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indicate the residue Ca. (C) Multiple sequence alignment of the B3-aC motif between
EGFR-WT and ex19del variants with >2% frequency. (D) Residues at the f3aC inter-
face can be referenced with respect to their index after the conserved K745 residue in the
majority of mutants. . . . . . . ... L e
Structural comparison of modeled ex19del B3aC motifs. (A) Superimposition of the
B3acC region of the most common ex19del variants with WT. Rendering of the B3aC
loop in (B) WT, (C) L747P, and (D) L747_A750>P. L747P and L747_A750>P both form
a tight turn in the B3aC loop. The L747_A750>P tight turn contains a proline in the
second position and fewer residues on the N-terminus of the aC-helix. . . . . .. .. ..
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3.6

Conventional MD simulations of several ex19del variants starting from the active state.

Boltzmann-weighted probability distributions of (A) WT, (B) E746_A750, (C) E746_S752>V,

and (D) L747_A750>P conformational changes in conventional MD simulations. All sim-
ulations were started from the active state. Three independent simulations for each system
were run for 4.0 us each. The inward/outward motion of the activation loop is depicted on
the y-axis (larger numbers indicate more inward), and the inward/outward motion of the
0.C-helix is depicted on the x-axis (larger numbers indicate more outward). Snapshots are
from the end of one of the three independent simulations. WT transitioned to the Src-like
inactive state in one of the three simulations. The glycine-rich loop is colored yellow, the
B3aC-loop and aC-helix are blue, and the activation loopis green. . . . . . . ... ...
Conformational free energy landscapes of ex19del variants from umbrella sampling MD
simulations. Collective variables describe the (A) active and (B) inactive states as the
pseudo-dihedral angle formed by the alpha carbon atoms of residues D855, F856, G857,
and L858 (x-axis) as well as the difference in distance between the capping sidechain
atoms of E762 and K745 (d1) and E762 and K860 (d2) (y-axis). Conformational free en-
ergies are shown for (C) WT, (D) E746_A750, (E) E746_S753;V, and (F) L747_A750>P.
Plots are contoured at 0.5 kcal/mol and colored within the range O (blue) and 15 (red)
kcal/mol. Contours above 15 kcal/mol are colored white. . . . . . .. ... ... ....
Conformational free energy landscapes of EGFR variants from umbrella sampling MD
simulations. Collective variables describe the active and inactive states as the pseudo-
dihedral angle formed by the alpha carbon atoms of residues D855, F856, G857, and
L858 (x-axis) as well as the difference in distance between the capping sidechain atoms
of E762 and K745 (d1) and E762 and K860 (d2) (y-axis). Conformational free energies
are shown for (A) WT, (B) L858R, (C) L747P, (D) E746_A750, (E) L747_P753>S, (F)
L747_T751, (G) E746_S752>V, and (H) L747_A750>P. Plots are contoured at 0.5 kcal/-
mol and colored within the range 0 (blue) and 9.5 (red) kcal/mol. Contours above 9.5
kcal/mol are colored white. . . . . .. ... ... o
Ex19del variants display allele-specific differences in dimerization and oncogenic growth.
(A) Cross correlation values of transfected EGFR variants with (+) or without (-) ligand
(EGF) stimulation. The dark and light blue boxes indicate the fc value regions for dimers
and multimers, respectively. (B) Diffusion coefficient values of EGFR variants with (+)
or without (-) ligand (EGF) stimulation. The light orange box indicates EGF-stimulated
groups. (C) Ba/F3 cells were stably transfected with different EGFR ex19del variants, WT,
or empty vector. Cellular lysates were probed with the indicated antibodies to measure
phosphorylation. (D) Rate of IL-3-independent growth of Ba/F3 cells stably transfected
with different ex19del variants, WT, or empty vector. Data and illustrations for figure
panels A and B produced by Soyeon Kim, Abigail Leigh Hartzler, and Adam W. Smith.
Data and illustrations for figure panels C and D produced by Yun-Kai Zhang, Yingjun Yan,
Zhenfang Du, Jiyoon Kim, and Christine M. Lovly. . . . . ... .. ... ... .. ...
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3.7

3.8

Allele-specific differences in ex19del TKI sensitivity may not be due to differences in
TKI binding affinity. (A) Ba/F3 cells were stably transfected with different EGFR ex19del
variants and treated with increasing concentrations (0, 30, or 100 nM) of osimertinib. Cel-
lular lysates were probed with the indicated antibodies to measure phosphorylation. (B)
Lung adenocarcinoma cell lines expressing E746_A750 (PC9), E746_S752>V (SH450),
or L747_A750>P (HCC4006) were treated with increasing concentrations (0, 30, or 100
nM) of osimertinib. Cellular lysates were probed with the indicated antibodies to mea-
sure phosphorylation. Quantifications are represented as the average grayscale ratio of
PEGFR/EGFR/Actin+/- standard deviation across three independent biological replicates.
(C) Time-dependent growth of lung adenocarcinoma cell lines expressing E746_A750
(PC9), E746_S752>V (SH450), or L747_A750>P (HCC4006) treated with either 100
nM osimertinib or buffer. Each condition was performed with 9 replicates (thin lines)
and averaged (bold lines). (D) Structural models of EGFR in complex with osimertinib
in either the bent (F723 facing osimertinib in the ATP binding pocket) or straight (F723
projecting away from the ATP binding pocket) conformations. (E) Osimertinib binding
affinities for each ex19del variant, WT, and the double mutant E746_S752>V/G724S from
simulations starting in the active and inactive states. Bent and straight states were sepa-
rated by a small 2-state Markov state model based on the G/S724 backbone phi angle.
MM-PBSA was not performed if the stationary distribution for a state was estimated at
less than 0.05 or the model failed to pass a Chapman-Kalmogorov test. Binding energies
are computed as the average MM-PBSA energies of 1000 randomly selected frames from
the corresponding MSM cluster. For each EGFR variant, six simulations of 2.0 us each
were performed such that there were three each from the active and inactive states (except
E746_S752>V/G7248S, for which no inactive state simulations were performed). (F) Cell
viability assays performed in lung adenocarcinoma cell lines stably expressing E746_A750
(PC9), E746_S752>V (SH450), or L747_A750>P (HCC4006) with first (erlotinib), sec-
ond (afatinib), and third (osimertinib) generation EGFR TKIs. Data and illustrations for
figure panels A, B, C, and F produced by Yun-Kai Zhang, Yingjun Yan, Zhenfang Du,
Jiyoon Kim, and Christine M. Lovly. . . . . . ... ... ... ... ... ...
Conventional MD simulations demonstrate ex 19del $30.C hydrogen bond networks. Apo-
state conventional MD simulation snapshots of B3aC hydrogen bond networks in (A)
WT, (B) E746_A750, (C) E746_S752>V, and (D) L747_A750>P. (E) Quantification of
hydrogen bond stability of select B30C hydrogen bonds at the interface. Hydrogen bonds
are defined by donor/acceptor heavy atom distances of 3.5 and angles between 135 and
180 degrees. Quantifications are based on three independent trials of 4.0 us apo-state
simulations of each system starting from the active state. . . . . . . . ... .. ... ...
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3.10

4.1

Neratinib effectively inhibits E746_S752>V. (A) Neratinib binding affinities for each ex19del

variant and WT from simulations starting in the active and inactive states. Three bind-
ing modes of neratinib distinguished by the dihedral conformations of the hydroxymethyl
pyridine were distinguished with a simple Markov state model. MM-PBSA was not per-
formed if the stationary distribution for a state was estimated at less than 0.05 or the
model failed to pass a Chapman-Kalmogorov test for three or two states. Binding ener-
gies are computed as the average MM-PBSA energies of 1000 randomly selected frames
from the corresponding MSM cluster. For each EGFR variant, six simulations of 2.0
us each were performed such that there were three each from the active and inactive
states. (B) Ba/F3 cells were stably transfected with different EGFR ex19del variants and
treated with increasing concentrations (0, 30, or 150 nM) of neratinib. Cellular lysates
were probed with the indicated antibodies to measure phosphorylation. (C) Quantifica-
tion of Ba/F3 neratinib inhibition Western blots are represented as the average grayscale
ratio of pPEGFR/EGFR/Action +/- standard deviation across three independent biological
replicates. (D) Ba/F3 cell Lung adenocarcinoma cell lines expressing E746_A750 (PC9),
E746_S752>V (SH450), or L747_A750>P (HCC4006) were treated with increasing con-
centrations (0, 0.3, 3, 30, or 150 nM) of neratinib. Cellular lysates were probed with the
indicated antibodies to measure phosphorylation. (E) Quantification of lung adenocarci-
noma cell line neratinib inhibition Western blots are represented as the average grayscale
ratio of pPEGFR/EGFR/Actin+/- standard deviation across three independent biological
replicates. (F) Cell viability assays performed in lung adenocarcinoma cell lines stably ex-
pressing E746_A750 (PC9), E746_S752>V (SH450), or L747_A750>P (HCC4006) with
neratinib. Data and illustrations for figure panels B - F produced by Yun-Kai Zhang,
Yingjun Yan, Zhenfang Du, Jiyoon Kim, and Christine M. Lovly. . . . . . . ... .. ..
Model of ex19del allele-specific functional differences and strategy for inhibition. Dis-
cretized classification scheme for EGFR ex19del variants: non-oncogenic with ligand-
dependent activation (orange; WT); oncogenic super acceptor with ligand-dependent acti-

vation (blue; E746_A750, E746_S752>V); tight ATP binder (pink; E746_S752>V, L747_A750>P);

oncogenic hyper acceptor with ligand-independent activation (green; L747_A750>P). . .

Mutations disrupting the potential intra-molecular dimer interface abrogate phosphoryla-
tion of EGFR-KDD and anchorage independent growth. a, Ribbon diagram and space-
filling model of EGFR-KDD kinase domains. Mutations constructed in this study were
labeled. b, Schematic representation of mutations we constructed in this study. We gener-
ated point mutations disrupting the potential intra- (C1, N2) and inter-molecular (N1, C2)
dimer interface as well as mutations inactivating kinase activity of each kinase domain
(Dead!, Dead?). ¢, YAMC cells stably expressing EGFR-KDD and its mutants. Cells
were cultured for 48 hours and then harvested and lysed for analysis. Total EGFR and the
auto-phosphorylation at three tyrosine sites were evaluated by western blot. n=3 experi-
ment was repeated independently with similar results. EV, empty vector; WT, EGFR-WT;
KDD, EGFR-KDD. d, Soft agar assays were performed in 6 well plates by using YAMC
cells. 5,000 cells were seeded in each well and colonies were counted after 4 weeks. n=3
biologically independent samples were examined over 3 independent experiments. Data
are presented as mean values + SD. Statistical differences were analyzed by two-sided un-
paired Student’s t-test. Data and illustrations for figure panels C and D produced by Du,
Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M.. . . . . . ..
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4.2

4.3

4.4

4.5

Mutations disrupting the potential intra-molecular dimer interface abrogate the auto-phosphorylation

of EGFR-KDD activation and anchorage independent growth in soft agar. a, NR6 cells sta-
bly expressing EGFR-KDD and its mutants were cultured in serum-free medium for 48
hrs and then cells were harvested and lysed for Western blot. This result is the represen-
tative of five independent experiments. b, Anchorage-independent soft agar assays were
performed in 6 well plates by seeding 5,000 NR6 in each well. n=3 biologically indepen-
dent samples were examined over 3 independent experiments. Data are presented as mean
values + SD. Statistical differences were analyzed by two-sided unpaired Student’s t-test.
EV, empty vector; LR, EGFR L858R mutation. Data and illustrations produced by Du, Z.,
Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. . . ... .. ..
The EGFR-KDD linker has distinct enthalpic and entropic contributions to intra-molecular
dimer formation. a, Amino acid sequence alignment of EGFR-WT, HER2, HER3, and
HER4 JMB domain. b, Amino acid sequence alignment of EGFR-KDD mutants to eval-
uate linker contributions. Residues in the activator C-terminus kinase domain (TKD1)
highlighted in blue (white font). Residues in the receiver JMB domain highlighted in gray
(black font). Mutations indicated by red font. c, Per-residue root-mean-square-fluctuation
(RMSF) of the EGFR-KDD linker region following an additional 1 ps of MD simulation
(post-Rosetta modeling and initial 1 us MD simulation). RMSF values are mapped onto
the structure to indicate regional flexibility. Color gradient and cartoon structure width in-
dicate flexibility. Less flexible = smaller width, colored blue; more flexible = larger with,
colored red. d, Graphical representation of per-residue RMSF displays linker residue on
x-axis and RMSF on y-axis; black horizontal line indicates JMB residues, red dashed
horizontal line indicates average RMSF of JMB residues. e, HEK293 cells transiently
transfected with EGFR-KDD or (GGS)n mutants. After 48 hours transfection, cells were
collected for western blot analysis. EV, empty vector. f, Detailed structural models of
the EGFR-WT homodimer with the JMB domain, and the EGFR-KDD intra-molecular
dimer, were generated with Rosetta and refined with 1 us MD simulations. g, HEK293
cells transiently transfected with EGFR-KDD and different JMB interface mutants. After
48 hours transfection, cells were collected for western blot analysis. p-Y/EGFR, the ratio
of phosphotyrosine content at Y1068 to total EGFR expression for each construct relative
to EGFR-KDD was shown. EV, empty vector. Data and illustrations for figure panels E
and G produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and
Lovly, C. M. . . . . e e
EGFR-KDD intra-molecular dimer model building and refinement. a, Models of the
EGFR-KDD intra-molecular dimer were generated with Rosetta. Models from rounds
2 and 3 of the model building process were clustered based on the structure of the linker
domain. b, The best scoring model from each of the top three clusters (C1, green; C2,
purple; C3, blue) were selected for refinement in Amber18 (left panel). Binding scores for
each of the linker conformations (left panel) were computed with MM-GBSA neglecting
the entropic contribution to binding (right panel). Frames for inclusion in the MM-GBSA
calculation were selected every 100 ps across the entire 1.0 ps trajectory. MM-GBSA
scores are represented as mean + SD. c, Stability of the linker region over each 1 ps MD
trajectory was analyzed by computing the RMSD of linker heavy atoms to the position
of the conformation at the beginning of the production run (black trace) and the average
coordinates from the whole production run (blue trace) for C1 (left panel), C2 (middle
panel), and C3 (right panel). . . . . . . . . . . . .. L
Comparison of EGFR-KDD computational models with X-ray structure of EGFR-WT
juxtamembrane latch. a, X-ray structure of the EGFR-WT homodimer with juxtamem-
brane latch; b, Rosetta model of EGFR-WT homodimer with juxtamembrane latch post-
equilibration for 1.0 ps MD simulation; ¢, Rosetta model of EGFR-KDD intra-molecular
dimer post-equilibration for 1.0 us MD simulation; d, Rosetta model of EGFR-KDD intra-
molecular dimer post-equilibration for 2.0 us MD simulation; the receiver kinase domain
N-terminal JMB domain is colored green; residues within 6.0 A of JMB are colored blue.
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4.6

4.7

EGFR-KDD forms inter-molecular dimers and higher order oligomers after ligand stimu-
lation. a, YAMC cells were cultured in serum-free medium for 12 hours and then treated
with 50 ng/mL EGF ligand for Smin. Total EGFR and the autophosphorylation at three
tyrosine sites were assessed by western blot. b. YAMC cells were starved for 12 hrs and
treated with cetuximab (10 pg/ml in serum-free medium) for 3hrs 45min, and EGF ligand
(50 ng/mL in serum-free medium) was added for 15min. The cells were harvested and
analyzed by Western blot. WT, EGFR-WT; KDD, EGFR-KDD. c, Template-based struc-
tural models of the intracellular portion of the EGFR-KDD inter-molecular dimer based
on end-to-end and EGFR-WT tetramer models. d, Template-based structural models of
EGFR-KDD inter-molecular dimer based on side-by-side EGFR-WT tetramer model. e,
Cross correlation values of EGFR-WT and EGFR-KDD with (+) or without (-) ligand
(EGF) stimulation is shown. The blue box indicates the fc value region for dimers. The
median values are reported next to the boxplot. Each grey dot represents the averaged
acquisition (10 sec, 6 acquisitions) per area per cell. All data points are shown. Numbers
in parenthesis above the boxplot are the total number of cells that data were taken on.
Data and illustrations for figure panels A and B produced by Du, Z., Gallant, J.-N.; Zhang,
Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. Data and illustrations for figure panel E
produced by Kim, S. and Smith, AW.. . . . . ... ... Lo L
Disruption of EGF-induced inter-molecular activation of EGFR-KDD with cetuximab and
mADb806. a, NR6 cells were cultured in serum-free medium for 36 hrs and then treated
with 50ng/mL EGF ligand for 5Smin. Total EGFR and the autophosphorylation at three
tyrosine sites were assessed by Western blot. b, NR6 cells were starved overnight and
treated with cetuximab (10 pg/ml in serum-free medium) for 3hrs 45min, and then were
treated with EGF (50 ng/mL in serum-free medium) and cetuximab (10 pg/ml in serum-
free medium) for 15min, then cells were harvested for western blot. c, YAMC EGFR-WT
and EGFR-KDD cells were starved for 12 hrs and pre-treated with mAb806 antibody (10
pg/ml in serum-free medium) for 3hrs 45min, respectively, and EGF ligand (50 ng/mL
in serum-free medium) was added for 15min. The cells were harvested and analyzed by
Western blot (left panel). The ratio of phospho-EGFR (Y 1068) to total EGFR expression
was also shown (right panel). Results represent the mean values of three independent
experiments + SD. d, YAMC EGFR-KDD cells were starved for 12 hrs and pre-treated
with cetuximab (10 pg/ml in serum-free medium) and mAb806 antibody (10 ug/ml in
serum-free medium) for 3hrs 45min, respectively, and EGF ligand (50 ng/mL in serum-
free medium) was added for 15min. The cells were harvested and analyzed by Western
blot (left panel). The ratio of phospho-EGFR (Y 1068) to total EGFR expression was also
shown (right panel). Results represent the mean values of three independent experiments
+/- SD. Data and illustrations produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.;
Red-Brewer, M., and Lovly, C. M. . . . . . . . .. ... .. ...
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4.8

4.9

EGFR-KDD directly interacts with ErbB family members. a, V5-epitope tagged EGFR-
WT and EGFR-KDD was co-transfected with Myc-epitope tagged EGFR-WT and EGFR-
KDD in HEK?293 cells. Cell lysates were immunoprecipitated by using Myc antibody.
Immunoblotting were probed by V5 and Myc antibody. b, Average diffusion coefficient of
EGFR WT homodimers with (+) or without (-) ligand (EGF) stimulation is shown. ¢, V5-
epitope tagged HER2 was co-transfected with Myc-epitope tagged EGFR-WT and EGFR-
KDD in HEK?293 cells. Cell lysates were immunoprecipitated by using Myc antibody. Im-
munoblotting were probed by V5 and Myc antibody. d, V5-epitope tagged HER3 was co-
transfected with Myc-epitope tagged EGFR-WT and EGFR-KDD in HEK293 cells. Cell
lysates were immunoprecipitated by using Myc antibody. Immunoblotting were probed
by V5 and Myc antibody. e, Average diffusion coefficient of EGFR WT and EGFR KDD
mutant with (+) or without (-) ligand (EGF) stimulation is shown. f, Average diffusion
coefficient of HER2 and EGFR-KDD mutant with (+) or without (-) ligand (EGF) stimu-
lation is shown. g, Average diffusion coefficient of HER3 and EGFR-KDD mutant with
(+) or without (-) ligand (EGF or NRG1) stimulation is shown. Data and illustrations
for figure panels A, C, and D produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.;
Red-Brewer, M., and Lovly, C. M. Data and illustrations for figure panels B, E, F, and G
produced by Kim, S. and Smith, AW.. . . . . ... ... Lo L
EGFR-KDD directly interacts with ERBB family members. a, V5-epitope tagged EGFR-
WT and EGFR-KDD was co-transfected with Myc-epitope tagged EGFR-WT and EGFR-
KDD in HEK?293 cells. After 48 hours transfection, cells were lysed by hypotonic buffer
and the cell lysates were immunoprecipitated by using V5 antibody. Immunoblotting were
probed by V5 and Myc antibody. b, Cross correlation values of co-transfected EGFR-
WT (mCherry-fused) and EGFR-KDD mutant (eGFP-fused) with (+) or without (-) ligand
(EGF) stimulation is shown. The light orange box indicates the fc value region for dimers.
¢, Myc-epitope tagged EGFR-KDD was co-transfected with V5-epitope tagged EGFR-
WT, HER2 and HER3 in HEK?293 cells. Cell lysates were immunoprecipitated by using
V5 antibody. Immunoblotting were probed by V5 and Myc antibody. d, Cross correlation
values of co-transfected HER2 (mCherry-fused) and EGFR-KDD mutant (eGFP-fused)
with (+) or without (-) ligand (EGF) stimulation is shown. e, Cross correlation values of
co-transfected HER3 (mCherry-fused) and EGFR-KDD mutant (eGFP-fused) with (+) or
without (-) ligand (EGF) stimulation is shown. For Figure 4.9B, D and E, the median val-
ues are reported next to the boxplot. Each grey dot represents the averaged acquisition (10
sec, 6 acquisitions) per area per cell. All data points are shown. Numbers in parenthesis
above the boxplot are the total number of cells where data were taken on. Both One-Way
ANOVA test and Uncorrected Fisher’s LSD test were down to obtain adjusted and indi-
vidual p values. Source data and statistical analysis are provided in the Source Data file.
Data and illustrations for figure panels A and C produced by Du, Z., Gallant, J.-N.; Zhang,
Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. Data and illustrations for figure panels
B, D, and E produced by Kim, S. and Smith, AW. . . . . .. .. ... ... ... ..
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4.10

4.11

4.12

Inhibition of EGFR-KDD is maximally achieved by blocking both intra- and inter-molecular
dimerization a, YAMC cells were starved for 12 hours and treated with afatinib (10 nM
in serum-free medium) and cetuximab (10 pug/ml in serum-free medium) for 3 hours 45
minutes, and then were treated with EGF (50 ng/mL in serum-free medium) for 15 min-
utes. The cells were harvested and analyzed by Western blot. b, Cell Viability Assay was
performed in mIL3-independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del and
L858R supplemented with 0.5% FBS. 5,000 cells were seeded in 96-well plate with the
treatment of afatinib and cetuximab. Three days after incubation, CellTiter-Blue Reagent
was added, and the fluorescence was detected at S60EX/590EM with a Synergy HTX mi-
croplate reader (BioTek Instruments, Winooski, VT, USA). ¢, Cell Viability Assay was
performed in mIL3-independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del and
L858R supplemented with 10% FBS. For b and c, n=3 biologically independent samples
were examined over 3 independent experiments. Data are presented as mean values +/-
SD. Results in a, b and c are the representative of three independent experiments. Data
and illustrations produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer,
M,and Lovly, C. M. . . . . . . . . e e e
Inhibition of EGFR-KDD is maximally achieved by blocking both intra- and inter-molecular
dimerization. a, Quantification of YAMC antibody/TKI treatment Western blots in Figure
4.10A. pEGFR/EGFR was presented as mean values of three independent experiments +
SD. b, BaF3 cell growth at different concentration of fetal bovine serum (FBS). 5,000 cells
were seeded in 96-well plate with the treatment of afatinib and cetuximab. Three days af-
ter incubation, CellTiter-Blue Reagent was added, and the fluorescence was detected at
560EX/590EM with a Synergy HTX microplate reader (BioTek Instruments, Winooski,
VT, USA). c, Cell Viability Assay was performed in mIL3-independent Ba/F3 cells stably
expressing EGFR-KDD, Ex19Del and L858R in RPMI1640 supplemented with 10% FBS.
d, Cell Viability Assay was performed in mIL3-independent Ba/F3 cells stably express-
ing EGFR-KDD, Ex19Del and L858R in RPMI1640 supplemented with 10% FBS and
Sng/mL EGF. e, Cell Viability Assay was performed in mIL3-independent Ba/F3 cells
stably expressing EGFR-KDD, Ex19Del and L858R in RPMI1640 supplemented with
10% FBS and 50ng/mL EGF. Data and illustrations produced by Du, Z., Gallant, J.-N.;
Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C M. . ... ... ... .... ...
EGF ligand stimulation induces the formation of EGFR-KDD inter-molecular dimers. a,
Cross correlation values of PIE-FCCS control constructs. The monomer control (Myr-
FP: myristoylated fluorescent protein [mCh or eGFP; coexpressed together]) had an fc
value of 0.01 indicating no interaction. Upon cross-linking by a synthetic dimerizer (AP:
AP20187) the dimer control (1xFKBP-FP) had an average fc value of 0.11, consistent with
dimerization. The multimer control (3XFKBP-FP) had an fc value of 0.29 consistent with
the formation of a mixture trimer and tetramer species. b, Average molecular brightness of
PIE-FCCS negative and positive controls in Figure 4.7c (Left: constructs with eGFP tag;
right: constructs with mCh tag). The oligomer control (3xFKBP+AP) has much higher
molecular brightness as expected due to clustering. mCh-tagged constructs show subtle
changes in the molecular brightness due to the photophysical properties of mCherry. How-
ever, the molecular brightness changes are still statistically significant between all con-
structs. ¢, Representative FCCS data for EGFR-WT and EGFR-KDD expressed in COS-7
cells. The scatter plot connected with red, green and blue lines indicates the normalized
auto-correlation function for mCherry-fused/eGFP-fused receptors and cross-correlation
function, respectively. Black solid line shows the fit model of each curves. For a and b, the
numbers in parenthesis above the boxplot/bar graph are the total number of cells where
data were taken on. Both One-Way ANOVA test and Uncorrected Fisher’s LSD test were
down to obtain adjusted and individual p values. . . . . . . ... ... L.
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5.1

52

53

ERBB2 and ERBB3 mutations co-occur in breast and other cancers. (A) 277 breast can-
cers with ERBB2 mutations and (B) 1,561 ERBB2-mutant cancers (all tumor types) in
the Project GENIE database were interrogated for co-occurring alterations in the indicated
genes. ERBB2 variants of unknown significance (VUS) are excluded. (C) Mutations in the
indicated genes were analyzed for co-occurrence or mutual exclusivity with ERBB2 mu-
tations using cBioPortal. (D) The most common co-occurring HER2/HER3 mutations in
breast cancer were determined using databases from Project GENIE, cBioPortal [TCGA,
METABRIC, MBC Project, Mutational Profiles of MBC (France), and Breast Invasive
Carcinoma (Broad)], and Foundation Medicine. Data and illustrations produced by Han-
ker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.;
Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.;; He, J.; Lalani, A.
Si;and Arteaga, C. L. . . . . . . L
Gain-of-function, but not passenger, missense mutations in ERBB2 and ERBB3 have a
tendency to co-occur. (A) Breast cancers and (B) all cancers with ERBB2 VUS in the
Project GENIE database were interrogated for co-occurring alterations in the indicated
genes. (C) Mutations in the indicated genes were analyzed for co-occurrence or mutual
exclusivity with ERBB2 mutations in breast cancers from Project GENIE using cBioPor-
tal. (D,E) Lollipop plots of ERBB2 (D) and ERBB3 (E) mutations in breast cancer from
Project GENIE. Data and illustrations produced by Hanker, A. B., Marin, A.; Jayanthan,
H. S;; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.;
Servetto, A.; Brewer, M. R.; Koch, J. P;; He, J.; Lalani, A. S.; and Arteaga, C. L. . . . . .
Co-occurring HER2/HER3 mutants enhance HER2/HER3 kinase domain association and
HER?2 kinase activity. (A) Comparison of the computational structural models of the
HER2WT/HER3WYT and HER2WT/HER3E928G at the asymmetric dimer interface. HER2
is colored purple and HER3 is colored blue. The hydrogen bond between residues G927-
O and L790-NH is represented by a yellow line. The hydrogen bond angle given by the
L790-N, L790-H, and G927-0O atoms is also depicted with a yellow line. (B) Probabil-
ity density plots of HER2WT/HER3WT and HER2WT/HER3F928¢ HER3 G927-O — HER2
L790-N hydrogen bond distance (left), HER2 K716-NZ — HER2 E719-OEl1,2 bond dis-
tance (middle), and HER2 K716-NZ — HER2 D742-OD1,2 bond distance (right). (C)
Rosetta HER2/HER3 heterodimerization binding energy. (D) Pairwise sums of per-residue
binding energy decomposition for HER2/HER3 heterodimerization. (E) Activation state
conformational free energy landscape of HER2WT (upper left quadrant), HER2L733S (up-
per right quadrant), HER2V77’" (lower left quadrant), and HER2M%°R (lower right quad-
rant). (F) Quantification of free energy difference between active and inactive states for
each mutant (gray), relative free energy difference compared to HER2WVT (yellow), and
integration along the lowest free energy path(s) (green and purple). . . . . .. ... ...
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5.5

5.6

HER2 and HER3 missense mutations enhance receptor heterodimerization with com-
plementary but distinct mechanisms. (A) Thermodynamic cycle relating HER2VT to
HER2mutant active to inactive conformational state transition free energy. HER2L-86R
is displayed as an example of HER2mutant mutants. (B) Thermodynamic cycle relating
HER2WYT to HER2mutant heterodimerization free energy with HER3YT. (C) Thermody-
namic cycle relating HER2/HER3WYT and HER2/HER3F%%8G heterodimerization free ener-
gies. Here, we evaluated the relative free energies of HER2mutant activation compared to
HER2WT (A) with steered MD and umbrella sampling simulations. We evaluated the rela-
tive free energies of HER2WT and HER2mutant heterodimerization with HER3WT (B) and
HER3E28C (C) with Rosetta. We also utilized conventional MD simulations to investi-
gate differences in heterodimerization affinity of HER2WT with HER3WT vs. HER3E928G,
(D) Per-residue energy decomposition of select HER2 residues at the HER2/HER3 dimer-
ization interface. (E) Per-residue energy decomposition of select HER3 residues at the
HER2/HER3 dimerization interface. All per-residue energies reported as mean +/- stan-
dard error across 20 lowest interface energy samples per group. (F) Log-scaled survival
curves of the G927 — 1790 backbone hydrogen bond rupture event with a 3.5 A cutoff.
(G) Hydrogen bond forward (rupture) and reverse (formation) rates and the free energy
associated with hydrogen bond rupture using hydrogen bond distance cutoff values of 3.5

Structural features of HER2 missense mutants. (A) Computational structural model of
the near full-length HER2WVT (green) and HER3WT (cyan) heterodimer with in complex
with NRG1 (purple). The modeled heterodimer includes the extracellular domain (ECD;
subdomains I — IV), transmembrane domain (TMD), juxtamembrane domain (JMD), and
kinase domain (KD) of both HER2 and HER3. The unstructured C-terminal tails were
excluded from modeling. (B) Rosetta HER2/HER3 heterodimerization binding energies
for the HER253!%F and HER2%310Y mutants with HER3WT and HER3F28G, Reported as
mean +/- standard error across 5 lowest interface energy samples per group. (C) HER2WT
active state depicting L7535 interacting with hydrophobic core residues at the f3-oC in-
terface. (D) HER2L75S active state depicting S755 interacting with hydrophobic core
residues at the B3-oC interface. (E) HER2WVT inactive state depicting L869 interacting
with hydrophobic core. (F) HER2M6°R inactive state depicting R869 interacting with
hydrophobic core. (G) HER2WT active state depicting V777 interacting with the back hy-
drophobic pocket. (H) HER2V77"L active state depicting L777 interacting with the back
hydrophobic pocket. . . . . . . . ...
HER3F928G enhances HER2/HER3 association and PI3K pathway activation. (A) HEK293
cells were co-transfected with WT or mutant HER2 and HER3WT or HER3F928G . For
immunoprecipitation, lysates were incubated with HER2 antibody Ab-17 overnight at
4°C, followed by incubation with Protein G beads and magnetic separation. (B) Im-
munoblot bands from (A) were quantified using ImageJ. (C) HEK293 cells were co-
transfected with WT or mutant HER2 and HER3WT or HER3F%?8G Cells were serum-
starved overnight, then lysed. Cell lysates were probed with the indicated antibodies. (D)
MCF10A cells stably expressing WT or mutant HER2 and HER3WT or HER3F28C were
starved in EGF/insulin-free media + 1% CSS overnight. Lysates were probed with the
indicated antibodies. (E) MCF10A cells stably expressing the indicated transgenes were
starved and lysed as in (D). Where indicated, western blot bands were quantified using
ImagelJ. The ratios were normalized to the WT/WT condition. Data and illustrations pro-
duced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.;
Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.;
Lalani, A. S.;and Arteaga, C. L.. . . . . . . .. .. .
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Effects of co-occurring HER2/HER3 mutations or HER?2 insertion mutations on HER2
kinase activity and HER2/HER3 KD interaction. (A) The intracellular domains (ICDs)
of WT or mutant HER2 and HER3 were transiently transfected into HEK-293 cells. Cell
lysates were probed with the indicated antibodies. EG, E928G. (F) Illustration of exon
20 insertion mutants. Exon 20 insertion mutations are highlighted in purple. (G) Activa-
tion state conformational free energy landscapes of the HER2YVMA and HER29SP inser-
tion mutants. (D) MCF10A cells stably expressing the indicated genes were cultured in
EGF/insulin-free media. Lysates were subjected to immunoprecipitation with the HER2
Ab-17 antibody. Western blot bands were quantified using ImageJ and normalized to the
HER2L5S/HER3WT condition. (E) HEK293 cells were co-transfected with full-length
HER2WT or HER25319F along with WT or mutant HER3 (ECD mutations). Cells were
serum-starved overnight. Cell lysates were probed with the indicated antibodies. Data and
illustrations for figure panels A, B, C D, E, H, and I produced by Hanker, A. B., Marin, A.;
Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan,
D. R;; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.

Co-occurring HER2/HER3 mutations enhance oncogenic growth and invasion of breast
epithelial cells. (A) MCFI10A cells stably expressing WT or mutant HER2 and HER3
were grown in 2D in EGF/insulin-free media + 1% CSS for 6 days. Cell viability was
measured by Cell Titer Glo. (B) MCF10A cells were grown in 3D Matrigel in EGF-
insulin-free media + 1% CSS and stained with MTT. The total volume of colonies per
well was quantified using the Gelcount instrument. Data represent the average +/- SEM
of three replicates (****, p;0.0001, one-way ANOVA + Bonferroni multiple comparisons
test). (C) MCF10A cells stably expressing WT or mutant HER2 and HER3 were grown
in 3D Matrigel in EGF-free media + 1% CSS +/- 10 ng/ml NRG1. (D) The number of
colonies showing invasive branching per field of view (FOV) was quantified. Data repre-
sent the average +/- SD of three replicates (**, p;0.01, student t-test). (E) MCF10A cells
stably expressing the indicated genes were seeded on Matrigel-coated chambers. After
22 h, invading cells were stained with crystal violet. (F) Relative invasion (normalized
to HER2WT/HER3WT) from two FOVs per well was quantified using ImageJ. Data repre-
sent the average +/- SD of 3-4 replicates (****, p;0.0001, One-way ANOVA + Bonferroni
multiple comparisons test). Data and illustrations produced by Hanker, A. B., Marin, A.;
Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan,
D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P;; He, J.; Lalani, A. S.; and Arteaga, C. L.

Co-occurring HER2/HER3 missense mutations or HER?2 insertion mutations increase the
invasive capacity of breast epithelial cells. (A) MCF10A cells stably expressing the indi-
cated genes were grown in 3D Matrigel in EGF-free media + 1% CSS. (B) MCF10A cells
stably expressing the indicated genes were seeded on Matrigel-coated chambers. After
22 h, invading cells were stained with crystal violet. (C) Relative invasion (normalized
to HER2WT/HER3WT) from two FOVs per well was quantified using ImageJ. Data repre-
sent the average +/- SEM (n;3). P values, two-way ANOVA + Bonferroni. (D) MCF10A
cells stably expressing the indicated genes were seeded on Matrigel-coated chambers and
stained as in (B). (E) Relative invasion (normalized to HER2L753S/HER3F928G was quan-
tified as in (C). Data represent the average +/- SEM (n;4). Data and illustrations produced
by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee,
K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P;; He, J.;
Lalani, A. S.;and Arteaga, C. L.. . . . . . . . . .. L
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5.10

5.11

5.12

HER3F928G promotes resistance to HER2- and HER3-targeting antibodies by retaining
HER2/HER3 kinase domain association. A) Model of HER2/HER3F%28G heterodimer
bound to trastuzumab, pertuzumab, PanHER antibody mixture, or LJIM716. The enhanced
kinase domain association mediated by HER3F928G is not predicted to be disrupted by an-
tibodies blocking the associationof the HER2 and HER3 ECDs. (B) MCF10A cells sta-
bly expressing the indicated genes were grown in 3D Matrigel in EGF/insulin-free media
treated with vehicle (PBS), 20 g/ml PanHER, 20 g/ml each trastuzumab + pertuzumab and
stained with MTT. (C) The total volume of colonies per well was quantified using the Gel-
count instrument. Data represent the average +/- SD of three replicates. (D) MCF10A cells
stably expressing HER25319%F/HER3WT or HER253!19F/HER 328G were treated with vehi-
cle (PBS) or 20 g/ml each trastuzumab and pertuzumab for 24 h in EGF/insulin-free media
+ 1% CSS. Following an acid wash to remove bound antibodies, HER2 immunoprecipita-
tion was performed as described in STAR Methods. (E) MCF10A cells stably expressing
HER2%310F/HER3WT or HER25310F/HER3F?28G were treated with vehicle (PBS), 20 g/ml
each trastuzumab and pertuzumab, or 20 g/ml PanHER for 24h in EGF/insulin-free media
+ 1% CSS. Lysates were probed with the indicated antibodies. Data and illustrations pro-
duced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.;
Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.;
Lalani, A. S.;and Arteaga, C. L.. . . . . . . . ... L
HER2%3!%F_induced transformation is blocked by anti-HER2 antibodies. (A) MCF10A
cells stably expressing the indicated genes were grown in 3D Matrigel in EGF/insulin-
free media treated with vehicle (PBS) or 20 g/ml each trastuzumab + pertuzumab for 7
d. Scale bar, 500 m. (B) MCF10A cells stably expressing the indicated transgenes were
stained with 0.2 g/ml trastuzumab and an Alexa Fluor 647-conjugated goat anti-human
IgG secondary antibody and analyzed by flow cytometry. Data and illustrations produced
by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee,
K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P;; He, J.;
Lalani, A. S.;and Arteaga, C. L.. . . . . . . . .. ..
Co-occurring HER3 mutations modulate neratinib sensitivity in HER2-mutant cells. (A)
Molecular dynamics MM/GBSA binding affinity estimates of ATP to HER2VT/HER3WT
and HER2WT/HER3F28G_ (B) Probability density kinase domain hinge — ATP hydro-
gen bond distance in HER2WT, HER2L735S, HER2Y77L| and HER2L-399R dimerized with
HER3WYT. (C) Probability density kinase domain hinge — ATP hydrogen bond distance
in HER2WT, HER2V725S | HER2V777L | and HER2M8%R dimerized with HER3F928G (D)
Molecular dynamics MM/GBSA relative binding affinity estimates of neratinib to differ-
ent HER2 missense mutants heterodimerized with either HER3WT or HER3E928G (E)
MCF10A cells stably expressing the indicated genes were grown in EGF/insulin-free me-
dia + 1% CSS and treated with the indicated concentrations of neratinib for 6 days. Cell
viability was measured using CellTiterGlo. (F) Neratinib IC50s were determined as in (E).
Data represent the average of 3 independent dose-response curves containing 4 replicates
each. (G) MCF10A cells stably expressing WT or mutant HER2 and HER3 were grown
in 3D Matrigel in EGF-free media + 1% CSS * 10 nM neratinib and stained with MTT.
The total volume of colonies per well was quantified using the Gelcount instrument. Data
represent the average + SD of three replicates. Data and illustrations for figure panels D -
G produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu,
H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P;
He, J.; Lalani, A. S.; and Arteaga, C. L. . . . . . .. ... ... . .
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5.14

The growth of CW2 HER2L753S/HER3E928G colon cancer cells depends on HER2L7538
and HER3. A) Electropherograms of ERBB2 cDNA from CW2 cells, indicating heterozy-
gous expression of HER2L73S and HER3F928G . A reverse primer was used for HER2
sequencing. (B) CW2 cells were transfected with siControl or siRNA specifically target-
ing HER2L7255 . qRT-PCR was performed using primers specific for HER2WT (black) or
HER2L753S (blue). **, p;0.01, two-way ANOVA + Bonferroni multiple comparisons test.
(C) CW2 cells were transfected control or HER3 siRNA. qRT-PCR was performed using
HER3 primers. (D) CW2 cells were transfected with the indicated siRNA and lysed after
48h. Lysates were probed with the indicated antibodies. (E) CW2 cells were transfected
with the indicated siRNA. Cell viability after 4 days was measured using the CyQuant
assay. ** p;0.01; *** p;0.001, one-way ANOVA + Bonferroni. (F) CW2 cells were
transfected with the indicated siRNA. Total cell number was measured after 4 days using
a Coulter counter. *** p;0.001; **** p;0.0001, one-way ANOVA + Bonferroni. Data
represent the average + SD of three independent experiments. Data and illustrations pro-
duced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.;
Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.;
Lalani, A. S.;and Arteaga, C. L.. . . . . . . . . . ..
Cancer cells harboring co-occurring mutations in HER2 and HER3 are sensitive to com-

bined inhibition of HER2 and PI3K . (A) MCF10A cells stably expressing HER2L7>3S/HER3E923C

or HER2YYMA/HER3WT were treated with vehicle (DMSO), 500 nM neratinib, 500 nM
buparlisib, S0 nM neratinib, or the indicated combinations for 4 h in EGF/insulin-free me-
dia + 1% CSS. Lysates were probed with the indicated antibodies. (B) MCF10A cells
stably expressing the indicated genes were grown in 3D Matrigel in EGF/insulin-free
media + 1% CSS treated with vehicle (DMSO), 20 nM neratinib, 1 M alpelisib, or the
combination. (C) The number of colonies showing invasive branching per field of view
(FOV) from (B) was quantified. Data represent the average + SD of three replicates. (D)
CW?2 colon cancer cells (HER2L753S/HER3E928G) were treated with vehicle (DMSO), 500
nM alpelisib, 50 nM neratinib, or the combination in serum-free media for 4 h. Lysates
were probed with the indicated antibodies. (E) CW2 cells were treated with increasing
concentrations of neratinib (0-100 nM) or alpelisib (0-1000 nM) alone or in combination
for 72 h. Cell viability was quantified using the CyQuant assay and combination indices
were determined using the Chou-Talalay test. Numbers inside each box represent the av-
erage % viability (relative to untreated controls) from two independent experiments. (F)
Mice carrying CW2 xenografts were treated with vehicle, 40 mg/kg neratinib, 40 mg/kg
alpelisib, or the combination for 14 days, starting when tumors reached 200 mm3. Data
and illustrations produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin,
C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M.
R.; Koch, J. P; He, J.; Lalani, A. S.; and Arteaga, C.L. . .. ... ... ... ......
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5.16

6.1

6.2

6.3

The growth of CW2 HER2L733S/HER3E%28G colon cancer cells depends on HER2M735S and
HER3. (A) Electropherograms of ERBB2 cDNA from CW?2 cells, indicating heterozy-
gous expression of HER2L73S and HER3F928G . A reverse primer was used for HER2
sequencing. (B) CW2 cells were transfected with siControl or siRNA specifically tar-
geting HER2M753S | gRT-PCR was performed using primers specific for HER2WT (black)
or HER2L733S (blue). P values, two-way ANOVA + Bonferroni. (C) CW2 cells were
transfected control or HER3 siRNA. qRT-PCR was performed using HER3 primers. P
values, one-way ANOVA + Bonferroni. (D) CW2 cells were transfected with the indi-
cated siRNA and lysed after 48h. Lysates were probed with the indicated antibodies. (E)
CW2 cells were transfected with the indicated siRNA. Cell viability after 4 d was mea-
sured using the CyQuant assay. P values, one-way ANOVA + Bonferroni. Data represent
the average + SD of three independent experiments. (F) CW2 cells were transfected with
the indicated siRNA. Total cell number was measured after 4 d using a Coulter counter.
P values, one-way ANOVA + Bonferroni. Data represent the average + SD of three in-
dependent experiments. (G,H) MCF10A HER2L75>S/HER3E928G (G) and CW2 (H) cells
were treated with vehicle (DMSO), 500 nM alpelisib, S0 nM neratinib, or the combina-
tion in serum-free media for 24 h. Lysates were probed with the indicated antibodies. (I)
Mice carrying CW2 xenografts were treated with vehicle, 40 mg/kg neratinib, 30 mg/kg
alpelisib, or both drugs for 14 d, starting when tumors reached 200 mm3. Data repre-
sent the average tumor volme + SEM. P value, student’s t-test, vehicle vs. combination
(Day14). Data and illustrations produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.;
Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.;
Brewer, M. R.; Koch, J. P; He, J.; Lalani, A. S.; and Arteaga, C.L. . . ... ... .. ..
Model of HER2/PI3K pathway activation by co-occurring HER2/HER3 mutations. In
the absence of ligand, HER3WT is in the closed conformation and does not interact with
HER2WT. NRG1 treatment (hot pink circle) promotes HER2/HER3 heterodimerization,
and a HER2 missense mutation further increases HER3 phosphorylation to recruit the p85
subunit of PI3K and activate PI3K signaling. In the absence of ligand, the HER3E9286
mutation phenocopies NRG1 treatment by increasing HER2/HER3 association via en-
hanced binding of the HER2/HER3 kinase domains, leading to constitutive activation of
PI3K. HER? insertion mutations alone, without HER3 mutations, also increase ligand-
independent HER2/HER3 association and PI3K activation. (B) A schematic equilibrium
model showing how HER2missense mutations cooperate with HER3F928G to enhance re-
ceptor heterodimerization and drive oncogenic activation. . . . . . ... ... ... ...

Outline of the BCL::MolAlign flexible alignment algorithm. Rigid alignment is equivalent
to a single tier of MCM optimization with a single conformation each for Molecule A and
Molecule B. MC moves alter the current Molecule A or B during each optimization tier.
The same moves are used in each tier, but number of steps differ in each tier. . . . . . . .
Schematic of sampling strategies implemented in BCL::MolAlign. From a given starting
alignment on the left side of the arrow, the resulting alignment following each operation
is depicted on the right side of the arrow. Once atoms and bonds have been chosen, Bon-
dAlign (A), BondAlign2 (B), and MatchAtomNeighbors (C) each have one possible out-
come. BondSwap (D) has an equal probability of sampling two possible outcomes. High-
lighted segments correspond to the chosen atoms and bonds for alignment. Atom number-
ings in MatchNeighborAtoms correspond to mutually matched pairs between molecules
AandB. . . ..
Rigid alignment of P38 inhibitors from PDB IDs 10UK and 10UY illustrate atom pairing
at variable maximum atom distances. The 2D representations of the 10UK and 10UY
ligands. The 3D representations depict the native pose of 10UK rigidly aligned to the
native pose of 10UY. Spheres illustrate heavy atoms separated from a heavy atom in the
opposite molecule by less than the specified maximum atom distance D,,,,. Sphere radii
correspond to half of the indicated maximum atom distance. Red and white overlapping
spheres are considered matched atoms. . . . . . ... ... L oL,
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6.4

7.1

7.2

1.3

7.4

7.5

7.6

1.7

Visual representations of docked versus aligned poses in challenging docking targets.
Comparisons show the protein-ligand complexes of the crystallized scaffold (gray) and
crystallized target (white) molecules (A). The crystallized pose of the target molecule
(white) is also shown with the Rosettaligand docked pose (green; B) and the BCL::MOLALIGN
flexibly aligned pose (purple; C). Examples correspond to molecules from the HCV (row
one), TPPHO (row two), and CTAP (row three) datasets. . . . . . . ... ... ... ... 135

Schematic of pose-dependent protein-ligand descriptor. (A) Schematic representation of
pose-dependent protein-ligand interaction feature space. (B) Surface representation of
discoidin domain receptor 1 (DDR1) kinase binding pocket heavy atoms within 7.0 A of
select atoms within dasatinib. The surface representation is colored by distance to the
selected atom. Dasatinib shown in stick configuration colored by element type with the
selected atom indicated by dot sphere. . . . . . . .. ... oL 144
Scoring power evaluation of BCL-AffinityNet. (A) Comparison of BCL-AffinityNet scor-

ing power to other methods from the CASF2016 benchmark by Su et al.1. Error bars
indicate the 90% confidence interval (B) Linear regression of experimental vs. predicted

pKd values in the CASF2016 coreset. . . . . . . . . . . . .. ... 146
Performance evaluation on the combined AD test set. A total of 1377 training samples

were excluded from the initial training set of 7568 samples (see Methods for details).

