K.G. Shin. Pavihg first mile for qos-
dependent applications and appliances. IWQoS '04: Proceedings of the 12th
International Workshop on Quality of Servjceages 245-254, Washington, DC,
USA, June 2004. IEEE Computer Society. doi: 10.1109/IWQ0&4.1309390.

M.A. EI-Gendy, A. Bose, and K.G. Shin. Evolution of th@ernet gos and support
for soft real-time applications.Proceedings of the IEEE1(7):1086-1104, July
2003. ISSN 0018-9219. doi: 10.1109/JPROC.2003.814615.

E. N. ElInozahy, Lorenzo Alvisi, Yi-Min Wang, and David Bohnson. A survey of
rollback-recovery protocols in message-passing systék@dl Computer Surveys
34(3):375-408, 2002.

E.N. Elnozahy and J.S. Plank. Checkpointing for pet@es systems: a look into
the future of practical rollback-recoveripependable and Secure Computing, IEEE
Transactions on1(2):97-108, April-June 2004. ISSN 1545-5971. doi: 1091
TDSC.2004.15.

Paul Emberson and lain Bate. Extending a Task Allocafigorithm for Grace-
ful Degradation of Real-Time Distributed Embedded SystemsRTSS '08: Pro-
ceedings of the 2008 Real-Time Systems Symppgiages 270-279, Washing-
ton, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7895-7-0. doi:
http://dx.doi.org/10.1109/RTSS.2008.24.

Pascal Felber and Priya Narasimhan. Experiences,d®gpes and Challenges in
building Fault-tolerant CORBA System€omputers, IEEE Transactions a4 (5):
497-511, May 2004.

lan Foster, Markus Fidler, Alain Roy, Volker Sanderdarnda Winkler. End-to-end
Quality of Service for High-end Application€€omputer Communication27(14):
1375-1388, September 2004.

Roy Friedman and Erez Hadad. Fts: A high-performancbatault-tolerance ser-
vice. InProc. of WORDS.(2002)

Roy Friedman and Erez Hadad. Fts: A high-performancbatault-tolerance ser-
vice. INWORDS '02: Proceedings of the The Seventh IEEE Interndtidekshop

164

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

on Object-Oriented Real-Time Dependable Systems (WORIX), page 61, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

Lorenz Froihofer, Karl M. Goeschka, and Johannes OsMieldleware support for
adaptive dependability. INliddleware pages 308—-327, 2007.

Shrirang Gadgil, Balakrishnan Dasarathy, Frederiokié?, Kirthika Parmeswaran,
and Ravi Vaidyanathan. Fast recovery and qos assurance iprésence of net-
work faults for mission-critical applications in hostilevéronments. IrRTCSA '07:
Proceedings of the 13th IEEE International Conference orb&shded and Real-
Time Computing Systems and Applicatigreges 283—-292, Washington, DC, USA,
2007. IEEE Computer Society. ISBN 0-7695-2975-5. doi: #Hdg.doi.org/10.
1109/RTCSA.2007.39.

Erich Gamma, Richard Helm, Ralph Johnson, and JohrsMks.Design Patterns:
Elements of Reusable Object-Oriented Softwakeldison-Wesley, Reading, MA,
1995.

Qi Gao, Weikuan Yu, Wei Huang, and D.K. Panda. Applieattransparent check-
point/restart for mpi programs over infiniband. Parallel Processing, 2006. ICPP
2006. International Conference ppages 471-478, Aug. 2006. doi: 10.1109/ICPP.
2006.26.

Sunondo Ghosh, Rami Melhem, and Daniel Mossé. Fauérdince Through
Scheduling of Aperiodic Tasks in Hard Real-Time Multipreser SystemsIEEE
Trans. Parallel Distrib. Syst.8(3):272—-284, 1997. ISSN 1045-9219. doi: http:
//dx.doi.org/10.1109/71.584093.

A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel. An Adgthm for Automatically
Obtaining Distributed and Fault-tolerant Static Scheslulln Dependable Systems
and Networks, 2003. Proceedings. 2003 International Qeenfee on pages 159-
168, June 2003.

Aniruddha S. Gokhale, Balachandran Natarajan, Dagle&Schmidt, and Joseph K.
Cross. Towards real-time fault-tolerant corba middlewaf@uster Computing
7(4):331-346, 2004. ISSN 1386-7857. doi: http://dx.dgi0.1023/B:CLUS.
0000039493.73008.13.

O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ram#ram. Adaptive fault
tolerance and graceful degradation under dynamic hardtireal scheduling. In
RTSS '97page 79, San Francisco, CA, USA, 1997. ISBN 0-8186-8268-X.

Sathish Gopalakrishnan and Marco Caccamo. Task Bartig with Replication
upon Heterogeneous Multiprocessor System&TAS '06: Proceedings of the 12th
IEEE Real-Time and Embedded Technology and Applicationgp8sium pages

165

199-207, Washington, DC, USA, 2006. IEEE Computer Socié8BN 0-7695-
2516-4. doi: http://dx.doi.org/10.1109/RTAS.2006.43.