The remaining 6191 training samples were used to train BCL-AffinityNet (i.e. a single-

task regression DNN with PLC features), a signed 3DA LB QSAR model, or a signed

3DA pocket-based QSAR model. Training was completed with five-fold random-split
cross-validation. Columns and error bars represent the mean and standard deviation of
NMAE (blue) or Pearson correlation coefficient (red) across either the five-fold random-

split cross-validations (training) or five-fold random splits of the combined AD test set
(teStiNg). . . . o o o e e e e e e 148
Ranking power evaluation of BCL-AffinityNet. Comparison of BCL-AffinityNet ranking
power to other methods from the CASF2016 benchmark by Su et al.1 with (A) Spearman

rank correlation coefficient, (B) Kendall rank correlation coefficient, and (C) predictive in-

dex. Error bars indicate the 90% confidence interval. Green bars indicates BCL-AffinityNet. 151
Docking power evaluation of BCL-DockANNScore. Comparison of BCL-DockANNScore
docking power to other methods from the CASF2016 benchmark by Su et al.1 when re-
covering the native pose under 2.0 A RMSD (A) within the top 3 poses, (B) within the top

2 poses, and (C) within the top 1 poses. Error bars indicate the 90% confidence interval.
Green indicates BCL-DockANNScore. . . . . . .. . ... ... ... ... ... . ... 153
Screening power evaluation of BCL-DockANNScore. Comparison of BCL-DockANNScore
screening power to other methods from the CASF2016 benchmark by Su et al.1. (A) For-

ward screening power evaluation success rates, (B) Reverse screening power evaluation
success rates, (C) Forward screening power evaluation enhancement factor (top 1%). Er-

ror bars indicate the 90% confidence interval. Green indicates BCL-DockANNScore. . . 154
Construction of absolute pharmacophore maps. (A) The target molecule, in this case com-
pound 7c from Zhu et al.54, is first modeled in complex with its target receptor using

PLC descriptors and scored with BCL-AffinityNet. (B) Then we iterate over each atom

in the target molecule and sequentially remove it from the molecule to create a perturbed
molecule, X. (C) Perturbed molecules are saturated with hydrogen atoms to close any open
valences resulting from the perturbation, and then they are scored with BCL-AffinityNet.

(D) The differences in predicted binding affinity between the starting molecule and each
perturbed molecule are mapped to the corresponding atoms of the starting structure. Here,
predictions are in units of kcal/mol at 300K. The surface representation of atoms that con-
tribute beneficially to BCL-AffinityNet’s binding affinity prediction are blue, while atoms

that worsen the prediction are in red. Atoms that contribute neutrally/negligibly are white. 155

XXV



7.8

7.9

7.10

8.1

Construction of relative pharmacophore maps. Relative pharmacophore maps are gener-
ated from a target molecule and a reference molecule. (A) Determine the MCS between the
reference and target structure. (B) Identify the MCS atoms that connect to corresponding
non-MCS substructures in both the reference and target molecule. Non-MCS atoms are
circled in grey and corresponding substructures between the reference and target share nu-
merical labels (e.g. the reference molecule methyl circled in grey and the target molecule
trifluoromethyl circled in grey are correspond structurally and are labeled “1”). For both
the reference and target molecule, non-MCS substructures are independently removed.
The binding affinities of the reference, target, and perturbed molecules are estimated with
BCL-AffinityNet. The ddGy;,q between starting and perturbed molecules is determined
for both the reference and target. (C) For each corresponding non-MCS substructure, com-
pute dddGp;,g as ddGbind(Target,X) — ddGb,-nd( Reference,x)» Where X indicates the perturbed

target or reference molecule. (D) Map the dddGy;,; values back to the target molecule
non-MCS substructures. The surface representation of atoms that contribute beneficially
to BCL-AffinityNet’s binding affinity prediction are blue, while atoms that worsen the
prediction are in red. Atoms that contribute neutrally/negligibly are white. . . . . . . . .
Figure 7.9. Relative pharmacophore maps of a congeneric DDRI1 inhibitor series. (A)
Compound 7i is the reference molecule for creation of the pharmacophore maps. Com-
pounds (B) 7j, (C) 7f, and (D) 7c from Zhu et al.54. Compounds with the NC alteration
at (F) the hinge-binding nitrogen atom, (E) the symmetrically placed hinge-binding nitro-
gen rotated away from the from the hydrogen bond donor partner, and (G) both nitrogen
atom positions at the hinge-binding ring. Binding affinities in black text are predicted by
BCL-AffinityNet, while green values are from Zhu et al. (Zhu et al., 2019). The surface
representation of atoms that contribute beneficially to BCL-AffinityNet’s binding affinity
prediction are blue, while atoms that worsen the prediction are in red. Atoms that con-
tribute neutrally/negligibly are white. . . . . . . . . .. ... ... L 0.
Pharmacophore maps of dysiherbaine analogs in complex with iGluR5 generated from
BCL-AffinityNet. Pharmacophore maps were generated for iGluRS complexed with (A)
8, 9-dideoxyneodysiherbaine (PDB ID 3GBB; pKd = 6.9, AG = -9.79 kcal/mol at 310K),
(B) neodysiherbaine (PDB ID 3FV2; pKd = 8.1, AG = -11.49 kcal/mol at 310K), and (C)
dysiherbaine (PDB ID 3FV1; pKd = 9.3, AG =-13.19 kcal/mol at 310K) and mapped onto
the native bound pose. Labeled yellow transparent circles in top panel are used to reference
the substituted carbon atoms of interest. Per atom pharmacophore map scores are output
to a PyMol script for visualization as a molecular surface colored on a per atom basis by
spectrum from blue (negative) to white (zero) to red (positive). In this example, negative
values indicate atoms whose removal results in a loss in predicted binding affinity. The
second row illustrates each ligand in complex with iGIuRS. The third row illustrates the
common substructure pharmacophore map (i.e. pairwise per-substructure relative binding
free energy changes). The fourth row illustrates the raw pharmacophore map for each
ligand upon sequentially removing individual atoms and saturating open valences. . . . .

A modular framework for small molecule drug design chemical perturbations. a, One-
shot chemical synthesis can be simulated by combining fragments with the AddMedChem
mutate. The connection between the fragments is made through bonds at undefined atom
types (“X”; yellow circles in reaction). b, Single- and multi-component reaction simula-
tions can be performed with the React mutate. The reaction is read from an MDL RXN file
where the product atoms are mapped to reagent atoms. c, Medicinal chemistry-inspired
“alchemical” mutates can be performed without specifying chemical reaction pathways.
d, Alchemical mutations allow user-specified restrictions on mutable (green circles) and
fixed (purple circles) atoms. . . . . . . ...
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8.2

Small molecule design simulations can be performed in the presence of conformational
changes and sequence design. a, Induced-fit design simulations of Type I or Type II tyro-
sine kinase inhibitors for Abl kinase captures activation loop conformational preferences.
Design simulations were initiated with a common scaffold (magenta). Chemical pertur-
bations of the scaffold were performed to generate either Type I (light brown) or Type
IT (light blue) inhibitors. b, Sample in silico designs that either do (light green) or do
not (light blue) occupy the cryptic pocket of mAChR1. Protein colors match their cor-
responding ligands. c, Induced-fit design simulations of positive allosteric modulators
(PAMs) targeting a cryptic pocket in muscarinic acetylcholine receptor 1 (mAChR1). The
distance between the Y2.64 hydroxyl and C45.50 backbone nitrogen defines the acces-
sibility of the cryptic pocket (Hollingsworth et al. 2019). d, Schematic representation
of BRD2 bump-and-hole chemogenetic design simulation. BRD2 L41V mutation (light
brown) is superimposed with wild-type (light blue-white). The “bump” corresponds to the
ethyl (light brown) and the “hole” the reduction in size of L41 (light blue-white) to valine
(light brown). e, Correlation between experimental (x-axis; Runcie et al. 2018) and com-
putational (y-axis) relative binding affinity estimates between BRD2 and BRD2-L41V f,
Simulating the simultaneous redesign of the BRD2 binding pocket and inhibitor scaffold.
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CHAPTER 1

Summary

Computer-aided drug design (CADD) has become a core component of modern drug discovery (Macalino
et al., 2015). CADD is typically separated into two categories: ligand-based (LB) and structure-based (SB)
(Sliwoski et al., 2014). LB methods do not require information on mechanism of action to yield predictions
of molecular properties of interest (e.g., biological activity on a target receptor, solubility, etc.) and are
frequently utilized in small molecule virtual high-throughput screening (vVHTS). LB models are built using
information from datasets of existing ligands, and therefore prediction quality is dependent on the quality and
volume of training data. Quantitative structure-activity relationship (QSAR) modeling, which mathematically
relates chemical descriptors of small molecules to properties of interest, has emerged as a powerful approach
to leverage continual advancements in machine learning (ML) (Yang et al., 2019).

SB methods model interactions between ligands and target receptors. The interaction score predicts the
activity of the ligand on the target. The primary benefits of SB methods are arguably twofold: (1) they do
not require training data and thus in principle can be applied indiscriminately to any target receptor; (2) they
are generally chemically intuitive and can guide rational design. There are also arguably two significant
challenges associated with SB methods: (1) ranking compounds based on interaction scores first requires
determination of the biologically relevant mode of interaction, the lack of which leads to substantial error in
compound ranking; (2) they are orders of magnitude more computationally expensive than LB methods using
even the simplest approaches, with accuracy being negatively correlated with cost (Macalino et al., 2015;
Sliwoski et al., 2014; Leelananda and Lindert, 2016).

In recent years, both LB QSAR models and SB docking vHTS have come-of-age as powerful tools for
small molecule hit discovery (Geanes et al., 2016; Butkiewicz et al., 2013; Stein et al., 2020). Advances
in molecular mechanics methods such as free energy perturbation (FEP) and thermodynamic integration
(TT) have led to unprecedented in silico rank-ordering of scaffold derivatives during hit-to-lead optimization
(Wang et al., 2019a, 2015; Zou et al., 2019; Jorgensen and Thomas, 2008). Ongoing investigations in machine
learning (ML) and quantum chemistry are poised to increase the predictive power of our CADD score func-
tions (Lu et al., 2019; Brown et al., 2021; Kirkpatrick et al., 2021). Emerging strategies leverage principles
from ML methods developed for LB CADD with physics-based methods developed for SB CADD (Gentile
et al., 2022, 2020).

Traditionally, LB and SB CADD methods have been employed to perform vHTS. More recently, how-

ever, a number of algorithms have emerged that enable on-the-fly drug design. Some of these are tantamount



to VHTS and leverage the one-shot synthetic accessibility of made-on-demand libraries to propose efficient
routes for molecular design (Bellmann et al., 2022; Schmidt et al., 2021; Sadybekov et al., 2022). Com-
pared with other drug design approaches, the one-shot made-on-demand strategy greatly increases the syn-
thetic throughput and synthesizability of candidate compounds. Other algorithms leverage ML, combinatorial
chemistry, and/or multi-component reaction-based design to generate small molecule libraries with favorable
predicted properties and activities (Popova et al.; Zhavoronkov et al., 2019; Brown et al., 2022). Combined
with novel approaches aimed at improving the accuracy of predictions for physicochemical properties, such
as solubility (Boobier et al., 2020), these methods have the potential to accelerate the drug discovery process.

All of these methods represent important advances; however, they exist largely in isolation as highly
specialized protocols. CADD requires adaptability. The nature and scope of a CADD challenge is heavily
influenced by factors such as the availability of training data, knowledge of the target chemical space, the
presence (or absence) of experimental characterization of the drug target and putative binding pocket(s), the
flexibility (dynamics) of the target, the size of the system under investigation, the expected accuracy of the
score function in the given system, and more. While specialized tools can be highly valuable in certain
circumstances, they may be of limited utility in others.

Indeed, there remains substantial attrition in the development of a compound from lead to FDA-approved
therapy (Moreno and Pearson, 2013; Waring et al., 2015). The primary causes for these failures in clinical
trials are lack of efficacy or safety (Harrison, 2016). In oncology specifically, kinases are a frequent drug
target, and toxicity due to off-target effects is widely appreciated (Klaeger et al., 2017; Lin et al., 2019).
Thus, in order to increase the success of candidate drugs in clinical trials, it is critical to develop new CADD
technologies that directly address these limitations and are extensible to future challenges.

This dissertation is thematically separated into two major components. First, it describes novel mech-
anisms of oncogenic activation and therapeutic resistance in human epidermal growth factor receptors 1
(EGFR) and 2 (HER2), demonstrating in the process how mutation-induced changes in protein conforma-
tional free energy landscapes require innovative solutions in drug design. Second, it details the development
of a new framework for small molecule drug design that integrates the BioChemical Library (BCL) chemin-
formatics toolkit with the Rosetta macromolecular modeling software suite. The new drug design framework
is built specifically to address difficulties involved in designing small molecules to bind to dynamic proteins,
such as EGFR kinase.

Chapter 2 describes the mechanism of action of the G724S resistance mutation in EGFR, which emerges
in some non-small cell lung cancer (NSCLC) oncogenic variants as a response to first-line treatment with the
third-generation tyrosine kinase inhibitor (TKI) osimertinib. Portions of this chapter are taken from Brown,

B. P.*¥; Zhang, Y.-K.*; Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z.; Smith, J. A.; Ross, J. S.; Miller,



V. A.; Ali, S.; Bazhenova, L.; Schrock, A. B.; Meiler, J.; Lovly, C. M. On-Target Resistance to the Mutant-
Selective EGFR Inhibitor Osimertinib Can Develop in an Allele-Specific Manner Dependent on the Original
EGFR-Activating Mutation. Clin. Cancer. Res. 2019, 25 (11), 3341-335135.

Chapter 3 demonstrates that EGFR Ex19Del variants are a heterogeneous class of oncogenic mutants
whose activation and TKI sensitivity are dictated by unique conformational preferences and catalytic activ-
ity. Portions of this chapter are in review for publication. This chapter is a collaborative work of Benjamin
P. Brown*, Yun-Kai Zhang*, Soyeon Kim*, Yingjun Yan, Zhenfang Du, Jiyoon Kim, Abigail Leigh Hart-
zler, Michele L. LeNoue-Newton, Adam W. Smith, Jens Meiler, and Christine M. Lovly (¥*These authors
contributed equally).

Chapter 4 describes the mechanistic basis of oncogenic activation for a new class of EGFR variants in
NSCLC - kinase domain duplications (KDD). It also discusses the role of EGFR-KDD linker dynamics in
promoting enhanced activity relative to wild-type. Portions of this chapter are taken from Du, Z.*; Brown,
B. P.*; Kim, S.; Ferguson, D.; Pavlick, D. C.; Jayakumaran, G.; Benayed, R.; Gallant, J.-N.; Zhang, Y.-K.;
Yan, Y.; Red-Brewer, M.; Ali, S. M.; Schrock, A. B.; Zehir, A.; Ladanyi, M.; Smith, A. W.; Meiler, J.;
Lovly, C. M. Structure—Function Analysis of Oncogenic EGFR Kinase Domain Duplication Reveals Insights
into Activation and a Potential Approach for Therapeutic Targeting. Nature Communications 2021, 12 (1),
138236.

Chapter 5 explores therapeutic strategies for breast cancer involving various HER2 oncogenic mutations.
It also provides a mechanistic explanation for the preferential co-mutation of HER3 E928G with specific
HER2 kinase domain mutations. Portions of this chapter are taken from Hanker, A. B.*; Brown, B. P.*;
Meiler, J.*; Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.;
Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; Sheehan, J. H.; He, J.; Lalani, A. S.; Arteaga,
C. L. Co-Occurring Gain-of-Function Mutations in HER2 and HER3 Modulate HER2/HER3 Activation,
Oncogenesis, and HER2 Inhibitor Sensitivity. Cancer Cell 2021, 39 (8), 1099-1114.e837.

Collectively, Chapters 2 — 5 demonstrate that mutation-induced changes in conformational equilibrium
can be responsible for profound alterations in protein-protein dimerization propensities, enzymatic activity,
and sensitivity and resistance to TKIs. They identify areas for improvement in our current standard-of-care
treatments for patients with NSCLC and breast cancer. Importantly, they highlight the need for software that
is capable of simulating drug design while accounting for large conformational transitions, protein sequence
changes, and other complex system-specific challenges.

Our approach for creating a modular, customizable drug design platform requires several algorithmic
advancements. Chapter 6 introduces a new flexible, property-based small molecule flexible alignment algo-

rithm in the BCL. The algorithm combines a customizable chemical property distance metric with efficient



alignment co-space sampling moves to identify alignments. Portions of this chapter are taken from Brown,
B. P.; Mendenhall, J.; Meiler, J. BCL::MolAlign: Three-Dimensional Small Molecule Alignment for Phar-
macophore Mapping. J. Chem. Inf. Model. 2019, 59 (2), 689-70138.

Chapter 7 describes a novel approach for rapid, interpretable SB scoring of protein-ligand interactions
using deep neural networks (DNN). The score function is target agnostic and minimizes ligand bias by only
utilizing protein-ligand atomic property correlations discretized into signed distance bins. Portions of this
chapter are taken from Brown, B. P.; Mendenhall, J.; Geanes, A. R.; Meiler, J. General Purpose Structure-
Based Drug Discovery Neural Network Score Functions with Human-Interpretable Pharmacophore Maps. J.
Chem. Inf. Model. 2021, 61 (2), 603-62017.

Chapter 8 illustrates the new drug design framework, which in addition to the components in Chapters
6 and 7 also includes a series of chemical perturbations, a mutable atom selection module, and internal
druglikeness filters. This chapter also discusses the integration of the BCL into Rosetta to enable protocol
development that also makes use of Rosetta’s extensive array of macromolecular modeling tools. Portions of
this chapter are in review for publication. This chapter is a collaborative work of Benjamin P. Brown, Jeffrey
Mendenhall, Rocco Moretti, Sergey Lyskov, Alexander R. Geanes, Darwin Fu, Sandeep Kothiwale, Edward
W. Lowe, and Jens Meiler.

Chapter 9 summarizes the collective works of Chapters 2 — 8 and identifies ongoing and future directions.



CHAPTER 2

On-target resistance to the mutant-selective EGFR inhibitor osimertinib can develop in an allele

specific manner dependent on the original EGFR activating mutation

This chapter is taken from Brown, B. P.*; Zhang, Y.-K.*; Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z.;
Smith, J. A.; Ross, J. S.; Miller, V. A.; Ali, S.; Bazhenova, L.; Schrock, A. B.; Meiler, J.; Lovly, C. M. Clin.
Cancer. Res. 2019, 25 (11), 3341-335135 (*These authors contributed equally).

2.1 Introduction

Oncogenic mutations in the EGFR tyrosine kinase domain are found in 15-30% of non-small cell lung carci-
nomas (NSCLC) (Lynch et al., 2004; Pao et al., 2004). Of these cases, approximately 90% can be attributed
to in-frame deletions within exon 19 (Ex19Del) or missense mutations in exon 21 (L858R), which occur
with approximately equal prevalence (Lynch et al., 2004; Pao et al., 2004). Multiple phase III clinical trials
have shown that patients with EGFR-mutant tumors experience >70% radiographic response rates (RRs) and
a statistically significant improvement in progression-free survival (PFS) when treated with first-generation
(erlotinib, gefitinib) or second-generation (afatinib) EGFR tyrosine kinase inhibitors (TKIs) as compared with
platinum based chemotherapy (Sequist et al., 2013; Rosell et al., 2012; Mitsudomi et al., 2010; Maemondo
etal., 2010). However, response to these targeted agents is transient, and acquired therapeutic resistance typi-
cally develops within 8-10 months. In approximately 60% of cases, resistance is acquired through acquisition
of a secondary EGFR mutation, EGFR T790M (Oxnard et al., 2018; Stewart et al., 2015; Yu et al., 2013). Os-
imertinib, a mutant-selective third-generation covalent inhibitor, was developed specifically to target T790M.
For these reasons, the clinical standard of care for EGFR-mutant NSCLC has been treatment with first or
second generation TKIs followed by treatment with osimertinib post-progression on first line therapy (Yang
et al., 2017). Recently, osimertinib became approved as first-line therapy (Soria et al., 2018).

Unfortunately, resistance mutations may also emerge against osimertinib therapy (Papadimitrakopoulou VA,
2018; Ramalingam SS, 2018). The most well described to date is C797S, which is detected in approximately
10%-19% of patients with first-line and second-line osimertinib resistance (Piotrowska et al., 2018; Rama-
lingam et al., 2018). Mutation of C797 to serine prevents covalent adduct formation between osimertinib
and the EGFR kinase domain (Thress et al., 2015; Yosaatmadja et al., 2015). We (Oztan et al., 2017) and
others (Piotrowska et al., 2018; Peled et al., 2017; Fassunke et al., 2018) have also identified G724S as a mu-
tation which is selected for in osimertinib resistant tumors. Unlike C797S, G724S was not predicted based

on in vitro studies (Yu et al., 2007; Ercan et al., 2015), and the precise mechanism whereby G724S mutation



confers osimertinib resistance is unknown.

The most fundamental principle of structural biology is that sequence determines structure and structure
determines function. To determine the relationship between classical EGFR kinase activating mutations
(Ex19Del and L858R), acquired G724S mutation, and osimertinib resistance, we employed an integrated
computational / experimental approach. Our results suggest that G724S is a resistance mutation that develops

with Ex19Del but not L858R and provide mechanistic insight into this process at the structural level.

2.2 Results
2.2.1 A G724S-mediated conformational change in the glycine-rich P-loop reduces binding affinity of
osimertinib to Ex19Del/G724S but not to L858R/G724S

To determine the structural effects of G724S mutation on osimertinib binding, we performed a series of
Gaussian accelerated molecular dynamics (GaMD) simulations (Miao and McCammon, 2017; Miao et al.,
2015) of wild-type EGFR (WT), Ex19Del (unless otherwise stated, the canonical variant E746_A750del),
Ex19Del/G724S, L858R, and L858R/G724S in the drug-unbound (apo) state. Analysis of our initial simula-
tions suggests G724S may increase P-loop backbone conformation fluctuations (Figure 2.1). These data are
intriguing because EGFR has previously been shown to bind osimertinib with a characteristic “bent” P-loop
conformation (Yosaatmadja et al., 2015), and we hypothesized that G724S could reduce osimertinib binding
through disruption of the bent P-loop conformation. Previous literature on protein conformational dynam-
ics has cautioned against inferring functional mechanisms from RMSF statistics alone (Farmer et al., 2017).
Therefore, to test our hypothesis, we performed GaMD simulations of Ex19Del, Ex19Del/G724S, L858R,
and L858R/G724S reversibly bound with osimertinib. We similarly examined these four mutants with the
second-generation, wild-type selective EGFR TKI, afatinib, as a control. Afatinib was selected as a control
in our study for multiple reasons. Afatinib has previously been reported to be a potential therapeutic agent in
the setting of Ex19Del/G724S-mediated NSCLC based on a patient case report (Oztan et al., 2017). Similar
to osimertinib, afatinib is an irreversible EGFR inhibitor that has received regulatory approval for treatment
of EGFR-mutant lung cancer.

Osimertinib and afatinib both irreversibly bind EGFR through covalent adduct formation. In order to form
an irreversible complex, they must first form a reversible, non-covalent complex (Figure 2.2A). Disruption
of the reversible complex formation is expected to reduce formation of adduct. A previously determined
crystallographic structure of EGFR kinase reversibly bound to osimertinib demonstrates that osimertinib
binding is accommodated through a well-defined “bent” P-loop conformation (Figure 2.2B) (Yosaatmadja
et al., 2015). This bent P-loop conformation allows the F723 phenyl ring to make an energetically favorable

contact with the indole ring of osimertinib, contributing to its affinity (Yosaatmadja et al., 2015).



Wild Type

L858R/G724S

Figure 2.1: G724S increases P-loop backbone fluctuations. We performed 500 ns GaMD simulations of
EGFR (A) WT, (B) G724S, (C) L858R, (D) L858R/G724S, (E) E746_A750, (F) E746_A750/G724S, (G and

I) E746_S752>V, and (H and J) E746_S752>V/G724S. Per-residue RMSF is scaled between 0 (green) and
3 (red) A (A-H) or 0 and 5 A (I-)).
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Figure 1

Figure 2.2: Stability of osimertinib in reversible complexes with EGFR mutants. EGFR mutants reversibly
bound to osimertinib were simulated with GaMD. A schematic representation of a simplified binding equi-
librium for a covalently-binding inhibitor is depicted such that E = Enzyme target, I = Inhibitor, and EI =
Enzyme-Inhibitor complex (A). Each simulation was performed in triplicate for a total of 12 independent
250 ns GaMD simulations. Representative images of osimertinib reversibly bound to WT (PDB ID 4ZAU;
the solid black line indicates the bent P-loop; the dashed black line indicates the contact between the F723
phenyl and osimertinib indole ring; (B), Ex19Del and Ex19Del/G724S (C), and L858R and L.858R/G724S
(D) are displayed. Trajectory frames were extracted every 10 ps and plotted as osimertinib RMSD from
the equilibrated start structure (x-axis) and distance between the phenyl ring of F723 and the indole ring of
osimertinib (y-axis; E — F). RMSD vs. distance plots include data from 3 independent trajectories for each
mutant — inhibitor pair (E — F). Select relative osimertinib binding free energies are plotted as averages across
3 independent trajectories; error bars indicate standard error of the mean (G).
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Our GaMD simulations illustrate that G724S rigidifies the tip of the P-loop by stabilizing a -bend con-
formation (Figure 2.2C, D; Figure 2.3).
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Figure 2.3: G724S induces an a-turn to 3-bend conformational shift in the P-loop.

As a result, Ex19Del/G724S and L858R/G724S cannot form a stable bent P-loop conformation when
bound to osimertinib. The rigidified P-loop displaces F723 from contact with osimertinib (Figure 2.2C —
F). Interestingly, however, we found evidence of reduced stability of the osimertinib-bound Ex19Del/G724S
complex but not the osimertinib-bound L858R/G724S complex. In our simulations, osimertinib maintains an
RMSD of 1 —2 A from its native binding pose in Ex19Del and L858R. Displacement of F723 from contact
with osimertinib is associated with an increase in osimertinib RMSD to 3 — 4 A in Ex19Del/G724S but not
in L858R/G724S (Figure 2.2E, F). In contrast, afatinib forms a stable reversible complex in all four cases
(Ex19del, Ex19del/G724S, L858R, and L858R/G724S) (Figure 2.4). These models suggest that structural
perturbations from G724S, which disrupt binding of osimertinib, fail to notably effect binding of afatinib.
These data support a potential role for afatinib in treating patients with G724S.

To further investigate these differences, we applied the molecular mechanics-generalized Born surface
area method (MM/GBSA) to compute the binding free energies of osimertinib with Ex19Del, Ex19Del/G724S,
L858R, and L858R/G724S. Our calculations predict a 2.3 kcal/mol reduction in osimertinib binding free en-

ergy (AAGying) with Ex19Del/G724S (Figure 2.2G). Our binding free energy calculations also suggest that
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Figure 2.4: Afatinib forms a stable reversible complex with EGFR independent of G724S status.

osimertinib reversibly binds L858R more tightly than Ex19Del by 1.9 kcal/mol. (Figure 2.2G). The os-
imertinib binding free energies computed for Ex19Del and L858R/G724S are indistinguishable, within error,
suggesting that the reduction in binding affinity accompanying the addition of the G724S mutation in L858R
should not confer osimertinib resistance.

In addition, energy decomposition analysis supports our qualitative observation that F723 contributes
favorably to osimertinib binding in both Ex19Del and L.858R (the interaction energy of F723, AGF723,, de-
fined AGF723;,; = AEmMm + AGgoly, 1s approximately -1.8 and -1.5 kcal/mol, respectively), and that addition
of G724S prevents this interaction (Figure 2.2G). As expected based on crystallographic evidence, our sim-
ulations show that F723 contributes considerably less to the interaction of EGFR with afatinib (Solca et al.,
2012). Consistent with Fassunke et al. (Fassunke et al., 2018), our afatinib relative binding free energies are
less affected by G724S versus osimertinib. Altogether, these data suggest G724S may function as a resistance

mutation to osimertinib in Ex19Del/G724S, but not in L858R/G724S.

2.2.2 In vitro expression of Ex19Del/G724S, but not L.858R/G724S, is associated with osimertinib
resistance

To test our simulation predictions, we first examined the ability of osimertinib to inhibit EGFR autophos-

phorylation of various EGFR single, double, and triple mutants. Of note, to date, G724S has been detected

in both the absence and presence of T790M (Oztan et al., 2017; Peled et al., 2017). Therefore, we mod-

eled all possibilities in our experimental studies. Osimertinib was effective at inhibiting EGFR autophos-

phorylation in 293FT cells expressing Ex19Del and Ex19Del/T790M, but not in 293FT cells expressing

10



Ex19Del/C797S or Ex19Del/T790M/C7978S, as C797S mutation has previously been associated with osimer-
tinib resistance(16,27) (Figure 2A). Likewise, osimertinib was ineffective at blocking autophosphorylation of
EGFR Ex19Del/G724S and Ex19Del/T790M/G724S mutants.

We also tested the efficacy of osimertinib against L858R variant combinations. Analogous to the Ex19Del
data above, phosphorylation of L858R and L858R/T790M were inhibited by osimertinib while C797S con-
taining variants (L858R/C797S and L858R/T790M/C797S) were insensitive to this agent (Figure 2B). In
contrast to the Ex19Del variant data, phosphorylation of L§58R/G724S and L858R/T790M/G724S were po-
tently inhibited by osimertinib (Figure 2B). These data are consistent with our simulations, which suggested
a difference in the drug binding properties between Ex19Del and L858R when combined with G724S muta-
tion. Altogether, these data suggest that G724S functions as a resistance mutation in the context of Ex19Del
but not L858R.

Next, we attempted to define strategies to overcome osimertinib resistance mediated by G724S mutation.
In particular, we focused on the efficacy of earlier generations of wild-type selective EGFR TKIs. Previous
studies have demonstrated that C797S-containing EGFR variants, which are resistant to osimertinib, retain
sensitivity to the first generation EGFR TKIs (erlotinib, gefitinib) (16). We sought similar strategies for
G724S-containing EGFR variants. We quantitatively evaluated several TKIs on Ex19Del-series mutants by
stably transducing Ex19Del EGFR variants into Ba/F3 cells and measuring IL-3-independent growth at multi-
ple inhibitor concentrations (Figure 2.5 C-E). As expected, growth of cells expressing EGFR Ex19del/C797S
and EGFR Ex19del/G724S was insensitive to osimertinib. Cell lines expressing Ex19del/C797S and Ex19del/G724S
were also cross-resistant to another mutant-selective EGFR-TKI, rociletinib (Figure 2.6).

In accord with previous data (Thress et al., 2015), cells expressing Ex19Del/C797S were sensitive to the
effects of the first generation EGFR TKI, erlotinib, with an EC50 paralleling that of the original Ex19Del
single mutant (16.12 nM vs. 13.71 nM, respectively, Figure 2D). However, the Ex19Del/G724S mutant was
insensitive to the effects of erlotinib (EC50 > 1 uM). Our structural data suggested that afatinib may retain
efficacy against the Ex19Del/G724S double mutant (Figure 2.4). In accord with these data, the growth of
cells expressing this double mutant was inhibited with an EC50 of 29.63 nM afatinib (Figure 2E). Likewise,
autophosphorylation of the Ex19Del/G724S in stably transduced NR6 cells was potently inhibited by afatinib,
but not erlotinib or osimertinib (Figure 2F, Figure 2.7), while the autophosphorylation of the L858R/G724S
was potently inhibited by both afatinib and osimertinib (Figure 2G, Figure 2.7).

Importantly, previous in vitro screens failed to identify G724S as a resistance mutation (Yu et al., 2007,
Ercan et al., 2015). Our data suggest that this may be because these screens generated missense mutants be-
ginning with WT, L858R, or L858R/T790M. Our data suggest that G724S functions as a resistance mutation

in the context of Ex19Del but not L858R. Moreover, our results provide additional evidence that afatinib, but
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Figure 2.5: EGFR G724S mediates osimertinib resistance in EGFR Ex19Del but not EGFR L858R mutants.
(A) 293FT cell transduced with different EGFR dell9 variants were treated with 100 nM osimertinib for 4
hours. Cellular lysates were probed with the indicated antibodies. (B) 293FT cell transduced with different
EGFR L858R variants were treated with 100 nM osimertinib for 4 hours. Cellular lysates were probed
with the indicated antibodies. Ba/F3 EGFR Ex19Del, Ex19Del19/C979S, Ex19Del/G724S were treated with
increasing amount of (C) osimertinib, (D) erlotinib or (E) afatinib for 72 hours. CellTiter Blue assays were
performed to assess cell viability. Each point represents three replicates. Data are presented as the mean
percentage of viable cells compared to control £ SD. NR6 cells transduced with (F) different EGFR del19
variants or (G) different EGFR L858R variants were treated with either DMSO, 100 nM erlotinib, 100 nM
afatinib, or 100 nM osimertinib for 4 hours. Relative pPEGFR/tEGFR values are calculated by the density of
pEGFR signal divided by the density of tEGFR signal, then normalized by the DMSO-treated group in each
cell line. Density of western blots was analyzed by ImagelJ. *: p < 0.05 as compared to DMSO-treated group
in each cell line. Data and illustrations for this figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.; Qiao,
H.; Huang, V.; Du, Z., and Lovly, C.M.
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Figure 2.6: Efficacy of Rociletinib against EGFR Ex19Del containing variants. Data and illustrations for this
figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z., and Lovly, C.M.

not osimertinib or erlotinib, can function effectively as an inhibitor of Ex19Del/G724S.

2.2.3 G724S emerges as a resistance mutation in Ex19Del but not L858R-mediated NSCLC

To date, four independent reports (Piotrowska et al., 2018; Oztan et al., 2017; Peled et al., 2017; Fassunke
et al., 2018) have identified G724S as an emergent mutation in patients who have developed acquired re-
sistance to osimertinib, with the frequency of G724S being 13% (higher than the frequency of C797S) in
a recent paper by Fassunke and colleagues (Fassunke et al., 2018). Interestingly, all of these patients har-
bored Ex19Del as the original activating mutation (Piotrowska et al., 2018; Oztan et al., 2017; Peled et al.,
2017; Fassunke et al., 2018). Our computational and experimental data suggest that G724S confers resis-
tance to osimertinib in Ex19Del but not L858R; nevertheless, it is possible that L858R/G724S exists in a
subset of EGFR-mutant NSCLC patients. To investigate the prevalence of EGFR G724S mutation, we ana-
lyzed data from tissue and plasma DNA samples within the Foundation Medicine database. Consistent with
our computational and experimental evidence, G724S co-occurred with an Ex19Del variant in 15/19 cases,
and L858R/G724S was not identified (Figure 2.8A). Given that the likelihood of observing Ex19Del versus

L858R in EGFR-mutant NSCLC is approximately equal (Zhang et al., 2016), it is exceedingly unlikely that
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variants. Data and illustrations for this figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.; Qiao, H.;
Huang, V.; Du, Z., and Lovly, C.M.
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L858R activating mutation would not be found in any of our patient samples without an additional bias.

In four cases (all Ex19Del variants), we were able to obtain tissue genomic profiling data at two unique
time points. In three of these cases (Figure 2.8C-E), G724S allelic frequency is positively correlated with
Ex19Del allelic frequency over time and decline of the T790M allele. Moreover, G724S is not present in the
tumor biopsy from any of these four patients prior to Ex19Del; that is, the mutant allele frequency (MAF) of
(7248 starts at zero in all of these matched cases (Figure 2.8B — E). These data suggest that G724S emerges
in a fraction of Ex19Del patients to promote disease progression.

To highlight one particular case (patient #15, Figure 2.8E), a 54 year old Caucasian gentleman never
smoker was diagnosed with stage IV lung adenocarcinoma after presenting with abdominal pain. Tumor
mutational testing was positive for an EGFR Ex19Del mutation. He was treated with first line erlotinib plus
bevacizumab with partial response. Fifteen months after starting this combination therapy, he experienced
progression of disease with enlargement of bilateral pulmonary nodules and a ground glass opacity in the left
upper lobe. Repeat biopsy confirmed metastatic lung adenocarcinoma and tumor genetic testing at that time
revealed the presence of EGFR Ex19Del and T790M mutations. He was thereafter treated with osimertinib
and had a partial response lasting thirty months (Figure 2.8F). He experienced progression of disease with
new metastases to the skull, liver, and bone. Tumor genetic testing of a repeat biopsy revealed the presence of
EGFR Ex19Del, loss of T790M mutation, and gain of EGFR G724S mutation. He was treated with radiation
therapy to the skull followed by systemic therapy with carboplatin and pemetrexed. Approximately four
months after starting cytotoxic chemotherapy, he developed symptomatic pleural and pericardial effusions,
which ultimately resulted in his demise.

Of note, G724S was also detected with the oncogenic missense mutant S768I in 2/19 cases, Shan and
colleagues previously demonstrated that S768I stabilizes the active conformation by improving hydrophobic
packing between the oC-helix and the 39-strand. G724S also occurred as an individual missense mutation
in 2/19 cases (Figure 2.8A). The latter suggests that G724S could potentially be independently oncogenic.
Indeed, G724S could support oncogenic growth of Ba/F3 cells (Figure 2.9A).

Of note, the G724S single mutant exhibits a TKI sensitivity profile very similar to Ex19Del in that this
mutant can be effectively inhibited by erlotinib, afatinib, and osimertinib (Figure 2.10, Figure 2.9B). In
addition, we identified nine cases of EGFR G724S as an isolated mutation in patients with small-cell lung
carcinoma, bladder urothelial carcinoma, glioblastoma, breast cancer, and colorectal cancer. These data are
consistent with recent evidence implicating G724S as an oncogenic driver in colorectal cancer (Cho et al.,
2014) and suggest that patients with tumors harboring an isolated G724S mutation could be treated with

FDA-approved EGFR TKIs, such as afatinib.
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Figure 2.8: Prevalence of oncogenic EGFR mutations in NSCLC patient samples with G724S. (A) Bar chart
depicting the number of cases of each oncogenic EGFR mutation associated with G724S in NSCLC patient
samples with genomic profiling obtained through Foundation Medicine (total n=19). (B-E) Allelic frequen-
cies for the specific Ex19Del variant, T790M, and G724S are plotted versus time between measurements for
four cases for which tissue genomic profiling results were available at two independent time points. (F-G)
Radiographic images for Patient 15 taken prior to osimertinib therapy (left) and after 8 cycles of osimertinib
(right). The red arrows in the CT scan images show sites of disease that responded to osimertinib. Data and
illustrations for this figure produced by Ross, J. S.; Miller, V. A.; Ali, S.; Bazhenova, L.; and Schrock, A. B.
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figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z., and Lovly, C.M.
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Figure 2.10: The EGFR G724S single mutant can be effectively inhibited by EGFR TKIs. Ba/F3 cells
stably expressing EGFR Ex19Del, G7248S, and Ex19Del/G724S were treated with increasing amounts of (A)
erlotinib, (B) afatinib or (C) osimertinib for 72 hours. CellTiter Blue assays were performed to assess cell
viability. Each point represents four replicates. Data are presented as the mean percentage of viable cells
compared to control +/- SD. (D) Ba/F3 cells transduced with EGFR G724S were treated with either DMSO,
100 nM erlotinib, 100 nM afatinib, or 100 nM osimertinib for 4 hours. Cellular lysates were probed with the
indicated antibodies. Data and illustrations for this figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.;
Qiao, H.; Huang, V.; Du, Z., and Lovly, C.M.
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2.2.4 The catalytically active conformation of EGFR is better stabilized by E746_S752>V(G724S than
by E746_A750delG724S

Unexpectedly, all of the Ex19Del alterations co-occurring with G724S in patient tumor samples were rare
variants. The Ex19Del variant occurring most frequently with G724S in this cohort was E746_S752>V
(10/19), followed by S752_1759del (3/19), E746_S752>1 (1/19), and L747_S752del (1/19). For context,
approximately 67% of Ex19Del cases are attributed to the canonical variant, E746_A750del, while less than
2% are attributed E746_S752>V (Kobayashi and Mitsudomi, 2016). To better understand this enrichment
in Ex19Del rare variants, we performed GaMD simulations for E746_S752>V and E746_S752>V/G724S in
the apo-state and in reversible complex with osimertinib.

We utilized MM/GBSA to compute the relative binding free energies between the two sets of Ex19Del
variants. The results displayed large statistical uncertainty in the calculation of the binding free energies,
that we attribute to increased P-loop fluctuations in E746_S752>V and E746_S752>V/G724S relative to WT
and the other variants (Figure 2.1). The majority of this difference is attributable to increased fluctuations in
E746_S752>V, and just as in the cases of WT and E746_A750del the additional fluctuations associated with
G724S in E746_S752>V occur primarily at the tip of the P-loop (Figure 2.1). Nevertheless, E746_S752>V,
but not E746_S752>V/G7248S, is able to stabilize a favorable contact between F723 and the indole ring
of osimertinib, consistent with results obtained in the previous E746_A750del and E746_A750del/G724S
osimertinib-binding simulations.

EGFR kinase activation is achieved through asymmetric dimerization of an acceptor EGFR kinase aC-
helix with a donor kinase aH-helix. The acceptor kinase is the catalytically active dimer subunit (Zhang et al.,
2006). In a seminal paper on EGFR dynamics, Shan and colleagues demonstrated that common oncogenic
mutations increase activity by stabilizing the @C-helix inward conformation to promote asymmetric dimer-
ization (Shan et al., 2012). We hypothesized that the unexpected enrichment of the E746_S752>V/G724S
double mutant in clinical samples may result from increased stabilization of the o¢C-helix inward confor-
mation in E746_S752>V/G724S relative to E746_S752>V. To test this hypothesis, we performed a detailed
analysis of the conformational free energy landscape profiles of each EGFR variant in the apo-state.

Consistent with Shan and colleagues, results from our GaMD simulations of WT, E746_A750del, and
L858R demonstrate increased stabilization of the aeC-helix inward conformation compared to WT (Shan
et al., 2012). Additionally, our simulations show that E746_S752>V stabilizes the otC-helix inward con-
formation relative to WT. Critically, our computational analyses suggest that E746_S752>V/G724S stabi-
lizes the active oeC-helix inward conformation even more than E746_S752>V (Figure 2.11E). In contrast,

E746_A750del/G724S visits oeC-in conformations less frequently than E746_A750del (Figure 2.11D). These
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results suggest that E746_S752>V/G724S could lead to enhanced dimerization-dependent activation com-
pared to E746_S752>V, while E746_A750del/G724S could lead to reduced dimerization-dependent activa-
tion compared to E746_A750del.
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Figure 2.11: Conformational free energy landscape of EGFR kinase domain mutants. The reaction coordinate
reference for the conformational free energy landscape of EGFR kinase mutants is indicated on a model of
WT in the active (PDB ID 2ITX; bold colors) and inactive (PDB ID 3GTS; faded colors) conformations (A).
Green spheres represent the distance (A) between Hotl of G721 and C of A839. Blue spheres represent the
distance between Cf3 of K745 and C of E762. The potential of mean force (PMF) with respect to the posi-
tions of the oC helix (x-axis) and P-loop (y-axis) are plotted for WT and G724S, L858R and L858R/G724S,
E746_A750 and E746_A750/G724S, and E746_S752>V and E746_S752>V/G724S (B). The left and right
vertical dashed lines on the free energy plots (C-E) indicate center-of-mass distances between K745 and E762
in active (PDB ID 2GS6) and inactive (PDB ID 2GS7) EGFR kinase, respectively. The left vertical dashed
lined therefore represents the canonical EGFR kinase aC-helix inward conformation, while the right vertical
dashed line represents the canonical EGFR kinase aC-helix outward conformation. All depicted simulations
start from the active (aC-helix inward, activation loop outward) conformation. The energetic reweighting
factor was approximated with cumulant expansion to the 2nd order. Free energy landscapes from the 500 ns
GaMD simulations are depicted here.

Collectively, these data support G724S as a resistance mutation in Ex19Del over L858R, and that specific
Ex19Del mutants may preferentially co-occur with G724S, potentially driven by differences in active con-
formation stability in the presence of G724S. In addition, our results suggest that G724S (as a single point
mutation) also stabilizes the a:C-helix inward conformation, consistent with reports that G724S may function
as an oncogenic variant in colorectal cancer (Cho et al., 2014) (Figure 2.11A — D). Our data more broadly
suggest that the underlying activating mutation profile of EGFR influences the development of drug resistance

mutations. This has important implications for clinical management of patients with EGFR-mutant NSCLC.
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2.3 Discussion

Notable advancements have been observed through the development of increasingly selective inhibitors of
mutant oncoproteins (11). The design and clinical implementation of mutant-selective third generation EGFR
TKIs, such as osimertinib, are an excellent example. Unfortunately, despite these advances, the development
of resistance mutations to TKI therapy remains a significant barrier in attaining the best outcomes for pa-
tients with EGFR-mutant NSCLC. In addition to the previously identified C797S resistance mutation, our
results demonstrate osimertinib resistance may emerge in the form of G724S mutations within the P-loop of
the EGFR kinase domain. However, unlike C797S, our results also suggest that G724S-mediated resistance
preferentially occurs in Ex19Del but not L858R. Indeed, extensive atomic-detail simulations at the structural
level, multiple independent in vitro models, and patient genomic profiling all demonstrate G724S to be an
Ex19Del-specific resistance mechanism to osimertinib. Retrospectively, we identified multiple patient cases
now observed in the literature where patients with EGFR Ex19Del-mutant NSCLC displayed tumor progres-
sion post-osimertinib treatment in the presence of G724S (Piotrowska et al., 2018; Oztan et al., 2017; Peled
et al., 2017; Fassunke et al., 2018). Together with the data we have presented here, these case studies suggest
G724S functions as a resistance mutation in an allele-specific manner. To our knowledge, ours is the first
evidence directly demonstrating that the underlying activating mutation (e.g. Ex19Del vs. L858R) influences
the emergence of resistance mutations under selective pressure from a specific TKI.

Enhanced o:C-helix stabilization in L858R results from polar interactions between the substituted arginine
and neighboring negatively charged amino acids. In contrast, enhanced otC-helix stabilization in Ex19Del
mutations likely results from alterations at the 3-aC interface. Structural superimposition of our active state
deletion models onto EGFR WT shows that the position of L747 in WT is occupied by S752 (WT numbering)
in E746_A750del and by the inserted valine in E746_S752>V (Supplementary Figure S8). Our data suggest
that the P-loop conformational changes induced by G724S lead to destabilization of the aC-helix inward
conformation in the presence of polar $3-aC interface substitutions.

Interestingly, Ex19Del/G724S displays phospho-EGFR levels similar to Ex19Del, but reduced phospho-
EGFR compared to Ex19Del/C797S (Figure 2A). Our modeling suggests that stabilization of the otC-helix
can vary between mutants upon introduction of G724S (Figure 2.11). Similarly, C797S may preferentially
stabilize the aC-helix inward conformation of specific Ex19Del variants. C797 is a critical member of the
structurally distinct catalytic spine (C-spine). The C-spine does not contribute to the interface formed by the
glycine rich loop and B3-oC linker region. Nevertheless, previous network analysis by McClendon et al.
(McClendon et al., 2014) suggests that the dynamics of the glycine rich loop and the C-spine may be highly

correlated. We therefore suspect C797S may influence inter-domain correlations.
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Fundamentally, our observations are similar to a concept familiar to clinical oncologists — that sequence
variations in mutant proteins can impact drug binding. Osimertinib was developed to bind T790M with higher
affinity than non-T790M EGFR mutants (Cross et al., 2014). Here, we show that sequence variations corre-
sponding to the original activating mutation should also be taken into account when considering mechanisms
of TKI resistance. Our findings have several important and immediate clinical implications. First, we further
knowledge on a novel osimertinib resistance mutation that was not predicted by in vitro studies (Yu et al.,
2007; Ercan et al., 2015). Recent studies have shown that G724S may be as prevalent as C797S in osimer-
tinib resistant tumors (Fassunke et al., 2018). However, there are critical differences. While C797S containing
EGFR mutants (e.g., Ex19Del/C797S) regain sensitivity to first-generation EGFR TKIs, erlotinib and gefi-
tinib, the same G724S containing EGFR variants are cross-resistant to these inhibitors. In fact, there is an
ongoing phase I clinical trial (NCT03122717) of osimertinib plus gefitinib combination therapy in patients
with treatment naive advanced EGFR-mutant NSCLC. This trial aims to test the hypothesis that circumvent-
ing C797S-mediated osimertinib resistance with gefitinib will prolong response. This concept will clearly
not apply for patients with G724S mediated osimertinib resistance. However, our results support a role for
afatinib therapy in treating Ex19Del patients with disease progression on osimertinib via C797S or G724S in
the absence of T790M (Figure 2.5). Furthermore, in cases where G724S is potentially an independent onco-
genic driver of other cancers, our results suggest possible treatment strategies with existing FDA-approved
inhibitors. This level of evidence is critical to nominate variants of uncertain clinical significance, such as
isolated G724S mutation, for eligibility into clinical trials such as NCI MATCH (NCT02465060).

These clinical consequences are rooted in structural perturbations to EGFR kinase. Detailed mechanistic
understanding of these perturbations can provide critical insight to guide therapeutic intervention. Just prior
to submission of the present manuscript, Fassunke et al. published investigations into the structural basis of
EGFR G724S-mediated osimertinib (Fassunke et al., 2018). The authors coupled structure-based alignment
of EGFR WT to EGFR D770_N771insNPG (exon 20 mutation) with P-loop RMSF calculations derived from
short, single-trajectory cMD simulations. Specifically, Fassunke et al. demonstrated an elevated RMSF
in both WT and E746_A750del when G724S is introduced. From that result, the authors postulated two
potential, opposing mechanisms of G724S-mediated third-generation TKI resistance: (1) steric repulsion of
the inhibitor, or (2) loss of important interactions with the inhibitor. However, RMSF calculations alone
are rarely sufficient to provide detailed mechanistic insights (Farmer et al., 2017). Moreover, osimertinib
resistance occurs in Ex19Del/G724S variants (Figure 2.5) but not G724S single mutants (Figure 2.10). The
broad mechanisms previously posited do not provide adequate detail to address these data.

Here, we performed multiple independent GaMD enhanced sampling simulations in the presence and ab-

sence of osimertinib or afatinib totaling over 23 us. For each EGFR mutant, we computed the relative binding
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free energies of osimertinib and afatinib as well as the conformational free energy landscape profiles of the
apo-state structures. While our RMSF calculations are consistent with Fassunke et al., our results further
suggest that G724S hyper-stabilizes a § -bend conformation of the glycine-rich P-loop. This prevents contact
of the F723 phenyl ring with the osimertinib indole ring. Our calculations suggest that L858R reversibly
binds osimertinib with higher affinity than Ex19Del, and consequently loss of the F723 — osimertinib contact
fails to disrupt binding in L858R. In Ex19Del, the addition of G724S destabilizes the reversible complex
necessary for covalent adduct formation (Figure 2.2).

Moreover, we identified differences in P-loop conformational preferences between Ex19Del/G724S and
L858R/G724S. (Figure 2.10A — D). In addition to our findings in Figure 2.2, it is possible that L§58R/G724S
is less poised to accommodate substrate binding vs. Ex19Del/G724S, resulting in L858R/G724S functioning
as a catalytically inefficient receiver kinase in an asymmetric dimer; however, additional experiments would
be required to test this hypothesis. It is also possible that L§58R/G724S conformations may be less primed to
support dimerization compared with L858R. The atC-helix of L858R/G724S bows outward over the course
of the simulation, suggesting increased local instability. Despite still favoring the active state relative to WT,
it is possible that with longer simulation times the @C-helix of L858R/G724S would more rapidly transition
to a state incapable of supporting asymmetric dimerization than L858R (Figure 2.10C).

Importantly, our simulations also suggest that G724S increases the stability of the EGFR active confor-
mation in the E746_S752 variant of Ex19Del, but reduces stability of the E746_A750del variant. Greater
stability of the active oeC-inward conformation in E746_S752>V/G724S offers a possible explanation for the
enrichment of the rare variant Ex19Del in the Foundation Medicine cohort of NSCLC patients with G724S.
Interestingly, of the four patients with genomic profiling data presented in Fassunke et al., all of them saw an
increase in molecular fraction of G724S post-osimertinib therapy, and all of them had uncommon variants of
Ex19Del (Fassunke et al., 2018).

These findings have implications in other, non-EGFR-mutant cancers as well. For example, ALK (anaplas-
tic lymphoma kinase) rearrangements can be found in approximately 5% of NSCLC cancers (Lin et al.,
2017). Over a dozen fusion partners have been identified across ALK+ cancers (Lin et al., 2017). Even the
most frequently occurring fusion partner in ALK+ NSCLC, echinoderm microtubule-associated protein-like
4 (EMLA4), has > 10 identified unique fusion variants (Shaw and Engelman, 2013). In addition, on-target
acquired resistance to first- and second- generation ALK TKIs occurs in the form of approximately a dozen
unique missense mutations (Gainor et al., 2016). Recent data suggests that a particularly recalcitrant ALK
solvent front mutation, G1202R, is more likely to cause resistance in the context of EML4-ALK E6;A20 (V3)
fusion rather than the more common EML4-ALK E13;A20 (V1) fusion (Lin et al., 2018). A structural basis

for this observation was not presented; however, analogous to our current study, it could be that the unique
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structural and biochemical properties of the original activating mutation foreshadowed the development of a
specific resistance mutation.

In summary, we have employed an interdisciplinary computational and experimental approach which
provides evidence that on-target osimertinib resistance in EGFR-mutant NSCLC occurs in an allele-specific
manner dependent on the underlying activating mutation. Our data support a potential structural mechanism
for Ex19Del/G724S osimertinib resistance, and open the door for further studies on TKI-EGFR interactions.
We hope these mechanistic studies will be exploited to develop novel EGFR TKIs that circumvent multiple
drug resistance mutations. Finally, we hope that insights from our investigations will be applied to develop

increasingly effective targeted therapies for additional genetically-defined cancers.

2.4 Methods

2.4.1 Inhibitor source and preparation

EGFR TKIs were purchased from Selleck Chemicals (Houston, TX, USA). All drugs were prepared and
stored as a stock solution at 10 mM in DMSO (Sigma-Aldrich, St. Louis, MO, USA).

2.4.2 Cell culture

293FT cells were purchased from Invitrogen (Carlsbad, CA, USA). NR-6 cells were a gift from Dr. William
Pao (39). 293FT and NR-6 cells were cultured in DMEM with 4.5 g/L glucose, L-glutamine & sodium
pyruvate (Mediatech, Corning, NY, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS)
(Atlanta Biologicals, Flowery Branch, GA, USA) and penicillin (100 U/mL)/streptomycin (100 pg/mL) (Me-
diatech). Ba/F3 cells were purchased from DSMZ and were cultured in RPMI 1640 with L-glutamine (Medi-
atech) supplemented with 10% heat-inactivated FBS, penicillin (100 U/mL)/streptomycin (100 pg/mL), and
1 ng/mL interleukin-3 (IL-3) (Thermo Fisher Scientific, Waltham, MA, USA) until retroviral transduction
and subsequent IL-3 withdrawal. Cells were grown in a humidified incubator with 5% CO2 at 37°C and were

routinely evaluated for mycoplasma using a Venor GeM Mycoplasma Detection Kit (Sigma-Aldrich).

2.4.3 Immunoblot analysis

Cells were washed with PBS and lysed in radioimmunoprecipitation analysis buffer (50 mM TrisHCI pH 8.0,
150 mM sodium chloride, 5 mM magnesium chloride, 1% Triton X-100. 0.5% sodium deoxycholate, 0.1%
SDS, 40 mM sodium fluoride, 1 mM sodium orthovanadate, and complete Protease Inhibitor Cocktail [Roche
Diagnostics, Indianapolis, IN, USA]). Western Lightning ECL reagent (PerkinElmer, Waltham, MA, USA)
was used for signal detection. §-actin antibody (A2066) was purchased from Sigma-Aldrich. EGFR (#2232),
pEGFR Y1068 (#2234), pEGFR Y1173 (#2244), ERK (#9102), pERK T202/Y204 (#9101), horseradish
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peroxidase (HRP)-conjugated anti-mouse (#7076) and HRP-conjugated anti-rabbit (#7074) antibodies were

purchased from Cell Signaling (Danvers, MA, USA). Each experiment was performed twice.

2.4.4 CellTiter Blue cell viability assay

Ba/F3 cells were seeded in 96-well plates at a density of 20,000 cells/well and treated with varying concen-
trations of indicated compounds, with six technical replicates per concentration. After 72 hours, CellTiter
Blue Reagent (Promega, Madison, WI, USA) was added to wells according to manufacturer’s instructions,
and cells were incubated at 37°C with 5% CO2 for 2 to 4 hours. Absorbance was detected at 590 nm with a
Synergy HTX microplate reader (BioTek Instruments, Winooski, VT, USA). Each experiment was performed

three times.

2.4.5 Statistical analysis
All experiments were performed at least three times and the differences were determined by one-way ANOVA.

Differences were considered significant when p < 0.05.

2.4.6 Molecular Modeling

Structural models of the EGFR kinase exon 19 deletion mutants (Ex19Del) were generated through com-
plementary use of the structure-prediction software package Rosetta utilizing the REF2015 score function
(40-42) and molecular dynamics (MD) simulation with AMBER16 (43). Comparative models of Ex19Del
kinase domain were created with RosettaCM (40,41) by modeling the kinase domain sequence sans 33-aC
residues E746—A750 for the canonical variant model, or a valine substituted for the range E746-S752 for
the rare variant model, and applying PDB IDs 2GS6 and 2GS7 as templates for the active and inactive state
models, respectively (31). Active and inactive state Rosetta models of EGFR were minimized and allowed
to equilibrate in a rectangular box of TIP4APEW explicit solvent neutralized with monovalent chlorine anions
(44,45). Solute was buffered on all sides with 12 A solvent. Afterward, dual-boost Gaussian accelerated
MD (GaMD) simulations were performed to enhance conformational sampling (23,24,46,47). Protein-ligand
binding free energy calculations were performed with MM/GBSA implemented in the AMBER suite in com-
bination with the quasi-harmonic approximation (QHA) of entropy (48). For a detailed description of model
building, molecular dynamics simulations, and binding free energy calculations, please see the Supplemen-

tary Methods section.

2.4.7 Genomic profiling of patient samples
Hybrid capture-based next generation sequencing (NGS) was performed on formalin-fixed paraffin embedded

tissue sections or circulating tumor DNA isolated from blood samples in a Clinical Laboratory Improvement
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Amendments (CLIA)- certified, CAP (College of American Pathologists)-accredited laboratory (Foundation
Medicine, Cambridge, MA) as described previously (49,50). Approval for this study, including a waiver of
informed consent and a HIPAA waiver of authorization, was obtained from the Western Institutional Review

Board (Protocol No. 20152817).
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CHAPTER 3

Allele-specific activation and inhibitor sensitivities of EGFR exon 19 deletion mutations in lung cancer

This chapter is a collaborative work of Benjamin P. Brown*, Yun-Kai Zhang*, Soyeon Kim*, Patrick Finneran,
Yingjun Yan, Zhenfang Du, Jiyoon Kim, Abigail Leigh Hartzler, Michele L. LeNoue-Newton, Adam W.

Smith, Jens Meiler, and Christine M. Lovly (*These authors contributed equally).

3.1 Introduction
Epidermal growth factor receptor (EGFR) mutations are responsible for 15 — 30% of all cases of non-small-
cell lung cancer (NSCLC) (Pao et al., 2004; Lynch et al., 2004). Of these mutations, >90% can be attributed
to either the L858R mutation in the kinase domain (KD) activation loop (A-loop), or deletion/insertion mu-
tations in exon 19 (henceforward categorically referred to as ex19del mutations) corresponding structurally
to the B3-aC loop in the KD (Pao et al., 2004; Lynch et al., 2004). Historically, ex19del mutations have not
been clinically differentiated. In the first clinical trials to establish the superior efficacy of EGFR tyrosine
kinase inhibitors (TKIs) compared to chemotherapy, EGFR KD oncogenic mutations were all considered
interchangeable (Mitsudomi et al., 2010). Today, the current clinical standard of care for EGFR-mediated
NSCLC is osimertinib. The seminal phase 3 clinical trial that demonstrated osimertinib’s increased effi-
cacy compared to standard gefitinib or erlotinib TKI therapy, FLAURA, did separately annotate and compare
L858R and ex19del (Soria et al., 2018; Ramalingam et al., 2020); however, heterogeneity within the ex19del
group was not considered.

This is in stark contrast to the less frequently occurring EGFR exon 20 insertion (ex20ins) mutations.
It has been appreciated in the literature that ex20ins display heterogeneity in enzyme activity, clinical phe-
notype, and sensitivity to existing FDA-approved TKIs (He et al., 2012; Kosaka et al., 2017; Naidoo et al.,
2015; Yasuda et al., 2012, 2013). At the structural level, molecular dynamics (MD) simulations suggest that
ex20ins mutants can lower the free energy barrier associated with adopting the KD active conformation in
an allele-specific manner (Ruan and Kannan, 2018). There are multiple ongoing drug development efforts
aimed at designing TKIs to treat ex20ins-mediated cancers differently (Gonzalvez et al., 2021; Riely et al.,
2021; Jang et al., 2018). Several retrospective studies have now suggested that there are differences in patient
outcomes between ex19del patient populations (Tokudome et al., 2020; Zhao et al., 2020; Xu et al., 2020;
Chung et al., 2012; Su et al., 2017; Stewart et al., 2018). Not surprisingly then, emerging evidence suggests
that the lack of allele-specific resolution of ex19del variants in clinical practice can impede our ability to

provide optimal therapeutic strategies for NSCLC and other cancer patients.
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It is also noteworthy that investigations into ex19del often use the verbiage “exon 19 deletion” to refer to
different allele variants, making it more challenging to functionally characterize them and develop appropriate
therapeutic strategies. For example, the mechanism of activation of ex19del has been reported to be both
ligand-independent (Cho et al., 2013; Greulich et al., 2005; Valley et al., 2015; Okabe et al., 2007) and
ligand-dependent (Sordella et al., 2004; Carey et al., 2006; Mulloy et al., 2007), and it is unclear to what
extent the discrepancy is a result of the use of different experimental methodologies or different ex19del
variants. We have also previously found that the development of osimertinib resistance to the G724S mutant is
dependent on the specific ex19del variant (Brown et al., 2019a), suggesting that ex19del structural differences
can have therapeutic implications. Thus, to maximize the efficacy of targeted therapies we need to refine our
understanding of oncogenic variants at the atomic level.

In this study, we tested the hypothesis that sequence variation between EGFR oncogenic ex19del muta-
tions can lead to allele-specific activation and TKI sensitivity. We probed the AACR GENIE database (31)
and identified 60 unique ex19dels and built structural models of each variant. Next, we selected three of
the most common variants predicted to be structurally distinct for detailed computational, biophysical, and
biochemical evaluation: E746_A750, E746_S752>V, and L747_A750>P. Altogether, our results demonstrate
that ex19dels are a functionally heterogeneous population with potentially unique considerations for optimal

therapeutic targeting.

3.2 Results
3.2.1 ex19del sequence variants cluster by chemical conservation and thus function
We first investigated the sequence heterogeneity of ex19del variants by probing the AACR GENIE database
(Consortium, 2017). We identified 60 variants and mapped these variants to the EGFR kinase domain (KD)
(Figure 3.1). Structurally, exon 19 corresponds to the 33 sheet, 3-aC loop, and N-terminal half of the
aC helix (Figure 3.1A). All residues are numbered with respect to WT in the immature form (e.g., we
reference L858R instead of L834R). We identified mutants ranging in size from a single residue deletion to
a net eight residue deletion. The starting and stopping points for the deletions predominantly occurred at
residues E746, 1747, A750, T751, S752, and P753, such that the length of the B3-aC loop is highly subject
to sequence variation in comparison to the 33 or aC regions (Figure 3.1B). The predominant mutations are
E746_A750 (62.9%), L747_P753>S (7.4%), L747_T751 (5.2%), E746_S752;V (4.0 %), and L747_A750>P
(3.7%) (Figure 3.1C).

The breadth of variants is substantial, ranging from deletions that occur entirely in 3 (K739.1744>N)
to those occurring almost entirely in oC (e.g., P753_1759). To help characterize the mutations, we first built

structural models of all variants utilizing the Rosetta comparative modeling approach coupled with Gaussian
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Figure 3.1: Frequently occurring mutations in the EGFR 3-aC motif. (A) Schematic representation of the
active EGFR-WT asymmetric dimer. Oncogenic and TKI resistance mutations have been reported in exons
18 (wheat), 19 (red), 20 (yellow), and 21 (blue). (B) The majority of deletion mutations begin at residues
E746, L747, or T751. Deletion mutants frequently terminate with or without an insertion at position A750,
T751, S752, or P753. Spheres indicate the residue Ca. (C) Multiple sequence alignment of the 33-aC motif
between EGFR-WT and ex19del variants with >2% frequency. (D) Residues at the B3C interface can be
referenced with respect to their index after the conserved K745 residue in the majority of mutants.

accelerated MD (GaMD) (Miao et al., 2015) (see Methods). Our models suggested several recurring structural
features of ex19del. First, the most common ex19del variants, including E746_A750, L747_P753>S, and
L747_T751 (Figure 3.1C), replace 1747 at the 33-aC interface with a serine and simultaneously remove at
least one full turn from the N-terminus of the oC helix (Figure 3.2A). Second, mutants with net deletions
of size three, such as L747_A750>P and E746_T751>APS, frequently converge on the same f33-oC loop
conformation, characterized by a $3-aC tight turn with proline in the second position (Figure 3.2B). Third,
we observed that several mutants project polar residues into the ATP binding pocket in the vicinity of the
canonical K745 — E754 salt bridge, such as L747_S752>Q and E746_S752>V (cis-trans proline-dependent).

To deeply evaluate potential functional differences between mutants, we selected three mutants that are
prevalent in patients based on our AACR GENIE analysis (Figure 3.1C) and cover the breadth of features
described above: E746_A750, E746_S752>V, and L747_A750>P. For clarity, we periodically reference

residues by their position relative to K745 (Figure 3.1D).
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Figure 3.2: Structural comparison of modeled ex19del B3aC motifs. (A) Superimposition of the B3aC re-
gion of the most common ex19del variants with WT. Rendering of the 3 C loop in (B) WT, (C) L747P, and
(D) L747_A750>P. L747P and L747_A750>P both form a tight turn in the B30C loop. The L747_A750>P
tight turn contains a proline in the second position and fewer residues on the N-terminus of the otC-helix.

3.2.2 ex19del variants adopt unique 33-aC conformations with different energetic barriers to activa-
tion

We began with the hypothesis that ex19dels can display allele-specific differences in their propensity to adopt
the active conformation. Wild-type EGFR (WT) is activated when ligand binds the extracellular domain
(ECD) to promote intermolecular dimerization and multimer/oligomerization (Cohen S Fau Carpenter et al.,
1980; Needham et al., 2016a; Huang et al., 2016). Intracellularly, this results in asymmetric dimerization
between two KD where the “receiver” KD is stabilized in an active conformation by the “donor” KD (Zhang
et al., 2006). Previous investigations have shown that oncogenic variants in the KD often stabilize the aC-
helix by suppressing intrinsic disorder (Shan et al., 2012) leading to enhanced dimerization where the mutant
KD behaves as a “super acceptor” (Red Brewer et al., 2013).

Subsequently, we performed six (E746_A750, E746_S752>V, and L747_A750>P, in active and inactive
state respectively) independent conventional molecular dynamics (cMD) simulations of 4.0 — 6.0 s for each
structure, such that three simulations were initiated from each state (120.0 s total). Consistent with previous
reports (Shan et al., 2013), the aC helix of WT readily departed from the active conformation to adopt
an unstructured intermediate state, and 1/3 active state simulations transitioned completely to the Src-like

inactive conformation (aC helix out, A-loop in, DFG in) (Figure 3.3A).
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Figure 3.3: Conventional MD simulations of several ex19del variants starting from the active state.
Boltzmann-weighted probability distributions of (A) WT, (B) E746_A750, (C) E746_S752>V, and (D)
L747_A750>P conformational changes in conventional MD simulations. All simulations were started from
the active state. Three independent simulations for each system were run for 4.0 us each. The inward/out-
ward motion of the activation loop is depicted on the y-axis (larger numbers indicate more inward), and the
inward/outward motion of the aC-helix is depicted on the x-axis (larger numbers indicate more outward).
Snapshots are from the end of one of the three independent simulations. WT transitioned to the Src-like
inactive state in one of the three simulations. The glycine-rich loop is colored yellow, the f30¢C-loop and
aC-helix are blue, and the activation loop is green.
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In comparison, each of the ex19del variants remained stable in the active state (C helix in, A-loop out,
DFG in, Figure 3.3B — D). The tight turn predicted in the Rosetta/GaMD model of L747_A750>P is highly
stable, preventing inactivation (Figure 3.3D). Unfortunately, no transitions were observed from the inactive
to the active state or vice versa in any of the ex19del cMD simulations. Therefore, we combined steered MD
(SMD) with umbrella sampling (UMD) simulations to map the conformational free energy landscape (FEL)
of the transition.

Following a procedure similar to that previously employed for ex20ins variants (Ruan and Kannan, 2018)
we defined our umbrella sampling collective variables (CV) along two dimensions: (1) Activation state of the
oC helix as defined by the difference in distance between K860 — E762 and K745 — E762, and (2) activation
state of the A-loop as defined by the dihedral angle formed by the Ca atoms of D855 — F856 — G857 — L858
(Figure 3.4A, B).

B Inactive
aC-helix out, A-loop in E746_S752>V

A Active c D E746_A750
aC-helix in, A-loop out . _ =
/ ~ < < 15
~ ~ 13.50
4 © 10
u u
< g s
< < 12.00
T T 0
) 3 -5
d; E E 10.50
. 8 g 10
DN g
= 5 oo 5 -15
T i < ° 9.00
Inactive . 2
0 0 1 2 3
D855Ca - F856Ca - G857Ca - L858Ca (radians) D855Ca - F856Ca - G857Ca - L858Ca (radians) £
7.50 T
S
E F ]
w
=
a

6.00

4.50

3.00
I1,50
0.00

Figure 3.4: Conformational free energy landscapes of ex19del variants from umbrella sampling MD sim-
ulations. Collective variables describe the (A) active and (B) inactive states as the pseudo-dihedral angle
formed by the alpha carbon atoms of residues D855, F856, G857, and L858 (x-axis) as well as the dif-
ference in distance between the capping sidechain atoms of E762 and K745 (d1) and E762 and K860 (d2)
(y-axis). Conformational free energies are shown for (C) WT, (D) E746_A750, (E) E746_S753;V, and (F)
L747_AT750>P. Plots are contoured at 0.5 kcal/mol and colored within the range 0 (blue) and 15 (red) kcal/-
mol. Contours above 15 kcal/mol are colored white.
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Using these 2 CVs, we measured the free energy difference between the active and inactive states of
WT and found it to be approximately 1.0 kcal/mol in favor of the inactive state (Figure 3.4C), in good
agreement with prior estimates (Ruan and Kannan, 2018). In contrast to WT and the previously reported

exon 20 insertion mutations (Ruan and Kannan, 2018), all three ex19del variants favored the active state
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(Figure 3.4D — F). E746_A750 and E746_S752>V favored the active state by approximately 1.0 kcal/mol
and 4.5 kcal/mol, respectively (Figure 3.4D — E). We also performed SMD+UMD simulations on the other
two most commonly occurring ex19dels, L747_P753>S and L747_T751. L747_T751 displays an activation
profile similar to E746_S752>V, while L747_P753>S may be more comparable to several ex20ins variants

(Ruan and Kannan, 2018) (Figure 3.5).
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Figure 3.5: Conformational free energy landscapes of EGFR variants from umbrella sampling MD simula-
tions. Collective variables describe the active and inactive states as the pseudo-dihedral angle formed by the
alpha carbon atoms of residues D855, F856, G857, and L858 (x-axis) as well as the difference in distance
between the capping sidechain atoms of E762 and K745 (d1) and E762 and K860 (d2) (y-axis). Confor-
mational free energies are shown for (A) WT, (B) L858R, (C) L747P, (D) E746_A750, (E) L747_P753>S,
(F) L747_T751, (G) E746_S752>V, and (H) L747_A750>P. Plots are contoured at 0.5 kcal/mol and colored
within the range 0 (blue) and 9.5 (red) kcal/mol. Contours above 9.5 kcal/mol are colored white.

Interestingly, L747_A750>P appears to be trapped in the active state, with prohibitively large free energy
barriers to the inactive state (Figure 3.4F). We considered that this may be a result of the proline substitution at
position 747. We tested this hypothesis by building models for the oncogenic missense variant L747P (Liang

et al., 2019) and performing SMD+UMD simulations. L747P induces an ordered tight turn in the 33-aC
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loop, stabilizing the active state over the inactive state by approximately 1.0 kcal/mol (Figure 3.5C), but not
by as large a margin as L747_A750>P. The substantially larger barrier to inactivation in L747_A750>P may
result from the proline in its B3aC tight turn coupled with the net three residue deletion (Figure 3.2B). Al-
together, our results suggest that ex19del variants adopt unique conformations near the receiver KD interface

that translate into potentially substantial differences in activation propensity.

3.2.3 L747_A750>P, but not E746_A750 or E746_S752>V, dimerizes in a ligand-independent manner
Previous studies have suggested that KD mutants may promote ligand-dependent “inside-out” dimerization
(Tsai and Nussinov, 2019). Based on our simulation results, we hypothesized that the L.747_A750>P vari-
ant forms dimers in the absence of ligand stimulation because it is trapped in a receiver kinase active state.
To test our hypothesis, we measured the homo-interaction stoichiometry of each variant in the presence and
absence of EGF ligand using two-color pulsed interleaved excitation fluorescence cross-correlation spec-
troscopy (PIE-FCCS) (Huang et al., 2016; Du et al., 2021). Live cell PIE-FCCS measurements and analysis
were completed on single cells expressing individual ex19del variants with WT data recorded as a negative
control for each experiment (see Methods).

First, we performed PIE-FCCS experiments in the absence of EGF ligand. Samples were serum starved
for 24 hours to ensure no residual ligand-dependent effects. As expected, WT has a median cross-correlation
(fc) value near zero (fc = 0.01), indicating that it exists predominantly as a monomer. Our results also
suggest that E746_A750 and E746_S752>V are predominantly monomeric in the absence of ligand (fc = 0.05
and 0.06, respectively). In contrast, L747_A750>P displays significantly higher median cross-correlation
(fc =0.13) (Figure 3A.6). Consistent with the cross-correlation values, the diffusion coefficients of eGFP-
tagged WT (0.35 um?/s), E746_A750 (0.35 um?/s), and E746_S752>V (0.33 um?/s) are significantly higher
than L747_A750>P (0.18 um?/s) (Figure 3B.6). The increased median cross correlation and decreased
diffusion coefficient of L747_A750>P relative to WT is indicative of dimer formation in the absence of
ligand stimulation.

Next, we performed PIE-FCCS experiments in the presence of EGF ligand to evaluate whether or not
ex19del variants differ in their response to extracellular stimulation. A recent study demonstrated that KD
mutations can directly change the conformational preferences of the ECD, potentially modulating signaling
responses to ligand (Huang et al., 2020). Here, we observed that WT forms multimers upon stimulation with
EGF, consistent with prior studies (fc = 0.31; D =0.13 /J,m2/s) (Needham et al., 2016a; Huang et al., 2016;
Du et al., 2021; Clayton et al., 2005). EGF stimulation caused E746_A750 (fc = 0.16; D = 0.23 ,um2/s)
E746_S752>V (fc = 0.17; D = 0.18 um?/s), and L747_A750>P (fc = 0.18; D = 0.17 um?/s) to form a

mixture of dimers and multimers (Figure 3A.6, B). The fact that each of the mutants show lower cross-
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Figure 3.6: Ex19del variants display allele-specific differences in dimerization and oncogenic growth. (A)
Cross correlation values of transfected EGFR variants with (+) or without (-) ligand (EGF) stimulation. The
dark and light blue boxes indicate the fc value regions for dimers and multimers, respectively. (B) Diffu-
sion coefficient values of EGFR variants with (+) or without (-) ligand (EGF) stimulation. The light orange
box indicates EGF-stimulated groups. (C) Ba/F3 cells were stably transfected with different EGFR ex19del
variants, WT, or empty vector. Cellular lysates were probed with the indicated antibodies to measure phos-
phorylation. (D) Rate of IL-3-independent growth of Ba/F3 cells stably transfected with different ex19del
variants, WT, or empty vector. Data and illustrations for figure panels A and B produced by Soyeon Kim,
Abigail Leigh Hartzler, and Adam W. Smith. Data and illustrations for figure panels C and D produced by
Yun-Kai Zhang, Yingjun Yan, Zhenfang Du, Jiyoon Kim, and Christine M. Lovly.
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correlation and faster diffusion compared to WT suggests that the ex19del mutations have a significant effect

on the formation of ligand-depended multimeric assemblies.

3.2.4 E746_S752>V and L747_A750>P display enhanced oncogenic activation relative to E746_A750
The strong energetic preference of L747_A750>P to adopt the active conformation (Figure 3.4E) and corre-
sponding propensity to form ligand-independent dimers (Figure 3A.6) led us to hypothesize that L747_A750>P
would display enhanced oncogenic growth compared with other ex19del variants in vitro. To test our hy-
pothesis, we generated expression vectors containing empty vector, WT, E746_A750, E746_S752>V, or
L747_A750>P and introduced these into murine lymphoid Ba/F3 cells (45). After selection of stable ex-
pression in puromycin, the cells were collected, lysed and blotted for EGFR autophosphorylation (pEGFR).
Our results confirmed that all three ex19del variants exhibit strong pEGFR compared to WT. In support of
our hypothesis, we observed that L747_A750>P displays substantially higher levels of pEGFR compared
with either E746_A750 or E746_S752>V (Figure 3C.6).

To further investigate ex19del variant differences in IL-3 independent oncogenic growth in Ba/F3 cells,
we depleted IL-3 from the growth medium to monitor changes in cell counts over time (Figure 3D.6).
As expected, the Ba/F3 cells expressing either vector or WT EGFR died shortly upon withdrawal of ex-
ogenous IL-3, while cells expressing EGFR ex19del variants survived and proliferated. Cells express-
ing either E746_S752>V or L747_A750>P proliferated at a higher rate compared with cells expressing
E746_A750del (Figure 3D.6). Despite not undergoing ligand-independent dimerization as did L747_A750>P
in PIE-FCCS experiments, cells expressing E746_S752>V displayed statistically similar growth rates com-
pared with L747_A750>P. Collectively with our MD simulations, our results suggest that ex19del variants

differentially promote growth and enzymatic activity as a function of their energetic barriers to activation.

3.2.5 E746_S752>V and L747_A750>P are less sensitive to TKI treatment than E746_A750

We considered the possibility that differences may also exist between ex19del variant TKI sensitivities,
which also may explain differences in outcomes between patients with specific ex19dels (17, 21). We previ-
ously found that some ex19del variants, in particular E746_S752>V, are especially likely to develop G724S-
mediated resistance in response to osimertinib, while L858R and other ex19del variants are not (Brown et al.,
2019a; Fassunke et al., 2018). Recently, it was further suggested that L747_A750>P has reduced sensitivity to
erlotinib and osimertinib relative to E746_A750 in functional assays due to steric effects (Truini et al., 2019).
Thus, we sought to evaluate the relative TKI sensitivity of E746_A750 in comparison to E746_S752>V and
L747_A750>P.

We first treated Ba/F3 cells expressing E746_A750, E746_S752>V, or L747_A750>P with either 30 or
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100 nM osimertinib. We observed that autophosphorylation was markedly reduced in both E746_A750 and
L747_AT750>P, but not in E746_S752>V (Figure 3.7A). Subsequently, we performed the same experiment
in well-established lung adenocarcinoma cell lines expressing E746_A750 (PC9), E746_S752>V (SH450),
or L747_A750>P (HCC4006). Again, we observed that E746_S752>V was less sensitive to osimertinib
than E746_A750 or L747_A750>P. To model the clinical exposure of EGFR TKIs in lung adenocarcinoma,
we performed long-term treatments of osimertinib in these cell lines at a clinically relevant dose (100 nM)
(48) with periodic medium/TKI refreshment (Figure 3.7C). The untreated PC9, SH450, and HCC4006 cells
underwent exponential growth and quickly reached confluence within 3 days. The growths of PC9 and
HCC4006 cells were inhibited effectively by osimertinib treatment, and the cells initially stopped growing. In
particular, the proliferation of PC9 cells was successfully inhibited by osimertinib for more than three weeks.
We observed that the HCC4006 cells gradually adapted to the treatment and proliferated to confluence in 20
days. Most notably, however, osimertinib only partially inhibited the proliferation of SH450 cells, and after
an incomplete response continued growing, reaching confluence within a week. Thus, consistent with our
Western blots, we found that E746_S752>V was least responsive to osimertinib, followed by L747_A750>P,
while E746_A750 was completely inhibited (Figure 3.7C).

Based on our in vitro data, we hypothesized that E746_S752>V has a lower osimertinib binding affinity
than E746_A750 and L747_A750>P. To test this hypothesis, we performed MD simulations of each of the
ex19del variants in complex with osimertinib. We performed three independent MD simulations of 2.0 s each
for each EGFR variant (WT, E746_A750, E746_S752>V, E746_S752>V/G724S, or L747_A750>P) bound
to osimertinib starting from either the active or inactive conformation (sans inactive E746_S752>V/G724S;
60.0 s aggregate simulation time). As expected based on the available crystallographic evidence (Yosaatmadja
et al., 2015), osimertinib binding energies were estimated to be better in the active state than the inactive
state in all cases. Both E746_A750 and L747_A750>P were estimated to have a better osimertinib binding
free energy than WT (Figure 3.7E). Contrary to our hypothesis, E746_S752>V was not predicted to bind
osimertinib with a lower affinity than E746_A750 or L747_A750>P. In contrast to previous studies (Truini
etal., 2019), L747_A750>P was not estimated to have reduced osimertinib binding free energy (Figure 3.7E).

To better understand our simulation results, we quantitatively evaluated the inhibitory efficacy of three
generations of EGFR TKIs (erlotinib, afatinib, and osimertinib) by measuring cell viabilities of isogenic
Ba/F3 cells stably transfected with either E746_A750, E746_S752>V, or L747_A750>P in the presence
of each TKI separately. We observed that L747_A750>P and E746_S752>V were both at least 10x less
sensitive to TKI than E746_A750 (Figure SX). We corroborated these results by measuring cell viabili-
ties of lung adenocarcinoma cell lines expressing different ex19del variants. Here, we also observed that

SH450 (E746_S752>V) or HCC4006 (L747_A750>P) were at least 10x less sensitive to erlotinib than PC9
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Figure 3.7: Allele-specific differences in ex19del TKI sensitivity may not be due to differences in TKI bind-
ing affinity. (A) Ba/F3 cells were stably transfected with different EGFR ex19del variants and treated with
increasing concentrations (0, 30, or 100 nM) of osimertinib. Cellular lysates were probed with the indi-
cated antibodies to measure phosphorylation. (B) Lung adenocarcinoma cell lines expressing E746_A750
(PC9), E746_S752>V (SH450), or L747_A750>P (HCC4006) were treated with increasing concentrations
(0, 30, or 100 nM) of osimertinib. Cellular lysates were probed with the indicated antibodies to measure
phosphorylation. Quantifications are represented as the average grayscale ratio of pPEGFR/EGFR/Actin+/-
standard deviation across three independent biological replicates. (C) Time-dependent growth of lung adeno-
carcinoma cell lines expressing E746_A750 (PC9), E746_S752>V (SH450), or L747_A750>P (HCC4006)
treated with either 100 nM osimertinib or buffer. Each condition was performed with 9 replicates (thin lines)
and averaged (bold lines). (D) Structural models of EGFR in complex with osimertinib in either the bent
(F723 facing osimertinib in the ATP binding pocket) or straight (F723 projecting away from the ATP binding
pocket) conformations. (E) Osimertinib binding affinities for each ex19del variant, WT, and the double mu-
tant E746_S752>V/G724S from simulations starting in the active and inactive states. Bent and straight states
were separated by a small 2-state Markov state model based on the G/S724 backbone phi angle. MM-PBSA
was not performed if the stationary distribution for a state was estimated at less than 0.05 or the model failed
to pass a Chapman-Kalmogorov test. Binding energies are computed as the average MM-PBSA energies of
1000 randomly selected frames from the corresponding MSM cluster. For each EGFR variant, six simula-
tions of 2.0 us each were performed such that there were three each from the active and inactive states (except
E746_S752>V/G7248S, for which no inactive state simulations were performed). (F) Cell viability assays per-
formed in lung adenocarcinoma cell lines stably expressing E746_A750 (PC9), E746_S752>V (SH450), or
L747_A750>P (HCC4006) with first (erlotinib), second (afatinib), and third (osimertinib) generation EGFR
TKIs. Data and illustrations for figure panels A, B, C, and F produced by Yun-Kai Zhang, Yingjun Yan,
Zhenfang Du, Jiyoon Kim, and Christine M. Lovly.
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(E746_A750). SH450 were also greater than 10x less sensitive to afatinib and osimertinib as compared to PC9
or HCC4006 (Figure 3.7F). L747_A750>P displays a similar response to afatinib as E746_A750. Our results
suggest that E746_S752>V and L747_A750>P are intrinsically less sensitive to ATP-competitive TKIs in

vitro. E746_A750 displays the most TKI sensitivity among the three ex19dels.

3.2.6 Differences in ATP binding may modulate TKI sensitivity across ex19del variants

Our in vitro data suggest that E746_S752>V and L747_A750>P display intrinsic resistance to standard first-,
second-, and third-generation TKIs. Simultaneously, our MD simulations estimate that E746_S752>V and
L747_A750>P reversibly bind osimertinib at least as well as E746_A750. Thus, we hypothesized that the
reduced sensitivity of E746_S752>V or L747_A750>P to ATP-competitive inhibitors is the result of higher
ATP binding affinities in these receptors than other EGFR oncogenic variants, thereby reducing the relative
binding affinity of TKI to ATP.

To test this hypothesis, we estimated the apparent ATP Km and erlotinib Ki for WT, E746_A750, L747_A750>P,
and an additional uncommon variant L747_E749 using the ADP-Glo assay as described in the Methods. We
chose erlotinib for the TKI binding affinity analysis to enable explicit comparison of the effects of ATP Km
on noncovalent TKI interactions. Our ADP-Glo assay results suggest that there are substantial differences in
ATP kinetics between EGFR variants, consistent previous reports on L858R and G719S (Carey et al., 2006;
Yun et al., 2008a).

E746_A750 and L747_E749 display ATP Km values of 100 uM. In contrast, L.747_A750>P displays
an ATP Km of 6 uM. Interestingly, the rate of phosphate transfer in L747_A750>P is 17x lower than
E746_A750, but the reduced Km results in comparable catalytic efficiencies (Table 3.1). In contrast to ATP
Km, the difference in erlotinib binding is comparatively small between the tested variants (all within a factor
of 2 to one another). This results in the apparent erlotinib potency, taken as the ratio of Ki to ATP Km, to
be 18x lower in L747_A750>P than E746_A750 (Table 3.1). These data are consistent with the reduced
sensitivity of L747_A750>P in vitro and suggest a general mechanism by which ex19del variants may differ

in their responses to TKI.

EGFR Amount Knl:-l(-:M) v‘?::x Vm217Km K:E(TI-VI) Kil(Km*10°) KE%?_:?;:‘
WT 25ng/rxn | 54.05 | 4.63E-02  8.57E-04 6.12 1.13E-04 2.57
E746_A750 25ng/rxn | 10530 | 3.76E-02 = 3.57E-04 463 4.40E-05 1.00
L747_A750>P  25ng/mn 5.98 213E-03  3.55E-04 4.92 8.23E-04 18.72
L747_E749 25ng/xn | 94.88 | 545E-02 = 5.74E-04 7.72 8.14E-05 1.85

Table 3.1: Enzyme kinetic parameters and erlotinib binding affinity for EGFR WT and ex19del vari-
ants. Data produced by SignalChem and analyzed by Patrick Finneran and Benjamin P. Brown.
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Our simulations create structural hypotheses for these differences: First, ex19del variants make distinct
hydrogen bonding interactions at the B3oC interface (Figure 3.8A — D). E746_A750 places S752 at the f3aC
i+2 position (Figure 3.1D) such that the sidechain donates a H-bond to the F723 backbone and is simulta-
neously stabilized as a H-bond acceptor from the K754 backbone (Figure 3.8B). Neither E746_S752>V nor
L747_AT750>P, both of which place a proline at i+2, can make this H-bond (Figure 3.8C, D). Quantitation of
apo-state H-bonding supports this observation, suggesting the glycine-rich loop is more tightly coupled to the
B3aC-loop in E746_A750 (Figure 3.8E). These data, together with previous crystallographic (Brown et al.,
2017) and kinetic (Yosaatmadja et al., 2015) studies of EGFR L858R, suggest generally that tight coupling
of the B3aC-loop to the glycine-rich loop in aC-helix-stabilizing oncogenic mutants leads to reduced ATP

binding affinity.
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Figure 3.8: Conventional MD simulations demonstrate ex19del f3aC hydrogen bond networks. Apo-state
conventional MD simulation snapshots of B3aC hydrogen bond networks in (A) WT, (B) E746_A750, (C)
E746_S752>V, and (D) L747_A750>P. (E) Quantification of hydrogen bond stability of select 3aC hydro-
gen bonds at the interface. Hydrogen bonds are defined by donor/acceptor heavy atom distances of 3.5 and
angles between 135 and 180 degrees. Quantifications are based on three independent trials of 4.0 us apo-state
simulations of each system starting from the active state.
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3.2.7 New therapeutic strategies may be required to maximally inhibit E746_S752>V-mediated dis-
ease
We previously identified the TKI neratinib as a potential therapeutic agent for certain forms of HER2/HER3-
mutant cancers in which pan-TKI resistance seems to be associated with enhanced ATP binding affinity
(Hanker et al., 2021). Employing the same strategy for neratinib as we did for osimertinib, we performed MD
simulations and subsequent MMPBSA binding free energy estimates of ex19dels complexed with neratinib.
Our simulations suggest that all of the tested ex19dels reversibly bind neratinib better than osimertinib, but
that E746_S752>V has a better neratinib binding energy than E746_A750 or L747_A750>P (Figure 3.9A).
Evaluation of neratinib function inhibition in Ba/F3 cells stably transfected with E746_A750, E746_S752>V,
or L747_AT750>P demonstrate a complete ablation of pEGFR in E746_S752>V and L747_A750>P at 30
nM. Phosphorylation is largely reduced in E746_A750 at 30 nM and completely ablated at 150 nM (clinical-
relevant dose, Figure 3.9B, C). We also observed that neratinib effectively reduced pEGFR in lung adenocar-

cinoma cell lines expressing E746_A750, E746_S752>V, or L747_A750>P (Figure 3.9D — F).

3.3 Discussion
Considerable effort has been paid over the last decade to define the molecular mechanisms of oncogenesis and
acquired drug resistance in the most commonly occurring EGFR mutations, specifically L858R and “exon
19 deletion” (Carey et al., 2006; Mulloy et al., 2007; Zhang et al., 2006; Shan et al., 2012; Yun et al., 2008b;
Red Brewer et al., 2013). These efforts resulted in development of more effective targeted therapies, includ-
ing today’s first-line therapy for EGFR-mutant NSCLC, osimertinib (Yver, 2016). Despite next-generation
sequencing has identified the heterogeneity in the various distinct ex19del variants, the allele-specific mech-
anisms have not been extensively evaluated. The potential reduced likelihood of non-canonical ex19del
variants developing T790M or C797S in response to first or third generation TKI, respectively (Zhao et al.,
2020; Zheng et al., 2020), may be because a number of these variants have reduced TKI sensitivity in the
setting of higher ATP binding affinity. Indeed, both our group (Brown et al., 2019a) and others (Fassunke
et al., 2018) found the G724S resistance mutation to occur preferentially to C797S in E746_S752>V and
related non-canonical variants in response to osimertinib. However, at present, there has not been a system-
atic evaluation of patient responses to different TKI based on the specific ex19del variant present in tumor.
Thus, it is imperative that we investigate individual ex19del variants pre-clinically to ultimately help guide
clinicians in therapeutic decision-making.

Here, we have performed detailed computational, biophysical, and biochemical analyses on a diverse sub-
set of some of the most frequently occurring ex19del variants: E746_A750, E746_S752>V, and L747_A750>P.

Our data show clear differences in the activation profiles and TKI sensitivities of these ex19del variants with
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Figure 3.9: Neratinib effectively inhibits E746_S752>V. (A) Neratinib binding affinities for each ex19del
variant and WT from simulations starting in the active and inactive states. Three binding modes of neratinib
distinguished by the dihedral conformations of the hydroxymethyl pyridine were distinguished with a simple
Markov state model. MM-PBSA was not performed if the stationary distribution for a state was estimated
at less than 0.05 or the model failed to pass a Chapman-Kalmogorov test for three or two states. Binding
energies are computed as the average MM-PBSA energies of 1000 randomly selected frames from the cor-
responding MSM cluster. For each EGFR variant, six simulations of 2.0 us each were performed such that
there were three each from the active and inactive states. (B) Ba/F3 cells were stably transfected with different
EGFR ex19del variants and treated with increasing concentrations (0, 30, or 150 nM) of neratinib. Cellular
lysates were probed with the indicated antibodies to measure phosphorylation. (C) Quantification of Ba/F3
neratinib inhibition Western blots are represented as the average grayscale ratio of pEGFR/EGFR/Action
+/- standard deviation across three independent biological replicates. (D) Ba/F3 cell Lung adenocarcinoma
cell lines expressing E746_A750 (PC9), E746_S752>V (SH450), or L747_A750>P (HCC4006) were treated
with increasing concentrations (0, 0.3, 3, 30, or 150 nM) of neratinib. Cellular lysates were probed with
the indicated antibodies to measure phosphorylation. (E) Quantification of lung adenocarcinoma cell line
neratinib inhibition Western blots are represented as the average grayscale ratio of pPEGFR/EGFR/Actin+/-
standard deviation across three independent biological replicates. (F) Cell viability assays performed in lung
adenocarcinoma cell lines stably expressing E746_A750 (PC9), E746_S752>V (SH450), or L747_A750>P
(HCC4006) with neratinib. Data and illustrations for figure panels B - F produced by Yun-Kai Zhang, Yingjun
Yan, Zhenfang Du, Jiyoon Kim, and Christine M. Lovly.
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potential structural correlates. Specifically, our data suggest that the ligand dependency of receptor activa-
tion differs between ex19dels. The L747_A750>P mutant displayed robust otC-helix stabilization from a
proline-locked tight turn in MD simulations that translated to ligand-independent dimerization and increased
in vitro activity in experiments. We also observed that E746_S752>V and L747_A750>P were less sensitive
to inhibition by TKI than E746_A750, with E746_S752>V displaying the least sensitivity. We were unable to
attribute this effect to binding affinity based on MD simulations of osimertinib or ADP-Glo inhibition assays
for erlotinib. Instead, our data suggest a role for variable ATP binding affinity as a potential mediator of
these differences in TKI sensitivity. It has previously been observed that some oncogenic EGFR mutations
can modulate ATP binding and TKI sensitivity (Carey et al., 2006; Mulloy et al., 2007; Yun et al., 2008b;
Yoshikawa et al., 2013).