[58] Zonghua Gu and Kang G. Shin. Synthesis of Real-Time émantations from
Component-Based Software ModelsRMSS '05: Proceedings of the 26th IEEE In-
ternational Real-Time Systems Symposipages 167-176, Washington, DC, USA,
2005. IEEE Computer Society. ISBN 0-7695-2490-7. doi: #dg.doi.org/10.
1109/RTSS.2005.38.

[59] Zonghua Gu, Sharath Kodase, Shige Wang, and Kang G. ShiModel-Based
Approach to System-Level Dependency and Real-Time Amnaylde mbedded Soft-
ware. INRTAS '03: Proceedings of the The 9th IEEE Real-Time and EdduaEtech-
nology and Applications Symposiupages 78-85, Toronto, Canada, 2003. IEEE
Computer Society. ISBN 0-7695-1956-3.

[60] Zonghua Gu, Sharath Kodase, Shige Wang, and Kang G. ShiModel-Based
Approach to System-Level Dependency and Real-time AnayiSEmbedded Soft-
ware. INRTAS’03 pages 78—-85, Washington, DC, May 2003. IEEE.

[61] Rachid Guerraoui and André Schiper. Software-Baseauli€aion for Fault Toler-
ance.l[EEE Computer30(4):68—-74, April 1997.

[62] Jun He, Matti A. Hiltunen, Mohan Rajagopalan, and Rrcha. Schlichting. Provid-
ing gos customization in distributed object systemdvliddleware pages 351-372,
2001.

[63] Institute for Software Integrated Systems. The ACE ORBAO).
www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

[64] E. Douglas Jensen. Distributed Real-time Specificatidor Java.
java.sun.com/aboutJava/communityprocess/jsr/jsr_@Mtml, 2000.

[65] Scott Johnson, Farnam Jahanian, Akihiko Miyoshi, Baonde Niz, and Ragunathan
Rajkumar. Constructing real-time group communicationdtediare using the re-
source kernelRTSS '2000: Proceedings of the 21st IEEE Real-Time Systgms S
posium 00:3, 2000. ISSN 1052-8725. doi: doi.ieeecomputerspoie)/10.1109/
REAL.2000.895990.

[66] Mick Jordan, Grzegorz Czajkowski, Kirill Kouklinskand Glenn Skinner. Extend-
ing a j2ee™server with dynamic and flexible resource managénin Middleware
'04: Proceedings of the 5th ACM/IFIP/USENIX internatiorw@nference on Mid-
dleware pages 439-458, New York, NY, USA, 2004. Springer-VerlagvNe@rk,
Inc. ISBN 3-540-23428-4.

[67] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser. Dgmic Scheduling of Dis-
tributed Method Invocations. I1B1st IEEE Real-time Systems SymposiOnando,

166

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

FL, November 2000. IEEE.

Vana Kalogeraki, P. M. Melliar-Smith, L. E. Moser, andDfougas. Resource Man-
agement Using Multiple Feedback Loops in Soft Real-timetribigted Systems.
Journal of Systems and Softwad®07.

Nagarajan Kandasamy, John P Hayes, and Brian T. Muriagnsparent recov-
ery from intermittent faults in time-triggered distribdteystems.IEEE Trans. on
Comp, 52(2), 2003. ISSN 0018-9340. doi: doi.ieeecomputerspoigy/10.1109/
TC.2003.1.

Gabor Karsai, Sandeep Neema, Ben Abbott, and DavidpSharModeling Lan-
guage and Its Supporting Tools for Avionics SystemsPioceedings of 21st Digi-
tal Avionics Systems Conferent®s Alamitos, CA, August 2002. IEEE Computer
Society.

Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, ardiBapty. Model-Integrated
Development of Embedded Softward?roceedings of the IEEE1(1):145-164,
January 2003.

Panagiotis Katsaros and Constantine Lazos. Optinjatbbtate transfer - recovery
policies for fault tolerant distributed systems.Rroc. of DSN. (2004)

Khanna, S.et al. Realtime Scheduling in SunOS 5.0.Rnoceedings of the USENIX
Winter Conferencggpages 375-390. USENIX Association, 1992.

K. H. (Kane) Kim and Jeff J.Q. Liu. Techniques for Implenting Support Middle-
ware for the PSTR Scheme for Real-Time Object ReplicatiS@RC 00:163-172,
2004. doi: doi.ieeecomputersociety.org/10.1109/ISQRA4.1300342.

K. H. (Kane) Kim and Chittur Subbaraman. The pstr/sieesae for real-time fault
tolerance via active object replication and network sulxvece. IEEE Trans. on
Know. and Data Engg12(2), 2000. ISSN 1041-4347. doi: dx.doi.org/10.1109/69
842258.

Kane Kim. APIs Enabling High-Level Real-time Distritedl Object Programming.
IEEE Computer Magazine, Special Issue on Object-orientsal-BRme Computing
June 2000.