Collectively, our data demonstrate that ex19dels are a heterogenous group of oncogenic variants. EGFR
WT is a monomer in the absence of ligand and stimulated by extracellular EGF to form dimers and mul-
timers/oligomers (Figure 3.10, yellow). The most frequently occurring ex19del oncogenic mutants, such
as E746_A750, increase the propensity for dimerization by stabilizing the acceptor KD (Figure 3.10, blue).
These “classical super acceptors” (Zhang et al., 2006; Red Brewer et al., 2013) are ligand-dependent and
have lower ATP binding affinity (Carey et al., 2006), increasing their sensitivity to TKIs with lower reversible
binding affinity, such as osimertinib (Schwartz et al., 2014). Our simulations and TKI sensitivity data sug-
gest that a subset of ex19del variants, such as E746_S752>V and L747_A750>P, are “tight ATP binders”
(Figure 3.10, pink). These are characterized by ATP binding affinities higher than that of classical super
acceptors, making them more resistant to ATP-competitive TKIs, reminiscent of T790M-comutant EGFR.
Unlike e.g., L858R/T790M, the apparent inhibitor potency does not differ from the single oncogenic vari-
ant e.g., L858R by several orders of magnitude (Yun et al., 2008b); instead, the difference is 20x. Thus,
we distinguish differences in sensitivity from differences in resistance. Finally, another subset of ex19dels,
such as L747_A750>P, are characterized by enhanced dimerization propensities greater than that of supper
acceptors. These “hyper acceptors” display increased functional activation and exist as ligand-independent
dimers (Figure 3.10, green). The ligand-independent activity of hyper acceptors suggest that some oncogenic
variants may be activated via “inside-out” dimerization.

Based on our proposed model, L747_A750>P is both a hyper acceptor and a tight ATP binder, while
E746_S752>V is a classical super acceptor and potentially a tight ATP binder. E746_A750 is strictly a classi-
cal super acceptor. We hypothesize that ex19del variants exist along a spectrum of dimerization propensities
and ATP affinities. Based on predicted structural similarity to the mutants studied in depth here, we pro-
pose initial classifications of the rarer ex19del variants identified in AACR GENIE along this spectrum. We

anticipate that additional functional characterization of ex19del variants along these axes will allow more
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Figure 3.10: Model of ex19del allele-specific functional differences and strategy for inhibition. Discretized
classification scheme for EGFR ex19del variants: non-oncogenic with ligand-dependent activation (orange;
WT); oncogenic super acceptor with ligand-dependent activation (blue; E746_A750, E746_S752>V); tight
ATP binder (pink; E746_S752>V, L747_A750>P); oncogenic hyper acceptor with ligand-independent acti-
vation (green; L747_A750>P).

personalized treatment of ex19del NSCLC patients.

Generally, our data lead us to suggest that treatment of ex19del variants may require unique considera-
tion of the variant’s functional properties. For example, we speculate that mutations with enhanced ligand-
independent dimerization would be less amenable to EGF-blocking antibody / TKI combination therapies
than classical super acceptor-like variants. We also suggest that for ex19dels with high ATP binding affini-
ties, the use of covalent TKIs with higher reversible binding affinities may be necessary to overcome reduced
TKI sensitivity, such as neratinib or mobocertinib. Alternatively, because increasing the reversible binding
affinity on covalent inhibitors can reduce mutant selectivity and cause undesirable side-effects, recognition
of tight ATP binding ex19dels may motivate the design of mutant-selective PROTAC:S or allosteric inhibitors.

On the basis of predicted structural similarity to these three ex19del variants and existing structures of
EGFR WT and L858R, we hypothesize functional classifications of the remaining variants from AACR GE-
NIE. Aside from the rarity of most of the ex19del variants we identified in AACR GENIE, only 50% of
patients even receive standard-of-care biomarker testing for targetable variants in EGFR and other genes
(Robert et al., 2021). Biochemical characterization and stratification into actionable groups is therefore of
considerable interest for providing the best possible clinical care to patients with these mutations. To facilitate
future comparisons and refinement of our proposed framework, we have made our computational structural
models of these variants publicly available on GitHub.

This study is not a comprehensive guide to EGFR ex19del variants. We hope that subsequent work ex-
pands upon this study to better characterize uncommon ex19dels. While in silico modeling can provide useful
insight to generate hypotheses, it can be limited by factors such as the quality of the predicted structures, the

short simulation timescales currently accessible, the start- and end-state dependency of umbrella sampling
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simulations, and the simplification of the system from transmembrane dimers/multimers to monomeric intra-
cellular KDs. Similarly, in vitro data in the absence of structural characterization and dynamical insight can
make it challenging to generalize findings and perform rational drug design. We anticipate that continued
characterization of ex19del structures through experimental structural biology, detailed kinetics studies, and
receptor signaling/crosstalk studies will be an important next step in ongoing efforts to design new treatment

strategies for patients with EGFR-mutant NSCLC.

3.4 Materials and Methods
3.4.1 Tyrosine kinase inhibitor source and preparation

Inhibitors were purchased from Selleck Chemicals.

3.4.2 Cell culture

Ba/F3 cells (DSMZ), PC9 (ATCC), SH450 (ATCC), and HCC4006 (ATCC) were cultured in RPMI 1640 with
L-glutamine (Mediatech) supplemented with 10% heat-inactivated FBS (Thermo Fisher Scientific), penicillin
(100 U/mL; Thermo Fisher Scientific), streptomycin (100 pg/mL; Thermo Fisher Scientific), and IL3 (1
ng/mL; Thermo Fisher Scientific) until retroviral transduction and subsequent IL3 withdrawal. Cells were
grown in a humidified incubator with 5% CO2 supply at 37°C. Mycoplasma contamination was evaluated

routinely during cell culture using a VenorGeM Mycoplasma Detection Kit (Sigma-Aldrich).

3.4.3 Generation of EGFR-expression constructs and generation of Ba/F3 cell lines

pBabe plasmids with EGFR ex19del mutation encoding cDNAs (EGFR E746_A750, EGFR E746_S752>V,
EGFR L747_A750>P) and EGFR WT were purchased from Addgene. The empty pBABE-puro retroviral
vector or pPBABE-EGFR mutants were transfected, along with the envelope plasmid pCMV-VSV-G (Cell
Biolabs, San Diego, CA, USA), into cells Plat-GP packaging cells (Cell Biolabs). 48 hours after transfection,
viral media was collected, and the debris were removed by centrifugation. For each separate transduction, 1
x 106 Ba/F3 were re-suspended in the viral media and supplemented with 10 pg/mL polybrene (Santa Cruz
Biotechnology, Dallas, TX, USA). Transduced cells were selected using 2 pg/mL puromycin (Invitrogen).
EGFR construct expressions were checked before experiments, and only stable polyclonal populations were

used.

3.4.4 Quantitative assessment of cell proliferation during IL-3 withdrawal
Ba/F3 cells that had been transduced with EGFR-expressing constructs, selected with 2 pg/mL puromycin,
and growing in media containing 1 ng/mL IL-3 were washed twice with warm PBS to remove IL-3. Cells

were re-suspended in media without IL-3 and seeded in 96-well imaging plates at a density of 3,000 cells/well.
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Cells were periodically scanned in IncuCyte® ZOOM every 6 hours using Incucyte® Nuclight Rapid Red
Dye for nuclear labeling. Cell doubling values were calculated using the cell counts at each time point divided

by the cell counts at start time point.

3.4.5 Immunoblot and antibodies

Antibody EGFR (#2232), pEGFR Y1068, pEGFR Y992, pEGFR Y1184, horseradish peroxidase (HRP)-
conjugated anti-rabbit (#7074) were all purchased from Cell Signaling Technology, and the actin antibody
(A2066) was purchased from Sigma-Aldrich. For immunoblotting, cells were harvested before or after ligand
or drug treatment, washed using PBS, and lysed with RIPA buffer [50 mmol/L Tris HCI (pH 8.0), 150 mmol/L
sodium chloride, 5 mmol/L magnesium chloride, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS,
40 mmol/L. sodium fluoride, 1 mmol/L sodium orthovanadate, and complete protease inhibitiors (Roche
Diagnostics)]. For signal detection, Western Lightning ECL reagent (PerkinElmer) was used. Phosphorylated

bands were quantified using ImageJ.

3.4.6 Viability assays

Experiments were conducted in the Vanderbilt High Throughput Screening Facility. Cells were seeded at
approximately 800 cells per well in 384-well plates using Multidrop™ Combi Reagent Dispenser (Thermo
Scientific). Medium containing different drug concentrations were prepared using a column-wise serial 3X
dilution in 384-well plates using a Bravo Liquid Handling System (Agilent) and were added to the cells. Cell

viabilities are obtained using CellTiter-Blue® Cell Viability Assay (Promega).

3.4.7 Statistical analysis
All experiments were performed at least three time and the difference were determined by ordinary one-way

ANOVA using GraphPad Prism 9.2.0. Difference was considered significant when p < 0.05.

3.4.8 Enzymatic analysis

EGFR WT (#E10-112G, lot J3837-8), E746_A750 (#E10-122JG, lot O3886-10), L747_A750>P (#E10-
12MG, lot G1200-3), and L747_E749 (#E10-12LG, lot G1344-5) were purchased from SignalChem. The
Promega ADP-Glo™ kinase assay kit was used to quantify the amount of ADP produced by each EGFR
variant in 1 XBFA buffer and in the presence or absence of erlotinib at varying concentrations. Poly(4:1 Glu,
Tyr) at a concentration of 0.2 uM was used as the peptide substrate. Reactions were performed at room
temperature for 40 minutes each at varying ATP concentrations: 3.125, 6.25, 12.5, 25, 100, 500 uM. Re-
actions were performed on 384-well plates with each ATP concentration performed in duplicate. Following

incubation for 40 minutes, the Promega ADP-Glo™ reagent is utilized to quench the enzymatic reaction and
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remove residual ATP. The kinase detection agent provided with the assay kit is subsequently used to convert
product ADP back into ATP and measure luminescence from the ATP-powered luciferase/luciferin reaction.

ATP Km and erlotinib Ki were fit according a mixed model of inhibition using GraphPad Prism 9.3.1.

3.4.9 Pulsed Interleaved Excitation Fluorescence Cross-Correlation Spectroscopy (PIE-FCCS)

FCCS data were taken on a customized microscope system to introduce pulsed interleaved excitation (PIE)
and time-correlated single photon detection as shown in previous works (Huang et al., 2016). A supercontin-
uum pulsed white laser (9.74 MHz repetition rate, SuperK EXW-12 NKT Photonics, Birkergd, Denmark) was
split into 488 nm and 561 nm using filters and mirrors for the excitation of eGFP and mCherry, respectively.
The 50 ns time delay for PIE was introduced by directing the splitted beams through two different-length op-
tical fibers (Kaliszewski et al., 2018; Comar et al., 2014). The beams were cleaned, overlapped, and directed
to the microscope. A 100X TIRF oil objective (Nikon, Tokyo, Japan) was used for the excitation beam focus
and fluorescence emission collection. NIST traceable fluorescein (50 nM; Thermo Fisher Scientific) was
used for optical path alignment, and a short, fluorescent-tagged DNA was used as both alignment and as fc
value control. Previously published negative and/or positive controls (Kaliszewski et al., 2018; Comar et al.,
2014) were tested before the experiment for data quality control and comparisons of the fit parameters. The
overlapped excitation beams were focused on to the fluorescently tagged EGFR (WT or mutant)-transfected
COS7 cell membrane. The z axis scan was done to ensure that the laser beam was focused on the flat, periph-
eral membrane area. One 60-second data acquisition was taken per area per cell. The emitted fluorescence
was collimated, separated, and filtered before focused onto single-photon avalanche diodes (Micro Photon
Devices, Bolzano, Italy) independently. A time-correlated single photon counting module (Picoharp 300,
PicoQuant, Berlin, Germany) recorded the time-tagged photon counts for each channel. For analysis, the
time-tagged photon counts were divided into six 10-second acquisitions, binned, and gated for channel dif-
ferentiation. Auto- and cross-correlation curves corresponding to each species were calculated and generated
using a custom MATLAB script. Curves of each acquisition per area were filtered, averaged, then fitted to
a single component, 2D diffusion model. The averaged and fitted auto-correlation curves show the average
dwell time (7D) that we use to calculate the effective diffusion coefficient, Deff = w02/47D. The amplitude
of the curves can be used to calculate the local concentration of the diffusing receptors in the detection area.
Using the cross-correlation curve, we can calculate cross-correlation values (fc) that indicate the degree of
oligomerization. Based on the fc calibration using live cell control system, expected fc value for a monomer-
dimer equilibrium is 0.10 to 0.15. Higher fc values indicates higher order oligomerization (Kaliszewski et al.,

2018; Comar et al., 2014).
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3.4.10 Computational modeling

Structural modeling of proteins was carried out using the Rosetta v.3.12 package (Song et al., 2013). Molecu-
lar dynamics simulations were performed with Amber18 utilizing the Amber ff14SB and GAFF2 forcefields
for proteins and ligands, respectively (Case et al., 2018). We estimated protein-ligand binding free energies
using the MMPBSA .py package in AmberTools18 (Miller et al., 2012). RMSD, atom-atom distances, and
dihedrals angles were obtained using CPPTRAJ in AmberTools (Roe and Cheatham, 2013). Markov mod-
eling analysis was performed with PYEMMAZ2 (Scherer et al., 2015). The initial structure of osimertinib
was taken from PDB ID 4ZAU (Yosaatmadja et al., 2015). The initial structure of neratinib was obtained
PDB ID 3W2Q (Sogabe et al., 2012). The structures were geometry optimized using Gaussian 09 revision
D.01 at B3LYP/6-31G(d) level of theory and the electrostatic potential of the optimized structures computed
with HF/6-31G(d) in the gas phase. Atomic partial charges were fit with the restrained electrostatic potential
(RESP) algorithm in AmberTools. ATP parameters were developed previously (Meagher Kristin et al., 2003)
and coordinates initialized from PDB ID 2ITX. For protein-ligand complexes of variants with osimertinib,

neratinib, or ATP, we utilized the above PDB structures for ligand placement.

3.4.11 EGFR ex19del structural modeling

We first built structural models of the 60 ex19del variants identified in AACR GENIE with RosettaCM using
the REF2015 score function (Alford et al., 2017). As templates, we selected the active state EGFR WT
structures from PDB IDs 2ITX and 2GS6. We also used the active state model of L858R from PDB ID 4120.
We also included as templates the MD equilibrated structural models of E746_A750 and E746_S752>V we
made for our prior study (Brown et al., 2019a). We generated 5,000 RosettaCM models for each variant.
The best scoring variant from each was simulated with GaMD for 1.0 us (60.0 us total). GaMD simulation
trajectories were clustered with DBSCAN in CPPTRAJ based on 33aC loop RMSD. Each variant was
subsequently remodeled with RosettaCM to generate 10,000 more models using the DBSCAN cluster centers
as additional templates alongside the prior templates. The best scoring model in round two is the final model.
Active state L747P was modeled as a point mutation using the Rosetta PackRotamersMover and FastRelax
mover starting from EGFR WT in PDB ID 2ITX. We performed a 1.0 us GaMD simulation on the resulting
L747P structure, followed by DBSCAN clustering with CPPTRAJ as above. A representative structure from
each cluster was relaxed in Rosetta with progressively ramped-down constraints to the starting coordinates to
produce 50 models for each cluster. The best scoring model was carried forward for additional simulations.
Inactive state structural models of E746_A750, E746_S752>V, L747_A750>P, L747_T751, L747_P753>S,
and L747P were modeled with RosettaCM using the inactive state symmetric dimer EGFR WT in PDB ID
3GTS8 as a template.
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3.4.12 Conventional MD (cMD) simulations

Each structure was solvated in a rectangular TIP3P box (12 A buffer) neutralized with monovalent Cl- and
Na+ ions (Joung and Cheatham, 2008). Minimization proceeded in three stages: solvent minimization with
constraints on solute atoms, solute minimization with constraints on solvent, and subsequently full system
minimization without constraints. Each of these stages consisted of 1,000 steps of steepest gradient descent
followed by 4,000 steps of conjugate gradient descent. The system was heated in the canonical (NVT)
ensemble to 100 K over 100 ps. The system was then heated in the isothermal-isobaric (NPT) ensemble
at 1 bar from 100 K to physiologic 310 K over 400 ps. Equilibration was performed in NPT ensemble at
310K for an additional 1000 ps. NPT simulations utilized a Monte Carlo barostat. The temperature was
controlled using Langevin dynamics with a collision frequency of 2.0 ps-1. A unique random seed was
used for each simulation. SHAKE was implemented to constrain bonds involving hydrogen atoms. Periodic
boundary conditions were applied and the particle mesh Ewald (PME) algorithm was adopted for long-range
electrostatics with a switching distance of 10 A. Hydrogen mass repartitioning was employed on solute atoms

to allow an integration time step of 4 fs.

3.4.13 Gaussian Accelerated MD (GaMD) simulations

Gaussian accelerated MD (GaMD) is an enhanced sampling method that adds a boost potential to the poten-
tial energy surface to accelerate transitions between low-energy states (Miao et al., 2015). The dual boost
potential scheme was applied to the system in order to enhance conformational sampling. Systems were equi-
librated for 50 ns in cMD. Subsequently, potential statistics for GaMD acceleration were computed from a
10 ns cMD simulation. After addition of the GaMD boost potential, simulations were equilibrated for an ad-
ditional 50 ns before production. All GaMD simulations were performed in NVT ensemble with a Langevin
thermostat and collision frequency of 5.0 ps-1. The upper limit of the boost potential standard deviation was

set to 6.0 kcal/mol.

3.4.14 Umbrella sampling and conformational free energy landscapes

Conformational free energy landscapes (FEL) of EGFR WT and ex91del mutants were obtained with con-
stant velocity steered MD (SMD) coupled with Umbrella sampling (US) simulations. The weighted his-
togram analysis method (WHAM) as implemented by Alan Grossfield (Grossfield) was used to perform final
statistical reweighting of the US simulations. SMD simulations of 100 ns were performed with a harmonic
bias potential and spring constant of 1000 kcal/mol/A2. SMD simulations were performed from the active
to the inactive state and vice versa using Co RMSD to the reference coordinates as the collective variable.

A minimum of 250 windows were selected from each forward and backward simulation with which to seed
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US simulations. Therefore, a total of at least 500 windows per system were used to ensure overlap. A 2D
harmonic restraining potential was applied to two CVs for the US simulations. CV1 (y-axis) was defined
as the difference in the distance between K860(NZ) — E762(OE1, OE2) and K745(NZ) — E762(OE1, OE2).
CV2 (x-axis) was defined as the dihedral angle formed by the Co atoms of the following residues: D855,
F856, G857, and L858. A 2.0 kcal/mol/A2 spring constant was used for CV1, and a 10.0 kcal/mol/rad2
spring constant was used for CV2. At each umbrella center a 5 ns simulation was performed. The first 1
ns was used for equilibration, and the following 4 ns were used for analysis in WHAM. Lowest free energy
pathway (LFEP) analysis completed with the LFEP package freely available from the Moradi Laboratory at

the University of Arkansas.

3.4.15 Markov model analysis of molecular dynamics simulations

We constructed hidden Markov state models (MSM) to distinguish between two backbone conformations of
the glycine-rich loop at residue positions 723 and 724 for osimertinib binding free energy estimates. We also
constructed MSMs to distinguish between up to three dihedral conformations of the hydroxymethyl pyridine
ring of neratinib for binding free energy estimates. Each MSM was constructed with 6.0 us (3 x 2.0 us
for each variant for a given active/inactive state) of MD simulation trajectories where frames were collected
every 100 ps. All MSMs were constructed with a lag time of 100 ps. The discretized feature trajectories
were clustered using KMeans clustering into 500 microstates. All MSMs were validated with Chapman-
Kolmogorov tests. In the case of the neratinib binding mode MSMs, if a receptor-neratinib complex did
not sample three binding modes, the MSM was regenerated as a two-state model. If only a single dihedral
conformer was effectively sampled throughout all three simulations, it was manually assigned a stationary
distribution of 1.0. Otherwise, stationary distributions were estimated from MSMs and used to weight the

estimated non-covalent binding free energy.

3.4.16 Binding free energy calculations

The estimated binding free energies between EGFR and TKI (osimertinib or neratinib) was computed with
the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method using the MMPBSA .py pro-
gram in AmberTools18. From each MSM metastable state, we randomly resampled 1,000 structures to use
for binding free energy calculations. For the MM-PBSA calculations, the internal and external dielectric
constants were set to 4.0 and 80.0, respectively. The nonpolar component of the solvation free energy was
estimated from the solvent accessible surface area with the classical method (INP=1) using default coefficient

and offset values. Atomic radii were taken from the parameter-topology file (RADIOPT=0).
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CHAPTER 4

Structure-function analysis of oncogenic EGFR Kinase Domain Duplication reveals insights into

activation and a potential approach for therapeutic targeting

This chapter is taken from Du, Z.*; Brown, B. P.*; Kim, S.; Ferguson, D.; Pavlick, D. C.; Jayakumaran, G.;
Benayed, R.; Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M.; Ali, S. M.; Schrock, A. B.; Zehir, A.;
Ladanyi, M.; Smith, A. W.; Meiler, J.; Lovly, C. M. Nature Communications 2021, 12 (1), 138236 (*These

authors contributed equally).

4.1 Introduction

Next generation sequencing (NGS) based assays have demonstrated high utility as a diagnostic tool for mul-
tiple cancer types (Wheler et al., 2016; Ross et al., 2015; Qin et al., 2019; Disel et al., 2020). Interpretation
of tumor genomic test results is often complicated by discovery of ‘variants of unknown significance’ (VUS),
because insufficient evidence is available to confirm whether the variant is a driver (deleterious) mutation
(Richards et al., 2015; Li et al., 2017). Previously, we identified a VUS in EGFR that contains a tandem
in-frame duplication of exons 18 - 25 in an index patient with metastatic lung adenocarcinoma. Since exons
18-25 encode the entire tyrosine kinase domain, we termed this variant ‘EGFR Kinase Domain Duplication’
(EGFR-KDD) (Gallant et al., 2015).

The ability to effectively treat patients is rooted in our mechanistic understanding of genomic variants
identified via sequencing. The classic example is BRAF mutations, which are detected in numerous tumors
(Dankner et al., 2018). There are three classes of BRAF mutations, stratified by mechanism and therapeutic
actionability (Dankner et al., 2018; Yao et al., 2015). Generally, class I mutations, most notably V600E,
are treated with a B-RAF inhibitor such as vemurafenib or dabrafenib, while class II and III mutations are
insensitive to vemurafenib/dabrafenib (Yao et al., 2015). Thus, a primary goal in precision medicine is to
identify and mechanistically characterize mutations and translate these findings into clinically actionable
therapeutic strategies.

Regarding EGFR, mutations in the kinase domain involving small deletions in exon 19 or point mutation
in exon 21 (L858R) have been well described (Pao and Chmielecki, 2010). These mutations increase enzy-
matic activity by stabilizing the active conformation of the kinase domain to promote receptor dimerization
(Shan et al., 2012). Numerous studies have now shown that patients with EGFR kinase domain mutations
benefit from treatment with EGFR tyrosine kinase inhibitors (TKIs), whereas patients with tumors contain-

ing wild-type EGFR do not derive benefit (Pao and Chmielecki, 2010). Analogously, mutations in the EGFR
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extracellular domain (ECD) are detected in patients with glioblastoma but are significantly less sensitive to
EGFR TKIs in vitro compared to the EGFR kinase domain mutations found in lung cancer (Vivanco et al.,
2012), reinforcing the concept that not all mutations within a given gene can be therapeutically targeted in
the same manner. In the case of EGFR-KDD, the entire gene contains wild-type sequence with an intragenic
duplication of exons 18-25. The addition of a second kinase domain to the intracellular region of EGFR in-
troduces a potentially significant structural perturbation. The functional and therapeutic implications of this
variant remain uncertain. Moreover, the unique biology of this variant may make it a valuable tool in the
study of ERBB family members and, more generally, suggests a strategy for the study of kinases.

In the present study, we evaluate the prevalence of KDD in ERBB family members (EGFR/EGFR,
ERBB2/HER?2, ERBB3/HER3, and ERBB4/HER4) across multiple types of human cancers in order to refine
our understanding of KDD as an oncogenic driver. In addition, we combine detailed structural modeling,
biochemical assays, and experimental and computational biophysical analyses to understand the mechanism
whereby EGFR-KDD aberrantly activates EGFR. Collectively, these complementary approaches suggest that
EGFR-KDD is activated through formation of ligand-independent intra-molecular dimers and signaling am-
plified through ligand-dependent inter-molecular dimers/multimers. Furthermore, we show that inhibition of
EGFR-KDD activity is maximally achieved by blocking both intra- and inter-molecular dimerization. These

studies have important implications for the treatment of patients whose tumor harbor EGFR-KDD.

4.2 Results
4.2.1 ERBB family KDDs are recurrent in multiple cancer types
To investigate the prevalence of KDD in all ERBB family members, we analyzed clinical NGS data from
237,701 tumor samples within the Foundation Medicine (FMI) database. In total, we identified 799 KDDs
in ERBB family members (0.34%, 799/237,701). Of those 799 KDDs, EGFR accounts for 443 (55.4%),
ERBB2 217 (27.2%), ERBB3 92 (11.5%), and ERBB4 47 (5.9%). Among the cancers present in the FMI
database, ERBB-KDD was found most frequently in glioma (2.4%, 227/9,381 total glioma cases), followed
by upper gastrointestinal cancer (upper GI; 0.8%, 89/11,822) and non-small cell lung cancer (NSCLC; 0.2%,
109/48,699). For EGFR-KDD, glioma has the highest frequency (2.4%, 222/9,381), followed by NSCLC
(1.4%, 70/48,699) and GI (0.3%, 40/11,822). We observed lower incidences of KDD in ERBB2, ERBB3
and ERBB4 than EGFR, with distributions mirroring those of other observed oncogenic mutations in brain
tumors and NSCLC (Brennan et al., 2013; Imielinski et al., 2012; Frattini et al., 2013; Cancer Genome
Atlas Research, 2014; Mishra et al., 2017).

We also analyzed 40,165 tumor samples from the Memorial Sloan Kettering Cancer Center (MSKCC)

IMPACT database (MSK-IMPACT) (Zehir et al., 2017). These data confirm that KDD occurs most frequently
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in EGFR, followed by ERBB2. EGFR-KDD is most prevalent in glioma and NSCLC, while ERBB2-KDD
is most prevalent in breast and gynecological cancers (GYN). These distributions are consistent with the
observed distributions of other EGFR oncogenic mutations in glioblastoma (Imielinski et al., 2012; Cancer
Genome Atlas Research, 2014) and NSCLC (Frattini et al., 2013; Mishra et al., 2017) and other ERBB2 muta-
tions in breast cancer (Nik-Zainal et al., 2016), supporting the notion that specific genes may be genomically
altered through a variety of mechanisms in a given tumor context.

The overall frequency of ERBB-KDDs from the two datasets is between 0.58 - 2.4% in glioma, 0.07 -
0.22% in NSCLC, and 0.05 - 0.40% in breast cancer. Differences in detection between the two datasets are
likely the result of the different methodologies employed for each dataset to identify KDDs (see Methods).
Nevertheless, these data suggest that ERBB-KDD is a recurring oncogenic driver in tumor types known to be

dependent on ERBB signaling (lung, breast, etc.).

4.2.2 EGFR-KDD is a constitutively active intra-molecular dimer

Even within a single driver gene, the type of mutation that occurs can influence prognosis and drug respon-
siveness. It is therefore critical to fully characterize the functional consequences of genomic variants in
clinically relevant genes. To help us probe the biochemistry of the EGFR-KDD intra-molecular dimer, we
leverage core principles of EGFR receptor biology.

ERBB family members are transmembrane tyrosine kinases that possess an extracellular ligand binding
domain, a single-pass transmembrane domain, a juxtamembrane (JM) region, an intracellular tyrosine ki-
nase domain (TKD), and a carboxy (C-) terminal tail with multiple tyrosine phosphorylation sites (Lemmon
and Schlessinger, 2010). Biochemical and crystallographic studies have shown that activation of EGFR-wild
type (WT) involves ligand-induced asymmetric homo- or hetero- dimerization of two TKDs. In the pres-
ence of ligand, the C-lobe of one TKD (activator) contacts the N-lobe of another TKD (receiver) to relieve
autoinhibition and activate the receiver TKD21. Previous studies of EGFR-WT have identified mutations at
the inter-molecular dimer interface that can disrupt dimerization and prevent EGFR-WT enzymatic activity
(Zhang et al., 2006).

EGFR-KDD is composed of two intact kinase domains7 (Figure 4.1A). We hypothesized that the forced
proximity of the two adjoined kinase domains could form a constitutively active intra-molecular asymmetric
dimer in the absence of ligand. To test this hypothesis, we engineered EGFR-KDD constructs with putative
intra-molecular dimer disruption mutants (For EGFR mutations, we utilized protein numbering of the human
immature EGFR sequence that includes the 24-residue signal sequence) (Figure 4.1A — B): V948R (C1; C-
lobe of TKD1) and I706Q (N1; N-lobe of TKD1) in TKD1, and V1299R (C2; C-lobe of TKD2) and 11057Q

(N2; N-lobe of TKD2) in TKD2. We also introduced catalytically inactivating mutations (kinase dead) into
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each TKD individually (D837N in TKD1 and D1188N in TKD2; Dead' and Dead?, respectively) (Figure
4.1B). We reasoned that these mutants would help us to determine: (1) if EGFR-KDD is catalytically active
in the absence of ligand stimulation, (2) the relative orientation of the two intra-molecular kinase domains

(i.e. activator vs. receiver), and (3) which of the kinase domains (or both) is catalytically active.
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Figure 4.1: Mutations disrupting the potential intra-molecular dimer interface abrogate phosphorylation of
EGFR-KDD and anchorage independent growth. a, Ribbon diagram and space-filling model of EGFR-KDD
kinase domains. Mutations constructed in this study were labeled. b, Schematic representation of mutations
we constructed in this study. We generated point mutations disrupting the potential intra- (C1, N2) and inter-
molecular (N1, C2) dimer interface as well as mutations inactivating kinase activity of each kinase domain
(Dead', Dead?). ¢, YAMC cells stably expressing EGFR-KDD and its mutants. Cells were cultured for 48
hours and then harvested and lysed for analysis. Total EGFR and the auto-phosphorylation at three tyrosine
sites were evaluated by western blot. n=3 experiment was repeated independently with similar results. EV,
empty vector; WT, EGFR-WT; KDD, EGFR-KDD. d, Soft agar assays were performed in 6 well plates by
using YAMC cells. 5,000 cells were seeded in each well and colonies were counted after 4 weeks. n=3
biologically independent samples were examined over 3 independent experiments. Data are presented as
mean values + SD. Statistical differences were analyzed by two-sided unpaired Student’s t-test. Data and
illustrations for figure panels C and D produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-
Brewer, M., and Lovly, C. M.
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EGFR-KDD and the mutants described above were stably expressed in NR6 (Pruss and Herschman,

1977) (low endogenous EGFR expression) and YAMC (EGFR-/-) (Dise et al., 2008) cells. We evaluated
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EGF ligand-independent phosphorylation at EGFR C-terminal tyrosine sites. Ligand-induced dimerization
of EGFR-WT results in auto-phosphorylation of its C-terminal tyrosine residues, including Y992 (Walton
et al., 1990), Y1068 (Helin et al., 1991) and Y1173 (Helin et al., 1991) (Y1343, Y1419 and Y1524 for
EGFR-KDD, respectively). For EGFR phosphorylation sites, we utilized protein numbering of mature EGFR
sequence that does not include the 24-residue signal sequence. We observed that EGFR-KDD, but not EGFR-
WT, displays phosphorylation of all three tyrosine residues in the absence of EGF ligands (Figure 4.1C, lane
2, 3), indicating that EGFR-KDD is catalytically active without ligand stimulation. We also found that the
intra-molecular dimer interface mutants, C1 and N2 (Figure 4.1C, lane 6, 7; Figure 4.2A, lane 6, 7), abolish
phosphorylation at all three sites, while N1 and C2 mutants remain phosphorylated in YAMC and NR6
cells (Figure 4.1C, lane 4, 9; Figure 4.2a, lane 4, 9), suggesting that the auto-activation of EGFR-KDD was
disrupted by C1 and N2 mutants, rather than N1 and C2 mutants. These data suggest that the N-lobe-mutated

TKDI1 can activate the C-lobe-mutated TKD2, but not the reverse (Figure 4.1A).
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Figure 4.2: Mutations disrupting the potential intra-molecular dimer interface abrogate the auto-
phosphorylation of EGFR-KDD activation and anchorage independent growth in soft agar. a, NR6 cells
stably expressing EGFR-KDD and its mutants were cultured in serum-free medium for 48 hrs and then cells
were harvested and lysed for Western blot. This result is the representative of five independent experiments.
b, Anchorage-independent soft agar assays were performed in 6 well plates by seeding 5,000 NR6 in each
well. n=3 biologically independent samples were examined over 3 independent experiments. Data are pre-
sented as mean values + SD. Statistical differences were analyzed by two-sided unpaired Student’s t-test. EV,
empty vector; LR, EGFR L858R mutation. Data and illustrations produced by Du, Z., Gallant, J.-N.; Zhang,
Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M.

Our catalytically inactive EGFR-KDD TKD2 mutant (Dead?) failed to autophosphorylate all three tyro-
sine sites. In contrast, the Dead! mutant retained phosphorylation levels comparable to EGFR-KDD in both
YAMC and NR6 cells (Figure 4.1C, lane 5, 8 and Figure 4.2A, lane 5, 8). Therefore, in this intra-molecular
dimer model, TKD2 functions as the enzymatically active receiver to TKD1, while TKD1 functions as acti-

vator to TKD2 (Figure 4.1A).
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We further sought to evaluate EGFR-KDD in a phenotypic assay. In both YAMC and NR6 cells, we ob-
served robust colony growth in cells stably expressing EGFR-KDD (Figure 4.1D, Figure 4.2B). We observed
that there were comparable numbers of colonies in N1 and C2 mutants compared with EGFR-KDD, while
significantly fewer colonies were observed in the intra-molecular dimer-disrupted C1 and N2 mutants (Figure
1D, Figure 4.2B). We also found that Dead!, but not Dead?, could support anchorage-independent growth
of YAMC (Figure 4.1D) and NR6 (Figure 4.2b) cells. Therefore, our phenotypic data provide evidence that
reduced phosphorylation in the C1 and N2 intra-molecular dimer-disrupted mutants diminish anchorage-
independent growth. Taken together, these data are evidence that EGFR-KDD forms a catalytically active

asymmetric intra-molecular dimer in the absence of EGF ligand.

4.2.3 Linker contributions to intra-molecular dimer stability

The juxtamembrane B (JMB) domain is an integral component of HER-family homo- and hetero-dimerization.
The receiving kinase JMB domain forms specific stabilizing enthalpic contacts in the activator kinase C-lobe
(e.g. the hydrophobic residues L688, V689, and L.692, and multiple polar contacts) (Red Brewer et al.,
2009). Not surprisingly, the JMB residues are highly conserved in HER-family receptors (Figure 4.3A). In
EGFR-KDD, the TKD2 JMB is linked directly to the C-terminus of TKD1 (Figure 4.3B). Thus, an important
question remained as to whether constitutive EGF-independent activation of EGFR-KDD is the result of (A)
sequence-specific structural perturbations to the JMB region, or (B) the sterically imposed forced proximity
of TKD1 and TKD2. To address this question, we generated all-atom structural models of EGFR-KDD with
Rosetta and molecular dynamics (MD) simulations (Figure 4.4A — C). For comparison, we also modeled the
EGFR-WT homodimer.

We measured the per-residue root-mean-square-fluctuations (RMSF) of the linker residues in EGFR-
KDD. Our modeling suggests that the linker region corresponding to the JMB is less flexible than the activator
C-terminus region, particularly near the N-terminal portion of the JMB (Figure 4.3C — D). Therefore, we
hypothesized that the EGFR-KDD JMB forms enthalpically stabilizing contacts at the intra-molecular dimer
interface.

To test this hypothesis, we replaced pieces of the linker with unstructured glycine-glycine-serine (GGS)
repeats. We substituted (GGS)3 for the JMB part of the linker (KDD-(GGS)3) and (GGS)6 for the activator
C-terminus part of the linker (KDD-(GGS)6) (Figure 4.3B). Substitution with (GGS)—x exchanges sequence-
specific contacts with a non-interacting, flexible sequence of matching length28. We transiently transfected
the mutants into HEK293 cells and measured EGF-independent receptor phosphorylation via Western blot
analysis. KDD-(GGS)3 displays decreased phosphorylation relative to EGFR-KDD, while KDD-(GGS)6

retained similar levels of phosphorylation as EGFR-KDD (Figure 4.3E, lane 3 — 5). Importantly, KDD-
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Figure 4.3: The EGFR-KDD linker has distinct enthalpic and entropic contributions to intra-molecular dimer
formation. a, Amino acid sequence alignment of EGFR-WT, HER2, HER3, and HER4 JMB domain. b,
Amino acid sequence alignment of EGFR-KDD mutants to evaluate linker contributions. Residues in the
activator C-terminus kinase domain (TKD1) highlighted in blue (white font). Residues in the receiver JMB
domain highlighted in gray (black font). Mutations indicated by red font. c, Per-residue root-mean-square-
fluctuation (RMSF) of the EGFR-KDD linker region following an additional 1 ps of MD simulation (post-
Rosetta modeling and initial 1 us MD simulation). RMSF values are mapped onto the structure to indicate
regional flexibility. Color gradient and cartoon structure width indicate flexibility. Less flexible = smaller
width, colored blue; more flexible = larger with, colored red. d, Graphical representation of per-residue RMSF
displays linker residue on x-axis and RMSF on y-axis; black horizontal line indicates JMB residues, red
dashed horizontal line indicates average RMSF of IMB residues. e, HEK293 cells transiently transfected with
EGFR-KDD or (GGS)n mutants. After 48 hours transfection, cells were collected for western blot analysis.
EV, empty vector. f, Detailed structural models of the EGFR-WT homodimer with the JMB domain, and the
EGFR-KDD intra-molecular dimer, were generated with Rosetta and refined with 1 ps MD simulations. g,
HEK?293 cells transiently transfected with EGFR-KDD and different JMB interface mutants. After 48 hours
transfection, cells were collected for western blot analysis. p-Y/EGFR, the ratio of phosphotyrosine content
at Y1068 to total EGFR expression for each construct relative to EGFR-KDD was shown. EV, empty vector.
Data and illustrations for figure panels E and G produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.;
Red-Brewer, M., and Lovly, C. M.
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Figure 4.4: EGFR-KDD intra-molecular dimer model building and refinement. a, Models of the EGFR-
KDD intra-molecular dimer were generated with Rosetta. Models from rounds 2 and 3 of the model building
process were clustered based on the structure of the linker domain. b, The best scoring model from each of
the top three clusters (C1, green; C2, purple; C3, blue) were selected for refinement in Amber18 (left panel).
Binding scores for each of the linker conformations (left panel) were computed with MM-GBSA neglecting
the entropic contribution to binding (right panel). Frames for inclusion in the MM-GBSA calculation were
selected every 100 ps across the entire 1.0 ps trajectory. MM-GBSA scores are represented as mean + SD. c,
Stability of the linker region over each 1 us MD trajectory was analyzed by computing the RMSD of linker
heavy atoms to the position of the conformation at the beginning of the production run (black trace) and the
average coordinates from the whole production run (blue trace) for C1 (left panel), C2 (middle panel), and
C3 (right panel).
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(GGS)3 retains increased activity compared to EGFR-WT (Figure 4.3E, lane 2, 4). Taken together, these
data suggest that residues in the JMB portion of the linker contribute to the stability of the EGFR-KDD
intra-molecular dimer.

Interestingly, the most stable EGFR-KDD linker model packs two leucine residues (L1038 and L.1039)
against helices aE and al, corresponding structurally to residue V689 in EGFR-WT (Figure 4.3F, Figure
4.4B - C, Figure 4.5A — D). EGFR-WT V689 has previously been shown to be necessary for EGFR-WT
dimer-dependent phosphorylation27. In agreement with these data, our equilibrated EGFR-WT homodimer
preserves the V689 contact (Figure 4.3F, Figure 4.5B). Because L1038 and L1039 were among the most stable
residues in the model and correspond structurally to an EGFR-WT residue known to stabilize dimerization
(V689), we hypothesized that mutation of these residues would impair EGFR-KDD EGF-independent intra-
molecular dimer activity.

To test this hypothesis, we performed site-directed mutagenesis at residues L.1038 and L.1039. In support
of this hypothesis, simultaneous introduction of L1038A/R and L1039A/R (KDD-LLAA and KDD-LLRR)
resulted in a substantial reduction in phosphorylation (Figure 4.3G, lane 6, 9). Critically, however, KDD-
(GGS)3, KDD-LLAA, and KDD-LLRR all retain increased phosphorylation relative to EGFR-WT (Figure
4.3E, lane 2,4; Figure 4.3G, lane 2, 6, 9). Individual point mutations L1038A/R and L1039A/R do not
appreciably reduce phosphorylation; only the combined mutations reduce phosphorylation. Importantly, the
sequential leucine residues in the linker are a unique feature of EGFR-KDD resulting from the domain fusion.
Altogether, this suggests that despite sequence-dependent JMB contributions to stability, the forced proxim-
ity of TKD1 and TKD?2 is sufficient for the formation of EGF-independent active intra-molecular dimers.

Nevertheless, the linker sequence can provide additional enthalpic stabilization to increase activation.

4.2.4 Ligand induces inter-molecular multimer activity

EGFR-WT activation is achieved through ligand-induced inter-molecular dimerization21. Recent evidence
demonstrates that EGFR-WT also forms tetramers and other small oligomers that increase phosphorylation
in an EGF concentration-dependent manner29, 30, 31, 32. We wanted to know if EGFR-KDD activity is
similarly augmented by EGF-ligand stimulation.

To differentiate between EGFR-KDD activity caused by EGF-dependent inter-molecular dimerization and
EGF-independent intra-molecular dimerization, we utilized cetuximab, an anti-EGFR extracellular domain
antibody that blocks EGF-mediated EGFR dimerization33. EGF binding leads to inter-molecular dimeriza-
tion of EGF receptors. Cetuximab prevents EGF binding by blocking the EGF binding site. We stimulated
cells expressing various EGFR-KDD constructs with EGF. We found that phosphorylation of EGFR-KDD

is dramatically increased in the presence of EGF stimulation (Figure 4.6A, lane 5, 6; Figure 4.6B, lane 5,
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Figure 4.5: Comparison of EGFR-KDD computational models with X-ray structure of EGFR-WT juxtamem-
brane latch. a, X-ray structure of the EGFR-WT homodimer with juxtamembrane latch; b, Rosetta model of
EGFR-WT homodimer with juxtamembrane latch post-equilibration for 1.0 ps MD simulation; c, Rosetta
model of EGFR-KDD intra-molecular dimer post-equilibration for 1.0 us MD simulation; d, Rosetta model
of EGFR-KDD intra-molecular dimer post-equilibration for 2.0 us MD simulation; the receiver kinase do-
main N-terminal JMB domain is colored green; residues within 6.0 A of IMB are colored blue.
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7; Figure 4.7A, lane 5, 6). Addition of cetuximab effectively mitigates EGF-induced phosphorylation of
EGFR-KDD (Figure 4.6B, lane 5 - 8, Figure 4.7B, lane 9 - 12). These data suggest that EGF stimulation may
promote EGFR-KDD activity through the formation of at least inter-molecular dimers; however, cetuximab
does not preclude the formation of dimers entirely.

To further test the hypothesis that EGF stimulation promotes the formation of at least inter-molecular
dimers in EGFR-KDD, we administered mAb806 to YAMC EGFR-KDD cells. The mAb806 antibody in-
hibits EGFR dimerization by binding to extracellular domain II (residues 287-302)34, rather than the EGF
ligand binding site in domain III33. Thus, inhibition with mAb806 is highly complementary to similar exper-
iments performed with cetuximab. As expected based on our cetuximab results, we found that mAb806 had
no impact on phosphorylation level in the absence of EGF ligand (Figure 4.7¢c, lane 1, 2, 5, 6) and decreased
the level of phosphorylation with EGF-ligand stimulation (Figure 4.7d, lane 3, 4, 7, 8). We also note that
phosphorylation was reduced more by cetuximab than mAb806 at approximately equimolar concentrations,
consistent with previous reports that the EGFR inhibitory potency of mAb806 is considerably lower than
cetuximab35.

We showed above (Figure 4.1C — D) that intra-molecular dimer-disrupted mutants C1 and N2 are not ac-
tive in the absence of ligand. Unexpectedly, we noticed that EGF-stimulation rescued these mutants, leading
to a robust increase in phosphorylation (Figure 4.6A, lanes 11-14; Figure 4.7A, lanes 11-14). We specu-
lated that this could result from either (A) compensatory stabilization of the intra-molecular receiver kinase
domains or (B) stabilization of the donor kinase domains during inter-molecular dimerization.

To better understand how inter-molecular dimerization increases EGFR-KDD autophosphorylation, we
built template-based structural models of the intracellular portion of the EGFR-KDD inter-molecular dimer
based on two proposed EGFR-WT tetramer models: (1) an extension of the inter-molecular dimer model in
which each kinase domain is successively asymmetrically docked with another (end-to-end model) (Huang
et al., 2016) (Figure 4.6C), and (2) two asymmetric dimers oriented such that the N-lobe and C-lobe of
one dimer are in contact with the N-lobe and C-lobe of the other dimer, respectively (side-by-side model)
(Needham et al., 2016b) (Figure 4.6D). Other models are possible (e.g. the receiver kinase of one intra-
molecular dimer could act as the donor to the receiver kinase of a second intra-molecular dimer). There
are currently no experimental structures (e.g. from X-ray crystallography or cryogenic electron microscopy)
elucidating the organization of EGFR-WT tetramer or EGFR-KDD inter-molecular dimer. Thus, we built
our template-based models of EGFR-KDD intracellular inter-molecular dimer on two published EGFR-WT
tetramer models both of which have experimental and computational support.

Our models each consist of two EGFR-KDDs containing an intra-molecular donor (TKD1 or TKD3) and

receiver (TKD2 or TKD4) kinase. Both structural models suggest a mechanism for active-state stabilization
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of TKD3 during inter-molecular dimerization (Figure 4.6C — D). In the end-to-end model, active-state sta-
bilization of TKD3 (inter-molecular receiver, intra-molecular donor) could occur by canonical asymmetric
dimerization with TKD?2 (inter-molecular donor, intra-molecular receiver) (Huang et al., 2016) (Figure 4.6C).
In the side-by-side model, active-state stabilization of TKD3 could occur through sterically impaired inacti-
vation by TKD1 (inter-molecular donor, intra-molecular donor) (Figure 4.6D), as observed in the 40 us MD
simulation of the EGFR-WT full-length tetramer model in Needham et al. 2016 (Needham et al., 2016b).

We previously observed that Dead? (TKD2 and TKD4 are inactive), but not Dead' (TKD1 and TKD3
are inactive), ablates EGFR-KDD activity in the absence of EGF (Figure 4.1C, lane 3, 5, and 8). Here, we
see that EGF-ligand stimulation robustly revives phosphorylation in Dead? (Figure 4.6A, lane 15, 16; Figure
4.6B, lane 21, 23; Figure 4.7A, lane 15, 16), suggesting active-state stabilization of TKD3 through the for-
mation of at least inter-molecular dimers (Figure 4.6C — D). Less dramatic increases in Dead! from baseline
intra-molecular dimer phosphorylation are consistent with changes due to ligand-induced EGFR recruitment
(Figure 4.6A, lane 9, 10; Figure 4.7A, lane 9, 10). Consistent with these results, pre-administration with
cetuximab prevents EGF-dependent phosphorylation of Dead” and has only a minor impact on Dead' phos-
phorylation. Taken together, these data suggest that in addition to activation of TKD2 and TKD4 by TKD1
and TKD3, respectively, TKD3 becomes catalytically active in the inter-molecular dimer.

To better characterize the effect of EGF on EGFR-KDD and quantify the extent of EGFR-KDD oligomer-
ization in live cells, we performed two-color pulsed interleaved excitation fluorescence cross-correlation
spectroscopy (PIE-FCCS). PIE-FCCS has been previously applied to evaluate EGFR dimerization and multi-
merization (Huang et al., 2016). For these experiments, the protein of interest was expressed as a mixture of
eGFP and mCherry fusions and single, live-cell measurements were recorded and analyzed as described in the
Methods section. In the absence of ligand, both EGFR-WT and EGFR-KDD have median cross-correlation
(fc) values of 0.00, indicating that they are predominantly monomeric (Figure 4.6E, Figure 4.8B). Stimulation
with EGF ligand leads to a significant level of cross-correlation for EGFR-WT (fc = 0.19) and EGFR-KDD
(fc =0.17) (Figure 4.6E, Figure 4.8B), indicating that ligand stimulation induces dimerization and multimer-
ization in both EGFR-WT and EGFR-KDD?36, 38. There is no statistically significant difference between
EGFR-WT and EGFR-KDD, suggesting that the kinase duplication does not sterically restrict dimerization
and multimerization. Taken together, these data demonstrate that EGFR-KDD forms multimers upon ligand

binding.

4.2.5 EGFR-KDD directly interacts with ERBB family members
Our biophysical studies demonstrate that EGFR-KDD forms ligand-induced homodimers/multimers. We

hypothesized that EGFR-KDD could also heterodimerize with EGFR-WT in the presence of ligand. To
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Figure 4.8: EGFR-KDD directly interacts with ErbB family members. a, V5-epitope tagged EGFR-WT and
EGFR-KDD was co-transfected with Myc-epitope tagged EGFR-WT and EGFR-KDD in HEK293 cells. Cell
lysates were immunoprecipitated by using Myc antibody. Immunoblotting were probed by V5 and Myc anti-
body. b, Average diffusion coefficient of EGFR WT homodimers with (+) or without (-) ligand (EGF) stim-
ulation is shown. c, V5-epitope tagged HER2 was co-transfected with Myc-epitope tagged EGFR-WT and
EGFR-KDD in HEK?293 cells. Cell lysates were immunoprecipitated by using Myc antibody. Immunoblot-
ting were probed by V5 and Myc antibody. d, V5-epitope tagged HER3 was co-transfected with Myc-epitope
tagged EGFR-WT and EGFR-KDD in HEK293 cells. Cell lysates were immunoprecipitated by using Myc
antibody. Immunoblotting were probed by V5 and Myc antibody. e, Average diffusion coefficient of EGFR
WT and EGFR KDD mutant with (+) or without (-) ligand (EGF) stimulation is shown. f, Average diffusion
coefficient of HER2 and EGFR-KDD mutant with (+) or without (-) ligand (EGF) stimulation is shown. g,
Average diffusion coefficient of HER3 and EGFR-KDD mutant with (+) or without (-) ligand (EGF or NRG1)
stimulation is shown. Data and illustrations for figure panels A, C, and D produced by Du, Z., Gallant, J.-N.;
Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. Data and illustrations for figure panels B, E, F, and
G produced by Kim, S. and Smith, A.W.
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test this hypothesis, we performed co-immunoprecipitation in HEK293 cells with transiently co-transfected
Myc-epitope tagged EGFR-KDD/EGFR-WT and V5-epitope tagged EGFR-WT/EGFR-KDD. We observed
that V5-epitope tagged EGFR-WT can interact with Myc-epitope tagged EGFR-KDD, and vice versa (Fig-
ure 4.9A, Figure 4.8A). We further evaluated potential interactions between EGFR-WT and EGFR-KDD
with PIE-FCCS. With the fc values, we can distinguish homo- and heterodimerization, which cannot be as-
sessed with diffusion coefficients alone. EGFR-WT-eGFP and EGFR-KDD-mCherry were simultaneously
expressed in COS7 cells. In the absence of EGF ligand, there was no interaction (fc = 0.00). Upon addition
of EGF-ligand, there was a significant increase in cross-correlation (fc = 0.22) indicating the formation of
heteromeric complexes (Figure 4.9B, Figure 4.8E). The positive cross-correlation is rigorous evidence for
heteromeric complex formation, but alone is not sufficient to define the interaction strength or stoichiometry
of the complexes. For simplicity we will refer to these complexes as heterodimers as this is the minimal size
consistent with positive cross-correlation. In agreement with changes to the fc values, the diffusion coeffi-
cients of both EGFR-WT and EGFR-KDD decreased after ligand addition, indicating slower diffusion due to
homo- and hetero-dimerization/multimerization (Figure 4.8B and E).

Heterodimerization is especially important for the activation of HER2 and HER3. HER?2 has lost the
capacity to bind ligands and activates primarily as a receiver kinase domain through heterodimerization with
other ERBB family members39, 40. In contrast, the TKD of HER3 has low kinase activity, and HER3 acts
as an activator in heterodimers41. We hypothesized that EGFR-KDD can also interact with wild-type HER2
and HER3. To test this hypothesis, we performed co-immunoprecipitation. We transiently co-transfected
Myc-epitope tagged EGFR-KDD with V5-epitope tagged HER2-WT and HER3-WT in HEK293 cells. Inde-
pendent pulldowns with V5 and Myc antibodies demonstrate that EGFR-KDD could interact with HER2 and
HER3 (Figure 4.9C, Figure 4.8C — D). Moreover, we observed quantitatively with PIE-FCCS that EGFR-WT
and EGFR-KDD heterodimerize with HER?2 to a larger extent in the presence of EGF-ligand (fc = 0.10 and
fc=0.16, respectively) than in its absence (fc = 0.00 and fc = 0.06, respectively) (Figure 4.9D, Figure 4.8F).
Interestingly, our biophysical data suggest that like EGFR-WT, EGFR-KDD also heterodimerizes with HER3
to a greater extent in the presence of NRGI1 than in the presence of EGF (Figure 4.9E, Figure 4.8G). These

data demonstrate that EGFR-KDD forms direct interactions with EGFR-WT, HER2 and HER3.

4.2.6 Intra- and inter-molecular dimer activity dual inhibition

The dual nature of EGFR-KDD as an EGF-independent active intra-molecular dimer and as an EGF-dependent
active inter-molecular dimer/multimer poses a unique therapeutic challenge. Our computational models and
experimental data suggest that the ideal therapy would simultaneously reduce intra- and inter-molecular

dimer-mediated activity. One potential treatment strategy is therefore the combination of cetuximab with
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Figure 4.9: EGFR-KDD directly interacts with ERBB family members. a, V5-epitope tagged EGFR-WT
and EGFR-KDD was co-transfected with Myc-epitope tagged EGFR-WT and EGFR-KDD in HEK?293 cells.
After 48 hours transfection, cells were lysed by hypotonic buffer and the cell lysates were immunoprecipitated
by using V5 antibody. Immunoblotting were probed by V5 and Myc antibody. b, Cross correlation values
of co-transfected EGFR-WT (mCherry-fused) and EGFR-KDD mutant (eGFP-fused) with (+) or without
(-) ligand (EGF) stimulation is shown. The light orange box indicates the fc value region for dimers. c,
Myc-epitope tagged EGFR-KDD was co-transfected with V5-epitope tagged EGFR-WT, HER2 and HER3
in HEK?293 cells. Cell lysates were immunoprecipitated by using V5 antibody. Immunoblotting were probed
by V5 and Myc antibody. d, Cross correlation values of co-transfected HER2 (mCherry-fused) and EGFR-
KDD mutant (eGFP-fused) with (+) or without (-) ligand (EGF) stimulation is shown. e, Cross correlation
values of co-transfected HER3 (mCherry-fused) and EGFR-KDD mutant (eGFP-fused) with (+) or without
(-) ligand (EGF) stimulation is shown. For Figure 4.9B, D and E, the median values are reported next to
the boxplot. Each grey dot represents the averaged acquisition (10 sec, 6 acquisitions) per area per cell. All
data points are shown. Numbers in parenthesis above the boxplot are the total number of cells where data
were taken on. Both One-Way ANOVA test and Uncorrected Fisher’s LSD test were down to obtain adjusted
and individual p values. Source data and statistical analysis are provided in the Source Data file. Data and
illustrations for figure panels A and C produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer,
M., and Lovly, C. M. Data and illustrations for figure panels B, D, and E produced by Kim, S. and Smith,
AW.
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a TKI (here afatinib). Prior pre-clinical literature has suggested that such a combination may be effective in
L858R but not Ex19Del42.

The combination of cetuximab with various EGFR TKIs, including gefitinib43 and afatinib44, 45, has
been tested in lung cancer patients. In a phase I trial, no responses were observed with the combination of
cetuximab plus gefitinib43, and therefore has not been subsequently used in patients. The combination of
cetuximab plus afatinib has advanced in the clinic, including a phase I trial (NCT01090011) that included
an expansion cohort44, 45. Results from this trial of cetuximab plus afatinib demonstrated that the combi-
nation therapy was effective in achieving tumor reduction (as assessed by CT scans using RECIST criteria)
in patients with both Ex19Del and L858R EGFR-mutant lung cancer, in contrast to prior pre-clinical data42.
Importantly, the combination of cetuximab plus TKI is not FDA-approved because there was no benefit (in
terms of PFS, intracranial response, and OS) compared to TKI alone, and thus not standardly used in the
treatment of patients with Ex19Del or L§58R mutations. The current standard of care for these patients is the
mutant-selective EGFR TKI, osimertinib, based on a seminal phase 3 clinical trial46, 47.

In contrast, no pre-clinical study or clinical trial has evaluated antibody/TKI combination vs. either
alone in EGFR-KDD patients. Indeed, the index patient for EGFR-KDD described in Gallant et al. 2015
unfortunately only had a partial response to afatinib7. The anti-tumor response was short-lived (7 cycles of
afatinib, or approximately 7 months) before the patient developed acquired resistance to afatinib driven by
amplification of the EGFR-KDD allele7. Collectively, these observations suggested that more potent EGFR
blockade is necessary to overcome the oncogenic activity of EGFR-KDD. Here, we test the hypothesis that
combined TKI and cetuximab treatment will reduce EGFR-KDD-mediated phosphorylation in vitro more
than either treatment alone.

We treated YAMC cells stably expressing EGFR Ex19Del (E746_A750del), L858R, and EGFR-KDD
with afatinib and cetuximab both in the absence and presence of EGF ligand (Figure 4.10A, Figure 4.11a).
Importantly, we observed that in both the absence and presence of EGF, afatinib resulted in a near complete
ablation of p-EGFR in Ex19Del (Figure 4.10a, lanes 1, 2, 5, 6) and L858R (Figure 4.10A, lanes 9, 10, 13,
14), but substantial residual phosphorylation existed in EGFR-KDD (Figure 4.10A, lanes 17, 18, 21, 22). As
expected, cetuximab alone reduced phosphorylation in Ex19Del, L858R and EGFR-KDD in the presence of
EGF ligand (Figure 4.10A, lane 7, 15, 23). Notably, the greatest reduction of phosphorylation for EGFR-
KDD occurred with the combination of cetuximab + afatinib in the presence of EGF (Figure 4.10A, lanes 21,
22,23, 24). These data suggest that phosphorylation of EGFR Ex19Del and L858R is abolished by afatinib
(TKI) or cetuximab alone, and addition of cetuximab to afatinib does not add substantially more inhibition to
the decrease in auto-phosphorylation. Unlike EGFR Ex19Del and L858R, phosphorylation of EGFR-KDD

is inhibited by both afatinib and cetuximab as single agent, but the combination treatment yielded more
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inhibitory effects.

We also performed viability assays with BaF3 cells stably expressing EGFR-KDD, Ex19Del (E746_A750del)
or L858R. First, we evaluated Ba/F3 cell growth in serum starved (0.5% fetal bovine serine; FBS) conditions
to minimize EGF activation (Figure 4.11b). At 0.5% FBS, cetuximab maximally exhibited 40% inhibition
of EGFR-KDD, 80% inhibition of Ex19Del, and almost 100% inhibition of L858R cell viability (Figure
4.10B). These data are consistent with a model in which EGFR-KDD retains an active intra-molecular dimer
in the absence of EGF stimulation (Figure 4.1) and previously published models of Ex19Del and L858R in
which intrinsic aC-helix stabilization transforms them into dimer-dependent “super acceptor” kinases. In-
deed, progressively higher concentrations of FBS and the addition of exogenous EGF resulted in stable or
increased viability of all mutants in the presence of cetuximab, though EGFR-KDD proved to be the least
inhibited (Figure 4.10C, Figure 4.11C — E).

In 0.5% FBS conditions with minimal EGF-ligand present, the potency of afatinib on EGFR-KDD is
approximately equivalent in the absence (0 g/ml) and presence (10 g/mL) of cetuximab (EC50 = 0.103 +£0.035
nM and 0.095 + 0.040 nM, respectively). Similar results are observed in Ex19Del (EC50 = 0.061 + 0.027
nM and 0.060 + 0.017 nM, respectively). The near complete ablation of Ba/F3 L858R viability at higher
concentrations of cetuximab mask any potential similar effects. Generally, we observe that Ex19Del and
L858R are more sensitive to afatinib than is EGFR-KDD (Figure 4.10B), consistent with our phosphorylation
assays (Figure 4.10A and Figure 4.11A).

As the concentration of EGF-ligand in the medium is increased, we observe not only an increase in via-
bility with cetuximab and increased EC50 of afatinib, but also a greater potentiation of afatinib by cetuximab
(Figure 4.10B — C and Figure 4.11c —e). In 10% FBS + 50 ng/ml exogenous EGF, we observe a 5.8x increase
in afatinib potency transitioning from 0 g/ml to 10 g/ml in Ba/F3 EGFR-KDD cells. We also observe poten-
tiation of afatinib in Ex19Del (4.7x) and L858R (3.7x) (Figure 4.11E). Compared to Ex19Del and L858R,
the larger potentiation of afatinib inhibition of Ba/F3 EGFR-KDD by cetuximab seems to be mediated by the
lower inhibition of EGFR-KDD by afatinib. Together, our data suggests that a lower dose of afatinib can be

administered to maximally inhibit EGFR-KDD when supplemented with cetuximab.

4.3 Discussion

In this study, we combined methods in clinical genomics, computational structural biology, biochemistry, and
biophysics to mechanistically characterize a former VUS, EGFR exon 18-25 Kinase Domain Duplication
(EGFR-KDD). To investigate the prevalence of KDD in all ERBB family members across various cancers,
we analyzed comprehensive genomic profiling data from two large databases. We discovered that ERBB-

KDDs are recurrent at a frequency between 0.58 - 2.4% in glioma, 0.07 - 0.22% in NSCLC, and 0.05 - 0.40%
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Figure 4.10: Inhibition of EGFR-KDD is maximally achieved by blocking both intra- and inter-molecular
dimerization a, YAMC cells were starved for 12 hours and treated with afatinib (10 nM in serum-free medium)
and cetuximab (10 pug/ml in serum-free medium) for 3 hours 45 minutes, and then were treated with EGF (50
ng/mL in serum-free medium) for 15 minutes. The cells were harvested and analyzed by Western blot. b, Cell
Viability Assay was performed in mIL3-independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del
and L858R supplemented with 0.5% FBS. 5,000 cells were seeded in 96-well plate with the treatment of
afatinib and cetuximab. Three days after incubation, CellTiter-Blue Reagent was added, and the fluorescence
was detected at S60EX/590EM with a Synergy HTX microplate reader (BioTek Instruments, Winooski, VT,
USA). c, Cell Viability Assay was performed in mIL3-independent Ba/F3 cells stably expressing EGFR-
KDD, Ex19Del and L858R supplemented with 10% FBS. For b and c, n=3 biologically independent samples
were examined over 3 independent experiments. Data are presented as mean values +/- SD. Results in a, b
and c are the representative of three independent experiments. Data and illustrations produced by Du, Z.,
Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M.
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Figure 4.11: Inhibition of EGFR-KDD is maximally achieved by blocking both intra- and inter-molecular
dimerization. a, Quantification of YAMC antibody/TKI treatment Western blots in Figure 4.10A.
pPEGFR/EGFR was presented as mean values of three independent experiments + SD. b, BaF3 cell growth
at different concentration of fetal bovine serum (FBS). 5,000 cells were seeded in 96-well plate with the
treatment of afatinib and cetuximab. Three days after incubation, CellTiter-Blue Reagent was added, and the
fluorescence was detected at S60EX/S90EM with a Synergy HTX microplate reader (BioTek Instruments,
Winooski, VT, USA). c, Cell Viability Assay was performed in mIL3-independent Ba/F3 cells stably ex-
pressing EGFR-KDD, Ex19Del and L858R in RPMI1640 supplemented with 10% FBS. d, Cell Viability
Assay was performed in mIL3-independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del and L858R
in RPMI1640 supplemented with 10% FBS and 5ng/mL EGF. e, Cell Viability Assay was performed in
mlIL3-independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del and L858R in RPMI1640 supple-
mented with 10% FBS and 50ng/mL EGF. Data and illustrations produced by Du, Z., Gallant, J.-N.; Zhang,
Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M.
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in breast cancer. We identified fractions of KDDs in multiple other tumor types as well. No previous studies
have reported KDD in ERBB2, ERBB3 and ERBB4. These data indicate that ERBB-KDDs account for
a small but significant fraction of ERBB family-mediated cancers, and suggest utility of approved targeted
therapies for patients based on standard of care clinical genomic testing. Importantly, developing targeted
therapies for uncommon variants has precedent. ROS1 variants account for 1% of lung cancers49 and have
been detected with lower prevalence in multiple other cancers5S0 and NTRK fusions have been implicated
in 0.31% of adult tumors and in 0.34% of pediatric tumors51. There are TKIs targeting both ROS1 and
NTRKS2, 53 that are FDA approved and additional agents in clinical development. Further, in the case of
KDD, both TKIs and antibody therapies already exist for ERBB receptors, thus new trials and therapeutic
strategies for this population does not depend on new therapy development.

We sought to elucidate the mechanisms of EGFR-KDD-driven oncogenicity. We demonstrate that EGFR-
KDD forms a catalytically active asymmetric intra-molecular dimer in the absence of EGF-ligand stimulation.
Mutations disrupting the intra-molecular dimerization interface abolish the phosphorylation of EGFR-KDD
in its monomeric form, and the loss of phosphorylation in these mutants can be recovered by the forma-
tion of inter-molecular dimerization and multimerization. These data demonstrate that ligand-independent
constitutive activation EGFR-KDD is driven by asymmetric intra-molecular dimerization.

We next characterized differences in the functionality of the JMB region of EGFR-KDD relative to EGFR-
WT. The JMB is a conserved stretch of amino acids critical for inter-molecular dimerization in wild-type
HER-family receptor kinases. In EGFR-KDD, the JMB region of TKD2 is covalently linked to the C-
terminus of TKD1. All-atom computational modeling investigations coupled with in vitro mutagenesis sug-
gests the EGFR-KDD linker region is capable of forming specific stabilizing JMB domain contacts within the
intra-molecular dimer; however, the forced proximity of the two kinase domains by the linker is sufficient for
elevated EGFR-KDD activity relative to EGFR-WT. In comparison, EGFR-WT depends on stable contacts
in the JMB domain for dimer activity (Jura et al., 2009; Red Brewer et al., 2009). We focused our analysis
on EGFR-KDD with duplication of exons 18-25, but other groups have recently identified EGFR-KDD with
longer duplications (e.g. exons 14-26 and exon 17-25) (Wang et al., 2019b) that may reduce the likelihood of
forming stabilizing contacts at the linker JMB interface of the intra-molecular dimer. We speculate that there
may be selective pressure for specific linker lengths/sequences in the formation of KDDs. Recent investiga-
tions have suggested similar structural constraints in the context of EGFR exon 19 deletion mutations (Foster
et al., 2016).

EGFR-KDD further forms EGF-dependent inter-molecular dimers. Inter-molecular dimerization of EGFR-
KDD increases activity in part by stabilizing the active conformation of the EGFR-KDD donor kinase do-

main. This has broad implications for HER-family signaling as well. We speculate that the formation of
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dual activator/receiver kinases in higher order oligomers of HER-family receptors may contribute to ligand-
dependent increases in phosphorylation29, 31. In the present study, we did not identify the configuration
of the EGFR-KDD inter-molecular dimer/multimer. Mutations at N1 and C2 only partially disrupted EGF-
dependent phosphorylation (Figure 4.6A, lane 7, 8, 17, 18; Figure 4.7A, lane 7, 8, 17, 18). Moreover, in
the side-by-side structural model, the N-termini of TKD1 and TKD3 are oriented in close proximity (Fig-
ure 4.6C, yellow), while in the end-to-end model they are separated (Figure 4.6B, yellow). Consequently,
we considered the end-to-end model less likely to form interactions between the N-terminal juxtamembrane
A (JMA) and TM domains of the two interacting proteins, a key feature of inter-molecular dimerization in
EGFR-WT (Jura et al., 2009; Red Brewer et al., 2009). Nevertheless, it is clear that EGFR-KDD is forming
an EGF-dependent inter-molecular dimer. We anticipate that future investigations will identify the mostly
likely inter-molecular configuration(s).

Interestingly, EGF-stimulated EGFR-KDD displays substantially more phosphorylation than EGF-stimulated
canonical activating mutations (Figure 4.10A and Figure 4.7A). We speculate that this may be because of the
increased ratio of EGF-ligand to active recruited kinase domains in EGFR-KDD (i.e. EGF-mediated dimer-
ization of two extracellular domains results in an effective tetramer of intracellular kinase domains with
potentially 2 — 3 active TKDs, versus typical oncogenic activation with 1 — 2 active TKDs). Alternatively,
it may be that the EGFR-KDD inter-molecular dimer forms a more favorable interface than other oncogenic
mutants, thus resulting in increased dimerization and activity. A combination of factors likely contributes to
the overall increase in phosphorylation that we observe. Additional studies are needed to characterize the
EGFR-KDD inter-molecular dimer.

Through a combination of biochemical and biophysical methods, we also determined that EGF-ligand
stimulation induces formation of catalytically active homo- and hetero- inter-molecular dimers and multimers.
Critically, this demonstrates that EGFR-KDD retains the ability to activate other ERBB family members.
This has important implications for the therapeutic management of patients whose tumors harbor EGFR-
KDD. Indeed, we found neither cetuximab nor afatinib alone were able to completely ablate EGFR-KDD
phosphorylation. We demonstrate, however, that cetuximab can be used to potentiate afatinib inhibitory
activity for greater overall inhibition. We suspect that this is because of the synergistic mechanisms of the
two drugs: cetuximab disassembles dimers and removes the ability of EGFR-KDD to activate other ERBB
kinases, and afatinib inhibits the active intra-molecular dimer EGFR-KDD. It has been well-recognized that
cetuximab induces degradation of EGFR mutants in different NSCLC cells (Doody et al., 2007; Perez-Torres
et al., 2006). In this study, no degradation of EGFR-Ex19Del, L858R and EGFR-KDD levels were observed
in YAMC (Figure 4.10A) and NR6 cells (Figure 4.7B), probably due to the shorter treatment time than

previous studies (4hrs versus 24 — 72hrs) (Doody et al., 2007; Perez-Torres et al., 2006).
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Finally, our computational and biochemical insights raise important considerations for the use of EGFR-
KDD as a research tool. Whereas the inactive form of EGFR can be readily studied by the introduction of
inter-molecular dimer-disrupting interface mutations (Zhang et al., 2006), controlling the active fraction of
EGFR in vitro has typically required introduction of known oncogenic point mutations or stimulation with
EGF-ligand. The former causes well-documented perturbations to enzyme kinetics (Yun et al., 2007; Carey
et al., 2006; Gilmer et al., 2008; Yun et al., 2008a), while recent literature has demonstrated that the latter
can influence EGFR multimerization and phosphorylation in a concentration-dependent manner (Needham
et al., 2016a). Moreover, dimerization and activation of EGFR oncogenic missense mutants is dependent on
protein concentration (Sholl et al., 2009) and/or EGF- ligand stimulation (Red Brewer et al., 2013). EGFR-
KDD provides a model of a fully active EGFR dimer in an EGF-independent setting, and may provide a more
native-like control than kinase domain missense mutants without the complexity of concentration-dependent
signaling effects.

Kinase Domain Duplications (KDDs) represent a novel form of activation for oncogenic kinases via a
mechanism of constitutive dimerization. In this study, we have systematically characterized the fundamen-
tal biochemical and biophysical features of a prototypical KDD, EGFR-KDD. Subsequently, we identified
potential treatment strategies in pre-clinical models of EGFR-KDD-mediated disease. This represents the
first comprehensive mechanistic and pre-clinical evaluation of treatment strategies specifically for a KDD-
mediated disease. We anticipate that our results will also be used to inform additional studies on kinase

duplication domains.

4.4 Methods

4.4.1 Cell Culture, Reagents and Transfection

Ba/F3 cells were purchased from DSMZ. NR6 cells were a kind gift from Dr. William Pao (Regales et al.,
2009). YAMC EGFR-/- cells were a kind gift from Dr. Robert H. Whitehead (Dise et al., 2008). Plat-GP cells
were purchased from CellBioLabs. HEK293 cells were purchased from ATCC. Ba/F3 cells were maintained
in RPMI 1640 medium (Mediatech, Inc.) supplemented with 1 ng/mL murine IL3 (Gibco, Life Technologies).
NR6 cells were maintained in DMEM (Gibco). The Plat-GP cell line was cultured in full DMEM with
selection of 1 g/mL blasticidin (Gibco). YAMC cells were cultured as previously described (Dise et al.,
2008; Whitehead et al., 1993), 64. COS-7 cells were cultured in DMEM (Calsson Lab, Smithfield, UT).
All media were supplemented with 10% heat inactivated FBS (Gibco) and penicillin-streptomycin (Gibco) to
final concentrations of 100 U/mL and 100 g/mL, respectively. All cell lines were maintained in a humidified
incubator with 5% CO2 at 37°C (33°C for YAMC cells (Whitehead et al., 1993)) and routinely evaluated for

mycoplasma contamination.
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Cetuximab was purchased from Bristol-Myers Squibb (Princeton, NJ). mAb806 is produced and purified
in the Biological Production Facility (Ludwig Institute for Cancer Research, Melbourne) (Johns et al., 2003,
2002). Transient transfection for expression in HEK293 cells was carried out using Lipofectamine 2000 (In-
vitrogen) according to the manufacturer’s instructions. A total of 0.45 g of each expression plasmid was used
per well in 6 well plates. To assess ligand-dependent EGFR activation, cells were serum starved overnight
and treated with 50 ng/mL EGF for 5min.

For PIE-FCCS experiments, COS-7 cells were transiently transfected 24 hours before the experiment
using Lipofectamine 2000 (Invitrogen). A total of 5 ug DNA (1:1 ratio of mCherry-tagged and eGFP-tagged
plasmids mixture) was used per 35 mm MatTek plate (MatTek Corporation, Ashland, MA) to express both
fluorescent-tagged species evenly and acquire the local density of 100-2000 receptors/um2. The media was
changed to Opti-MEM I Reduced Serum Medium without phenol red (Thermo Fisher Scientific) before
placing the plate in the on-stage incubator (37 °C) for FCCS measurement. Measurements were taken for
both ligand-free and ligand-stimulated state of each construct, with 2 g/mL recombinant human EGF (Sigma

Aldrich, St. Louis, MO) or NRG1 (RD Systems, Inc., Minneapolis, MI) as the ligand.

4.4.2 Plasmid Construction

Generation of EGFR-KDD, EGFR-WT and EGFR-L858R constructs was described previously7. EGFR-
KDD mutations were constructed by using multisite-directed mutagenesis (Agilent) on the pMa-EGFR-KDD
plasmid per the manufacturer’s recommendations - with the exception of extension time being set at 1.5 mins
/ kb. To specifically introduce mutations into each TKD due to the presence of two identical TKDs at the
genomic level, after bi-directional dideoxy sequencing, pMa-EGFR-KDD-mutants were digested with Clal
and recombined with other pMa-EGFR-KDD fragments to create all single mutants: Clal digests mutated
pMa-EGFR-KDD plasmid were recombined with a Clal-Clal segments from unmutated pMa-EGFR-KDD
and/or Clal digests of unmutated pMa-EGFR-KDD plasmid were recombined with Clal-Clal segments from
mutated pMa-EGFR-KDD. pMa-EGFR-KDD mutants were then subcloned to the pMSCV vector by Hpal
digest and then subcloned to pcDNA3.1(-) vector by Xhol /HindIII digest. All plasmids were verified in the
forward and reverse directions by Sanger sequencing. To obtain V5-epitope tagged EGFR-KDD, we used
PCR to add Agel to the 3’ end of EGFR-KDD fragment by using pMSCV-EGFR-KDD as template, then
EGFR-KDD fragment was inserted into pcDNA6-V5 HisB vector by using SnaBI and Xhol. To obtain Myc-
epitope tagged EGFR-KDD, the EGFR-KDD fragment was subcloned to pEF4Myc-HisB vector by using
Mfel and Xhol. pcDNA6-EGFR-WT with Myc-epitope tag was purchased from Addgene (42665). V5-
epitope tagged HER2 and HER3 were kind gift from Dr. Carlos L. Arteaga67. For PIE-FCCS experiments,
EGFR-WT, HER2 and HER3 was subcloned to eGFP-N1 and mCherry-N1 vectors by Xhol and Agel digest.
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EGFR-KDD was subcloned to eGFP-N2 and mCherry-N2 vectors by using SnaBI and Xhol digest. For V5
tagged epitope EGFR-WT, we replaced the eGFP fragment of pPEGFR-N1-EGFR-WT by V5 tagged epitope.
In this study, for EGFR mutations, we utilized codon numbering of the human immature EGFR sequence that

includes the 24-residue signal sequence.

4.4.3 Generation of stable cell lines

Constructs of pMSCV, EGFR-WT, EGFR-L858R, EGFR-KDD and EGFR-KDD-1706Q, D837N, V948R,
11057Q, D1188N and V1299R mutations were introduced into NR6 and YAMC cells separately by retroviral
transduction system as described previously7. Construct of EGFR Ex19Del (E746_A750del) was stably
introduced into YAMC cells, and constructs of EGFR Ex19Del (E746_A750del), EGFR-L858R and EGFR-

KDD were stably introduced into Ba/F3 cells as described previously (Brown et al., 2019a).

4.4.4 Immunoblotting and Antibodies

For immunoblotting, cells were washed in cold PBS, and lysed in RIPA buffer (150 mmol/L NaCl, 1% Triton-
X-100, 0.5% Na-deoxycholate, 0.1% SDS, 50 mmol/L Tris-HCI, pH 8.0) with freshly added 40 mmol/L NaF,
1 mmol/L. Na3VO4, and protease inhibitor (Thermo Fisher Scientific, Waltham, MA). Lysates were quantified
by Bradford assay in SmartSpec Plus Spectrophotometer (Bio-Rad, Hercules, CA) following the manufac-
turer’s instructions. Lysates were subjected to SDS-PAGE followed by blotting with the indicated antibodies
and detection by Western Lightning ECL reagent (Perkin Elmer, Waltham, MA). The densitometry for both
phosphotyrosine content at Y1068 and total EGFR expression was quantified by ImageJ Software. The ratio
of phosphotyrosine to total EGFR expression for each construct relative to EGFR-KDD was calculated. All
immunoblotting experiments were performed three independent times and one representative replicate was
shown in the manuscript. Raw uncropped and unprocessed scans of all blots, quantifications and standard
deviations were included in the Source Data file.

For co-immunoprecipitation experiments, cells were washed in cold PBS and lysed in hypotonic buffer
(20mM HEPES pH7.5, 10mM KCI, ImM EDTA, ImM EGTA, ImM mgCl2, 0.1% NP-40, EDTA-free Pro-
tease Inhibitor Cocktail (Sigma-Aldrich 04693159001)). The lysates were supplemented with 150 mM NaCl
before centrifuging. Protein G Dynabeads ( 10004D, Life Technologies, Carlsbad, CA) were incubated with
the primary antibody for 30 minutes at room temperature. Lysates were then added and incubated for 3
hours at 4°C. Immobilized beads were washed three times with hypotonic buffer supplemented with 0.65
M NaCl. 2xSDS loading buffer was added to the beads and then used for immunoblotting analysis. All
co-immunoprecipitation experiments were performed two independent times and one representative replicate

was shown in the manuscript.
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4.4.5 Antibodies

Antibodies used included: EGFR (1:2000, 4267), phospho-EGFR (Y992) (1:1000, 2235), phospho-EGFR
(Y1068) (1:1000, 2234), phospho-EGFR (Y1173) (1:1000, 4407) (For EGFR phosphorylation sites, we uti-
lized codon numbering of mature EGFR sequence that does not include the 24-residue signal sequence),
horseradish peroxidase (HRP) - conjugated anti-mouse (1:5000, 7076), and HRP-conjugated anti-rabbit
(1:5000, 7074) (Cell Signaling, Beverly, MA); V5 (1:5000, MCA1360GA, AbD Serotec), Myc (1:2500,
Sigma-Aldrich A5963); actin antibody (1:5000, Sigma-Aldrich A2066).

4.4.6 Pulsed Interleaved Excitation Fluorescence Cross-Correlation Spectroscopy (PIE-FCCS)

FCCS data were taken on a customized inverted microscope setup coupled with pulsed interleaved excita-
tion and time-correlated single photon detection as described in previous works (Huang et al., 2016; Endres
et al., 2013). A supercontinuum pulsed laser (9.2 MHz repetition rate, SuperK NKT Photonics, Birkergd,
Denmark) was split into two beams of 488 nm and 561 nm through a series of filters and mirrors for the
excitation of eGFP and mCherry respectively. The beams were directed through two different-length single
mode optical fiber to introduce 50 ns time delay for pulsed interleaved excitation to eliminate possible spec-
tral crosstalk (Comar et al., 2014). The beams were overlapped before entering the microscope through a
dichroic beam splitter (LMO01-503-25, Semrock) and a customized filter block (zt488/561rpc, zet488/561m,
Chroma Technology). A 100X TIRF oil objective (Nikon, Tokyo, Japan) was used for the excitation beam
focus and fluorescence emission collection. A short fluorescently tagged DNA fragment was used to ver-
ify the alignment of the system, including the confocal volume overlap. Negative and/or positive controls
were tested regularly prior to the experimental samples for comparisons of the fit parameters. The excita-
tion beams were focused to the peripheral membrane of the cell to allow the fluorescence measurements of
only the membrane-bound receptors. Data were only taken on the flat, peripheral membrane area, where
the distance between the basal and apical membranes were within a few hundred nanometers, to avoid in-
clusion of fluorescence from cytosolic organelles or vesicles. For each cell, one area of the membrane was
selected for data collection. Six 10-second acquisitions were taken per area. The fluorescence signal was col-
lected through a home-built confocal detection unit with a 50 um confocal pinhole and dichroic beam splitter
(LMO1-503-25, Semrock, Rochester, NY). The two signals were filtered (91032, Chroma Technology Corp.,
Bellows Falls, VT; zt488/561rpc and zet488/561m, Chroma Technology Corp., Bellows Falls, VT) and then
focused independently on to single-photon avalanche diodes (Micro Photon Devices, Bolzano, Italy). The
photon counts were recorded by a time-correlated single photon counting module (Picoharp 300, PicoQuant,
Berlin, Germany). For analysis, the time-tagged photon data were gated to isolate photons that arrived within

40 ns after each laser pulse arrival time. Then we calculated auto- and cross-correlation curves correspond-
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ing to each species using our custom MATLAB script. Curves of six consecutive acquisitions per area were
averaged then fitted to a single component, 2D diffusion model as described in previous works (Endres et al.,
2013; Kaliszewski et al., 2018; Comar et al., 2014).

The auto-correlation curves contain two types of decay. The first decay is due to the photophysical activ-
ity, such as triplet relaxation or blinking. The second decay indicates the average dwell time (7D), which is
used to calculate the effective diffusion coefficient using Deff = w02/4tD. The amplitude of the correlation
curves indicates local concentration of the diffusing receptors. Using the cross-correlation curve, we can cal-
culate cross-correlation values, or fraction correlated (fc) values that indicate the degree of oligomerization.
For an ideal system undergoing on dimerization, the fc value varies from 0 to 1, with 0 indicating the system
is monomeric and 1 indicating complete dimerization. For real systems, effects like photostability, interac-
tion statistics, and relative expression levels drop the expected fc value for dimerization into the range of
0.10 to 0.15 for a monomer-dimer equilibrium. For higher order oligomerization the fc values will increase,

allowing us to compare the degree of oligomerization for more complex systems (Comar et al., 2014).

4.4.7 Anchorage-Independent Assays and Cell Viability Assay

Anchorage-independent assays were performed as previously described (Borowicz et al., 2014; Horibata
etal., 2015). For the bottom layer of agar, 1.5 mL of a 1:1 mix of 1.0% agar (prepared in 1xPBS) and medium
was plated in each well of 6-well plate. For the upper layer of agar, 1.5 mL of a 1:1 mix of 0.6% agar (prepared
in 1xPBS) and medium containing 5,000 cells was plated into each well of 6-well plate. Colonies were
counted using GelCount (Oxford Optronix) with identical acquisition and analysis settings. Cell viability
assay was performed on IL3 independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del and L858R
by using CellTiter-Blue® Cell Viability Assay (G8080, Promega, Madison, WI) following manufacturer’s
instructions. All experiments of anchorage-independent assays and cell viability assay were performed three

independent times in triplicate, and one representative replicate was shown in the manuscript.

4.4.8 Molecular Modeling

Previously, we performed de novo loop modeling to determine a geometrically plausible model of the EGFR-
KDD linker region (Gallant et al., 2015). Here, an all-atom structural model of the EGFR-KDD intracellular
domain was generated with RosettaCM (Song et al., 2013) with the active EGFR WT dimer PDB ID 2GS6
as the base template. Missing density in the $3-aC region was templated with PDB ID 2ITX. The N- and C-
termini of the donor and receiver kinases of the EGFR-KDD intra-molecular dimer, respectively, as well as
the connecting linker region, are based on three templates: the previously modeled linker region from Gallant

et al. 2015 (Gallant et al., 2015); the JMB domain of PDB ID 4RIW; and the JMB domain of PDB ID 3GOP.
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Figure 4.12: EGF ligand stimulation induces the formation of EGFR-KDD inter-molecular dimers. a, Cross
correlation values of PIE-FCCS control constructs. The monomer control (Myr-FP: myristoylated fluorescent
protein [mCh or eGFP; coexpressed together]) had an fc value of 0.01 indicating no interaction. Upon cross-
linking by a synthetic dimerizer (AP: AP20187) the dimer control (1xFKBP-FP) had an average fc value of
0.11, consistent with dimerization. The multimer control (3xFKBP-FP) had an fc value of 0.29 consistent
with the formation of a mixture trimer and tetramer species. b, Average molecular brightness of PIE-FCCS
negative and positive controls in Figure 4.7c (Left: constructs with eGFP tag; right: constructs with mCh tag).
The oligomer control (3xFKBP+AP) has much higher molecular brightness as expected due to clustering.
mCh-tagged constructs show subtle changes in the molecular brightness due to the photophysical properties of
mCherry. However, the molecular brightness changes are still statistically significant between all constructs.
¢, Representative FCCS data for EGFR-WT and EGFR-KDD expressed in COS-7 cells. The scatter plot
connected with red, green and blue lines indicates the normalized auto-correlation function for mCherry-
fused/eGFP-fused receptors and cross-correlation function, respectively. Black solid line shows the fit model
of each curves. For a and b, the numbers in parenthesis above the boxplot/bar graph are the total number of
cells where data were taken on. Both One-Way ANOVA test and Uncorrected Fisher’s LSD test were down
to obtain adjusted and individual p values.



Missing residues are modeled de novo with RosettaCM fragment insertion. Three rounds of comparative
modeling were performed. After rounds two and three, the best scoring models with varying RMSDs from
the lowest scoring model in each round were selected as additional starting templates for the next round. After
the third round, distance-based clustering of the linker region identified three low energy clusters. The best
scoring model from each cluster was refined with a 1 s molecular dynamics (MD) simulation in Amberl8
(Case et al., 2018). The final EGFR-KDD model and EGFR-WT homodimer subsequently each underwent 1
us MD simulations.

Models were solvated in a rectangular box of SPC/E explicit solvent neutralized with monovalent anions.
Protein was buffered on all sides with 12 A solvent. Solvent and ions were minimized with 500 steps steepest
gradient descent followed by 1000 steps of conjugate gradient descent while protein atoms were restrained
with a force constant of 10.0 kcal/mol/A2. The protein was then minimized for 200 steps steepest gradient
descent followed by 800 steps of conjugate gradient descent in buffer restrained with a force constant of 5.0
kcal/mol/A2. Finally, restraints were removed from the system for 100 additional steps of steepest gradient
descent followed by 900 steps of conjugate gradient descent minimization.

Post-minimization, SHAKE was implemented to constrain covalent bonds to hydrogen atoms. Systems
were slowly heated in NVT ensemble to 100K over 50 ps with a 1 fs timestep. Subsequently, systems were
heated in NPT ensemble at 1 bar with isotropic position scaling from 100K to 300K over 500 ps and 1 fs
timestep. Equilibration/production simulations were run in the NPT ensemble at 300K with a Monte Carlo
barostat. Temperature was controlled using Langevin dynamics with a collision frequency of 1 ps™! and a
unique random seed for each simulation. Periodic boundary conditions were imposed on the system through-
out heating and equilibration. Electrostatics were evaluated using the Particle Mesh Ewald (PME) method
and a distance cutoff of 8.0 A. A 2 fs integration timestep was employed during production simulations. All
RMSD and RMSF calculations were performed with CPPTRAJ (Roe and Cheatham, 2013).

Approximations of the linker interaction energies of the top three EGFR-KDD clusters were performed
with the single-trajectory molecular mechanics / generalized Born solvent-accessible surface area (MM-
GBSA) method as implemented in MMPBSA.py (Miller et al., 2012). GBSA was calculated with the OBCII
Generalized born solvent model with a surface tension of 0.0072 kcal/mol/A2 and salt concentration of 0.15
M, and nonpolar contributions to the solvation free energy were computed with the LCPO method. Entropic
contributions to binding were neglected. The final reported values are averaged over frames collected every

100 ps.
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4.4.9 Kinase Domain Duplication Detection from Foundation Medicine and MSK-IMPACT datasets
For the Foundation Medicine dataset, a minimum of 50 ng of DNA was extracted from formalin-fixed
paraffin-embedded sections and comprehensive genomic profiling was performed on hybridization-captured,
adaptor ligation-based libraries to a median exon coverage depth of ; 500X for all coding exons of 315
(FoundationOne®, n = 152,674), or 324 (FoundationOneCDx®, n = 86,824) cancer-related genes plus se-
lected introns from genes frequently rearranged in cancer to identify base substitutions, small insertions or
deletions, copy number alterations (focal amplifications and homozygous deletions), and rearrangements,
as previously described (Frampton et al., 2013). Testing was performed in a Clinical Laboratory Improve-
ment Amendments-certified, College of American Pathologists-accredited reference laboratory (Foundation
Medicine, Cambridge, MA). We interrogated the Foundation Medicine dataset of n = 239,498 consecutive
unique solid tumor specimens for kinase domain duplications (KDD) in EGFR, ERBB2, ERBB3 and ERBB4.
These rearrangement duplications were detected by clustering chimeric and semi-mapped paired-end reads
within each gene of interest and mapping breakpoints onto the hgl9 reference genome assembly, as pre-
viously described75. A KDD was therein defined as a large genomic duplication where breakpoints both
flanked and did not disrupt the region corresponding to the respective gene’s kinase domain. Statistical en-
richment including p-value and odds-ratio (OR) was calculated using Fisher’s exact testing. For Foundation
Medicine cases, approval for this study, including a waiver of informed consent and a Health Insurance Porta-
bility and Accountability Act waiver of authorization, was obtained from the Western Institutional Review
Board (protocol no. 20152817).

MSK-IMPACT sequencing data from patients whose tumor and matched normal samples were prospec-
tively sequenced between January 2014 and September 2019 (n=40,165) were used in this study. Structural
variant detection was performed on the paired-end reads using Delly (version 0.7.5; https://github.com/dellytools/delly).
Duplication events that surrounded or overlapped known kinase domains were selected for further manual re-
view. For copy number-based analysis, coverage data from the tumor and an unmatched normal sample were
used to generate a fold change value (Ross et al., 2017) for each exon in a kinase gene. Using k-mean clus-
tering (k = 2), we identified samples where one of the clusters was overlapping (requiring at least 70% of
the kinase domain to be involved) or encompassing the kinase domain with a median cluster fold change
difference of at least 0.4. We combined the two datasets for further manual review to identify a subset of

confident KDD calls.

4.4.10 Statistical analysis
Statistical significance was analyzed using unpaired Student’s t-test for two groups or one-way ANOVA for

multiple groups. Results were displayed as mean values + standard deviation (SD). For all tests, the criteria

81



for significance were P | 0.05 (¥), P ; 0.01 (**), and P ; 0.001 (***). Statistical analysis was carried out using

Prism 9 (GraphPad Software).
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CHAPTER 5

Co-Occurring Gain-of-Function Mutations in HER2 and HER3 Modulate HER2/HER3 Activation,

Oncogenesis, and HER2 Inhibitor Sensitivity

This chapter is taken from Hanker, A. B.*; Brown, B. P.*; Meiler, J.*; Marin, A.; Jayanthan, H. S.; Ye, D.;
Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J.
P.; Sheehan, J. H.; He, J.; Lalani, A. S.; Arteaga, C. L. Cancer Cell 2021, 39 (8), 1099-1114.e837 (*These

authors contributed equally).

5.1 Introduction

Activating mutations in HER2 (also known as ERBB2) are oncogenic drivers in a subset of breast and other
cancers (Bose et al., 2013; Hanker et al., 2017; Hyman et al., 2018). In breast cancer, HER2 mutations
typically occur in the absence of HER2 amplification, are more common in invasive lobular breast cancer
(Deniziaut et al., 2016; Desmedt et al., 2016; Ping et al., 2016; Ross et al., 2013), and are associated with poor
prognosis (Kurozumi et al., 2020; Ping et al., 2016; Wang et al., 2017). Recurrent HER2 mutations promote
resistance to antiestrogen therapy in estrogen receptor-positive (ER+) breast cancers (Croessmann et al.,
2019; Nayar et al., 2019) and are found in 5% of endocrine-resistant metastatic breast cancers (Razavi et al.,
2018). They have also been implicated in resistance to HER?2 inhibitors in HER2-amplified breast cancers
(Cocco et al., 2018; Xu et al., 2017) and can be targeted with HER2 tyrosine kinase inhibitors (TKIs), such as
neratinib. Approximately 30% of HER2-mutant metastatic breast cancers respond to neratinib (Hyman et al.,
2017, 2018), suggesting that co-occurring mutations may modulate HER2 TKI response.

HER2 is a member of the ERBB receptor tyrosine kinase family, which includes EGFR, HER3 (ERBB3),
and HER4 (ERBB4). Upon ligand-induced homo- and heterodimerization of the extracellular domain (ECD),
ERBB receptors undergo a conformational change that triggers asymmetric dimerization of the kinase do-
mains (KDs), leading to kinase activation and subsequent signal transduction through oncogenic pathways,
such as the phosphoinositide-3-kinase (PI3K)/AKT/mTOR and RAS/RAF/MEK/ERK pathways (Zhang et al.,
2006). Although HER?2 lacks a high-affinity ligand, its natural conformation resembles a ligand-activated
state and is the preferred heterodimer of EGFR and HER3 (Arteaga and Engelman, 2014). HER3 is cat-
alytically impaired and its signaling depends on heterodimerization with catalytically active partner, such as
EGFR and HER2 (Wallasch et al., 1995).