Hermann Kopetz, Andreas Damm, Christian Koza, Marcdaddzani, Wolfgang

Schwabl, Christoph Senft, and Ralph Zainlinger. DistrdouFault-Tolerant Real-
Time Systems: The Mars ApproaclEEE Micro, 09(1):25-40, 1989. ISSN 0272-
1732. doi: doi.ieeecomputersociety.org/10.1109/40267

167

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Arvind S. Krishna, Douglas C. Schmidt, and Raymond Kiafl. Enhancing real-
time corba via real-time java features.|@®DCS '04: Proceedings of the 24th Inter-
national Conference on Distributed Computing Systems GSD4) pages 66—73,

Washington, DC, USA, 2004. IEEE Computer Society. ISBN 85/2086-3.

S. Krishnamurthy, W.H. Sanders, and M. Cukier. A DynarRieplica Selection
Algorithm for Tolerating Timing FaultsDSN’ 01, pages 107-116, 2001.

Sudha Krishnamurthy, William H. Sanders, and Michekiféa An Adaptive Qual-
ity of Service Aware Middleware for Replicated ServicdEEE Transactions on
Parallel and Distributed System$4(11):1112-1125, 2003. ISSN 1045-9219. doi:
http://doi.ieeecomputersociety.org/10.1109/TPDSR0PA7672.

L. Zhang and S. Berson and S. Herzog and S. Jamin. ResBaS$erVation Protocol
(RSVP) Version 1 Functional Specification, September 1997.

Zhiling Lan and Yawei Li. Adaptive fault management ddirpllel applications
for high-performance computindEEE Transactions on Computers7(12):1647—
1660, 2008. ISSN 0018-9340. doi: http://doi.ieeecompateiety.org/10.1109/TC.
2008.90.

Akos Lédeczi, Arpad Bakay, Miklos Maroti, Péter Volgye Greg Nordstrom,
Jonathan Sprinkle, and Gabor Karsai. Composing Domaiifip®esign Envi-
ronments.Computey 34(11):44-51, 2001. ISSN 0018-9162. doi: http://dx ooy
10.1109/2.963443.

J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic $chieg Algorithm: Exact
Characterization and Average Case BehavioRTi8®S '89: Proceedings of the IEEE
Real-Time Systems Symposipages 166—171, Washington, DC, USA, 1989. IEEE
Computer Society. doi: 10.1109/REAL.1989.63567.

F. Liberato, S. Lauzac, R. Melhem, and D. Mosse. Faudirémt real-time global
scheduling on multiprocessors. pages 252—-259, 1999. Gdl109/EMRTS.1999.
777472,

Frank Liberato, Rami Melhem, and Daniel Mossé. Tolegato multiple transient
faults for aperiodic tasks in hard real-time systeniSEE Trans. Comput.49(9):
906-914, 2000. ISSN 0018-9340. doi: http://dx.doi.orgt109/12.869322.

Deni Llambiri, Alexander Totok, and Vijay KaramchetiEfficiently Distribut-
ing Component-Based Applications Across Wide-Area Emuiments. InProc. of
ICDCS’03 2003. ISBN 0-7695-1920-2.

J. M. Lépez, M. Garcia, J. L. Diaz, and D. F. Garcia. @étion Bounds for Mul-
tiprocessor Rate-Monotonic Schedulingeal-Time Syst24(1):5-28, 2003. ISSN
0922-6443. doi: http://dx.doi.org/10.1023/A:1021749009.

168

[89] Chenyang Lu, Xiaorui Wang, and Christopher Gill. Fesclb Control Real-time
Scheduling in ORB Middleware. IRroc. of RTAS. (2003)

[90] Chenyang Lu, Xiaorui Wang, and Xenofon Koutsoukos.dbaek Utilization Con-
trol in Distributed Real-time Systems with End-to-End T&skEEE Trans. on Par.
and Dist. Sys.16(6):550-561, 2005. ISSN 1045-9219. doi: dx.doi.orgd109/
TPDS.2005.73.

[91] G. Manimaran and C. Siva Ram Murthy. An efficient dynastbeduling algorithm
for multiprocessor real-time system&EE Trans. Parallel Distrib. Syst9(3):312—
319, 1998. ISSN 1045-9219. doi: http://dx.doi.org/109/¥0.674322.

[92] Tudor Marian, Ken Birman, and Robbert van Renesse. fabtaservices architec-
ture. INSRDS '06: Proceedings of the 25th IEEE Symposium on Relastebuted
Systems (SRDS’Q§)ages 289-300, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 0-7695-2677-2. doi: dx.doi.org/10.1109592006.7.

[93] Olivier Marin, Marin Bertier, and Pierre Sens. Darx: famework for the fault-
tolerant support of agent software. Pnoc. of ISSRE. (2003)

[94] Olivier Marin, Marin Bertier, and Pierre Sens. Darx: famework for the fault-
tolerant support of agent software. IBSRE '03: Proceedings of the 14th Interna-
tional Symposium on Software Reliability Engineeripgge 406, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-2007-3.

[95] Ashish Mehra, Dinesh C. Verma, and Renu Tewari. Poliaged diffserv on internet
servers: The AIX approach (on the wire)eEE Internet Computing4(5):75-80,
2000. URLci t eseer. i st. psu. edu/ nehr a00pol i cybased. ht i .

[96] S. Melro and P. Verssimo. Real-time and Dependabildyn@arison of Delta-4/XPA
and MARS Systems, 1992.

[97] Marjan Mernik, Jan Heering, and Anthony M. Sloane. Whed How to Develop
Domain-specific LanguageACM Computing Survey87(4):316—344, 2005.

[98] Distributed Component Object Model Protocol (DCQMMicrosoft Corporation,
1.0 edition, January 1998.

[99] Arun Babu Nagarajan, Frank Mueller, Christian Engelmaand Stephen L. Scott.
Proactive fault tolerance for hpc with xen virtualizatiolm ICS '07: Proceedings
of the 21st annual international conference on Supercomgubages 23—-32, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-768-1. doi: hiffdoi.acm.org/10.
1145/1274971.1274978.

[100] Klara Nahrstedt. To overprovision or to share via qosre resource manage-
ment? INnHPDC '99: Proceedings of the 8th IEEE International Sympasion

169

citeseer.ist.psu.edu/mehra00policybased.html

High Performance Distributed Computingage 35, Washington, DC, USA, 1999.
IEEE Computer Society. ISBN 0-7695-0287-3.

[101] Klara Nahrstedt, Dongyan Xu, Duangdao Wichadakul,Baochun Li. QoS-Aware
Middleware for Ubiquitous and Heterogeneous EnvironmetE&E Communica-
tions Magazing39(11):140-148, November 2001.

[102] P. Narasimhan, T. Dumitras, A. Paulos, S. Pertet, @eRe, J. Slember, and D. Sri-
vastava. MEAD: Support for Real-time Fault-Tolerant CORB2oncurrency and
Computation: Practice and Experiencer(12):1527-1545, 2005.

[103] Priya Narasimhan. Trade-Offs Between Real-Time aatHolerance for Middle-
ware Applications. Workshop on Foundations of Middlewagefinologies, Novem-
ber 2002.

[104] Priya Narasimhan, Tudor Dumitras, Aaron M. Paulos)aSkl. Pertet, Charlie F.
Reverte, Joseph G. Slember, and Deepti Srivastava. MEARpatfor Real-Time
Fault-Tolerant CORBA. Concurrency - Practice and Experienc&7(12):1527—
1545, 2005.

[105] Priya Narasimhan, Raj Rajkumar, Gautam Thaker, artdcRa_ardieri. A ver-
satile, proactive dependability approach to handling tingrated events in dis-
tributed systems. IWPDPS '05: Proceedings of the 19th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS’05) fk&bop 2 page 136.1,
Washington, DC, USA, 2005. IEEE Computer Society. ISBN 052312-9. doi:
http://dx.doi.org/10.1109/IPDPS.2005.74.

[106] Andrey Nechypurenko, Tao Lu, Gan Deng, Emre Turkayudlas C. Schmidt, and
Aniruddha S. Gokhale. Concern-based composition and usstributed systems.
In ICSR volume 3107, pages 167-184, Madrid, Spain, 2004. SpritgBN 3-540-
22335-5.

[107] Andrey Nechypurenko, Douglas C. Schmidt, Tao Lu, Gan@ and Aniruddha
Gokhale. Applying MDA and Component Middleware to LargedscDistributed
Systems: a Case Study. Rroceedings of the 1st European Workshop on Model
Driven Architecture with Emphasis on Industrial Applicati Enschede, Nether-
lands, March 2004.

[108] Light Weight CORBA Component Model Revised Submis§iject Management
Group, OMG Document realtime/03-05-05 edition, May 2003.

[109] Deployment and Configuration Adopted Submissi@bject Management Group,
OMG Document mars/03-05-08 edition, July 2003.

[110] Object Management Grouprault Tolerant CORBA, Chapter 23, CORBA v3.0.3
Object Management Group, OMG Document formal/04-03-10adiMarch 2004.

170

[111] Object Management Groupightweight CCM FTF Convenience Docume@bject
Management Group, ptc/04-06-10 edition, June 2004.

[112] Object Management Grougreal-time CORBA Specificatio®bject Management
Group, OMG Document formal/05-01-04 edition, August 2002.

[113] Object Management Grougreal-time CORBA Specification v1.2 (stati€bject
Management Group, OMG Document formal/05-01-04 editicovédnber 2005.

[114] Y. Oh and S. H. Son. Scheduling Real-Time Tasks for Depbility. The Journal
of the Operational Research Socie#8(6):629-639, 1997. ISSN 01605682. URL
http://ww. j stor.org/stabl e/3010227.

[115] OMG. The Common Object Request Broker: Arch. and Specifica®dnG, 2002.

[116] Ossama Othman, Carlos O’Ryan, and Douglas C. Schr8idategies for CORBA
Middleware-Based Load BalancintEEE Distributed Systems Onlin2(3), March
2001.

[117] Ossama Othman, Jaiganesh Balasubramanian, andd3ddgbchmidt. The Design
of an Adaptive Middleware Load Balancing and Monitoring\Beg. INLNCS/LNAI:
Proceedings of the Third International Workshop on Seléy#ive SoftwareHeidel-
berg, June 2003. Springer-Verlag.