The most common HER?2 mutations in breast cancer are missense mutations in the KDs, such as HER2L7558

and HER2V77"L. While HER2 missense mutants exhibit gain-of-function activity (Bose et al., 2013), they are
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not potently transforming in the absence of amplification and may require cooperation with other oncogenes
to confer a fully transformed phenotype. For example, co-occurring PIK3CA mutations (encoding PI3K)
cooperate with HER2 mutations to augment pathway activation (Zabransky et al., 2015). However, PIK3CA
mutations are only found in 1/3 of HER2-mutant breast cancers; other alterations that cooperate with HER2
mutations are not known.

Gain-of-function mutations in HER3 are found in 2% of breast cancers (Cancer Genome Atlas, 2012;
Jaiswal et al., 2013; ?). HER2/HER3 heterodimers exhibit high catalytic activity, strongly activate the
PI3K/AKT/mTOR pathway, and induce transformation more potently than any other ERBB dimers (Choi
et al., 2020; Holbro et al., 2003; Yarden and Sliwkowski, 2001). In the HER2/HER3 asymmetric dimer, the
HER3 KD serves as the “activator,” stimulating the kinase activity of the HER2 “receiver” (Choi et al., 2020).
Co-occurring HER3 mutations have previously been found in HER2-mutant tumors (Hanker et al., 2017) and
are associated with lower clinical response to neratinib in the clinic (Hyman et al., 2018; Smyth et al., 2020).
We hypothesized that the mutant HER3 receptor cooperates with mutant HER?2 to promote tumor growth via

enhanced HER2 and PI3K activation.

5.2 Results

5.2.1 Activating mutations in HER2 and HER3 co-occur in breast and other cancers

We interrogated 277 breast cancers (Figures 5.1A and 5.2A) and 1,561 pan-cancers harboring somatic HER2
mutations from the Project GENIE dataset (genie.cBioPortal.org) for co-occurring alterations in EGFR,
ERBB3, ERBB4, PIK3CA, and PTEN (Figures 5.1B and 5.2B). Since HER2 mutations are known to be
associated with lobular breast cancer (Desmedt et al., 2016), we also included the CDH1 gene, which is mu-
tated frequently in lobular breast cancer. Mutations in HER2 and HER3 showed a significant tendency to
co-occur in breast cancer (q = 0.006) and in all cancers (q = 1.01x102%; Figures 5.1C and 5.2C).

Most co-occurrences were between known activating missense mutations in both genes rather than vari-
ants of unknown significance (Figures 5.2A and 5.2B). In breast cancer, neither EGFR nor ERBB4 alterations
were found to co-occur with HER2 (Figure 5.2C). We also noted that HER3 mutations did not co-occur with
HER?2 in-frame insertion mutations or when HER2 was both mutated and amplified (Figures 5.1A and 5.1B).
Intriguingly, in HER2-mutant breast cancers, co-occurring HER3 mutations were mutually exclusive with
co-occurring PIK3CA, suggesting that HER3 and PIK3CA mutations are functionally redundant.

To identify the most common co-occurring HER2 and HER3 mutant allele pairs in breast cancer, we
expanded our search to include additional datasets from Foundation Medicine and cBioPortal. We identified
67 breast cancers harboring mutations in both genes. The most common HER2 mutations were L755S (n

= 24), S310F/Y (n = 16), V777L (n = 14), and L869R/Q (n = 7). The most common HER3 mutations

84



A GENIE: breast cancer

ERBB2 100% [
ERBB3 6% il | (s
PIK3CA 22% |lusisii Wi i S
PTEN 1% 1 fin i
EGFR 9% I | I ! il
ERBB4 11% I I
CDH1 11% [lssian LD ) | A0 g of [
B GENIE: all cancer
ERBB2 100%
ERBB3 10%/1 FIIE [—
PIK3CA 22%i = - o —
PTEN 1%/ Gl I
EGFR 9% 1 NENIE LI o
ERBB4 11%! | IIE CRNTA T TR
CDH1  M%[ & v al= fim e e - G

#Inframe mutation (putative driver) | Inframe mutation (unknown signifigance) # Missense mutation (putative driver)

Missense mutation (putative driver) & Tryncating mutation (putative driver) | Truncating mutation
IFusion I Amplification | Deep deletion | No alterations Not profiled (unknown signifigance)
% IN % IN LOG ODDS P Q VALUE TENDENCY No. of co-
HER2-mut | UNALTERED RATIO VALUE occurrences
(n=67 breast)
9 9 - E x

ERBB3 90 (8.73%) 774 (2.01%) 212 450E29  1.01E-26 Co-occurrence L7558 EQ28G P~
CDH1 97 (9.41%) 922 (2.39%) 1.98 3.26E-28 6.56E-26 Co-occurrence V777L E928G 10
ERBB4 104 (10.09%) 1090 (2.83%) 1.84 4.53E-27 7.58E-25 Co-occurrence L869R/Q E928G 5
PIK3CA 188 (18.23%) 4428 (11.48%) 0.67 2.68E-10 3.77E-09 Co-occurrence S310F/Y E928G 4
EGFR  88(8.54%) 2094 (543%) 065 353E-05 229E-04  Co-occurrence S310F/Y  V104L/M 4

Figure 5.1: ERBB2 and ERBB3 mutations co-occur in breast and other cancers. (A) 277 breast cancers with
ERBB2 mutations and (B) 1,561 ERBB2-mutant cancers (all tumor types) in the Project GENIE database
were interrogated for co-occurring alterations in the indicated genes. ERBB2 variants of unknown signifi-
cance (VUS) are excluded. (C) Mutations in the indicated genes were analyzed for co-occurrence or mutual
exclusivity with ERBB2 mutations using cBioPortal. (D) The most common co-occurring HER2/HER3
mutations in breast cancer were determined using databases from Project GENIE, cBioPortal [TCGA,
METABRIC, MBC Project, Mutational Profiles of MBC (France), and Breast Invasive Carcinoma (Broad)],
and Foundation Medicine. Data and illustrations produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye,
D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch,
J. P; He, J.; Lalani, A. S.; and Arteaga, C. L.

85



A GENIE: breast cancer (ERBB2 VUS)

ERBB2 -
ERBB3 |

PIK3CA | nuinini
PTEN i i
EGFR I
ERBB4 || i
CDH1 Lt 1 mm

B GENIE: other cancers (ERBB2 VUS)
ERBB2
ERBB3 * i
P|K30A||- In —

PTEN |P+ wnn h I_
EGFR ni |\|F 'l\ L L | |+ s 1 'F

ERBB4 i s orem wiovm H| ] b-

CDH1 1l nj TR B T Il [T
fInframe mutation (putative driver) | Inframe mutation (unknown signifigance) & Missense mutation (putative driver)
I Missense mutation (putative driver) & Truncating mutation (putative driver) ¥ Truncating mutation
1 Fusion I Amplification | Deep deletion | No alterations Not profiled (unknown signifigance)

C GENIE: breast cancer only

% IN HER2- % IN UNALTERED LOG ODDS P VALUE QVALUE TENDENCY
mut RATIO

CDH1 95 (30.65%) 861 (10.25%) <0.001 <0.001 Co-occurrence
ERBB3 16 (5.12%) 169 (2.01%) 1.41 <0.001 0.006 Co-occurrence
EGFR 8(2.58%) 109 (1.30%) 1.011 0.057 0.119 Co-occurrence
ERBB4 7 (2.26%) 107 (1.27%) 0.841 0.111 0.195 Co-occurrence
PIK3CA 105 (33.87%) 3000 (35.71%) -0.117 0.275 0.361 Mutual exclusivity

D L7555/P/_T759del

w 68 .

5 v777L

§ S30F/Y LBE5R

o H

B 0 s mee s aves see s o me  sses  ssses ses © Wt saem s Sombotehm s st Times o O

&

Recep_L_dnm Recep_L_dom.. GF_recep_IV

T
0 200 sbo abo 800 1000 125522

m

E928G

viod/m
/ G284R/A

#ERBB3 Mutations

..... o' wew sse # @  %w % etecest ss sem e Mem  ssme ses

0 200 400 600 800 1000 1200 134220

Figure 5.2: Gain-of-function, but not passenger, missense mutations in ERBB2 and ERBB3 have a tendency
to co-occur. (A) Breast cancers and (B) all cancers with ERBB2 VUS in the Project GENIE database were
interrogated for co-occurring alterations in the indicated genes. (C) Mutations in the indicated genes were
analyzed for co-occurrence or mutual exclusivity with ERBB2 mutations in breast cancers from Project GE-
NIE using cBioPortal. (D,E) Lollipop plots of ERBB2 (D) and ERBB3 (E) mutations in breast cancer from
Project GENIE. Data and illustrations produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin,
C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He,
J.; Lalani, A. S.; and Arteaga, C. L.
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were E928G (n = 35), VI104L/M (n = 8), T355A/1 (n = 5), and K329E/I (n = 5). These were similar to
the most common single HER2 and HER3 missense mutations found in breast tumors (Figures 5.2D and

3E928G i5 the most common co-mutated

5.2E). The most common pairs are shown in Figure 5.2D. Since HER
HERS3 allele, we focused our studies on that mutation paired with HER2L733S HER2V77L HER2M9R | and

HER253 IOF'

5.2.2 Co-occurring HER2/HER3 mutants enhance KD dimerization and HER2 kinase activation

To determine the mechanisms of activation of mutant HER2 and HER3, we systematically evaluated the con-
tributions of each mutation to HER2 kinase activation and HER2/HER3 dimerization (Figures 5.4A-5.4C).
Previous work demonstrated an increase in HER2WVT kinase activity when bound to HER328G relative to
HER3W™T (Collier et al., 2013). Subsequent work showed that HER3E928C enhances EGFR/HER3 dimer-
ization affinity, potentially as a result of charge neutralization at the asymmetric dimer interface. However,
neutralization of a glutamate interface residue in EGFR resulted in <2-fold increase in dimerization affinity,
suggesting that charge neutralization may not be the primary contributor to HER3F28C gain of function (Lit-
tlefield et al., 2014). Therefore, we probed the effects of HER3E92%C on HER2/HER3 dimerization using a
combination of Rosetta DDG calculations and molecular dynamics (MD) simulations.

Consistent with previous studies, our Rosetta simulations suggest an enhanced dimerization affinity of
HER2WT/HER3E928C relative to HER2WT/HER3WT (Figure 5.3A). Per-residue decomposition of Rosetta
binding energy suggests that the largest contributions can be attributed to HER2 L790 and HER3 G927
(Figures 5.3B, 5.4D, and 5.4E). MD simulations displayed a reduced HER2 L790-HER3 G927 backbone
hydrogen bond (H bond) distance (Figures 5.3C and 5.3D) and a 1.3 kcal/mol increase in H bond stability
in HER2WT/HER3F928G relative to HER2WT/HER3WT (Figures 5.4F and 5.4G). We failed to observe an
increase in favorable contacts between charged interface residues (Figures 5.3B, 5.3D, 5.4D, and 5.4E). Our
results suggest that the increased flexibility conferred to HER3E%28G at the dimerization interface by adjacent
glycine residues (G927 and G928) increases dimerization affinity through backbone H bond optimization.

3E928G with the most

We next sought to understand the structural basis for potential synergy of HER
common co-occurring HER2 mutants in breast cancer (Figure 5.1D): L755S, V777L, and L869R. Previous
studies have shown that HER2 KD mutant monomers, including HER2V77"L| displayed enhanced kinase ac-
tivity compared with the HER2WT monomer; HER2 activity was further increased by homodimerization of
mutant HER2 compared with the mutant monomer (Bose et al., 2013; Collier et al., 2013). Here, we inves-
tigated to what extent these mutations increase stability of the KD active conformation (Figure 5.4A) versus

the stability of the asymmetric heterodimer interface (Figure 5.4B). We performed Rosetta DDG calculations

of HER2 missense mutations in complex with HER3YT or HER3F28G (Figures 5.4B and 5.4C). The HER2
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Figure 5.3: Co-occurring HER2/HER3 mutants enhance HER2/HER3 kinase domain association and HER2
kinase activity. (A) Comparison of the computational structural models of the HER2VT/HER3WT and
HER2WT/HER3E928C at the asymmetric dimer interface. HER2 is colored purple and HER3 is colored blue.
The hydrogen bond between residues G927-O and L790-NH is represented by a yellow line. The hydrogen
bond angle given by the L790-N, L790-H, and G927-O atoms is also depicted with a yellow line. (B) Proba-
bility density plots of HER2VT/HER3WT and HER2WVT/HER3928G HER3 G927-O — HER2 L790-N hydro-
gen bond distance (left), HER2 K716-NZ — HER2 E719-OEl1,2 bond distance (middle), and HER2 K716-NZ
— HER2 D742-OD1,2 bond distance (right). (C) Rosetta HER2/HER3 heterodimerization binding energy.
(D) Pairwise sums of per-residue binding energy decomposition for HER2/HER3 heterodimerization. (E)
Activation state conformational free energy landscape of HER2WT (upper left quadrant), HER2L73S (upper
right quadrant), HER2V77’% (lower left quadrant), and HER2M3R (lower right quadrant). (F) Quantification
of free energy difference between active and inactive states for each mutant (gray), relative free energy differ-
ence compared to HER2WT (yellow), and integration along the lowest free energy path(s) (green and purple).
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KD mutants did not increase dimerization affinity with HER3WT (Figure 5.3A). In contrast, HER25310F/y
did increase dimerization affinity of the ECDs, potentially because the aromatic side chain of HER2 F/Y310
can make a stable hydrophobic contact with HER3 1272 (Figures 5.5A and 5.5B). HER3F%28G enhanced
dimerization affinities over HER3WT in all cases (Figures 5.3C and 5.5B).

We tested the hypothesis that HER2 missense mutants increase the stability of the KD active conformation
using steered MD and umbrella sampling (US) simulations. We reasoned that mutations that reduce the
energetic barrier to activation increase the propensity for dimer formation through conformational selection
(Figures 5.4A and 5.4B). HER2WVT is more stable in the inactive conformation than the active conformation
in our US simulations (Figures 5.3E and 5.3F). In contrast, both HER2L86R and HER27>3S favor the active
conformation (Figures 5.3E and 5.3F). Consistent with previous accelerated MD simulations (Robichaux
etal., 2019), HER2V77'L retained a preference for the inactive conformation in our simulations; however, the
barrier to activation is reduced, suggesting that HER2V77"L is more readily activated than HER2WT. These
results suggest that the tested HER2 KD missense mutations lower the free energy barrier between the inactive
and active KD conformations, while HER3E28G enhances the stability of the dimerization interface, such that

HER2missense/HER3F%28C co-mutations cooperatively promote oncogenic activation.

5.2.3 Co-occurring HER2/HER3 mutants enhance ligand-independent HER2/HER3 and PI3K acti-
vation

To test our computational predictions, we performed co-immunoprecipitation (co-IP) in HEK293 cells tran-
siently transfected with WT (wild type) or mutant HER2 and HER3. In agreement with the structural pre-
dictions (Figures 5.3A and 5.5B), co-expression of HER3E928G enhanced the interaction with HER253!0F,
L755S, or V777L compared with HER3WT (Figures 5.6A and 5.6B). The stronger association between
HER2Y7535 and HER3F%28G compared with either mutant alone was confirmed by proximity ligation assay
(PLA) (Figures 5.7A and 5.7B).

Treatment with the HER3 ligand neuregulin (NRG) triggers HER2/HER3 heterodimerization and path-
way activation. We asked whether HER3E928G can bypass the effect of NRG stimulation via enhanced interac-
tion with the KD of HER2. Coexpression of HER3E928G with HER2WT strongly enhanced ligand-independent
HER3 phosphorylation in serum-starved HEK293 cells (Figure 5.6C) in agreement with previous studies
(Jaiswal et al., 2013). Similarly, HER2L735S and HER2V7'L, when co-expressed with HER3WYT, increased
ligand-independent HER2 and HER3 phosphorylation. Levels of P-HER3 were highest in the double-mutant
cells. Similar results were obtained when only the intracellular domains of WT or mutant HER2 and HER3
were expressed (Figure 5.7C). Treatment with NRG was sufficient to stimulate HER2 and HER3 phospho-
rylation in cells co-expressing HER2WT and HER3WT, similar to the effects of HER2/HER3 double mutants
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Figure 5.4: HER2 and HER3 missense mutations enhance receptor heterodimerization with complementary
but distinct mechanisms. (A) Thermodynamic cycle relating HER2WT to HER2mutant active to inactive con-
formational state transition free energy. HER2M9R is displayed as an example of HER2mutant mutants.
(B) Thermodynamic cycle relating HER2WT to HER2mutant heterodimerization free energy with HER3WT.
(C) Thermodynamic cycle relating HER2/HER3WT and HER2/HER3E28G heterodimerization free energies.
Here, we evaluated the relative free energies of HER2mutant activation compared to HER2VT (A) with
steered MD and umbrella sampling simulations. We evaluated the relative free energies of HER2WT and
HER2mutant heterodimerization with HER3WT (B) and HER3E?28C (C) with Rosetta. We also utilized con-
ventional MD simulations to investigate differences in heterodimerization affinity of HER2WT with HER3WT
vs. HER3E928G (D) Per-residue energy decomposition of select HER2 residues at the HER2/HER3 dimeriza-
tion interface. (E) Per-residue energy decomposition of select HER3 residues at the HER2/HER3 dimeriza-
tion interface. All per-residue energies reported as mean +/- standard error across 20 lowest interface energy
samples per group. (F) Log-scaled survival curves of the G927 — L790 backbone hydrogen bond rupture
event with a 3.5 A cutoff. (G) Hydrogen bond forward (rupture) and reverse (formation) rates and the free
energy associated with hydrogen bond rupture using hydrogen bond distance cutoff values of 3.5 A or 4.0 A.
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Figure 5.5: Structural features of HER2 missense mutants. (A) Computational structural model of the near
full-length HER2WT (green) and HER3WT (cyan) heterodimer with in complex with NRG1 (purple). The
modeled heterodimer includes the extracellular domain (ECD; subdomains I — IV), transmembrane domain
(TMD), juxtamembrane domain (JMD), and kinase domain (KD) of both HER2 and HER3. The unstructured
C-terminal tails were excluded from modeling. (B) Rosetta HER2/HER3 heterodimerization binding energies
for the HER25319F and HER25319Y mutants with HER3WT and HER3F%?8G_ Reported as mean +/- standard
error across 5 lowest interface energy samples per group. (C) HER2WT active state depicting L755 interacting
with hydrophobic core residues at the 33-a:C interface. (D) HER2L75S active state depicting S755 interacting
with hydrophobic core residues at the $3-oC interface. (E) HER2WT inactive state depicting L869 interacting
with hydrophobic core. (F) HER2-8R inactive state depicting R869 interacting with hydrophobic core. (G)
HER2WT active state depicting V777 interacting with the back hydrophobic pocket. (H) HER2V777L active
state depicting L777 interacting with the back hydrophobic pocket.
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Figure 5.6: HER3F928G enhances HER2/HER3 association and PI3K pathway activation. (A) HEK293 cells
were co-transfected with WT or mutant HER2 and HER3WT or HER3E%28G, For immunoprecipitation, lysates
were incubated with HER2 antibody Ab-17 overnight at 4°C, followed by incubation with Protein G beads
and magnetic separation. (B) Immunoblot bands from (A) were quantified using ImagelJ. (C) HEK293 cells
were co-transfected with WT or mutant HER2 and HER3WT or HER3928G,  Cells were serum-starved
overnight, then lysed. Cell lysates were probed with the indicated antibodies. (D) MCF10A cells stably
expressing WT or mutant HER2 and HER3WT or HER3F%28C were starved in EGF/insulin-free media + 1%
CSS overnight. Lysates were probed with the indicated antibodies. (E) MCF10A cells stably expressing the
indicated transgenes were starved and lysed as in (D). Where indicated, western blot bands were quantified
using ImageJ. The ratios were normalized to the WT/WT condition. Data and illustrations produced by Han-
ker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan,
D. R;; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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in unstimulated cells (Figure 5.6C). These results support a model whereby the concurrent HER2/ HER3 KD
mutants promote ligand-independent HER2/HER3 KD association and HER?2 kinase activation.

Next, we stably transduced MCF10A breast epithelial cells with WT and mutant HER2, each with WT
or mutant HER3. In low-serum conditions, cells expressing the double mutants showed the highest levels
of P-HER3 (Figure 5.6D). Unlike HER2, P-HER3 can directly bind to the p85 subunit of PI3K, inducing
PI3K activity (Haikala and Janne, 2021). Consistent with this, levels of P-AKT were also highest in double-
mutant cells (Figure 5.6D). P-HER3 and P-AKT were enhanced to a similar degree by NRG stimulation in
HER2-mutant/HER3WT cells (Figure 5.7D).

The above experiments were performed in the context of ectopic expression of HER2 and HER3; how-
ever, most concurrent HER2 and HER3 mutations occur in the absence of HER2 gene amplification (Figures
5.1A and 5.1B). Therefore, we expressed HER3WT or HER3928G in (1) OVCARS ovarian cells, which con-
tain an activating somatic HER26776V mutation without HER2 amplification (Sudhan et al., 2020), and (2)
MCF7 HER2-non-amplified breast cancer cells isogenically modified to express HER2L7>3S or HER2V777L
at endogenous levels (Zabransky et al., 2015). Expression of HER3E923G enhanced co-IP with mutant HER2
in OVCARS cells and enhanced P-HER3 in both models compared with HER3WT (Figures 5.6E and 5.7E).
Levels of P-AKT were also increased in OVCARS cells expressing HER3E928G | but not in MCF7 double-
mutant cells, perhaps because these cells harbor an activating PIK3CA mutation. These results suggest that
concurrent HER2/HER3 mutants enhance ligand-independent PI3K activity, providing a plausible explana-
tion for the mutual exclusivity of co-occurring HER3 and PIK3CA mutations in HER2-mutant breast cancers
(Figure 5.1A).

We noted above that HER2 insertion mutations did not cooccur with HER3 mutations (Figures 5.1A
and 5.1B). Therefore, we asked whether the HER2Y772-A775dup (HER2YVMA) insertion mutant could ac-
tivate HER2/PI3K to a similar degree as cooccurring HER2 and HER3 missense mutants. We modeled
the insertion mutants HER2YYMA and HER2G778-P780dup (HER2GSP) mutations based on the HER2WT and
EGFRP770-N771insNPG gryctures (Figure 5.7F). Simulations suggest that HER265P and HER2YYMA have re-
duced free energy barriers to activation relative to HER2WT (Figures 5.7F and 5.7G). Next, we stably trans-
duced MCF10A cells with HER2YYMA and HER3WT or HER3¥%86. Both HER2/HER3 co-IP and P-AKT
levels were similar in cells expressing HER2YYMA/HER3WYT and HER2L755S/HER3E28C (Figures 5.6 and
5.7H). Co-expression of HER3F928G with HER2YYMA did not further increase P-AKT, suggesting that HER2
insertion mutations and HER3 mutations are stronger activators of PI3K than HER2 missense mutations
alone.

While HER3E928G ig the most common HER3 mutation in breast cancer, we noted several cases of co-

occurring HER2/ HER3 ECD mutations (Figure 5.1D). Thus, we expressed each HER3 ECD mutation to-

93



A B

0.000¢

HER3WT HER3E9286

8

0007

20
w 8
I 8 10
3
(%]
't’;; ~oos
5
& 0.0
w & &
4 & @&o
1 1 ] 1 <
' [ @ l2g
H PR R
D a TERER B
[ [k
& TETOEY LY
NRG1 (10 ng/ml) + 1 - +i- - +
P-HER3"1269 L - -|
HER3| - - -:--:--1--|
prezee L w | cieeeel
HER?2 ; ; ;
P-AKTT308 D e f—— ———
P.AKTS#3 U ——— - - -
P-ERKT202Y204 | - e -
PSSz | : —-———-.-.-|
B-actin v . : -

MCF10A

EGFRUSR  EGFROVOMNTINSNEG  HERWT HER2™VHA HER265?

= HER3WT =m HER3 ES28G
HER2:

HER3:

WT | L7558 | V777L

WTEG | WTEGIWT EG JWTEG

priERam™ E
-

PHER2V12212
HER3
p-actin E
HEK293
Eg .8.8._¢ B o_8_8,_¢8
E ¥ z@zdzd
o 0w 0 J J o 0w o J J
g _.B8EE g __BEEE
£ 335555 £ 2=:555°%
P-HER3 L ——
HER3 ' "". o Y1289
& "
I HER3 e
HER2 (S e e 0 o 8 || G
P-HER2 R
MCF7
o
HER2| - g
P-AKTS73 --"
P-AKTT:08 R k. ]
Bramm
MCF7
YVMA GSP
s 2y 80
: T 3
. g 3 ol
= ©
0 s o0 40 g
5 £ -5 . 30n:
o g 2005

aC-R4 loop p T 3 T
DB63Ca - FB64Ca - GBE5Ca - L866Ca (radians)
Experimental Modeled from Modeled
experimental
H B & . | & .23%g%_ 338z
& & ceg2d8geca8y
T = w = H 2Ss0p¢zssopg
8 2 g s P 555555
r 8 8 = i cErccEcsssaan
T 5 5 2 I 2223232283388 3
IP: HER2
HER2
HER3 .
HER3HER2: 10 140 170 .l.....-!. !
HER2 | M meeeEn
———
B-actin -—
MCF10A
HEK293

94

[ 1 2 3
D863Ca - FB64Ca - GBBSCa - L866Ca {radians)

Figure 5.7: Effects of co-occurring HER2/HER3 mutations or HER2 insertion mutations on HER2 kinase
activity and HER2/HER3 KD interaction. (A) The intracellular domains (ICDs) of WT or mutant HER2 and
HERS3 were transiently transfected into HEK-293 cells. Cell lysates were probed with the indicated antibod-
ies. EG, E928G. (F) Illustration of exon 20 insertion mutants. Exon 20 insertion mutations are highlighted
in purple. (G) Activation state conformational free energy landscapes of the HER2YYMA and HER265P in-
sertion mutants. (D) MCF10A cells stably expressing the indicated genes were cultured in EGF/insulin-free
media. Lysates were subjected to immunoprecipitation with the HER2 Ab-17 antibody. Western blot bands
were quantified using ImageJ and normalized to the HER2-73>S/HER3WT condition. (E) HEK293 cells were
co-transfected with full-length HER2VT or HER253!1%F along with WT or mutant HER3 (ECD mutations).
Cells were serum-starved overnight. Cell lysates were probed with the indicated antibodies. Data and illus-
trations for figure panels A, B, C D, E, H, and I produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye,
D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch,
J. P; He, J.; Lalani, A. S.; and Arteaga, C. L.



gether with HER2WYT or HER2531F in HEK293 cells. HER253!9F expression with HER3WT resulted in in-
creased ligand-independent HER2 and HER3 phosphorylation compared with HER2WYT (Figure 5.71). How-
ever, co-expression of HER3 ECD mutants did not further enhance phospho-HER2 or -HER3, suggesting

that these HER3 mutants do not promote ligand-independent HER2/HER3 activation.

5.2.4 Co-occurring HER2/HER3 mutants enhance oncogenic growth and invasion

Next, we asked whether concurrent HER2/HER3 mutants cooperate to transform breast cancer cells. While
most of the cooccurring mutations enhanced growth in 2D and 3D (Figures 5.8A and 5.8B), expression of
the most common pair, HER273S/HER3F28G | did not further enhance monolayer 2D growth above that of
HER2L75%5 alone.

However, when cultured in 3D Matrigel, MCF10A HER2L725S/HER3F%28C cells formed large invasive
acini in the absence of added NRG1 (Figures 5.8C and 5.8D), suggestive of a more transformed phenotype.
Similar invasive acini were formed by cells expressing HER25319F/HER3F??8G and HER2M86°R/HER 398G
but not by cells expressing either HER2 variant with HER3WT (Figure 5.9A). Notably, NRG1 treatment phe-
nocopied the effect of HER3F9%8C in cells expressing HER3WT and HER2 mutants (Figure 5.8C). Ligand-
independent invasive acini were formed by cells transduced with HER2YVMA byt this effect was not enhanced
by co-transduction with mutant HER3. Invasion through Matrigel-coated chambers was strongly enhanced
by all of the double mutants or by HER2YYMA/HER3WT (Figures 5.8E, 5.8F, and Figure 5.9B—Figure 5.9E).
Together, these results suggest that concurrent HER2/HER3 mutants enhance ligand-independent PI3K path-

way activation, which is associated with increased invasion (Samuels et al., 2005).

5.2.5 HER3®28G promotes resistance to HER2-targeting antibodies
We next asked whether HER2- and HER3-targeting antibodies could disrupt the association of HER3E928¢
with HER2 and the enhanced oncogenicity conferred by co-occurring HER2/HER3 mutations. We used the
HER?2 antibodies trastuzumab and pertuzumab, which disrupt ligand-dependent and -independent HER2/HER3
dimers (Agus et al., 2002; Junttila et al., 2009) and PanHER, a mixture of antibodies targeting EGFR, HER2,
and HER3 that induces ERBB receptor downregulation (Jacobsen et al., 2015). In agreement with previous
studies (Greulich et al., 2012; Kavuri et al., 2015), MCF10A cells expressing the extracellular HER25310F
mutation were exquisitely sensitive to the combination of trastuzumab and pertuzumab and to PanHER (Fig-
ures 5.10A-5.10C and 5.11A). However, co-expression of HER3E928C reversed this response (Figures 5.10B
and 5.10C).

co-IP of cell lysates with HER2 antibodies showed that HER253!%F /HERWT dimerization was disrupted

by trastuzumab and pertuzumab. In cells expressing HER25319F/HER3F928G | dimerization was not affected

95



>
os]

25, HE HER3WT mm HER3 E928G 2x107- WM HER3WT mm HER3 E928G
— <0.0001 'E| <0.0001 ‘\'g s 0.0032
0.0001 -
g 20 1.5x107 ) 1
3 a
g E 5 g ns
2L 2 ax07
3 <0.0001 5
EN10 S
38 <0.0001 3 5x100q
s 5 °
=3

HER2WT/ HER2VT/ HER2L7558/ HER27558/ HER2YVMA/  HER2YVMA/ mm HER3WT ®m HER3 E928G
HER3WT HER3E928¢ HER3WT HER3ES286 HEE:)’WT HER3E9286 N <0.0001
g : @ [w 2 5 = £
e s L @ ° ¥ PN 5
e ) ® g2 30
Z g S ‘B 29 0.043
" 250ym o 3% 20
— - £
Ol e | gr o
x| JE Mg 5
Z ?L:_ :e*_ < o
& \al
&
& &
¥ ¥
E F mm HER3WT mm HERS E928G
<0.0001
HER2W/HER3WT 200
§ 150
(7]
S
|| c
500pm ‘o 100
=3
5
& 50
0
& =
A9
9 ©
& v
RS Q{&

Figure 5.8: Co-occurring HER2/HER3 mutations enhance oncogenic growth and invasion of breast epithelial
cells. (A) MCF10A cells stably expressing WT or mutant HER2 and HER3 were grown in 2D in EGF/insulin-
free media + 1% CSS for 6 days. Cell viability was measured by Cell Titer Glo. (B) MCF10A cells were
grown in 3D Matrigel in EGF-insulin-free media + 1% CSS and stained with MTT. The total volume of
colonies per well was quantified using the Gelcount instrument. Data represent the average +/- SEM of three
replicates (**** p;0.0001, one-way ANOVA + Bonferroni multiple comparisons test). (C) MCF10A cells
stably expressing WT or mutant HER2 and HER3 were grown in 3D Matrigel in EGF-free media + 1% CSS
+/- 10 ng/ml NRG1. (D) The number of colonies showing invasive branching per field of view (FOV) was
quantified. Data represent the average +/- SD of three replicates (**, pj0.01, student t-test). (E) MCF10A cells
stably expressing the indicated genes were seeded on Matrigel-coated chambers. After 22 h, invading cells
were stained with crystal violet. (F) Relative invasion (normalized to HER2VT/HER3WT) from two FOVs
per well was quantified using ImageJ. Data represent the average +/- SD of 3-4 replicates (****, p;0.0001,
One-way ANOVA + Bonferroni multiple comparisons test). Data and illustrations produced by Hanker, A.
B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.;
Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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Figure 5.9: Co-occurring HER2/HER3 missense mutations or HER2 insertion mutations increase the invasive
capacity of breast epithelial cells. (A) MCF10A cells stably expressing the indicated genes were grown in
3D Matrigel in EGF-free media + 1% CSS. (B) MCF10A cells stably expressing the indicated genes were
seeded on Matrigel-coated chambers. After 22 h, invading cells were stained with crystal violet. (C) Relative
invasion (normalized to HER2VT/HER3"T) from two FOVs per well was quantified using Image]. Data
represent the average +/- SEM (n;3). P values, two-way ANOVA + Bonferroni. (D) MCF10A cells stably
expressing the indicated genes were seeded on Matrigel-coated chambers and stained as in (B). (E) Relative
invasion (normalized to HER2L733S/HER3E928C was quantified as in (C). Data represent the average +/- SEM
(n;4). Data and illustrations produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.;
Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P;; He, J.;
Lalani, A. S.; and Arteaga, C. L.
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Figure 5.10: HER3F%28G promotes resistance to HER2- and HER3-targeting antibodies by retaining
HER2/HER3 kinase domain association. A) Model of HER2/HER3E928C heterodimer bound to trastuzumab,
pertuzumab, PanHER antibody mixture, or LIM716. The enhanced kinase domain association mediated by
HER3F%%8G is not predicted to be disrupted by antibodies blocking the associationof the HER2 and HER3
ECDs. (B) MCF10A cells stably expressing the indicated genes were grown in 3D Matrigel in EGF/insulin-
free media treated with vehicle (PBS), 20 g/ml PanHER, 20 g/ml each trastuzumab + pertuzumab and stained
with MTT. (C) The total volume of colonies per well was quantified using the Gelcount instrument. Data
represent the average +/- SD of three replicates. (D) MCF10A cells stably expressing HER253!9F/HER3WT
or HER2%31OF/HER3F928G were treated with vehicle (PBS) or 20 g/ml each trastuzumab and pertuzumab
for 24 h in EGF/insulin-free media + 1% CSS. Following an acid wash to remove bound antibodies, HER2
immunoprecipitation was performed as described in STAR Methods. (E) MCF10A cells stably expressing
HER2331F/HER3WT or HER25319F/HER3E928G were treated with vehicle (PBS), 20 g/ml each trastuzumab
and pertuzumab, or 20 g/ml PanHER for 24h in EGF/insulin-free media + 1% CSS. Lysates were probed with
the indicated antibodies. Data and illustrations produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye,
D,; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch,
J. P; He, J.; Lalani, A. S.; and Arteaga, C. L.
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by antibody treatment (Figure 5.10D). Similarly, the antibodies blocked P-HER3, P-AKT, and the down-
stream effector P-S6 in MCF10A cells expressing HER25319%F/HER3WT but failed to do so in cells express-
ing HER23310F/HER3E928C (Figure 5.10E). Flow cytometry analysis revealed that HER3928C did not disrupt
trastuzumab binding to cell surface HER2 (Figure 5.11B). These results suggest that HER3E928G may enable
the intracellular association of HER2 and HER3 KD mutants, even when the ECD interaction is disrupted by

neutralizing antibodies.
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Figure 5.11: HER25*!%F.induced transformation is blocked by anti-HER2 antibodies. (A) MCFI10A cells
stably expressing the indicated genes were grown in 3D Matrigel in EGF/insulin-free media treated with
vehicle (PBS) or 20 g/ml each trastuzumab + pertuzumab for 7 d. Scale bar, 500 m. (B) MCF10A cells
stably expressing the indicated transgenes were stained with 0.2 g/ml trastuzumab and an Alexa Fluor 647-
conjugated goat anti-human IgG secondary antibody and analyzed by flow cytometry. Data and illustrations
produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.;
Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C.
L.

5.2.6 HER3F28G modulates sensitivity to neratinib

The HER2 TKI neratinib has emerged as a promising treatment for HER2-mutant metastatic breast cancer.
However, only a subset of HER2-mutant patients respond to neratinib (Hyman et al., 2018; Ma et al., 2017;
Smyth et al., 2020). Therefore, we asked whether concurrent HER3E928G mytations affect the ability of ner-
atinib to inhibit HER2. Neratinib is an ATP-competitive TKI, so its efficacy is a function of ATP-binding
affinity. MD simulations and molecular mechanics generalized Born and surface area binding energy calcu-

lations of the HER2WT-ATP complex heterodimerized with HER3WT or HER3F28C suggest that HER3F923G
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enhanced binding affinity to ATP (Figure 5.12A). Similar results were seen in simulations of missense vari-
ants (Figures 5.12B and 5.12C). Our simulations suggest that HER3E928G reduces the binding affinity of
neratinib to HER2WT, HER217558 | and HER2M%°R (Figure 5.12D). They also suggest that HER21-75°S | and
to a lesser extent HER21-%°R ' may have reduced sensitivity to neratinib that is compounded by co-occurrence
with HER3E928G | consistent with previous reports that HER2L753S may be less sensitive to HER2 TKIs (Li
et al., 2019; Robichaux et al., 2019). In contrast, HER2V77"L is expected to mostly retain sensitivity to
neratinib even when co-occurring with HER3E928G (Figure 5.12D).

We subsequently tested the neratinib sensitivity of MCF10A cells co-expressing WT or mutant HER2 and
HER3. Co-expression of HER3F28G resulted in a 15-fold shift in neratinib halfmaximal inhibitory concentra-
tion (IC50) in MCF10A HER25%!%Fexpressing cells (Figure 5.12E). Similar results were obtained with other

3E928G reduces sensitiv-

HER?2 TKIs (poziotinib, afatinib, and tucatinib), suggesting that expression of HER
ity to most HER2 ATP-competitive inhibitors (Figure 5.13A). However, the shift in IC50 varied in a HER2
allele-specific manner (Figures 5.12F and 5.13B), consistent with our computational predictions (Figures
5.12D). For example, HER2L723 cells were less sensitive to neratinib compared with HER2531%F | consistent
with previous reports (Li et al., 2019; Robichaux et al., 2019). This trend was similar in 3D Matrigel cultures:
treatment with neratinib blocked growth of MCF10A HER253!1F/HER3WT and HER2V77"“/HER3WT cells
and partially blocked growth of MCF10A HER2MR/HER3WT cells, whereas cells expressing HER2L73S
were largely resistant (Figure 5.12G). Co-expression of HER3F28G reduced the response to neratinib in cells
expressing most HER2 mutants. Consistent with the effects on cell growth, neratinib treatment blocked
P-HER3, P-AKT, and P-S6 in MCF10A cells expressing HER2mutant/HER3WYT, but to a lesser degree in
cells expressing HER2735S/HER3WT, while neratinib failed to block HER3/PI3K signaling in cells express-
ing HER3F928G (Figure 5.13C). Furthermore, OVCARS cells (somatic HER29776V) ectopically expressing
HER3F28G (Figure 5.6E) exhibited reduced sensitivity to neratinib compared with cells expressing HER3WT
(Figure 5.13D).

Next, we established organoids from an HER2-mutant, nonamplified breast tumor model: the SA493
patient-derived xenograft (PDX), derived from an ER+/HER2531%F Jobular breast cancer (Eirew et al., 2015).
We confirmed that the organoids retained the HER253!19F mutation (Figure 5.13E). Next, we stably trans-
duced these organoids with HER3WT or HER3928G (Figure 5.13F); expression of HER3E928G in these
HER2-mutant organoids increased P-HER3, P-AKT, and P-S6 (Figure 5.13G). In ligand-free media, cells
expressing HER3F928G formed larger, less-organized organoids compared with those expressing HER3WT,
suggesting that HER3E28C promotes a more aggressive phenotype of this HER2-mutant breast cancer model

3WT

(Figure 5.13H). While parental organoids and those expressing HER were quite sensitive to trastuzumab

+ pertuzumab, neratinib, or the combination, organoids expressing HER3E928G exhibited markedly reduced
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Figure 5.12: Co-occurring HER3 mutations modulate neratinib sensitivity in HER2-mutant cells. (A) Molec-
ular dynamics MM/GBSA binding affinity estimates of ATP to HER2VT/HER3WT and HER2WT/HER3F928G,
(B) Probability density kinase domain hinge — ATP hydrogen bond distance in HER2WT, HER2L75>S,
HER2VY777%, and HER28°R dimerized with HER3WT. (C) Probability density kinase domain hinge — ATP
hydrogen bond distance in HER2WT, HER2L735, HER2Y77", and HER2M3%R dimerized with HER3E928G,
(D) Molecular dynamics MM/GBSA relative binding affinity estimates of neratinib to different HER2 mis-
sense mutants heterodimerized with either HER3WT or HER3F928G_ (E) MCF10A cells stably expressing
the indicated genes were grown in EGF/insulin-free media + 1% CSS and treated with the indicated concen-
trations of neratinib for 6 days. Cell viability was measured using CellTiterGlo. (F) Neratinib IC50s were
determined as in (E). Data represent the average of 3 independent dose-response curves containing 4 repli-
cates each. (G) MCF10A cells stably expressing WT or mutant HER2 and HER3 were grown in 3D Matrigel
in EGF-free media + 1% CSS £ 10 nM neratinib and stained with MTT. The total volume of colonies per
well was quantified using the Gelcount instrument. Data represent the average + SD of three replicates. Data
and illustrations for figure panels D - G produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin,
C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He,
J.; Lalani, A. S.; and Arteaga, C. L.
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Figure 5.13: The growth of CW2 HER2L733/HER3E928G colon cancer cells depends on HER25S and
HER3. A) Electropherograms of ERBB2 cDNA from CW2 cells, indicating heterozygous expression of
HER273%S and HER3F928G | A reverse primer was used for HER2 sequencing. (B) CW2 cells were trans-
fected with siControl or siRNA specifically targeting HER2L723S, qRT-PCR was performed using primers
specific for HER2WT (black) or HER2L723S (blue). **, p;0.01, two-way ANOVA + Bonferroni multiple com-
parisons test. (C) CW2 cells were transfected control or HER3 siRNA. qRT-PCR was performed using HER3
primers. (D) CW2 cells were transfected with the indicated siRNA and lysed after 48h. Lysates were probed
with the indicated antibodies. (E) CW2 cells were transfected with the indicated siRNA. Cell viability after
4 days was measured using the CyQuant assay. **, p;0.01; ***, p;0.001, one-way ANOVA + Bonferroni.
(F) CW2 cells were transfected with the indicated siRNA. Total cell number was measured after 4 days using
a Coulter counter. ***, p;0.001; ****, p;0.0001, one-way ANOVA + Bonferroni. Data represent the aver-
age £+ SD of three independent experiments. Data and illustrations produced by Hanker, A. B., Marin, A.;
Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.;
Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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sensitivity to these agents (Figure 5.12H). Together, our results suggest that HER3F%28G increases ligand-
independent growth and reduces sensitivity to HER2-targeting agents in multiple HER2-mutant tumor mod-

els.

5.2.7 Cancer cells with co-occurring HER2/HER3 mutations are sensitive to combined inhibition of
HER2 and PI3K«
Our results suggest that HER2/HER3 co-mutations hyperactivate the PI3K/AKT pathway and result in rel-
ative resistance to HER2-targeted therapies. Therefore, we tested the combination of neratinib with a PI3K
inhibitor in MCF10A cells expressing the double mutants. The combination of neratinib with the PI3Ka in-
hibitor alpelisib or with the pan-PI3K inhibitor buparlisib blocked P-AKT and P-S6 in MCF10A HER27>3S/HER 3F928G
and HER2- YVMA cells more potently than either drug alone (Figure 5.14A).

The combination of neratinib and alpelisib also strongly reduced colony growth and invasive acini for-
mation in 3D Matrigel by these cells (Figures 5.14B and 5.14C). Next, we examined CW2 colorectal cancer
cells, which harbor somatic HER273>S/HER3E928¢ mutations (Figure 5.15A) (Kloth et al., 2016). Small in-
terfering RNA (siRNA)-induced knockdown of either HER273%S or HER3 showed that the proliferation and
PI3K activity in these cells is partially dependent on both mutant HER2 and HER3 (Figures 5.15B-5.15F).
The combination of neratinib and alpelisib was required to eliminate P-AKT and synergistically blocked
proliferation in these cells (combination index = 0.42) (Figures 5.14D and 5.14E). While 4 h treatment with
neratinib + alpelisib strongly blocked P-ERK and P-S6 in CW2 and MCF10A HER2733S/HER3F9%8C cells,
arebound was seen at 24 h of treatment (Figures 5.15G and 5.15H), perhaps reflecting activation of feedback
pathways (Chakrabarty et al., 2012; Chandarlapaty et al., 2011).

In addition, the combination delayed growth of CW2 xenografts more potently than each drug alone (Fig-
ures 5.14F and 5.15I). Together, our data suggest that addition of a PI3Ka inhibitor increases the sensitivity

of tumors with HER2mut/HER3E928G o HER2 TKIs.

5.3 Discussion

Somatic HER2 mutations are increasingly being recognized as targetable alterations in breast and other can-
cers (Mishra et al., 2017; Cocco et al., 2018), prompting a number of studies testing HER2 TKIs in HER2-
mutant cancers (Hyman et al., 2018; Robichaux et al., 2019; Smyth et al., 2020). Here, we investigated the
intriguing co-occurrence of mutations in HER2 and HER3, genes that encode members of the same signaling
complex. We reasoned that such patterns of co-occurrence indicate a selective advantage conferred by both
oncogenes during tumor evolution. Recent studies have found that a number of oncogenes, including HER2,

HER3, and PIK3CA, often harbor more than one mutation in the driver oncogene, termed *composite muta-
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Figure 5.14: Cancer cells harboring co-occurring mutations in HER2 and HER3 are sensitive to com-
bined inhibition of HER2 and PI3Kca. (A) MCFI10A cells stably expressing HER2L73>S/HER3E928G or
HER2YVMA/HER3WT were treated with vehicle (DMSO), 500 nM neratinib, 500 nM buparlisib, 50 nM ner-
atinib, or the indicated combinations for 4 h in EGF/insulin-free media + 1% CSS. Lysates were probed
with the indicated antibodies. (B) MCFI0A cells stably expressing the indicated genes were grown in
3D Matrigel in EGF/insulin-free media + 1% CSS treated with vehicle (DMSO), 20 nM neratinib, 1 M
alpelisib, or the combination. (C) The number of colonies showing invasive branching per field of view
(FOV) from (B) was quantified. Data represent the average + SD of three replicates. (D) CW2 colon cancer
cells (HER2L75S/HER3E9280) were treated with vehicle (DMSO), 500 nM alpelisib, 50 nM neratinib, or the
combination in serum-free media for 4 h. Lysates were probed with the indicated antibodies. (E) CW2 cells
were treated with increasing concentrations of neratinib (0-100 nM) or alpelisib (0-1000 nM) alone or in
combination for 72 h. Cell viability was quantified using the CyQuant assay and combination indices were
determined using the Chou-Talalay test. Numbers inside each box represent the average % viability (relative
to untreated controls) from two independent experiments. (F) Mice carrying CW2 xenografts were treated
with vehicle, 40 mg/kg neratinib, 40 mg/kg alpelisib, or the combination for 14 days, starting when tumors
reached 200 mm3. Data and illustrations produced by Hanker, A. B., Marin, A.; Jayanthan, H. S.; Ye, D.;
Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J.
P; He, J.; Lalani, A. S.; and Arteaga, C. L.
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Figure 5.15: The growth of CW2 HER2L733S/HER3F28G colon cancer cells depends on HER2M73S and
HER3. (A) Electropherograms of ERBB2 cDNA from CW2 cells, indicating heterozygous expression of
HER2M7538 and HER3F%28G | A reverse primer was used for HER2 sequencing. (B) CW2 cells were trans-
fected with siControl or siRNA specifically targeting HER273S, qRT-PCR was performed using primers
specific for HER2WT (black) or HER27>3S (blue). P values, two-way ANOVA + Bonferroni. (C) CW2 cells
were transfected control or HER3 siRNA. gRT-PCR was performed using HER3 primers. P values, one-
way ANOVA + Bonferroni. (D) CW2 cells were transfected with the indicated siRNA and lysed after 48h.
Lysates were probed with the indicated antibodies. (E) CW2 cells were transfected with the indicated siRNA.
Cell viability after 4 d was measured using the CyQuant assay. P values, one-way ANOVA + Bonferroni.
Data represent the average = SD of three independent experiments. (F) CW2 cells were transfected with
the indicated siRNA. Total cell number was measured after 4 d using a Coulter counter. P values, one-way
ANOVA + Bonferroni. Data represent the average + SD of three independent experiments. (G,H) MCF10A
HER2M75S/HER3F28G (G) and CW2 (H) cells were treated with vehicle (DMSO), 500 nM alpelisib, 50 nM
neratinib, or the combination in serum-free media for 24 h. Lysates were probed with the indicated antibod-
ies. (I) Mice carrying CW2 xenografts were treated with vehicle, 40 mg/kg neratinib, 30 mg/kg alpelisib,
or both drugs for 14 d, starting when tumors reached 200 mm3. Data represent the average tumor volme +
SEM. P value, student’s t-test, vehicle vs. combination (Day14). Data and illustrations produced by Hanker,
A. B., Marin, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D.
R.; Servetto, A.; Brewer, M. R.; Koch, J. P;; He, J.; Lalani, A. S.; and Arteaga, C. L.
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tions’ (Gorelick et al., 2020; Saito et al., 2020). In particular, composite PIK3CA mutations have been shown
to increase PI3K activity and PI3K-dependent tumor growth (Vasan et al., 2019). We speculate that single
gain-of-function missense mutations may not fully maximize HER2/HER3 activation, such that either com-
posite HER2 mutations, or co-occurring HER2/HER3 mutations, increase pathway activation and provide a
selective advantage.