[118] Mihir Pandya and Miroslaw Malek. Minimum achievablélimation for fault-
tolerant processing of periodic tasksEEE Trans. Comput.47(10):1102-1112,
1998. ISSN 0018-9340. doi: http://dx.doi.org/10.1109728793.

[119] Soila Pertet and Priya Narasimhan. Proactive regovedistributed corba applica-
tions. INDSN '04: Proceedings of the 2004 International Conferent®ependable
Systems and Networksage 357, Washington, DC, USA, 2004. IEEE Computer So-
ciety. ISBN 0-7695-2052-9.

[120] David Powell. Distributed Fault Tolerance: Lessormsi Delta-4.IEEE Micro, 14
(1):36-47,1994. ISSN 0272-1732. doi: dx.doi.org/10.740259898.

[121] Francisco Prez-Sorrosal, Marta Patino-MartinezaRio Jimenez-Peris, and Jaksa
Vuckovic. Highly available long running transactions arti\aties for j2ee appli-
cations. INICDCS '06: Proceedings of the 26th IEEE International Coafee on
Distributed Computing Systemsage 2, Washington, DC, USA, 2006. IEEE Com-
puter Society. ISBN 0-7695-2540-7. doi: http://dx.dai/d0.1109/ICDCS.2006.47.

[122] Sasikumar Punnekkat, Alan Burns, and Robert Davisalysis of checkpointing
for real-time systemsReal-Time Syst20(1):83-102, 2001. ISSN 0922-6443. doi:
http://dx.doi.org/10.1023/A:1026589200419.

[123] I. Pyarali, D.C. Schmidt, and R.K. Cytron. Technigémsenhancing real-time corba

171

http://www.jstor.org/stable/3010227

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

quality of service. Proceedings of the IEEER1(7):1070-1085, July 2003. ISSN
0018-9219. doi: 10.1109/JPROC.2003.814616.

Irfan Pyarali, Carlos O’Ryan, and Douglas C. Schm&lPattern Language for Ef-
ficient, Predictable, Scalable, and Flexible DispatchirechNanisms for Distributed
Object Computing Middleware. IRroceedings of the International Symposium on
Object-Oriented Real-time Distributed Computing (ISOR{gwport Beach, CA,
March 2000. IEEE/IFIP.

Xiao Qin, Hong Jiang, and David R. Swanson. An Efficieatlt-Tolerant Schedul-
ing Algorithm for Real-Time Tasks with Precedence Constsin Heterogeneous
Systems. IHCPP '02: Proceedings of the 2002 International ConferenodParal-

lel Processing (ICPP’02)page 360. IEEE Computer Society, 2002. ISBN 0-7695-
1677-7.

R. Schantz and J. Loyall and D. Schmidt and C. RodriguesY. Krishnamurthy
and |. Pyarali. Flexible and Adaptive QoS Control for Distiied Real-time and
Embedded Middleware. IRroc. of Middleware’03 Rio de Janeiro, Brazil, June
2003. IFIP/ACM/USENIX.

Parameswaran Ramanathan. Overload managemenktimmeaontrol applications
using m,k(m, k)-firm guaranteelEEE Trans. Parallel Distrib. Syst10(6):549-559,
1999. ISSN 1045-9219. doi: dx.doi.org/10.1109/71.774906

Y. Ren, DE Bakken, T. Courtney, M. Cukier, DA Karr, P. it C. Sabnis,
WH Sanders, RE Schantz, and M. Seri. AQUA: An Adaptive Aeattiire that Pro-
vides Dependable Distributed Object€omputers, IEEE Transactions 052(1):

31-50, 2003.

Thomas Repantis, Xiaohui Gu, and Vana Kalogeraki. e8yyt Sharing-Aware
Component Composition for Distributed Stream Processiygiems. InProc. of
Middleware 2006

Louis Rilling, Swaminathan Sivasubramanian, andli@ume Pierre. High avail-
ability and scalability support for web applications. SAINT '07: Proceedings
of the 2007 International Symposium on Applications and Ititernet page 5,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN O52756-6. doi:
http://dx.doi.org/10.1109/SAINT.2007.14.

Tom Ritter, Marc Born, Thomas Unterschiitz, and Tordéns. A QoS Metamodel
and its Realization in a CORBA Component Infrastructure Ptaceedings of the
36" Hawaii International Conference on System Sciences (H33Spage 318,
Honolulu, HI, January 2003.

Wendy Roll. Towards Model-Based and CCM-Based Amtlans for Real-time
Systems. IrProceedings of the IEEE International Symposium on Olipraented

172

Real-time Distributed Computing (ISORG@)ay 2003.

[133] S. M. Sadjadi and P. K. McKinley. Act: An adaptive corteamplate to support
unanticipated adaptation. FProc. of ICDCS. (2004)2004.

[134] Jorge Salas, Francisco Perez-Sorrosal, no-Martiiarta Pati and Ricardo
Jiménez-Peris. Ws-replication: a framework for highlyimkde web services. In
WWW ’'06: Proceedings of the 15th international conferencé\rld Wide Wep
pages 357-366, New York, NY, USA, 2006. ACM. ISBN 1-59593-%2 doi:
http://doi.acm.org/10.1145/1135777.1135831.

[135] Richard Schantz, John Zinky, David Karr, David Bakkdames Megquier, and
Joseph Loyall. An Object-level Gateway Supporting IntegpaProperty Quality of
Service. ISORGC 00:223, 1999. doi: doi.ieeecomputersociety.org/1LUBDRC.
1999.776381.

[136] Richard E. Schantz, Joseph P. Loyall, Craig Rodrigaesl Douglas C. Schmidt.
Controlling quality-of-service in distributed real-tirend embedded systems via
adaptive middleware: Experiences with auto-adaptive acdnfigurable systems.
Softw. Pract. Exper36(11-12):1189-1208, 2006. ISSN 0038-0644. doi: http://
doi.org/10.1002/spe.v36:11/12.

[137] Richard D. Schlichting and Fred B. Schneider. FadksProcessors: An Approach
to Designing Fault-tolerant Computing Systen#®sCM Trans. Comput. SystL(3):
222-238,1983. ISSN 0734-2071. doi: doi.acm.org/10.1335369.357371.

[138] Douglas C. Schmidt. Model-Driven EngineerinEEE Computer 39(2):25-31,
2006.

[139] Douglas C. Schmidt and Steve Vinoski. The CORBA CongmirModel Part 3:
The CCM Container Architecture and Component ImplememteErameworkThe
C/C++ Users Journal September 2004.

[140] Douglas C. Schmidt, Michael Stal, Hans Rohnert, arahkBuschmannPattern-
Oriented Software Architecture: Patterns for ConcurrendaNetworked Objects,
Volume 2 Wiley & Sons, New York, 2000.

[141] Douglas C. Schmidt, Rick Schantz, Mike Masters, Josemss, David Sharp, and
Lou DiPalma. Towards Adaptive and Reflective Middleware Nietwork-Centric
Combat Systems. I€rossTalk - The Journal of Defense Software Engineering
pages 10-16, Hill AFB, Utah, USA, nov 2001. Software TecbgglSupport Center.

[142] Douglas C. Schmidt, Bala Natarajan, Aniruddha Gok&halanbor Wang, and
Christopher Gill. TAO: A Pattern-Oriented Object Requesbtk&r for Distributed
Real-time and Embedded Systedt&EE Distributed Systems Onlin&2), February
2002.

173

[143] Lui Sha, Tarek Abdelzaher, Karl-Erik Arzen, Anton @er, Theodore Baker, Alan
Burns, Giorgio Buttazzo, Marco Caccamo, John Lehoczky, Aogsius K. Mok.
Real time scheduling theory: A historical perspectiReal-Time Syst28(2-3):101—
155, 2004. ISSN 0922-6443. doi: http://dx.doi.org/103/@2TIME.0000045315.
61234.1e.

[144] Praveen Kaushik Sharma, Joseph P. Loyall, George Tner®an, Richard E.
Schantz, Richard Shapiro, and Gary Duzan. Component-loyseanic qos adapta-
tions in distributed real-time and embedded system&doplS/DOA/ODBASE (2)
pages 1208-1224, Agia Napa, Cyprus, 2004. Springer.

[145] David C. Sharp and Wendy C. Roll. Model-Based Integratof Reusable
Component-Based Avionics System. Proceedings of the Wogksn Model-Driven
Embedded Systems in RTAS 2003, May 2003.

[146] Deborah Snoonian. Smart BuildingEEE Spectrun40(8):18-23, 2003.

[147] John A. Stankovic, Ruiging Zhu, Ram Poornalingam, i§faeg Lu, Zhendong Yu,
Marty Humphrey, and Brian Ellis. VEST: An Aspect-Based Casiion Tool for
Real-Time Systems. IRTAS '03: Proceedings of the The 9th IEEE Real-Time and
Embedded Technology and Applications Sympogages 58—69, Toronto, Canada,
2003. IEEE Computer Society. ISBN 0-7695-1956-3.

[148] John A. Stankovic, Ruiging Zhu, Ram Poornalingam, i@§faeg Lu, Zhendong Yu,
Marty Humphrey, and Brian Ellis. Vest: An aspect-based cositon tool for real-
time systems. IProc. of RTAS'03page 58, Washington, DC, USA, 2003. ISBN
0-7695-1956-3.

[149] Christopher Stewart and Kai Shen. Performance mogaind system management
for multi-component online services. MSDI'05: Proceedings of the 2nd confer-
ence on Symposium on Networked Systems Design & Impleifoanpaiges 7184,
Berkeley, CA, USA, 2005. USENIX Association.

[150] Randall Stewart and Qiaobing Xi&tream Control Transmission Protocol (SCTP)
A Reference GuideAddison-Wesley, Boston, 2001.

[151] D.A. Stuart, M. Brockmeyer, A.K. Mok, and F. Jahanig@imulation-Verification:
Biting at the State Explosion ProblefEEE Transactions on Software Engineerjing
27(7):599-617, July 2001.