It is well established that HER2-driven transformation, invasion, and metastasis depends on HER3/PI3K
signaling (Holbro et al., 2003; Smirnova et al., 2012; Xue et al., 2006). In addition, activating mutations
PIK3CA cooperate with amplified WT HER2, enhancing invasion and metastasis (Chakrabarty et al., 2010;
Hanker et al., 2013). In line with these data, co-mutant HER2/HER3 hyperactivate PI3K/AKT and enhance
transformation/invasion (Figures 5.6 and 5.8), potentially explaining the observed mutual exclusivity of these
alterations in HER2-mutant breast tumors (Figure 5.1A). While clinical information of patients with co-
occurring HER2/HER3 mutations is scarce, future studies should address whether this genomic subset of
patients correlates with increased metastasis.

We observed strong concordance between our computational structural predictions and biological results.
Our simulations suggest that co-occurring HER2 and HER3 mutants enhance the coupling of the receptor

2WT while

KDs, such that HER2 missense mutants increase kinase conformational activation relative to HER
HER3F%28G enhances heterodimerization affinity (Figure 5.16B). This model is supported by co-IP, PLA,
and immunoblot assays (Figures 5.6 and 5.7). Our simulations also predicted that HER2L7>S binds nera-
tinib with reduced affinity (Figure 5.12D). Indeed, HER2L73>S was less sensitive to neratinib than the other
HER2 mutants in our cell viability and 3D Matrigel assays (Figures 5.12F, 5.12G, 5.13B, and 5.13C), con-
sistent with previous reports (Li et al., 2019; Robichaux et al., 2019). Likewise, our computational modeling
predicted that neratinib binding depends on the specific HER2 mutation within the HER2/HER3E928G het-
erodimer (Figure 5.12D). This was confirmed in cell-based assays: while HER3F?8C strongly reduced nera-
tinib sensitivity and neratinib binding in the absence of HER2 KD mutations (i.e., HER25319F/HER 3E928G))
the HER2V77"L/HER3F??%G double mutant retained a strong interaction with neratinib and a high degree of
sensitivity to neratinib (Figures 5.12F and 5.12G). Thus, HER3F928C reduces sensitivity to neratinib in a
HER?2 allele-specific manner.

Our results suggest that HER?2 allele-specific differences in neratinib sensitivity are related to unique

mechanisms of activation of each mutant. We hypothesize that HER2-75>S

stabilizes the N-terminal region
of the aC helix (Figures 5.5C and 5.5D). In contrast, we hypothesize that HER2V77"! increases hydrophobic
contacts in the back hydrophobic pocket, but may also function similar to KD insertion mutants (Figures
5.5E and 5.5F). Because L755S more rigidly pulls the @C helix inward from the N-terminal region, the

force applied perpendicularly to the o¢C helix by the neratinib pyridine ring may be greater than in V777L,
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Figure 5.16: Model of HER2/PI3K pathway activation by co-occurring HER2/HER3 mutations. In the ab-
sence of ligand, HER3WYT is in the closed conformation and does not interact with HER2WT. NRG1 treatment
(hot pink circle) promotes HER2/HER3 heterodimerization, and a HER2 missense mutation further increases
HER3 phosphorylation to recruit the p85 subunit of PI3K and activate PI3K signaling. In the absence of
ligand, the HER3E%28G mutation phenocopies NRG1 treatment by increasing HER2/HER3 association via
enhanced binding of the HER2/HER3 kinase domains, leading to constitutive activation of PI3K. HER2 in-
sertion mutations alone, without HER3 mutations, also increase ligand-independent HER2/HER3 association
and PI3K activation. (B) A schematic equilibrium model showing how HER2missense mutations cooperate
with HER3F%28G to enhance receptor heterodimerization and drive oncogenic activation.
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analogous to EGFRL858R (Sogabe et al., 2012). Finally, we hypothesize that HER2-8%R decreases the
stability of the KD inactive conformation. The intermediate neratinib sensitivity of HER28R may be the
result of increased occupancy of the active conformation without direct stabilization of the oC helix (Figures
5.5G and 5.5H). Crystallographic studies coupled with detailed structure-activity relationship profiling and
long-timescale MD simulations are needed to fully elucidate the structural basis of TKI sensitivity/resistance.

In recent clinical trials of neratinib in patients with HER2- mutant cancer, patients with concurrent HER3
mutations in their tumors exhibited a lower clinical response and shorter progression-free survival (Hyman
et al., 2018; Smyth et al., 2020). Our results provide evidence that HER3F928C confers reduced sensitivity to
neratinib in HER2-mutant breast cancer cells. In addition to reducing neratinib sensitivity, we found that ex-
pression of HER3F923C strongly promoted resistance to HER2- and HER3-targeting antibodies (trastuzumab
+ pertuzumab or PanHER; Figure 5.12B). Similarly, (Jaiswal et al., 2013) found that HER3F28G was insen-
sitive to HER2- and HER3-targeting antibodies. We predict that small molecules that block HER2/ HER3
KD association would be most likely to block the oncogenic effects of concurrent HER2™issense/HER3E928G
mutations. To the best of our knowledge, clinical compounds that disrupt HER2/HER3 KD heterodimeriza-
tion have not been reported. In the absence of such a molecule, we hypothesized that the combination of
a HER2 TKI + PI3Ka inhibitor would block the increased oncogenicity caused by co-occurring HER2 and
HER3 mutations. Indeed, the combination of neratinib and alpelisib strongly reduced growth and invasion
of double-mutant cells. Similarly, the combination of HER2 and PI3Ka inhibitors has been suggested for
HER2-amplified breast cancers harboring PIK3CA mutations (Hanker et al., 2013; Rexer et al., 2014). While
initial clinical trials indicated that the combination of a pan-PI3K inhibitor with the HER2 TKI lapatinib
resulted in significant toxicities (Guerin et al., 2017), a recent trial suggested that the combination of the
HER?2 antibody-drug conjugate T-DM1 and a more specific PI3Ka inhibitor is tolerable (Jain et al., 2018).
Our results suggest that single-agent HER2 TKIs may not sufficiently block the growth of HER2-mutant
tumors with co-occurring HER3 mutations. Therefore, clinical trials investigating the efficacy and safety of
combining an HER2 TKI and PI3Ka inhibitor are warranted in cancers harboring cooccurring HER2/HER3

mutations.

5.4 Methods

5.4.1 Database searches

The Foundation Medicine database was queried for breast cancers harboring co-occurring mutations in
ERBB2 and ERBB3 in January 2019. Breast cancers from METABRIC (n=2509), Broad (n=103), Sanger
(n=100), TCGA (n=1108), INSERM Metastatic Breast Cancer (n=216), and the Metastatic Breast Cancer

Project (n=237) were queried in April 2019 using www.cBioPortal.org (Cerami et al., 2012). Breast can-
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cers from Project GENIE from Centers reporting alterations in ERBB2 and ERBB3 (n=8545; Centers =
COLU, CRUK, DFCI, DUKE, MSK, PHS, UCSF, VHIO, VICC, and YALE) were queried in June 2019
using www.cBioPortal.org/GENIE(Consortium, 2017). All breast cancers with co-occurring ERBB2 and
ERBB3 mutations were cross-referenced using at least two additional mutations in other genes to ensure that

individual patients were not counted more than once.

54.2 Computational modeling

Structural modeling of proteins was carried out using the Rosetta 3.12 macromolecular modeling software
package (Bender et al., 2016; Leman et al., 2020). The RosettaLigand application was used for molecular
docking (Combs et al., 2013; Meiler and Baker, 2006). Molecular dynamics simulations were carried out
using AMBER 18 (Case et al., 2018). Protein-protein interaction energy was obtained using the Interface An-
alyzer mover in Rosetta. Protein-ligand interaction energy was estimated using MMPBSA py (Miller et al.,
2012). RMSD, atom-atom distances, and dihedrals angles were obtained using various applications: Am-
berTools (Case et al., 2018), CPPTRAJ (Roe and Cheatham, 2013), and Rosetta. We used the following
forcefields / score functions for molecular modeling and simulation: AMBER ff14SB for proteins (Maier
et al., 2015), generalized AMBER force field 2 (GAFF2) for ligands (neratinib), REF2015 for Rosetta ki-
nase domain modeling, and Franklin 2019 for Rosetta HER2/HER3 near-full-length heterodimer modeling.
Neratinib geometry optimization was performed with Gaussian 09 at the B3LYP/6-31G* level of theory.
The electrostatic surface potential (ESP) was estimated with HF/6-31G* calculation. Partial charges gener-
ated with Gaussian 09 were fit to neratinib for MD simulations with the RESP procedure in AmberTools18

(Cornell et al., 1993). All structures were rendered with PyMOL 2.2. Graphs were generated with Matplotlib.

5.4.3 Structural modeling of the HER2-HER3 heterodimer

Modeling of the HER2/HER3 heterodimer was carried out in the Rosetta package (Song et al., 2013) utiliz-
ing multi-template comparative modeling (RosettaCM) with PDB structures 4RIW and 3PPO as templates
(Aertgeerts et al., 2011; Littlefield et al., 2014). HER3 was retained from 4RIW. The HER2 sequence was
threaded on the receiver kinase EGFR structure from 4RIW during templated modeling, or was templated on
the HER?2 structure from 3PPO superimposed on EGFR from 4RIW. In both instances, fragments from either
structure were incorporated during RosettaCM refinement. Following the comparative modeling step, each
structure underwent a single repeat of constrained FastRelax in the REF2015 score function. A total of 5000
structures were generated, and the top 20 best scoring structures were subjected to FastRelax with five repeats
and constraints on starting coordinates. Constraints were ramped down during FastRelax. The best scoring

complex was taken for subsequent analysis.
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The near-full-length HER2/HER3 heterodimer was constructed with RosettaCM multi-template model-
ing. The HER2/HER3 KD heterodimer generated in the previous step, which included the juxtamembrane
B (JMB) region, was used for the most of the intracellular component. C-terminal tails were excluded from
modeling because they are primarily disordered. The transmembrane domain (TMD) and juxtamembrane A
(JMA) regions were modeled based on the EGFR homodimer NMR structural ensemble in PDB ID 2M?20.
The HER?2 extracellular domain (ECD) domains I — III were modeled from the HER?2 crystallographic struc-
ture PDB ID IN8Z. The HER3 ECD domains I — II were modeled from the EGFR crystallographic structure
PDB ID 3NJP with fragments from the HER3 tethered structure PDB ID 1M6B. The PDB ID 1HAE NMR
ensemble of Neuregulin 1 (NRG1) was superimposed with EGF from 3NJP prior to incorporation into the
model of HER3 ECD. The ECD domain IV was modeled from 3NJP for both HER2 and HER3. Initial
threaded models of each of these structures were combined with the Rosetta Domain Assembly application
(Koehler Leman and Bonneau, 2018). Subsequently, the assembled structure underwent iterative rounds of
all-atom minimization in the Franklin2019 score function with POPC implicit membrane and ramped con-
straints to start coordinates (weights successively lowered: 1.0, 0.5, 0.1, 0.0). The minimized structure was
relaxed with constraints to start coordinates. Each domain (KD, JM, TM, and ECD) were separately and suc-
cessively relaxed to produce 100 structures in each round, after which the best scoring structure was moved to
the next round. The final structure was relaxed with constraints ramped down before being used in subsequent
Rosetta mutational studies.

The fully inactivated HER2WT monomeric KD were generated with RosettaCM utilizing a structure of
EGFR in the inactive state (PDB ID 3GT8) and refined with three independent 2.0 ms MD simulations. Struc-
ture snapshots were nominally collected every 20 ns from each trajectory and relaxed without constraints. The
best scoring relaxed structure was taken to be the inactive HER2 conformation for steered MD and umbrella

sampling simulations.

5.4.4 Molecular docking of HER2 protein and ligand (neratinib)

The initial structure of the inhibitor neratinib was downloaded from the PubChem database. The structures
were then optimized using Gaussian 09 D.01 version at b3lyp/6-31G(d)* level. Electrostatic potential charges
were calculated using Gaussian 09 and assigned using AmberTools. Small molecule conformers were gen-
erated with the BioChemical Library (BCL) conformer generator using default settings to create a maximum
of 100 conformers (Mendenhall et al., 2020). Ligand (neratinib) docking was carried out using the Roset-
talLigand application in Rosetta 3.12 (Combs et al., 2013; DeLuca et al., 2015). The docking of ligands into
proteins is divided into two phases: low resolution docking and high resolution docking. During the low-

resolution docking phase, each ligand is allowed to explore the binding site in a 6.0 A radius. Rigid body
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transformation is combined with ligand conformation swaps for 500 cycles of Monte Carlo Metropolis op-
timization. During the high-resolution docking phase, 6 cycles of side-chain rotamer and ligand conformer
sampling were coupled with 0.2 A in a Monte Carlo simulated annealing algorithm. 5000 docked protein-
ligand complexes were generated. The interface score of the protein-ligand complex was calculated using the
InterfaceAnalyzer mover in Rosetta 3.12 and the “ligand.wts” score weights. The root-mean-square deviation

was computed using the lowest interface scored structure as the reference pose.

5.4.5 Classical MD simulations

Structures from the above modeling methods were used as an initial structure for further studies. The active
and inactive reference frames of HER2 were set using previous studies and allowed to equilibrate based in
our classical MD simulations. Each structure was solvated in a rectangular TIP3P box (12 A buffer) neutral-
ized with monovalent ions CI and Na+ ions (Vega and Abascal, 2011). Solvent molecules were minimized
with 2,000 steps of steepest gradient descent followed by 5,000 steps of conjugate gradient descent, while the
protein/protein-ligand complex was restrained. The protein/protein-ligand complex was minimized in 2,000
steps of steepest gradient descent followed by 5,000 steps of conjugate gradient descent. Restraints were
subsequently removed and the whole system underwent 2,000 steps of steepest gradient descent followed by
5,000 steps of conjugate gradient descent minimization. The system was slowly heated in NVT ensemble to
100K over 100 ps. The system was then heated in NPT ensemble at 1 bar from 100K to physiologic temper-
ature (310K) over 500 ps. Equilibration was performed in NPT ensemble at 310K for 100 ns with a Monte
Carlo barostat. The temperature was controlled using Langevin dynamics and a unique random seed was
used for each simulation. SHAKE was implemented to constrain bonds involving hydrogen atoms. Periodic
boundary conditions were applied and the particle mesh Ewald (PME) algorithm was adopted for the calcu-
lation of long-range electrostatic interactions with a cutoff distance of 10 A. Hydrogen mass repartitioning

was employed to allow an integration time step of 4 fs.

5.4.6 Conformational free energy calculations

Potential of mean force (PMF) profiles for the active — inactive conformational transition in HER2 monomeric
KD were obtained by performing constant velocity steered MD (SMD) and Umbrella sampling (US) simu-
lations prior to free energy determination with the weighted histogram analysis method (WHAM) as imple-
mented by Alan Grossfield (Grossfield, ). SMD simulations were performed over 100 ns with a harmonic
bias potential and spring constant of 500 kcal/mol/A 2. SMD simulations were performed in both directions
(from the active to the inactive state and vice versa) using the Ca RMSD to the reference coordinates as the

collective variable. A minimum of 250 windows were selected from each forward and backward simulation
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with which to seed US simulations, such that each US simulation contained at least 500 windows to ensure
overlap. A 2D harmonic restraining potential was applied to two CVs for the US simulations. CV1 (y-axis)
was defined as the difference in the distance between R868(NE, CZ, NH1, NH2) — E770(OE1, OE2) and
K753(NZ) — E770(OE1, OE2). CV2 (x-axis) was defined as the dihedral angle formed by the Ca atoms
of the following residues: D863, F864, G865, and L866. A 2.0 kcal/mol/A 2 spring constant was used for
CV1, and a 10.0 kcal/mol/rad2 spring constant was used for CV2. At each umbrella center a 5 ns simulation
was performed. The first 1 ns was used for equilibration, and the following 4 ns were used for analysis in
WHAM. Lowest free energy pathway (LFEP) analysis completed with the LFEP package freely available

from the Moradi Laboratory at the University of Arkansas.

5.4.7 Protein-ligand free energy calculations

Protein-ligand binding free energy calculations were performed with MM/GBSA implemented in the Am-
berTools18 MMPBSA.py (Miller et al., 2012). Trajectories were stripped of water and ions. Energies were
computed with a surface tension of 0.0072 kcal/ mol/A 2 and salt concentration of 0.15 M. The non-polar
contribution to the solvation free energy was approximated using the LCPO method (Weiser et al., 1999).
Default radii assigned with Leap were kept for GBSA calculations. The enthalpic and solvation free en-
ergy contributions were computed every 100 ps. All calculations were completed from three independent

trajectories and averaged.

5.4.8 Protein-protein interface energy

The protein-protein interface energy, or DG_dimerization, was determined using a modified version of the
CartesianDDG protocol from Frenz et al. (Frenz et al., 2020). The best scoring HER2WT/HER3WT KD
heterodimer comparative model was transferred to the REF2015_Cartesian score function to an additional
20 rounds of FastRelax. The best scoring model from this subset was passed to the CartesianDDG applica-
tion in Rosetta with interface mode enabled in order to generate optimized models for HER2WT/HER3WT,
HER2L753S/HER3WT, HER2V77"L/HER3WYT, HER2M8R/HER3WT, HER2WT/HER3E9286 HER2L 755 /HER 3E928G,
HER2V7"“/HER3F928G  and HER28R/HER 328G The backbone degrees of freedom were set to i +/- 1
from the mutation site and 5 iterations were performed for each mutation. The all-atom attractive energy and
solvation implicit energy score terms were given cutoffs of 9.0 A . Finally, an additional 100 structures were
generated for each heterodimer KD complex by performing unrestrained Cartesian FastRelax beginning with
the best scoring model by the dG_separated score term from the InterfaceAnalyzer mover (repacking both
monomers after separation). Final binding affinity estimates for each complex are obtained by averaging the

top 20 best structures by dG_separated from the final round of relax. Results are reported as mean +/- standard

112



error over those 20 models.

5.4.9 Plasmids

The Gateway Cloning system (Thermo Fisher Scientific) was used to generate pLX302-HER?2 and pLX304-
HER3 plasmids. The pDONR-223 vector encoding either HER2WT or HER3WT was subjected to site-directed
mutagenesis (Genewiz) to generate HER2 or HER3 mutants. HER2WT and mutant plasmids were recombined
into the lentiviral expression vector pLX-302 containing a C-terminal V5 epitope tag and puromycin resis-
tance marker. HER3WT and mutant plasmids were recombined into pL.X-304, also containing a C-terminal
V5 tag, and blasticidin resistance marker. pFlag-CMV5.1 HER2 WT and HER3 WT ICDs were described
previously (Hanker et al., 2017) and were subjected to site-directed mutagenesis (Genewiz) to generate mu-

tants.

5.4.10 Transient transfections

Transient transfections were performed using Lipofectamine 2000 (Thermo Fisher Scientific) according to the
manufacturer’s instructions. Co-transfection of pFlag-CMV5.1 HER2 and HER3 WT and mutant ICDs was
performed as described (Red Brewer et al., 2013). siRNA transfections were performed using Lipofectamine

RNAiIMAX Transfection Reagent (Thermo Fisher Scientific) according to the manufacturer’s instructions.

5.4.11 Lentiviral infections

Lentiviral supernatant was produced in early-passage 293FT cells by transfection with psPAX2 and pMD2.G
packaging plasmids along with the appropriate pLX302-HER?2 or pLX304-HER3 plasmid. Target cells or
organoids were spin-infected the next day with viral supernatant in the presence of 8 mg/ml polybrene. Two
d later, target cells/organoids were selected with puromycin (MCF10A: 2 mg/ml; OVCARS: 0.7 mg/ml;
MCF7: 0.5 mg/ml; SA493 organoids: 1 mg/ml) and/or 10 mg/ml blasticidin for at least 4 d. Stable cell lines

were maintained in media containing puromycin and/or blasticidin.

5.4.12 Immunoprecipitation

If cells were pre-treated with antibodies (trastuzumab/pertuzumab), prior to lysis, cells were incubated with
cold acid wash buffer (0.5 mol/L NaCl, 0.2 mol/L Na acetate, pH 3.0) for 6 min to remove bound antibodies.
Monolayers were then washed 3 times with ice-cold PBS. Cell lysates were harvested using ice ND lysis
buffer [1% Triton X100, 20 mM Tris HCI, 150 mM NacCl, supplemented with 1X protease inhibitor (Roche)
and phosphatase inhibitor (Roche) cocktails] and rotated at 4°C for 1 h. Lysates were then clarified by
spinning at 10,000 3 g at 4°C for 15 min. Protein concentrations were measured using BCA standard curves

(Pierce). Four-eight mL of HER2 Ab-17 antibody (Thermo Fisher Scientific) was added to 500-1000 mg
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protein lysate and rotated at 4°C overnight. IP was carried out using the Invitrogen Dynabeads Protein G
Immunoprecipitation Kit (10007D) as directed. Lysates were next subjected to SDS-PAGE and immunoblot

analysis. Each immunoprecipitation experiment was performed a minimum of two times.

5.4.13 Proximity ligation assay

MCFI10A cells (5 x 104 cells/well) were seeded in 8-well chamber slides (Lab-Tek, 177445) in triplicate and
incubated in EGF/insulinfree media + 1% CSS overnight. PLA was performed with Duolink In Situ Red
Starter Kit Mouse/Rabbit (Sigma) using mouse antiHER2 (Thermo Fisher Scientific; Cat MS-730-P1-A)
and rabbit anti-HER3 (Cell Signaling Technologies; Cat 12708) antibodies according to the manufacturer’s
protocol and then imaged with a DMi8 inverted microscope (Leica). The number of PLA foci per cell was
quantified using Image]J as described (Prado Martins et al., 2018). A minimum of 7 images per sample were

analyzed.

5.4.14 Western blot analysis

Prior to lysing, organoids were dissociated into single cell suspension by mechanical shearing and enzymatic
digestion using TrypLE express (Gibco, 12604021). Adherent cells or organoid cell pellets were washed
with ice-cold PBS and lysed with RIPA buffer (Sigma) supplemented with 1X protease inhibitor (Roche)
and phosphatase inhibitor (Roche) cocktails. Lysates were centrifuged at 13,500 rpm for 15 min. Protein
concentrations in supernatants were quantified using BCA protein assay kit (Pierce). 20-40 mg of total protein
was fractionated on bis-tris 4-12% gradient gels (NuPAGE) and transferred to nitrocellulose membranes
(BioRad). Membranes were blocked with 5% non-fat dry milk/TBST at room-temperature for 1 h, followed
by overnight incubation with primary antibodies of interest at 4C in 5% BSA/TBST. All antibodies were
purchased from Cell Signaling — P-HER2 Y1221/2 (2243; 1:500), HER2 (2242; 1:1000), P-HER3 Y1197
(4561; 1:500), P-HER3 Y1289 (4791; 1:500), P-HER3 Y1197, HER3 (12708; 1:1000), P-AKT S473 (9271;
1:500), P-AKT T308 (13038; 1:500), P-S6 S235/6 (2211; 1:1000), PS6 S240/4 (2215; 1:1000), P-ERK
T202/Y204 (9101; 1:1000), and b-actin (4970; 1:1000). Membranes were cut horizontally to probe with
multiple antibodies. In some cases, P-Akt S473, P-Erk, and P-S6 S240/244 antibodies were combined during
primary incubation. Nitrocellulose membranes were washed and incubated with HRP-conjugated a-rabbit or
a-mouse secondary antibodies for 1 h at room temperature. Protein bands were detected with an enhanced
chemiluminescence substrate (Perkin Elmer) using the ChemiDoc Imaging System (Bio-Rad). Immunoblots

were quantified using ImagelJ.
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5.4.15 Flow cytometry

HER-2 cell surface staining was performed with the trastuzumab antibody. MCF10A stable cells (8 x 105)
were incubated with 0.2 mg/ml trastuzumab for 30 min at 4°C. Cells were washed in FACS buffer (Thermo
Scientific) then incubated with an Alexa Fluor 647-conjugated goat anti-human IgG secondary antibody
(Thermo Scientific; 1 mg/ml) for 30 min at 4°C. After 2 additional washes, the cells were analyzed on an
LSR Fortessa flow cytometer (BD Biosciences). Ten thousand cellular events were analyzed per sample.

Data were analyzed using FlowJo software (BD Biosciences).

5.4.16 Organoid establishment and culture

Fresh/frozen tumor chunks from SA493 (HER25319F) PDXs were rinsed twice with 10 ml AdDF+++ media
(advanced DMEM/F12 containing 1X Glutamax, 10 mM HEPES and antibiotics) and minced into 1-2 mm
pieces. 10 ml dissociation media (1:1 vol/vol F12, DMEM supplemented with 2% w/v bovine serum albumin,
300 U/ml collagenase, 100 U/ml hyaluronidase, 10 ng/ml epidermal growth factor (EGF), 1 mg/ml insulin,
and 0.5 mg/ml hydrocortisone) was added to tumor fragments and incubated for 2 hr at 37°C with constant
shaking at 275 rpm. Dissociated tumor fragments were centrifuged at 1200 rpm for 5 min and subjected
to RBC lysis as per manufacturer’s protocol (BD Biosciences), if the cell pellet was visibly red. Tumor
fragments were further dissociated by adding 3 ml pre-warmed trypsin and incubating in a 37C bead bath
for 5-7 min. 6 ml neutralization solution (2% FBS in PBS) was added and centrifuged at 1200 rpm for 5
min. Tumor pellets were then treated with the Dispase/DNAse cocktail for 5-7 min at 37°C, and neutralized
and centrifuged as above. Tumor cell suspension was subjected to magnetic separation of CD298+ human
cells (biotin-conjugated a-CD298 antibody, Miltenyi Biotec, 130-101-292) to eliminate potential mouse cell
contamination, using EasySep human biotin positive selection kit I (STEMCELL technologies 17663). The
cell pellet was resuspended in appropriate volume of cold BME and 40 ml of cell suspension was added to the
center of each well of a 24-well plate and allowed to solidify by placing in a 37°C incubator for 20 min. 500
ml organoid medium (DMEM/F12 containing 250 ng/ml R-Spondin 3, 5 nM Neuregulin 1, 5 ng/ml FGF7,
20 ng/ml FGF10, 5ng/ml EGF, 100 ng/ml Noggin, 500 nM A83-01, 5 mM Y-27632, 500 nM SB202190,
1X B27 supplement, 1.25 mM N-Acetylcysteine, 5 mM Nicotinamide, 1X GlutaMax, 10 mM Hepes, 50
mg/ml primocin, and 100 U/ml penicillin/100 mg/ml streptomycin) was added to each well and the plate
was returned to a 37°C incubator maintained at 2% O2 level. For viability assays, established organoids
were dissociated into single cell suspension by mechanical shearing and enzymatic digestion using TrypLE
express (Gibco, 12604021). Dissociated cells were resuspended in 100 ml of cold organoid media containing
5% BME and 1000 cells/well were seeded into BME-coated 96-well plate in organoid media lacking EGF

and NRG1. The next day, organoid cultures were treated with drugs and the effect on viability was assessed
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6 d later using CellTiter-Glo 3D viability assay kit (Promega G9681). Organoids were photographed using a

Leica DMil inverted microscope.

5.4.17 Sanger sequencing of ERBB2 and ERBB3

RNA was isolated from CW2 cells using the Maxwell RSC simplyRNA Cells Kit (Promega) on the Maxwell

RSC Instrument (Promega). RNA was isolated from SA493 organoids using the Qiagen RNeasy Micro

Kit. Reverse transcription was performed using the iScript cDNA Synthesis Kit (Bio-Rad). The appro-

priate regions of ERBB2 and ERBB3 were PCR-amplified using the following primers: 5’GCCTGCCTC-
CACTTCAACCA (ERBB2 _foward; S310F), 5> GTAACTGCCCTCACCTCTCG (ERBB2_reverse; S310F),

5" GTGAAGGTGCTTGGATCTGG (ERBB2 _foward; L755S), 5> ATCTGCATGGTACTCTGTCT (ERBB2 _reverse;
L7555S),5 TGAGGCGATACTTGGAACGG (ERBB3_forward), and 5’ AGGTTGGGCGAATGTTCTCA (ERBB3
reverse). Sanger sequencing for ERBB2S310F, ERBB2L755S, and ERBB3 was performed using the 5’
CATCTGTGAGCTGCACTGCC, 5’ GTTGGGACTCTTGACCAGCA, and 5’ GTGCATAGAAACCTGGCTGC

sequencing primers, respectively.

5.4.18 Quantitative RT-PCR

Total RNA was isolated using the Maxwell RSC simplyRNA Cells Kit (Promega) on the Maxwell RSC
Instrument (Promega). cDNA was synthesized using the iScript cDNA synthesis Kit (Bio-Rad) and then
subjected to qPCR using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific) and Qiagen RT2
gPCR primer assays for human ERBB2, ERBB3, and YWHAZ (housekeeping control). To specifically
detect ERBB22264T>C (L755S), the following qPCR primers were used: 5’CAGTGGCCATCAACGTGTC
(forward) and 5S>’TACACCAGTTCAGCAGGTCCT (reverse). qPCR was performed using the QuantStudio3
Real-Time PCR System (Thermo Fisher Scientific).

5.4.19 Cell viability assay and IC50 estimation

Cell viability was determined using the Cell Titer Glo assay (Promega) according to the manufacturer’s
instructions. Briefly, singe-cell suspensions were generated by straining trypsinized cells through a 40mm
cell strainer (Fisher Scientific). 500-1000 cells per well were plated in 96-well white clear-bottom plates in
quadruplicate. Cells were treated with 10 concentrations of inhibitor or vehicle alone at a final volume of 150
mL per well. After 6 d of treatment, 25 mL of Cell Titer Glo was added to each well. Plates were shaken
for 15 min, and bioluminescence was determined using the GloMax Discover Microplate Reader (Promega).
Blank-corrected bioluminescence values were normalized to DMSO-treated wells and normalized values

were plotted in GraphPad Prism using non-linear regression fit to normalized data with a variable slope (four
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parameters). IC50 values were calculated by GraphPad Prism at 50% inhibition.

5.4.20 Cell proliferation assay
CW2 cells were transfected with Control or HER3 siRNA in triplicate. Four d after transfection, cells were

trypsinized and counted with a Z2 Coulter Counter Analyzer (Beckman coulter).

5.4.21 Three-dimensional morphogenesis assay

Cells were seeded on growth factor-reduced Matrigel (BD Biosciences) in 48-well plates following published
protocols (Debnath et al., 2003). Inhibitors were added to the medium at the time of cell seeding. Fresh media
and inhibitors were replenished every 3d. Following 7-10 d, colonies were stained with 5 mg/ml MTT for 20
min. Plates were scanned and colonies measuring R100 mm were counted using GelCount software (Oxford

Optronix). Colonies were photographed using a Leica DMil inverted microscope.

5.4.22 Cell invasion assay

Transwell invasion assays were performed using BioCoat Growth Factor Reduced Matrigel Invasion Cham-
bers (Corning) according to the manufacturer’s instructions. Briefly, MCF10A cells were seeded at 100,000
cells/well in serum-free DMEM/F12 media. DMEM/F12 media containing 5% FBS was added to the bot-
tom chamber as a chemoattractant. The cells were incubated under the desired conditions and 22 h later,
cells that invaded to the underside of the membrane were stained with 0.5% crystal violet. Transwells were
photographed using a Leica DMil inverted microscope. Brightfield images were quantified using Imagel
software. Images were converted to RGB stack. The green channel was thresholded and filtered (3 pixels) to

remove the pores. The total thresholded area was measured.

5.4.23 Xenograft Studies

CW?2 cells were re-suspended in serum-free RPMI and Growth Factor-Reduced Matrigel (1:1 ratio) and
injected subcutaneously into the right flank of 4-6 week old female athymic nu/nu mice (Envigo). When
the average tumor volume reached 200 mm3, mice received daily doses of vehicle (0.5% Methylcellulose +
0.4% Tween 80, orogastric gavage), neratinib (40 mg/kg; orogastric gavage), alpelisib (30 mg/kg; orogastric
gavage), or neratinib + alpelisib. In our previous studies, we have found neratinib to cause anorexia and
moderate body weight loss. To avoid these toxicities, all mice were prophylactically supplemented with
DietGel 76A (Clear H20) in addition to regular chow. Tumor diameters were measured twice weekly using

calipers and tumor volumes were calculated using the formula: volume = width? x length/2.
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5.4.24 Quantification and statistical analysis

Statistical analysis was performed using GraphPad Prism 8.1.2. For analyses involving multiple comparisons,
one-way or two-way (for grouped bar graphs) ANOVA with Bonferroni posthoc test was used. Otherwise
student’s t-test was used. Bar graphs show mean +/- S.E.M. The neratinib/alpelisib combination index was

calculated using the Chou-Talalay test (Chou, 2010).
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CHAPTER 6

BCL::MolAlign: Three-Dimensional Small Molecule Alignment for Pharmacophore Mapping

This chapter is taken from Brown, B. P.; Mendenhall, J.; Meiler, J. J. Chem. Inf. Model. 2019, 59 (2),

689-70138.

6.1 Introduction

Small molecule flexible alignment is the process of organizing 3D molecular structures in space according
to their similarities. It is a necessary step in a number of computer-aided drug discovery (CADD) strategies
that utilize 3D structural information to evaluate putative ligands (Wolber et al., 2008). Ligand alignment is
necessary because the protein-bound ligand pose is distinct from the pose adopted by the ligand in free solu-
tion (Vieth et al., 1998; Perola and Charifson, 2004; Hao et al., 2007). Bioactive ligand conformations result
not just from low-energy ligand conformational selection, but also from protein conformational accessibility
(Seo et al., 2014; Greives and Zhou, 2014). Consequently, the binding conformation of the ligand cannot be
reliably determined by minimizing ligand internal strain alone if the ligand can adopt multiple conformations
that have comparable energy.

Determination of the most likely ligand binding-pose is a critical component of ligand- and structure-
based drug discovery. One of the most extensively utilized and actively developed methods in CADD is
pharmacophore modeling (Yang, 2010). Recent innovation has led to the development of interactive software
for building pharmacophores and designing lead compounds from them (Vlachakis et al., 2015; Beccari et al.,
2013). Among the most significant challenges in pharmacophore modeling is obtaining an accurate and infor-
mative molecular alignment (Yang, 2010). Structure-based methods are also enhanced by effective molecular
alignment. Effective protein-ligand docking usually requires a priori knowledge of an approximate binding
mode (Leelananda and Lindert, 2016; Sliwoski et al., 2014; Hecker et al., 2002; Kubinyi, 2003). Despite
significant advances in the field (Cleves and Jain, 2018; Chan, 2017; Roy and Skolnick, 2015; Urniaz and
Jozwiak, 2013; Thormann et al., 2012; Sastry et al., 2011; Tosco et al., 2011; Korb et al., 2010; Heifets and
Lilien, 2010; Jain, 2007; Richmond et al., 2006; Wildman and Crippen, 2001), small molecule flexible align-
ment remains a challenging problem. Here, we present a novel small-molecule flexible alignment algorithm
in the BioChemical Library (BCL) molecular modeling suite called BCL::MolAlign.

A successful alignment algorithm must provide: (1) Efficient sampling of each molecule’s conformational
space, (2) efficient sampling of possible alignments, and (3) scoring aligned poses according to their fit. There

are generally two strategies employed to account for ligand flexibility during the search procedure: (1) Rigid-
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body alignment with an ensemble of molecule conformers, or (2) bond angle sampling as a discrete step
during alignment7. Methods which rely exclusively on pre-generated conformers (e.g. LIGSIFT, ROCS,
Shapelets, PL-PatchSurfer) are limited in their predictive potential by the initial conformers produced (Roy
and Skolnick, 2015; McGaughey et al., 2007; Tawa et al., 2009; Proschak et al., 2007; Tervo et al., 2005;
Cheeseright et al., 2006; Shin et al., 2015). Several other approaches, such as FlexS (Andrews and Cramer,
2000) or the flexible alignment software available through Chemical Computing Group’s MOE (Labute et al.,
2001; Chan and Labute, 2010), account for ligand flexibility by including torsional sampling during the
alignment procedure. These algorithms must simultaneously enforce rules minimizing ligand internal strain
against rules maximizing alignment score. This can result in unrealistic ligand poses in cases where the
molecules being compared are of substantially different size or shape (Labute et al., 2001).

To address deficiencies in conformational sampling, we have implemented a unique combination of both
of the above approaches. We first utilize BCL::Conf to generate an ensemble of conformers for one or both
molecules. The difficulty in applying pre-generated conformations for molecular alignment is generating
native-like, physically realistic conformations. BCL::Conf combines a CSD-derived rotamer library with a
conformer scoring function based on dihedral rotamer propensity and atomic clashes to rate the likelihood
of a given conformer. With this scoring scheme, BCL::Conf is able to recover more native-like conformers
than other widely used conformer generation protocols (Kothiwale et al., 2015). We subsequently apply lim-
ited on-the-fly flexible refinement of the target conformer during pose sampling. On-the-fly conformational
changes that do not pass the BCL::Conf clash score are rejected.

An additional challenge is in developing a robust search algorithm to navigate the shared conforma-
tional space (co-space) of the molecules being aligned. The majority of programs employ a deterministic
algorithm based on maximum overlap of molecular volume (Roy and Skolnick, 2015; McGaughey et al.,
2007; Tawa et al., 2009). While rapid, such an approach necessarily becomes less effective as the number
of rotatable bonds (and correspondingly, the non-degenerate conformations) of the target molecule increases.
We address this deficiency by utilizing multi-trajectory Monte Carlo Metropolis (MCM) sampling to over-
lay nearby substructures of the molecules. Our method allows rapid convergence on the co-space of the
molecules while maintaining dynamic conformational sampling. Moreover, BCL::MolAlign may optionally
superimpose molecules based on maximal common substructures defined by specific atom and bond type
features.

Finally, a scoring metric is needed that is capable of ranking molecule superimpositions based on the
degree to which chemically similar functional groups are best superimposed. Many algorithms implement
a Tanimoto coefficient to grade chemical and/or shape similarity (Roy and Skolnick, 2015; McGaughey

et al., 2007; Tawa et al., 2009). Strict Tanimoto comparisons are incapable of grading alignments when the
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molecules being compared are of sufficiently different sizes. This prohibits accurate alignment and ranking of
derivatives to substructure scaffolds. Many methods are based on Gaussian overlap, where a Gaussian decay
is applied to each property and the score is simply the 3D-spatial integral of the overlap, often computed solely
at the centers of each atom (Roy and Skolnick, 2015; Vainio et al., 2009). This approach suffers from the
offset problem — if the properties are continuous, such as van-der Waals volume, then the optimal alignment of
two atoms very different in size will be offset. Additionally, Gaussian based methods typically define a single
length scale for each property, which is arbitrary and inappropriate for binding pockets of different levels of
flexibility (Vainio et al., 2009). An alternative approach is to generate a comparison function from weighted
linear combinations of chemical properties (Chan and Labute, 2010). We took the latter approach; our scoring
function is computed by summing the weighted property-distance between nearest-neighbor atoms of the
molecules being aligned. Our method has the added advantage that atoms in one molecule that have no

corresponding partner in the other molecule do not influence the search procedure.

6.2 Results

6.2.1 BCL::MolAlign uses a three-tiered Monte Carlo Metropolis protocol to identify optimal super-
impositions for two molecules

BCL::MolAlign perturbations are implemented primarily through a Monte Carlo Metropolis (MCM) search

procedure (Table 6.1).

An overview of the algorithm is presented in Figure 6.1. Briefly, at least one MC trajectory is performed
for each alignment with the option to specify additional independent trajectories. Each trajectory will per-
form three tiers of optimization (Figure 6.1). In the first tier, pre-generated conformer pairs (one from each
molecule) undergo limited optimization to remove the lowest scoring 25% of conformer pairs. The total num-
ber of conformer pairs tested is a user-specified quantity. Tier two iteratively refines the best alignments and
removes the lowest scoring user-specified fraction after each iteration. Tier three performs a final optimization
of the top N user-specified pairs from round two. BCL::MolAlign can align a single target molecule against
another ligand in a known binding pose (herein referred to as the “scaffold” ligand), or it can independently
move both molecules in a pair to optimize their alignment.

Each step of the MCM is scored. If the score is the best that has been sampled so far, or if it is improved
over the previously accepted step, then that step is automatically accepted. If the score is not improved then
there is a probability that it will be accepted dependent on the magnitude of the score difference and the
temperature (Figure 6.1). The temperature automatically adjusts to satisfy user-specified acceptance ratios
over the course of the simulation (Karakas et al., 2012).

At the beginning of each alignment, BCL::Conf will attempt to generate a user-specified number of con-
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Move Use Description
. Rigid or Superimpose an individual bond from two nearest-neighbor
BondAlign . .
Flexible atoms in each molecule
BondAlign2 ngur_J or | Superimpose two bonds from two nearest-neighbor atoms in
Flexible each molecule
MatchAtomNeighbors F{igiq or Superimpose all mat_chad atom pairs within the maximum
Flexible distance threshold.
Riaid or Transform the maolecule such that the position coordinates of
BondSwap gic a random bonded atom pair are swapped with the position
Flexible . .
coordinates of a second random bonded atom pair
RotateSmall R|g|-:§| ar Randomly rotate the molecule 0 - 5 f::legree:-s about a
Flexible randomly-selected axis
RotateLarge nguq or Randomly rotate the molecule 0 - 185_} degrees about a
Flexible randomly-selected axis
Flexible Randomly rotate non-amide, non-ring, outermost single bond
BondRotate onl between heavy atoms that form dihedral angles with adjacent
4 heavy atormns
Flexible ; .
ConformerSwap only Swap a current conformer for another in the library

Table 6.1: Summary of sampling strategies employed in BCL::MolAlign.
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Molecule A Molecule B
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Figure 6.1: Outline of the BCL::MolAlign flexible alignment algorithm. Rigid alignment is equivalent to
a single tier of MCM optimization with a single conformation each for Molecule A and Molecule B. MC
moves alter the current Molecule A or B during each optimization tier. The same moves are used in each tier,
but number of steps differ in each tier.
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formations, or a default number of 100 unique conformations, for each molecule for which flexibility is
allowed. Subsequently, conformers of the two molecules will be randomly paired until the number of con-
former pairs is equal to the minimum of the total number of possible pairs and a user-specified conformer
pair number (the default conformer pair number is equal to 100 pairs). For example, if BCL::Conf generates
50 conformers of each of the two molecules being aligned, then there are 2500 possible conformer pairs.
With the default settings, 100 conformer pairs would be randomly selected as starting points for alignment.
An MCM ConformerSwap mover is implemented to allow access to the other 2400 possible conformer pairs
during the alignment. Alternatively, if each molecule has only one conformation, then only one conformation
pair would be selected as a starting point because the total number of possible pairs is less than the default
conformer pair number of 100.

Conformational sampling is incorporated into the search procedure through a combination of pre-generated
conformer swapping and on-the-fly bond rotation. Specifically, we either swap one conformer for a separate
conformer from those generated at the beginning of the alignment with BCL::Conf (ConformerSwap), or ro-
tate particular bonds (BondRotate; Table 6.1). ConformerSwap randomly selects a conformer from the entire
conformational ensemble of one of the molecules in the pair. The coordinates of that conformer in 3D real
space are then transformed to minimize the RMSD to the original conformation of the same molecule.

BondRotate rotates non-conjugated, non-ring, single bonds between heavy atoms that form dihedral an-
gles with adjacent heavy atoms. To ensure that the bond rotation yields an energetically favorable conforma-
tion, we first obtain a set of allowed rotations for each dihedral from BCL::Conf’s rotamer library. Initially we
observed that this move was very rarely accepted when it was applied to bonds near the core of the molecule,
presumably because altering a dihedral near the core of the molecule often perturbs the entire conforma-
tion. Likewise, we restricted BondRotate to only work on the outermost heavy-atom dihedral angles in the
molecule. The purpose of BondRotate is to allow refinement of otherwise well-aligned conformers when the
probability of substituting the correct conformer is prohibitively low or null due to the necessarily incomplete
coverage of conformational space. If BondRotate results in a molecule conformation which does not satisfy
the BCL:Conf atom clash score (Kothiwale et al., 2015) then the move is rejected prior to scoring and an
alternative MCM move is attempted.

BCL::Conf, and by extension BCL::MolAlign, does not perform explicit calculations of conformer in-
ternal energy, and instead relies on statistical potentials. While conformers with higher internal strain can
potentially be sampled, it is also possible for protein-bound ligands to exhibit conformers of higher internal
energy relative to the solution state (Perola and Charifson, 2004; Hao et al., 2007). If additional restrictions on
acceptable conformers are desired, conformation sampling can easily be turned off, and externally generated

conformers can be used as the input for separate rigid alignment runs.

124



6.2.2 BCL::MolAlign iteratively samples alignments through superimposition of bonded atoms

In addition to conformational changes, BCL::MolAlign samples possible alignments through multiple movers,
or sampling functions, implemented in the MC protocol. The most intuitive perturbations for both rigid and
flexible alignment implemented in BCL::MolAlign are rotation and translation of a whole molecule. Trans-
late] translates molecules between 0-1 A (uniformly distributed) from their starting positions, in a randomly
chosen direction. RotateSmall rotates molecules between 0-5°, uniformly distributed on the unit sphere within
these bounds, from their starting conformations. RotateLarge rotates molecules randomly between 0-180°
(Kuffner, 2004). BCL::MolAlign also utilizes a series of moves designed to superimpose the coordinates of
nearest-neighbor atoms (BondAlign, BondAlign2, and MatchAtomNeighbors) without explicitly comparing
common substructures. BondAlign, BondAlign2, and MatchAtomNeighbors provide progressively higher
resolution sampling of the local alignment space.

Consider two molecules, designated A and B. The BondAlign mover identifies in A the heavy atom that is
nearest in Cartesian space to a randomly-chosen heavy atom in B, irrespective of their atom types. BondAlign
then superimposes a randomly-chosen bond from the selected atoms of A and B (Figure 6.2A).

Similarly, BondAlign2 superimposes two randomly-chosen bonds of a randomly-selected atom (S) in A
with two randomly-selected bonds from the closest atom in B to S. Only atoms with two or more bonds are
considered for this step. (Figure 6.2B).