[152] SUN. Java Remote Method Invocation (RMI) Specificatio
java.sun.com/products/jdk/1.2/docs/guide/rmi/spedOC.doc.html, 2002.

[153] Wei Sun, Yuanyuan Zhang, Chen Yu, X. Defago, and Y. twbg. Hybrid Over-
loading and Stochastic Analysis for Redundant Real-timétiphocessor Systems.

174

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

In Reliable Distributed Systems, 2007. SRDS 2007. 26th |IEteEniational Sympo-
sium on pages 265-274, Oct. 2007. doi: 10.1109/SRDS.2007.11.

Sun Microsystemslava Specification Request, JSR 117, J2EE APIs for Contsnuou
Availability. Sun Microsystems, JSR 117 edition, April 2001.

Dipa Suri, Adam Howell, Nishanth Shankaran, John Ikeiomew, Will Otte, Dou-
glas C. Schmidt, and Gautam Biswas. Onboard Processing th@mdaptive Net-
work Architecture. InProceedings of the Sixth Annual NASA Earth Science Tech-
nology ConferenceCollege Park, MD, June 2006.

Clemens SzyperskiComponent Software—Beyond Object-Oriented Programming
Addison-Wesley, Santa Fe, NM, 1998.

Bhuvan Urgaonkar and Prashant Shenoy. Sharc: Magagin and network band-
width in shared cluster$EEE Trans. Parallel Distrib. Syst15(1):2—17, 2004. ISSN
1045-9219. doi: http://dx.doi.org/10.1109/TPDS.20@44781.

Bhuvan Urgaonkar, Arnold Rosenberg, and Prashani@hépplication Placement
on a Cluster of Servergnternational Journal of Foundations of Computer Scignce
18(5):1023-1042, 2007.

Robbert van Renesse and Fred B. Schneider. Chaircasiph for supporting high
throughput and availability. 1"©SDI'04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementgieges 7—7, Berkeley,
CA, USA, 2004. USENIX Association.

Fuxing Wang, Krithi Ramamritham, and John A. StankovDetermining redun-
dancy levels for fault tolerant real-time systeniSEE Transactions on Computers
44(2):292-301, 1995. ISSN 0018-9340. doi: dx.doi.orgl109/12.364540.

Nanbor Wang and Christopher Gill. Improving real-¢isystem configuration via a
gos-aware corba component model HICSS '04: Proceedings of the Proceedings
of the 37th Annual Hawaii International Conference on Sysgeiences (HICSS’04)

- Track 9 page 90273.2, Washington, DC, USA, 2004. IEEE ComputereBoc
ISBN 0-7695-2056-1.

Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaand Michael Kircher.
Applying Reflective Middleware Techniques to Optimize a Q@ofabled CORBA
Component Model Implementation. Bdth Computer Software and Applications
Conference (COMPSAC)ages 492-499, Taipei, Taiwan, October 2000. IEEE.

Nanbor Wang, Douglas C. Schmidt, Michael Kircher, &udhika Parameswaran.
Towards a Reflective Middleware Framework for QoS-enabl@RBA Component
Model Applications.IEEE Distributed Systems Onlin&(5), July 2001.

175

[164] Nanbor Wang, Douglas C. Schmidt, Ossama Othman, artlika Parameswaran.
Evaluating Meta-Programming Mechanisms for ORB MiddlesvdEEE Communi-
cation Magazine, special issue on Evolving Communicat®ofsvare: Techniques
and Technologies39(10):102-113, October 2001.

[165] Nanbor Wang, Christopher Gill, Douglas C. Schmidtd &fenkita Subramonian.
Configuring Real-time Aspects in Component Middleware.Phoc. of the Inter-
national Symposium on Distributed Objects and ApplicaiidOA) volume 3291,
pages 1520-1537, Agia Napa, Cyprus, October 2004. Sp+Veytag.

[166] P. Wang, Y. Yemini, D. Florissi, and J. Zinky. A distuted resource controller
for qos applications. IiNetwork Operations and Management Symposium, 2000.
NOMS 2000. 2000 IEEE/IFIpages 143-156, Los Alamitos, CA, USA, 2000. IEEE
Computer Society. doi: 10.1109/NOMS.2000.830381.

[167] Duangdao Wichadakul, Klara Nahrstedt, Xiaohui GuJ Brongyan Xu. 2k: An in-
tegrated approach of gos compilation and reconfigurabfepoment-based run-time
middleware for the unified gos management frameworkMiddleware '01: Pro-
ceedings of the IFIP/ACM International Conference on Dimtted Systems Plat-
forms Heidelbergpages 373-394, London, UK, 2001. Springer-Verlag. ISBN 3-
540-42800-3.

[168] Huaigu Wu, Bettina Kemme, and Vance Maverick. Eagefication for stateful
j2ee servers. I€ooplS/DOA/ODBASE (2pages 1376-1394, 2004.

[169] Haifeng Yu and Amin Vahdat. The costs and limits of #aaility for replicated
services. ISOSP '01: Proceedings of the eighteenth ACM symposium orayge
systems principlepages 29-42, New York, NY, USA, 2001. ACM. ISBN 1-58113-
389-8. doi: http://doi.acm.org/10.1145/502034.502038.

[170] Ying Zhang and K. Chakrabarty. A unified approach faltféolerance and dynamic
power management in fixed-priority real-time embeddedesyst Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transastmn 25(1):111-125,
Jan. 2006. ISSN 0278-0070. doi: 10.1109/TCAD.2005.852657

[171] Qin Zheng, B. Veeravalli, and Chen-Khong Tham. On tlesiDn of Fault-Tolerant
Scheduling Strategies Using Primary-Backup Approach fom@utational Grids
with Low Replication Costs.Computers, IEEE Transactions 068(3):380—393,
March 2009. ISSN 0018-9340. doi: 10.1109/TC.2008.172.

[172] John A. Zinky, David E. Bakken, and Richard Schantz.chitectural Support for
Quality of Service for CORBA ObjectsTheory and Practice of Object Systeris
(1):1-20, 1997.

[173] H. Zou and F. Jahanian. Optimization of a real-timarany-backup replication
service. INSRDS '98: Proceedings of the The 17th IEEE Symposium onldRelia

176

Distributed Systempage 177, Washington, DC, USA, 1998. IEEE Computer Soci-
ety. ISBN 0-8186-9218-9.

[174] H. Zou and F. Jahanian. A Real-time Primary-backupliafoon Service.Parallel
and Distributed Systems, IEEE Transactions t9(6):533-548, 1999.

177

	Dedication
	Acknowledgments
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Overview of the Problem Space
	Contemporary Mechanisms: QoS-enablers in Middleware
	Technical Gaps: Overview of Missing Middleware Capabilities
	Research Approach and Contributions
	Research Contributions
	Dissertation Organization

	Related Work
	Resource-aware Fault-tolerance by Design
	Unresolved Challenges

	Deployment and Configuration Mechanisms in Middleware
	Unresolved Challenges

	Resource-aware, Adaptive Fault-tolerance for Open DRE Systems
	Unresolved Challenges

	Deployment-time Resource-aware Fault-tolerance for DRE Systems
	Introduction
	Problem Definition and System Model
	DRE System Model
	Problem Motivation and Research Challenges

	The Structure and Functionality of DeCoRAM
	DeCoRAM's Resource-aware Task Allocation Algorithm
	DeCoRAM Allocation Engine
	DeCoRAM Deployment and Configuration (D&C) Engine

	Evaluation of DeCoRAM
	Effectiveness of the DeCoRAM Allocation Heuristic
	Validation of Real-time Performance
	Evaluating DeCoRAM's Automation Capabilities

	Concluding Remarks

	Scalable QoS Provisioning, Deployment, and Configuration of Fault-Tolerant DRE Systems
	Introduction
	Motivating NetQoPE's QoS Provisioning Capabilities
	Smart Office Environment Case Study
	Challenges in Provisioning and Managing QoS in the Smart Office

	NetQoPE's Multistage Network QoS Provisioning Architecture
	NetQoS: Supporting Physics-aware CPU and Network QoS Requirements Specification
	NetRAF: Alleviating Complexities in Network Resource Allocation and Configuration
	NetCON: Alleviating Complexities in Network QoS Settings Configuration

	Empirical Evaluation of NetQoPE
	Evaluation Scenario
	Evaluating NetQoPE's Model-driven QoS Provisioning Capabilities
	Evaluating NetQoPE's QoS Customization Capabilities
	Evaluating the Overhead of NetQoPE for Normal Operations

	Summary

	Resource-Aware Adaptive Fault-tolerance in Distributed Systems
	Introduction
	System and Fault Models
	Design and Implementation of FLARe
	FLARe Middleware Architecture
	Load-aware and Adaptive Failover
	Resource Overload Management and Redirection
	Implementation of FLARe

	Empirical Evaluation of FLARe
	Evaluating LAAF
	Evaluating ROME
	Failover Delay
	Overhead under Fault-Free Conditions

	Summary

	Middleware Mechanisms for Overload Management in Distributed Systems
	Introduction
	Case Study to Motivate Dynamic Component Updating Requirements
	Overview of ITS
	Requirements for Dynamic Component Updates

	The SwapCIAO Dynamic Component Updating Framework
	Providing Consistent and Uninterrupted Updates to Clients
	Ensuring Efficient Client-transparent Dynamic Component Updates
	Enabling (Re)connections of Components

	Empirical Results
	Measuring SwapCIAO's Updatable Container Overhead for Normal Operations
	Measuring SwapCIAO's Updatable Container Overhead for Updating Operations
	Measuring the Update Latency Experienced by Clients

	Summary

	CONCLUDING REMARKS
	Broader Impact and Future Research Directions

	Underlying Technologies
	Overview of Lightweight CCM
	Overview of Component Middleware Deployment and Configuration
	Overview of Generic Modeling Environment (GME)
	Overview of Telcordia's Bandwidth Broker

	List of Publications
	Refereed Journal Publications
	Refereed Conference Publications
	Refereed Workshop Publications
	Submitted for Publication

	REFERENCES