The MatchAtomNeighbors mover computes all mutually nearest atom pairs between A and B within a
maximum distance threshold (see subsection Variable distance cutoffs dictate which atom pairs are included
in alignment scoring). Subsequently, A is transformed such that the total mean square distance between the
mutually nearest atoms in A and B is minimized (Figure 6.2C).

BondSwap differs from the previous three movers in that it is not based on nearest-neighbor atoms be-
tween the two molecules being aligned. The BondSwap mover randomly selects two unique bonds between
heavy atoms within A. The molecule is rotated and translated such that the position of the first bond becomes
the position of the second bond, or vice versa (Figure 6.2D).

The probability that a particular mover is selected is proportional to the total amount that each mover

improved the scores on the Astra-Zeneca overlay set when all movers were used with equal probability.

6.2.3 Variable distance cutoffs dictate which atom pairs are included in alignment scoring

The scoring system was inspired by previous work in our lab, which used Euclidean distance combined with a
property value as an additional dimension to evaluate docked conformations of mGluR allosteric modulators
(Gregory et al., 2014). In the present study, we expanded that score function to compute the weighted property

distances between atom pairs.
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Figure 6.2: Schematic of sampling strategies implemented in BCL::MolAlign. From a given starting align-
ment on the left side of the arrow, the resulting alignment following each operation is depicted on the right side
of the arrow. Once atoms and bonds have been chosen, BondAlign (A), BondAlign2 (B), and MatchAtom-
Neighbors (C) each have one possible outcome. BondSwap (D) has an equal probability of sampling two
possible outcomes. Highlighted segments correspond to the chosen atoms and bonds for alignment. Atom
numberings in MatchNeighborAtoms correspond to mutually matched pairs between molecules A and B.
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For a given alignment of molecules M, and M, W(M,; ;) is the matching weight of the j-th atom of

molecule M}, on the i-th atom of molecule M,, and is defined by:

WMy, i,j) = {2

1( (D(MR,E,MM)
cos\m—m———————

D )‘E' 1) D(Ma,ir Mb,j) < Dmax
max

0 D(Mg i My ;) > Dax 6.1

where D(M(aﬂ,M(b’ j)) is the distance of the i-th atom in molecule M, from the j-th atom in molecule M,,.
D4 1s the maximum distance cutoff determining whether or not two atoms are paired (Figure 6.3). Similarly,
we compute the matching weight of the j-th atom of M, on the i-th atom of M}, as W (M; ;).

For the vast majority of atoms, there is a simple one-to-one matching between these atom pairs based on
distance in our alignments. This enables a simplistic comparison of the properties on the associated atoms
without any need for weighting relative contributions from other nearby atoms. However, our scoring function
maintains the capacity to handle the cases where an atom straddles a covalently bonded atom pair in the other
molecule (Figures 2D, 3).

Dy s randomly selected in each independent MCM trajectory from a user-defined range. In this bench-
mark, each alignment was run with five independent trajectories each of which sampled a D, between 0.7
and 1.2 A. 0.7 A, the covalent radius of quaternary carbon, was chosen as the lower bound to allow a single
carbon atom to straddle anywhere along a C-C bond, while effectively only matching to the nearer of the two
C-C atoms. The upper cutoff of 1.2 A was nominally chosen as the smallest covalent diameter of any common
heavy atom type, alkyl-carbon (0.6 A radius), to prevent smearing caused by neighboring heavy atoms. To
allow comparison between the independent trajectories, the overall best alignments from each trajectory are
re-scored at a maximum atom distance 1.0 A to determine which trajectory yielded the best alignment.

Next, we compute the weighted property average of property p in molecule M, at the coordinates of the

i-th atom in M, denoted by PN (M, , ;):

.. Np

X3 0y W (M, i,))

ST T g ZW(Mb,i,j) %0
21:1 W(Mb;L;j) =1

Np

0 if » WM, i,j))=0

PN(Mp,p,i) =

6.2)

The property square norm for property p, computed for molecules M, and M,, is the squared L2 norm between
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Figure 6.3: Rigid alignment of P38 inhibitors from PDB IDs 10UK and 10UY illustrate atom pairing at
variable maximum atom distances. The 2D representations of the IOUK and 10UY ligands. The 3D rep-
resentations depict the native pose of 10UK rigidly aligned to the native pose of 10UY. Spheres illustrate
heavy atoms separated from a heavy atom in the opposite molecule by less than the specified maximum atom
distance D,,,,. Sphere radii correspond to half of the indicated maximum atom distance. Red and white
overlapping spheres are considered matched atoms.
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a property of atoms of molecule A and the corresponding matched atoms in B:

Natoms,a

- N2
PSNMy,Mpp) = (b, ~ PNy p,0))
i=1 (6.3)

where p M) Tepresents the value of property p for the i-th atom of molecule M,. This norm is asymmetric
with respect to A and B, reflecting the notion that A molecule may very well cover the pharmacophore of
B, while the converse is untrue. For some applications (i.e. clustering), a symmetric measure of dissimi-
larity is desired which is ideally normalized to 0-1. Likewise, we define the normalized property distance,

Pyorm(My, My, p), between molecules M, and Mj:

PSN(M,, My, p) + PSN(My, M, p)
Py, + P,

Prnorm(Mg, My, p) = J
(6.4)

where P(zMa) is the sum of property value squares.
The total property distance between molecules M, and M}, is determined by computing the weighted sum

of the normalized property distances for all specified properties as (eq. 1):

N
Zp£1 Pyorm (Mg, My, )Wy,

Np
Zp=1 WP

D(MarMb) =

(6.5)

where w), is the weight of property p. Property weights were obtained as previously described by comput-
ing the inverse standard deviation of each property’s occurrence across a sample library of drug-like small
molecules (Gregory et al., 2014; Butkiewicz et al., 2013), so as to nominally give each property equal weight
or influence over the results.

We noted that the size of the core subset of atoms in a molecule responsible for conferring bioactivity
may vary dramatically between targets. However, approximately 80% of the experimentally-determined
pharmacophores available in the AstraZeneca Overlays Validation Test Set have at least 60% heavy atom
overlap in their natively bound poses given a 1.0 A max atom distance (Giangreco et al., 2013). Consequently,

the final property distance score (PDS) is computed such that alignments with less than 60% of their total
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heavy atoms matching are penalized:

PDS(My, Mp) = D(Mg, M) + PEN(m) (6.6)

where penalty as a function of the total fraction of atoms matched, PEN(m), is defined

0.6 — my*
PEN(m): C( 06 ) m< 0.6
0

m= 0.6

6.7)

for a user-specified base mismatch penalty, C, and the ratio of paired-to-unpaired atoms, m. For the purposes
of our benchmark, we nominally took C to be 2.0. The single alignment that minimized eq. 6 was taken to
be the final alignment. The BCL allows customizable implementation of molecule and atom descriptors for

a multitude of tasks (Butkiewicz et al., 2013).

6.2.4 BCL::MolAlign improves recovery of crystallographically-determined ligand binding poses

To evaluate the efficacy of our method in recovering native ligand binding-poses, we used a previously
published benchmark set of small molecule inhibitors for six protein targets: CDK2, HIV, P38, ESRI,
Trypsin, and Rhinovirus (Chan and Labute, 2010; Chen et al., 2006) (Table 6.2). For two of the datasets,
P38 and ESR1, we also evaluated BCL::MolAlign on two previously distinguished pharmacophores (Chan
and Labute, 2010; Chen et al., 2006), which yielded an additional four test cases. For each of the datasets, an
NxN pairwise alignment of every molecule was performed. Rigid alignments were initiated by centering the
native bound conformers of each ligand on one another and reorienting each with a random rotation in space.
Flexible alignments were initiated by centering a random BCL-generated conformer of the target molecule on
the native pose of the scaffold molecule and perturbing the target molecule with a random rotation in space.
An alignment is considered successful if the final pose of the target molecule comes within 2.0 A real-space
symmetric RMSD of its native binding pose (Chan and Labute, 2010; Chen et al., 2006).

The CDK2 dataset was comprised of 57 unique ligands. Rigid alignment of the CDK2 system by
BCL::MolAlign was comparable to results obtained via MOE (38% and 40% native pose recovery, respec-
tively), and superior to those achieved with either ROCS or FLEXS (30% and 25%, respectively). Flexible
alignments were similar across each method, ranging from 20-22%. After excluding self-aligned molecule
pairs from the NxN alignment matrix, the best scoring alignment of each of the CDK2 ligands was able to
recover 44 of 57 ligands less than 2.0 A from the native binding pose (Table 6.2).

The HIV dataset contained 28 unique ligands all of which have at least ten rotatable bonds, and 16 of
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Dataset ROCS FLEXS  MOE BCL ROCS FLEXS  MOE BCL
Rigid Flexible
CDK2 30% 25% 40% 38% 20% 21% 22% 21%
HIV 39% 24% 85% 56% 6% 8% 16% 22%
P38 27% 27% 43% 46% 22% 24% 30% 31%
ESR1 44% 47% 59% 57% 25% 28% 41% 46%
Trypsin 57T% 73% 80% 61% 55% 29% 61% 61%
Rhinovirus | 50% 52% 50% 50% 50% 50% 50% 50%
Dataset MOE BCL MOE BCL
Rigid Flexible
P38 Pharm 1 100% 100% 94% 94%
P38 Pharm 2 73% 73% 53% 45%
ESR1 Pharm 1 94% 86% 72% 83%
ESR1 Pharm 2 92% 92% 65% 82%

Table 6.2: Pairwise alignment of ligands across benchmark datasets in (Labute et al., 2001; Chan and
Labute, 2010) Comparisons between four small molecule alignment methods on rigid and flexible alignment.
Rigid alignment comparisons utilized the crystallographic native binding pose of each ligand as input. Flexi-
ble alignments began with a randomly generated conformer of the target molecule. In all flexible alignments
the target molecule was aligned to a rigid molecule in its crystallographic native binding pose. Bolded values
indicate categories in which one method recovered at least 5% of the total more native binding poses than the

next best method.
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which have 18 or more rotatable bonds, representing a challenging application for molecular alignment.
MOE recovered 85% of the natively bound poses for the HIV ligand set via rigid alignment and 16% via
flexible alignment, a considerable advancement over methods such as ROCS and FLEXS, which recovered
39% and 24% in rigid alignment, and 6% and 8% in flexible alignment, respectively. BCL::MolAlign was
able to recover 55% of native poses in rigid alignment, and 22% in flexible alignment. Despite recovering
fewer native poses than MOE via rigid alignment, BCL::MolAlign recovered more of the native binding poses
during flexible alignment than all other methods (Table 6.2). This may be because BCL::MolAlign is able to
assemble hundreds of possible conformers rapidly from a CSD-derived fragment library using BCL::Conf.
Subsequent selection and refinement of these conformers with discrete bond rotations during alignment may
be a more effective sampling strategy than relying on conformer sampling explicitly during the alignment
stage. The bond align movers are crucial to our recovery of HIV-binding poses. We recovered only 8% of
the natively bound HIV ligand poses during flexible alignment when our moves consisted of only rotation,
translation, conformer swap, and bond angle perturbation. This may be because simple movers such as rotate
and translate require many consecutive poorly-scoring adjustments to be made to achieve a favorable pose.

The 13 P38 kinase ligands can be divided into two pharmacophores. The first, containing the 4 ligands
from PDB IDs IM7Q, 10UK, 10UY, and 10VE, is characterized by a central aromatic structure extending
a piperidine/piperizine ring directly beneath the P-loop, and by a fluorinated aromatic ring accessing the
back hydrophobic pocket. The second pharmacophore, represented by PDB IDs 1A9U, 1BL6, 1BL7, 10Z1,
1W7H, 1W84, and 1YQJ, is larger with a more heterogeneous scaffold. With the exception of IWBO, all P38
kinase ligands contain a hydrogen bond acceptor group oriented toward the backbone amide of the gatekeeper
Met. In all cases with the P38 ligand set, BCL-aligned structures recovered more correct binding poses than
ROCS and FLEXS. For the first pharmacophore, the BCL recovered and equivalent fraction of binding poses
to MOE, with MOE achieving slightly more for the second (Table 6.2). Interestingly, the D,,,, values that
give the best recovery for the P38 compounds differ from those that give the best alignments in the CDK2 and
HIV datasets. This indicates that the correct D, differs between datasets, and that additional optimization
of D,qx selection could further improve alignments. We also evaluated if we could improve recovery by
sampling D, uniformly instead of randomly. On average across the top six datasets presented in Table 6.2,
uniform sampling of D,,,, between 0.70 and 1.20 recovered 1.6% fewer native binding poses, though the
difference is not statistically significant.

The 13 ESR1 ligands provide another example of a single binding pocket with two distinct but overlapping
pharmacophores. The first pharmacophore contains six ligands that occupy the estradiol binding-site (PDB
IDs 1A52, IGWQ, 1L21I, 1X7E, 1X7R, and 3ERD). The second pharmacophore is composed of tamoxifen-
like compounds (1R5K, 1SJO, 1TUOM, 1XP1, 1XP9, 1XQC, and 2BJ4). In each of these pharmacophores,
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BCL flexible alignment recovered an equivalent or higher fraction of native binding poses compared to MOE
(83% and 82% vs. 72% and 65%, respectively). Of all the alignment methods, BCL was able to recover the
highest fraction of native binding poses in the combined ESR1 dataset (Table 6.2).

There are seven ligands in the trypsin dataset, of which five share a near-identical binding mode, and
BCL::MolAlign was able to recover their native binding poses in all of the 5x5 alignments. The remaining
two ligands differ in size and binding mode, respectively. Despite these differences, during flexible alignment
we achieve 61% recovery of the 7x7 matrix, on par with the recovery of MOE flexible alignment.

Finally, the rhinovirus ligand set contains eight nearly symmetric ligands with heterocyclic rings con-
nected on either end by a long alkyl linker. As was previously discussed13, each ligand binds in two positions
each of which is an inversion of the other. In this study, as in previous benchmarks, four ligands crystallized
in each binding mode were used (PDB IDs 2RM2, 2RR1, 2RS1, and 2RS3 in one binding mode, and 2R04,
2R06, 2R07, and 2RSS in the other). Successful alignment of a ligand in binding mode one to a ligand in
the inverted binding mode would not be evaluated as a correct alignment using the current metric. Therefore,
the maximum score for this dataset is 50%. Each alignment method including BCL::MolAlign was able to

recover 50%.

6.2.5 Native binding pose recovery does not require, and is only weakly assisted by, high substructure
We investigated the extent to which maximum common substructure similarity between the target molecule
and its scaffold influenced recovery of the native binding pose of the target molecule on the AstraZeneca
Overlays Validation Set (1464 molecules from 121 targets). We hypothesized that the best alignments would
be between molecules that shared a high degree of 2D similarity. Across all alignment pairs in the dataset,
there is a weak negative correlation between native binding pose recovery and maximum common 2D sub-
structure similarity between molecule pairs (R>=0.17, slope = -6.34). Considering only the best alignment
pair per target molecule (R?>=0.15, slope = -1.89), or only the alignment pairs where the native binding pose
of the target molecule was recovered at 2.0 A (R?>=0.13, slope = -0.67), the correlation becomes slightly
weaker. These results suggest that higher 2D similarity can increase the likelihood of recovering the native
binding pose, but that BCL::MolAlign recovers a large fraction of native binding poses by aligning dissimilar
molecules.

We also investigated whether or BCL::MolAlign converged on energetically unfavorable conformations.
For each pairwise alignment in the AstraZeneca Overlay Set benchmark, we computed the BCL::Conf score
for the target molecule (i.e. the molecule being aligned to the rigid comparator). For each target molecule,
we also generated conformers with BCL::Conf using the same settings that are run in the alignment protocol,

and selected the single highest scoring (worst) BCL::Conf conformer. Overall, there were zero cases in
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which the conformer selected from alignment had a worse BCL::Conf score than pure BCL::Conf conformer
generation. We also evaluated the mean difference between the alignment conformers and either the (1) worst
BCL::Conf conformer, or (2) the native conformer. The resulting mean BCL::Conf score differences are -
0.24 and 0.16, respectively, suggesting that overall BCL::MolAlign conformers converge on marginally more
favorable poses than those generated strictly by BCL::Conf, but that they are not always as favorable as native
conformers. This latter observation is not unexpected, and overall these findings suggest that the alignment

conformers represent reasonable molecule conformations.

6.2.6 BCL::MolAlign outperforms docking and substructure-based alignment in recovery of receptor-
bound poses of congeneric ligands

In the later stages of drug discovery, protein-ligand docking is often employed to inform further derivatization
of lead compounds. Accurate ranking of the small molecules based on their affinity depends on their accurate
placement in the protein binding-pocket. Here, we compared the speed and accuracy of BCL::MolAlign to
Rosettaligand on 20 unique datasets each with 4-8 congeneric ligands bound in the same protein binding
pocket with a similar binding mode47. Rosettaligand is a fully flexible protein-ligand docking program dis-
tributed with the Rosetta software package, which is competitive with other state-of-the-art docking programs
(Fu and Meiler, 2018; DeLuca et al., 2015; Lemmon and Meiler, 2012; Kaufmann and Meiler, 2012; Davis
and Baker, 2009; Davis et al., 2009; Meiler and Baker, 2006). We employed BCL::MolAlign to align each
target ligand to a scaffold ligand from each dataset. We took the geometric centroid of the same scaffold
ligand as the starting position for Rosettaligand docking trials. The scaffold ligands were selected based
on chronology of earliest deposition in the Protein Data Bank (PDB). All alignment and docking trials were
performed starting from randomly generated ligand conformers. In this way, the benchmark emulates a real-
istic drug discovery process, in which the binding mode of the single earliest co-crystalized complex guides
virtual screening.

Across all datasets, the top-scoring Rosettal.igand model by protein-ligand interaction score for each
protein-ligand complex was within 2.0 A of the experimentally determined binding poses in 60% of cases.
In contrast, the top-scoring model by property distance to the scaffold ligand in BCL::MolAlign identified
the correct binding pose in 86% of cases (82% of cases when self-alignments are excluded). To gener-
ate one model with RosettalLigand using the protocol described in the Methods section takes approximately
90 seconds. A typical docking run requires approximately 102 - 103 independent docking trials (Fu and
Meiler, 2018; DeLuca et al., 2015) to produce a native-like binding pose. In this benchmark, we generated
1000 models for each dataset. In comparison, a single alignment with five serial independent trajectories in

BCL::MolAlign takes on average approximately 46 seconds (9.2 seconds per trajectory, single CPU thread)
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on Intel Xeon X5690 processors. On a 12-core workstation, for example, this allows screening of approxi-
mately 45,000 ligands against a single scaffold ligand in 24 hours.

Performance on 3 of the 20 datasets in particular (HCV, TPPHO, and CTAP) was previously found to
be improved by simultaneous docking of the ligands within each binding pocket compared to traditional
docking47. We found that BCL::MolAlign similarly provides an advantage over Rosettal.igand docking
in these datasets. This is most clear in the HCV dataset (Figure 6.5, row 1). The binding pocket is large
with multiple favorably scoring binding modes, and in only 2/6 cases did Rosettal.igand recover a native-
like binding pose as the top-scoring model. In contrast, BCL::MolAlign was able to recover native-like
poses in 5/6 cases by superimposing to the earliest available scaffold (PDB ID 3BR9). Similarly, failure
of RosettaLigand to properly place the core bi-substituted aromatic ring structure occurred systemically in
the CTAP dataset here and elsewhere (Fu and Meiler, 2018) (Figure 6.5, row 3). The resultant translational
error caused Rosettaligand to only recover native-like binding poses in 3/6 cases, while BCL::MolAlign

accurately recovered 6/6.

Figure 6.4: Visual representations of docked versus aligned poses in challenging docking targets. Compar-
isons show the protein-ligand complexes of the crystallized scaffold (gray) and crystallized target (white)
molecules (A). The crystallized pose of the target molecule (white) is also shown with the Rosettal.igand
docked pose (green; B) and the BCL::MOLALIGN flexibly aligned pose (purple; C). Examples correspond
to molecules from the HCV (row one), TPPHO (row two), and CTAP (row three) datasets.

Given the high degree of substructure similarity between the ligands in each congeneric set, an important
question is whether or not BCL::MolAlign provides a benefit over a substructure-based alignment method.
To test this, we generated 100 conformers of each ligand with BCL::Conf and aligned all conformers to their
respective scaffold molecules based on maximum common substructure. Substructure-based alignments were

performed with BCL alignment tool AlignToScaffold (ATS) as described in Methods. First, we compared
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the abilities of BCL::MolAlign and ATS to recover native binding poses when the input target molecule was
the native conformation. Across all 20 datasets, BCL::MolAlign recovered 96% of the native binding poses,

while ATS recovered 89% (Table 6.3).

Maximum Common Substructure Alig BCL::MolAlign
Dataset Total Native Conformer RMSD ChargeRMSD  MolAlign Score Native Conformer Flexible Alignment
AR 5 5 5 5 5 5 5
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Table 6.3: Comparison between BCL::MolAlign and maximum common substructure-based alignment
of congeneric ligands.

Next, we utilized multiple scoring metrics to try and optimize recovery of the native pose with ATS. To
evaluate which conformer of the target ligand yielded the best fit to the scaffold, we used an RMSD100-like
metric (Gregory et al., 2014). With this scoring system, we were able to recover 71% of the native binding
poses. Subsequently, we used a property-weighted version of the RMSD100-like metric (previously termed
“ChargeRMSD”) (Gregory et al., 2014), and improved recovery of the ATS alignments to 75%. Finally, we
performed ATS and scored the resultant alignments with the BCL::MolAlign scoring system, with which we

again improved recovery to 78%, but was still below the 86% recovery of BCL::MolAlign (Table 6.3).

6.2.7 Discussion

In summary, we have developed a novel small molecule flexible alignment algorithm called BCL::MolAlign.
BCL::MolAlign utilizes multi-tiered MCM sampling to superimpose and flexibly refine molecular con-
formers according to a customizable property-based metric. It combines established molecular conformer
generator capabilities with on-the-fly dihedral angle optimization for refinement. We have benchmarked
BCL::MolAlign against state-of-the-art commercial and free software. Generally, BCL::MolAlign performs
on par with, or superior to, similar software packages. Alignments generated with BCL::MolAlign can serve
as pharmacophore hypotheses, aid in the selection of ligand conformers and starting poses for protein-ligand
docking, and identify likely 3D conformers based on template compounds. When a starting binding pose is

available for a protein-ligand complex, BCL::MolAlign is capable of identifying native-like binding poses for
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large libraries of small molecules in parallel. We demonstrate how BCL::MolAlign can be used to improve
the efficacy of ensemble docking programs including Rosettal.igandEnsemble (Fu and Meiler, 2018). More-
over, we have demonstrated that the BCL::MolAlign alignment score has predictive value and can be used
to distinguish active from inactive compounds. As an extension to this finding, we also anticipate that the
alignment score could make a valuable descriptor in QSAR models. Finally, BCL::MolAlign was designed
to facilitate high-throughput screening of small molecule libraries. It is “embarrassingly parallel” in its im-
plementation, allowing independent alignments to occur simultaneously across multiple threads. As a result,

BCL::MolAlign is fit for medium- to high-throughput application projects in academia and industry.

6.3 Methods

6.3.1 Benchmarking Dataset Preparation

The CDK2, HIV, P38, ESR1, trypsin, and rhinovirus datasets comparisons were assembled from the PDB
IDs in (Chan and Labute, 2010). Protein-ligand co-crystal structures were superimposed by Ca atoms of
the ligand binding pocket in PyMOL (DeLano, 2007). The positions of each ligand in the protein-ligand co-
crystal structure alignment were taken to be native/scaffold poses. The DUD datasets prepared for the virtual
screening comparisons were obtained from the Kihara Lab at http://kiharalab.org/ps_ligandset/ . The cognate
ligands provided with each dataset were taken to be the scaffolds. All datasets used in the benchmark are
available in the Supplementary Material. Comparisons with Rosettal.igand were completed using 20 protein-
ligand datasets from Fu Meiler (Fu and Meiler, 2018). Target ligands were assigned a random 3D conformer
prior to flexible alignment to scaffolds. Tanimoto largest common substructure comparisons were performed
in the BCL. Substructures were defined by maching atoms by atomic numbers and bonds by bond order (with

aromatic bonds given a distinct bond order), and ring membership.

6.3.2 Chemical Properties

All BCL::MolAlign alignments were performed with the same set of chemical properties. For each atom
type we computed Gasteiger partial charges (Gasteiger and Marsili, 1980), polarizability (Miller, 1990), elec-
tronegativity (Pauling, 1932), hydrophobicity (Labute, 2000), Van der Waals volume (RN2, a), aromaticity
(RN2, b), hydrogen bond donor (OH/NH), and hydrogen bond acceptor (O/N) status. Aromaticity is calcu-
lated as the Marvin General method (RN2, a), which has similarities to the more common Daylight method
(RN2, b). Electronegativity values are determined by element type from standard periodic table values. As in
Chan Labute 2010, those atoms which are at least two bonds away from a hydrogen-bonding atom are desig-
nated as hydrophobic (Chan and Labute, 2010). Property weights were obtained as previously described by

computing the inverse standard deviation of each property’s occurrence across a sample library of drug-like
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small molecules (Gregory et al., 2014; Butkiewicz et al., 2013).

6.3.3 Alignment Parameters

BCL::MolAlign is based on a Monte Carlo — metropolis architecture. Accordingly, random moves are scored
and accepted if they either (1) improve upon the existing score, or (2) fail to improve the existing score but win
a “coin toss” with a probability of winning that is dependent on the change in score and on the temperature
of the simulation38. Higher temperatures increase the likelihood of a move being accepted. We utilize a
temperature-control system which automatically adjusts every 10 iterations such that the initial acceptance
rate at the beginning of the simulation is 50% and the final acceptance rate is 1%. The target ratio adjusts
linearly over the course of a trajectory.

First, all molecules are assigned explicit hydrogen atoms and Gasteiger atom types55. Next, a ran-
dom 3D molecular conformer is generated for each molecule with BCL::Conf (Kothiwale et al., 2015).
BCL::MolAlign alignments were performed with the following parameters: 100 conformers were gener-
ated for each molecule except for those in the CDK?2 and HIV datasets for which 500 and 2000 conformers
were generated, respectively; the number of conformer pairs is set equal to the number of conformers for the
purposes of this benchmark; 400 iterations were performed for the MC Optimization Tier 1 but terminated
early if the score failed to improve after 160 consecutive iterations; 600 iterations were performed for the MC
Optimization Tier 2 but terminated early if the score failed to improve after 240 consecutive iterations; 200 it-
erations were performed for the MC Optimization Tier 3 but terminated early if the score failed to improve af-
ter 80 consecutive iterations; 5 independent trajectories with random maximum atom distances between 0.70
and 1.20 A; re-scoring to normalized maximum atom distances was completed on the top 5 molecules from
each independent trajectory; a mismatch penalty constant of 2.0 was used throughout. Collectively, these val-
ues are specified as the default settings in BCL::MolAlign, with the exception of the number of conformers
and conformer pairs, which have been set to default values of 500 and 100, respectively. These settings are
also implemented as defaults in the BCL::MolAlign webserver. For additional details and command-lines,
see Supplementary Methods. Performance benchmarks comparing RosettalLigand with BCL::MolAlign were

completed on Intel Xeon X5690 processors using a single CPU thread per process.
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CHAPTER 7

General Purpose Structure-Based Drug Discovery Neural Network Score Functions with

Human-Interpretable Pharmacophore Maps

This chapter is taken from Brown, B. P.; Mendenhall, J.; Geanes, A. R.; Meiler, J. J. Chem. Inf. Model.

2021, 61 (2), 603-62017.

7.1 Introduction

Computer-aided drug discovery (CADD) is a broad category of methods that can be employed to increase
the efficiency of the drug discovery process. Broadly, CADD methods can be subdivided into two categories:
ligand-based (LB) and structure-based (SB) (Sliwoski et al., 2014). LB methods predominantly employ
similarity metrics to compare ligands with known biological activity or chemical attributes to a library of
prospective small molecules. Among the most widely used LB methods are quantitative structure-activity re-
lationship (QSAR) models, which relate quantitative chemical descriptors of molecules to known biological
activities (Sliwoski et al., 2014; Leelananda and Lindert, 2016). QSAR models lend themselves to supervised
machine learning methods, such as artificial neural networks (ANN) and Random Forest (RF) (Butkiewicz
et al., 2013; Dahl, 2014; Mendenhall and Meiler, 2016; Hillebrecht and Klebe, 2008; Manchester and Czer-
minski, 2008; Svetnik et al., 2003). Indeed, over the last two decades we have demonstrated the efficacy of
ANNS in LB classification tasks compared to other methods, such as support vector machines, and employed
them to identify multiple G-protein-coupled receptor (GPCR) allosteric modulators (Butkiewicz et al., 2013;
Geanes et al., 2016; Lowe et al., 2010; Mueller et al., 2010; Bleckmann and Meiler, 2003). In that time,
we have contributed to multiple aspects of QSAR method development, including early efforts to expedite
model training with GPU programming (Lowe et al.), chemical descriptor and toolkit development (Sliwoski
etal., 2012, 2015; Mendenhall et al., 2021), improving QSAR ANN architectures with dropout (Mendenhall
and Meiler, 2016), and dataset assembly for community benchmarking (Butkiewicz et al., 2013). We have
accomplished this largely with the development of the BioChemical Library (BCL), a primarily ligand-based
academic open-source cheminformatics toolkit (Brown et al., 2022). LB methods can often rank compounds
many orders of magnitude faster than SB methods. Despite being very rapid and easily deployed on large
databases for virtual high-throughput screening (VHTS), ligand-based methods have inherent limitations.
Most notably, LB methods make predictions in the absence of binding pocket information. As a result,
predictions made from LB methods must be target-specific, and generating LB models for a given target,

especially QSAR models, may require a large amount of model training data. Thus, there is considerable
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interest in developing target agnostic, rapid SB methods for vHTS.

SB methods provide information about small molecule interactions with the binding pocket. Critically,
this should allow SB-methods to be target agnostic and provide chemically meaningful insight with which
to guide hit optimization. Unfortunately, the most accurate SB methods come with a computational cost
prohibitive for VHTS. Accurate prediction of small molecule binding affinities to target proteins is a key
challenge in SB-CADD. Structure-based alchemical free energy approaches, such as free energy perturbation
(FEP) and thermodynamic integration (TI), are widely considered to be the most accurate (Wang et al., 2019a;
?;Zouetal., 2019). Other approaches, such as molecular mechanics Poisson-Boltzmann or Generalized-Born
surface area (MM/PB(GB)SA), or protein-ligand docking semi-empirical scoring functions, can also provide
reliable relative binding free energies, but with overall performance seemingly being more system-dependent
(Tokudome et al., 2020; Wang et al., 2019c; Sun et al., 2018). Faster, but less accurate, docking score
functions are being increasingly scaled to medium- and high-throughput virtual screening (Stein et al., 2020;
DeLuca et al., 2015).

In the last decade, many machine learning approaches have been developed to increase the speed and
accuracy of SB virtual screening approaches. As early as 2010, random forest (RF) rescoring of docked poses
demonstrated that machine learning algorithms could provide rapid and competitive prediction of protein-
ligand binding affinities (RF-Score) (Ballester and Mitchell, 2010). A variation on RF as a modeling tool
for protein-ligand binding affinity prediction is AVinaRF, which uses random forest (RF) to predict an error
correction term for the AutoDock Vina docking score function (Wang and Zhang, 2017). More recently, deep
learning with convolutional neural networks (CNN) has been widely investigated to predict binding affinities.
For example, DeepVS is a CNN that attempts to generalize binding mode information by encoding local
atomic neighborhoods around each selected ligand atom using simple descriptors (i.e. atom types, charges,
distances, and interacting amino acid identity) (Pereira et al., 2016). Multiple grid-based CNNs have also
been developed, such as KDEEP and a CNN by which Ragoza et al., which treat protein-ligand complexes
as 3D images colored by specific atom type and pharmacophore properties (Ragoza et al., 2017; Jiménez
et al., 2018). AtomNet is another grid-based CNN that also includes features derived from protein-ligand
interaction fingerprints (Izhar Wallach, 2015).

It is well-known that cheminformatics machine learning algorithms can be strongly limited in their do-
main of applicability by the chosen training set and descriptors (Minovski et al., 2013; Sheridan, 2012; Tetko
et al., 2008; Schroeter et al., 2007; Ruiz and Gémez-Nieto, 2018; Roy et al., 2015; Carrid6 et al., 2014). There
is concern that some newer CNN techniques demonstrating exceptional performance may suffer from lack of
generalizability owing to dataset and training biases (Ragoza et al., 2017; Sieg et al., 2019). Even in cases

where machine learning models make accurate predictions, the chemical basis of these predictions is not
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easily interpreted without substantial input sensitivity and feature analysis. This infamously gives rise to the
“black box” problem of machine learning algorithms, especially deep neural networks (DNNs).

Finally, a major motivation for the current project is to incorporate a modular and customizable SB score
function into the BCL for use in the ongoing development SB design algorithms. Currently, the BCL is only
able to support LB design algorithms. Ultimately, we anticipate that increasing the capabilities of the BCL
to perform both LB and SB design tasks will make it a valuable companion to other academic molecular
modeling software projects, such as the Rosetta macromolecular modeling and design software suite (Leman
et al., 2020).

To address these issues, we have designed a novel SB protein-ligand binding affinity and pose prediction
model based on distance-dependent signed atom property protein-ligand correlations. Instead of encoding
specific protein and ligand properties, our method encodes the protein-ligand interaction feature space. This
is analogous to the formation of statistical pair potentials, except that here we do not formally provide any
constraints on the function to be approximated. We demonstrate that fully-connected feed-forward neural net-
works trained with our new descriptors are competitive with existing state-of-the-art machine learning meth-
ods and docking methods at protein-ligand binding affinity prediction, pose prediction, and virtual screening
power. Moreover, we explicitly demonstrate that the performance of our models is not dependent on ex-
ploiting dataset bias. Finally, we show how our models can be rapidly decomposed into human interpretable
pharmacophore maps. These pharmacophore maps allow users to visualize the atoms/substructures of their
molecules that drive the activity prediction, as well as map predicted or known relative binding free energy
changes across molecule ensembles to specific substructures. This will be the first SB scoring tool available
in the BCL, and the pharmacophore mapping tool is fully compatible with the LB QSAR methods currently
implemented. Together, we believe these tools improve the utility of the BCL for SB hit identification and
lead optimization in drug discovery.

The new descriptors, models, and pharmacophore mapping application will be available in the upcoming
BCL version 4.1 release, an academic open source software package for cheminformatics written in the C++
programming language. It is our hope that our new method will be used in conjunction with other advance-

ments in machine learning-based QSAR/QSPR to continue to improve the efficiency of drug discovery.

7.2 Results

7.2.1 On the development of a pose-dependent protein-ligand property correlation descriptor
Currently, the top-performing deep learning scoring algorithms that predict binding affinities from protein-
ligand complexes are CNNs that encode neighboring ligand and receptor atoms spatially and/or chemically

(e.g. hydrogen bond donor/acceptor heuristics) (Ragoza et al., 2017; Jiménez et al., 2018). One critique
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of these CNN s is that test-set performance can be attributed to learning ligand-specific features and not the
protein-ligand interface features (Sieg et al., 2019). In other words, the neural network can perform well
on the tests simply by learning the biases in the ligand datasets. To avoid any such potential limitations
here, we developed a pose-dependent protein-ligand interaction descriptor based on sign-aware 3DAs. This
descriptor can be likened to a potential of mean force profile in which the collective variables are the pairwise

interatomic distances between protein and ligand atoms for specific chemical properties/heuristics.

7.2.2 Small molecule chemical property autocorrelations
Consider a property-weighted 3D autocorrelation (3DA) function for a single small molecule. An atom-based

property allows the 3DA to represent the spatial distribution of properties of interest:

N N
3DA(1, 1) = Z Z S(rp<m;< rb)P,ije_Br"Jz
joi

(7.1)

where r_a and r_b are the boundaries of the current distance interval, N is the total number of atoms in the
molecule, r_(i,j) is the distance between the two atoms being considered, & is the Kronecker delta, 8 is a
smoothing parameter referred to as ‘temperature’ (Sliwoski et al., 2012; Hemmer et al., 1999), and P is the
property computed for each atom. 3DAs computed for signed properties (e.g. partial charge) contain, for
each distance interval, three values corresponding to product sums of each of the three possible sign pairings

(-/-, +/+, -/+) (Sliwoski et al., 2015).

7.2.3 Recasting property space into protein-ligand interaction distance bins
Instead of corresponding to intramolecular atomic distances, the distance bins now correspond to intermolec-
ular protein-ligand interatomic distances. The property correlation is between each atom in the ligand and all

atoms in the receptor within a specified radius (Figure 7.1):

Ntig Npror

PLC(1,, 1) = Z z 8(r, <y <mp)PPyeF
Lp (1.2)

where r_a and r_b are the boundaries of the current protein-ligand interatomic distance interval, N_lig and
N_prot are the total number of atoms in the ligand and receptor, respectively, r_(1,p) is the distance between
the current protein-ligand atom pair, § is the Kronecker delta, f8 is the temperature, and P_1 and P_p are the

properties computed for ligand and receptor atoms 1 and p, respectively. As with 3DA in (eq. 1), PLC (protein-

142



ligand correlation) descriptors distinguishes signed pairs, but can also optionally include an additional bin
(—/++/-+/+-) to account for opposite sign pairings between the protein and the ligand (Figure 7.1A). This can
be useful if the properties between which the correlations are being taken are not identical, or if the model
being built is leveraging pre-existing knowledge about the chemical makeup of the system in study.

For example, consider the descriptor “HBondDonorTernary”. This descriptor returns a 1 if an atom is a
hydrogen bond donor, -1 if it is a hydrogen bond acceptor, and 0 otherwise. One could choose to differentiate
hydrogen bond donor/acceptor pairs between the protein and the ligand (e.g. asymmetric: -+/+-), or to group
all opposite sign pairs together (symmetric -/+). Sign pair discrimination is illustrated in Figure 7.1A for a
property that tracks the protein-ligand directionality of opposite sign pairings. We empirically chose a total
distance of 7.0 A discretized at 0.50 A intervals, resulting in either 42 (symmetric) or 56 (asymmetric) values

per property (see subsection on feature parameterization in Methods and Supporting Information).

7.2.4 Representing protein-ligand interactions with property correlation descriptors

PLC descriptors (eq. 2) encode interactions between protein-ligand atomic atoms as represented by a variety
of atomic properties: partial charge, electronegativity, polarizability, hydrophobicity, hydrogen bond donors
and acceptors, aromatic and generic ring membership, heavy and light atoms. These atomic features are a
superset of those we used previously for QSAR (Sliwoski et al., 2015; Mendenhall and Meiler, 2016), and
are identical to those we used previously for superimposition of similar molecules (Brown et al., 2019b).

To mitigate feature redundancy, we summed feature interactions that were nominally equivalent. For
example, consider the PLC descriptor that represents the signed correlation between atomic partial charges in
receptor and ligand atoms: 3DAPairRS050(Atom_SigmaCharge). In this descriptor, we summed -/+ (ligand
negative charge, protein positive charge) with +/- (ligand positive charge, protein negative charge) interactions
under the notion that these are equivalently favorable pairings. We took a similar approach for hydrogen bond
donation, hydrophobic interactions, and heavy atom / hydrogen atom discrimination. Some descriptors, such
as polarizability and electronegativity, are strictly positive valued, and therefore do not require binning by
sign pairs.

While each of the previously mentioned descriptors can be considered symmetric in that we are corre-
lating the same property for both the receptor and the ligand (e.g. partial charge), interactions can also be
described by complementary interactions between dissimilar chemical properties. For example, interactions
between aromatic ring systems and polar vs. hydrophobic atoms. To create a property that can describe this
interaction, we need to utilize Atom_HydrophobicTernary, which is an atom property that encodes hydropho-
bic atoms as +1, and polar atoms as -1. To better distinguish highly polar from less polar atoms, we multiply

Atom_HydrophobicTernary by polarizability. We then encode aromatic-polar, aromatic-hydrophobic interac-
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Figure 7.1: Schematic of pose-dependent protein-ligand descriptor. (A) Schematic representation of pose-
dependent protein-ligand interaction feature space. (B) Surface representation of discoidin domain receptor
1 (DDR1) kinase binding pocket heavy atoms within 7.0 A of select atoms within dasatinib. The surface
representation is colored by distance to the selected atom. Dasatinib shown in stick configuration colored by
element type with the selected atom indicated by dot sphere.
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tions with the PLC descriptor, “3DAPairRSAsym050(Multiply(Atom_HydrophobicTernary, Atom_Polarizability),
Atom _IsInAromaticRingTernary)”. In this descriptor, each distance bin is further discretized into -/- (ligand
polar atom polarizability with a non-aromatic receptor atom), +/+ (ligand hydrophobic atom polarizability
with an aromatic receptor atom), -/+ (ligand polar atom polarizability with an aromatic receptor atom), and

+/- (ligand hydrophobic atom polarizability with a non-aromatic receptor atom). An inverted version of this
descriptor, in which hydrophobicity is with respect to the receptor and aromaticity to the ligand, is also
employed here.

With these features, we trained two neural networks. BCL-AffinityNet is a “deep” single-task neural net-
work (2 hidden layers, 512 neurons in the first hidden layer and 32 neurons in the second layer) to directly
predict log-scaled protein-ligand binding affinity values. BCL-DockANNScore is a multi-tasking shallow
neural network (1 hidden layer with 32 neurons) that classifies binding poses as less-or-equal to 1.0, 2.0, 3.0,
5.0, or 8.0 A from the native (co-crystallized) binding mode. Both of these models utilize only PLC descrip-
tors (eq. 2), with BCL-DockANNScore including an additional PLC descriptor that discretizes hydrogen
bond donor/receiver pair angles.

Finally, we note that we did not perform a deep exploration of possible base chemical descriptors and
there are likely many additional features that could be effective (e.g. explicit consideration of w-interactions,
o-hole interactions, transition metal properties, solvation energies, etc.). Additionally, we did not perform
feature selection to optimize the performance of our model on the benchmark training sets to avoid potentially
over-optimizing the models for the training data. For a detailed evaluation of the importance of each feature
in BCL-AffinityNet and BCL-DockANNScore, please see the top 20 features by model input sensitivity and
a decomposition of each descriptor into the average input sensitivity per sign pair (Figure S1 — S8) in the

Supporting Information.

7.2.5 Scoring power evaluation of BCL-AffinityNet
We trained BCL-AffinityNet on protein-ligand complexes from the PDBbind v.2016 refined set and all gen-
eral set protein-ligand (small molecule) complexes for which binding constants were available. Protein-ligand
pairs comprising the coreset (285 unique test set complexes) were entirely excluded from training. BCL-
AffinityNet was trained with descriptors of the form (eq. 2). See the Supporting Information for a sample
feature code object file and command-lines to generate the model.

We first tested the performance of BCL-AffinityNet on the scoring power task described in the compar-
ative assessment of score functions 2016 update (CASF2016). This task evaluates affinity prediction across
the PDBbind v.2016 coreset comprised of 285 protein-ligand pairs on 57 targets (5 small molecules per tar-

get) by measuring the Pearson correlation coefficient (R) between predicted and experimental values. It has
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previously been noted that binding affinities in this task correlate strongly with both the fraction of buried sol-
vent accessible surface area (ASAS, R=0.63) (Figure 7.2A)1 and several scalar ligand descriptors, including
molecular weight (MW, R=0.50), topological polar surface area (TPSA, R=0.20), logP (R=0.32), and polariz-
ability (R=0.52). An important measure of success is whether or not the affinity prediction method is capable

of performing better than these simple metrics that are unaware of specific protein-ligand interactions.

PDBbind2016 Scoring Power Evaluation

0.0 0z 04 06 08 2 4 6 8 10 12
Pearson Comelation Coefficient Experimental

Figure 7.2: Scoring power evaluation of BCL-AffinityNet. (A) Comparison of BCL-AffinityNet scoring
power to other methods from the CASF2016 benchmark by Su et al.1. Error bars indicate the 90% confidence
interval (B) Linear regression of experimental vs. predicted pKd values in the CASF2016 coreset.

BCL-AffinityNet is among the best algorithms on the scoring power task (R=0.84) (Figure 7.2A, B).
AVinaRF-=20, which is a protein-ligand interaction score function that uses a random forest (RF) algorithm to
predict an error correction term on the AutoDock Vina score, performed similarly on the original CASF2016
report (Figure 7.2A)1. However, as reported previouslyl, the training set for AVinaRF includes 140 of the
coreset test complexes. Lu and colleagues re-evaluated the scoring power of AVinaRF after retraining it
without any of the coreset complexes and found that is still performed better than ASAS but with worse
scoring power than originally reported (R=0.73) (Lu et al., 2019).

BCL-AffinityNet performs competitively with other machine learning models, such as the grid-based
CNN KDEEP (R=0.82) and RF-Score (R=0.80). We note that KDEEP was evaluated on the 290 molecule
version of the PDBbind coreset, not the canonical 285 molecule set. Moreover, in the absence of the under-

lying distributions it is unclear if these results are statistically different; however, the effect sizes are similar.

7.2.6 Explicit assessment of dataset bias on BCL-AffinityNet scoring power performance

It is increasingly well-documented that strong machine learning model performance on QSAR tasks can be
the result of dataset bias (Sieg et al., 2019; Yang et al., 2020; Chen et al., 2019). Indeed, Yang et al. found that
atomic CNNs (ACNNSs) trained solely on ligand or receptor pocket features performed just as well as ACNNs

trained on protein-ligand complexes (Yang et al., 2020), suggesting that the model was unable to leverage
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features relating to the protein-ligand interactions in a meaningful way. Therefore, we sought to determine
the extent to which dataset biases may be inflating BCL-AffinityNet performance.

First, we trained a BCL-AffinityNet Y-scramble model, in which the result labels were shuffled between
training examples. The Y-scramble model is a negative control, and as expected we find virtually no correla-
tion between predicted and experimental results on the coreset with this model (Figure S9).

Next, we generated LB and pocket-based QSAR models with the same architecture as BCL-AffinityNet.
These models were trained with the 3DA descriptor equivalent of the PLC features. In an ideal dataset, ligand
and protein pocket controls would have near zero correlation to experimental results; however, consistent with
the findings of Yang et al. (Yang et al., 2020), the LB and pocket-based QSAR models each had correlation
coefficients greater than 0.50 at 0.72 and 0.61, respectively (Figure S9).

To assess the impact of dataset bias on our PLC models performance for out-of-class predictions, we
generated three new leave-class-out test-set splits based on ligand, protein pocket, or combined ligand and
protein pocket similarity to the PDBbind v.2016 coreset. Specifically, we generated a K-means (k=75) appli-
cability domain (AD) model from the 3DAs of the ligands, protein pockets, or combination of ligands and
protein pockets of the PDBbind v.2016 coreset. Using each of these AD models, we removed training sam-
ples that were further from their nearest Kohonen map node than the furthest point of the PDBbind v.2016
coreset was from the AD model. Intuitively, the new test-sets thus include only points that are outside the
nominal descriptor space given by the PDBbind v.2016 coreset for ligands, protein pockets, or combination
ligand-protein pockets. This has the effect of making the training set feature space more representative of
the PDBbind v.2016 coreset feature space, while simultaneously creating new test sets that are outside of
PDBbind v.2016 coreset feature space.

This resulted in the creation of a LB AD test set (n=995), pocket AD test set (n=379), and combined
AD test set (n=1377) (see Methods for additional details). We hypothesized that the LB QSAR model would
perform poorly on the LB AD test set, that the pocket-based QSAR model would perform poorly on the pocket
AD test, and that both models would perform poorly on the combined AD test set. We further hypothesized
that if models trained on PLC descriptors are truly generalizable SB score functions, then their performance
on all three test splits ought not to be significantly worse than their training random-split cross-validation
metrics.

We found that the LB QSAR models performed worse on the LB AD test set (R=0.28) than on the
random-split training cross-validation sets (R=0.67) (Figure S10). Similarly, the pocket-based QSAR model
performed worse on the pocket AD test set (R=0.33) than on the training splits (R=0.63) (Figure S11). We
also note a reduction in performance of 