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2.2 Stability of osimertinib in reversible complexes with EGFR mutants. EGFR mutants re-
versibly bound to osimertinib were simulated with GaMD. A schematic representation of
a simplified binding equilibrium for a covalently-binding inhibitor is depicted such that
E = Enzyme target, I = Inhibitor, and EI = Enzyme-Inhibitor complex (A). Each simula-
tion was performed in triplicate for a total of 12 independent 250 ns GaMD simulations.
Representative images of osimertinib reversibly bound to WT (PDB ID 4ZAU; the solid
black line indicates the bent P-loop; the dashed black line indicates the contact between
the F723 phenyl and osimertinib indole ring; (B), Ex19Del and Ex19Del/G724S (C), and
L858R and L858R/G724S (D) are displayed. Trajectory frames were extracted every 10
ps and plotted as osimertinib RMSD from the equilibrated start structure (x-axis) and dis-
tance between the phenyl ring of F723 and the indole ring of osimertinib (y-axis; E – F).
RMSD vs. distance plots include data from 3 independent trajectories for each mutant –
inhibitor pair (E – F). Select relative osimertinib binding free energies are plotted as aver-
ages across 3 independent trajectories; error bars indicate standard error of the mean (G).
∆Gbind =∆EMM+∆Gsolv–T ∆S ∆GF723int =∆EMM+∆Gsolv∆∆G = ∆G1 – ∆G2 . . . . . . . 8

2.3 G724S induces an α-turn to β -bend conformational shift in the P-loop. . . . . . . . . . . 9
2.4 Afatinib forms a stable reversible complex with EGFR independent of G724S status. . . . 10
2.5 EGFR G724S mediates osimertinib resistance in EGFR Ex19Del but not EGFR L858R

mutants. (A) 293FT cell transduced with different EGFR del19 variants were treated with
100 nM osimertinib for 4 hours. Cellular lysates were probed with the indicated antibod-
ies. (B) 293FT cell transduced with different EGFR L858R variants were treated with 100
nM osimertinib for 4 hours. Cellular lysates were probed with the indicated antibodies.
Ba/F3 EGFR Ex19Del, Ex19Del19/C979S, Ex19Del/G724S were treated with increasing
amount of (C) osimertinib, (D) erlotinib or (E) afatinib for 72 hours. CellTiter Blue assays
were performed to assess cell viability. Each point represents three replicates. Data are
presented as the mean percentage of viable cells compared to control ± SD. NR6 cells
transduced with (F) different EGFR del19 variants or (G) different EGFR L858R variants
were treated with either DMSO, 100 nM erlotinib, 100 nM afatinib, or 100 nM osimertinib
for 4 hours. Relative pEGFR/tEGFR values are calculated by the density of pEGFR signal
divided by the density of tEGFR signal, then normalized by the DMSO-treated group in
each cell line. Density of western blots was analyzed by ImageJ. *: p < 0.05 as compared
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2.8 Prevalence of oncogenic EGFR mutations in NSCLC patient samples with G724S. (A)
Bar chart depicting the number of cases of each oncogenic EGFR mutation associated
with G724S in NSCLC patient samples with genomic profiling obtained through Foun-
dation Medicine (total n=19). (B-E) Allelic frequencies for the specific Ex19Del vari-
ant, T790M, and G724S are plotted versus time between measurements for four cases for
which tissue genomic profiling results were available at two independent time points. (F-
G) Radiographic images for Patient 15 taken prior to osimertinib therapy (left) and after 8
cycles of osimertinib (right). The red arrows in the CT scan images show sites of disease
that responded to osimertinib. Data and illustrations for this figure produced by Ross, J.
S.; Miller, V. A.; Ali, S.; Bazhenova, L.; and Schrock, A. B. . . . . . . . . . . . . . . . . 16

2.9 TKI inhibition profile of G724S, Ex19Del and Ex19Del/G724S. Data and illustrations for
this figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z.,
and Lovly, C.M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 The EGFR G724S single mutant can be effectively inhibited by EGFR TKIs. Ba/F3 cells
stably expressing EGFR Ex19Del, G724S, and Ex19Del/G724S were treated with increas-
ing amounts of (A) erlotinib, (B) afatinib or (C) osimertinib for 72 hours. CellTiter Blue
assays were performed to assess cell viability. Each point represents four replicates. Data
are presented as the mean percentage of viable cells compared to control +/- SD. (D)
Ba/F3 cells transduced with EGFR G724S were treated with either DMSO, 100 nM er-
lotinib, 100 nM afatinib, or 100 nM osimertinib for 4 hours. Cellular lysates were probed
with the indicated antibodies. Data and illustrations for this figure produced by Zhang,
Y.-K., Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z., and Lovly, C.M. . . . . . . . . 18

2.11 Conformational free energy landscape of EGFR kinase domain mutants. The reaction co-
ordinate reference for the conformational free energy landscape of EGFR kinase mutants
is indicated on a model of WT in the active (PDB ID 2ITX; bold colors) and inactive
(PDB ID 3GT8; faded colors) conformations (A). Green spheres represent the distance
(Å) between Hα1 of G721 and Cβ of A839. Blue spheres represent the distance between
Cβ of K745 and Cβ of E762. The potential of mean force (PMF) with respect to the
positions of the αC helix (x-axis) and P-loop (y-axis) are plotted for WT and G724S,
L858R and L858R/G724S, E746 A750 and E746 A750/G724S, and E746 S752>V and
E746 S752>V/G724S (B). The left and right vertical dashed lines on the free energy plots
(C-E) indicate center-of-mass distances between K745 and E762 in active (PDB ID 2GS6)
and inactive (PDB ID 2GS7) EGFR kinase, respectively. The left vertical dashed lined
therefore represents the canonical EGFR kinase αC-helix inward conformation, while the
right vertical dashed line represents the canonical EGFR kinase αC-helix outward con-
formation. All depicted simulations start from the active (αC-helix inward, activation
loop outward) conformation. The energetic reweighting factor was approximated with
cumulant expansion to the 2nd order. Free energy landscapes from the 500 ns GaMD
simulations are depicted here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Frequently occurring mutations in the EGFR β3-αC motif. (A) Schematic representation
of the active EGFR-WT asymmetric dimer. Oncogenic and TKI resistance mutations have
been reported in exons 18 (wheat), 19 (red), 20 (yellow), and 21 (blue). (B) The majority
of deletion mutations begin at residues E746, L747, or T751. Deletion mutants frequently
terminate with or without an insertion at position A750, T751, S752, or P753. Spheres
indicate the residue Cα . (C) Multiple sequence alignment of the β3-αC motif between
EGFR-WT and ex19del variants with >2% frequency. (D) Residues at the β3αC inter-
face can be referenced with respect to their index after the conserved K745 residue in the
majority of mutants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Structural comparison of modeled ex19del β3αC motifs. (A) Superimposition of the
β3αC region of the most common ex19del variants with WT. Rendering of the β3αC
loop in (B) WT, (C) L747P, and (D) L747 A750>P. L747P and L747 A750>P both form
a tight turn in the β3αC loop. The L747 A750>P tight turn contains a proline in the
second position and fewer residues on the N-terminus of the αC-helix. . . . . . . . . . . 30
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3.3 Conventional MD simulations of several ex19del variants starting from the active state.
Boltzmann-weighted probability distributions of (A) WT, (B) E746 A750, (C) E746 S752>V,
and (D) L747 A750>P conformational changes in conventional MD simulations. All sim-
ulations were started from the active state. Three independent simulations for each system
were run for 4.0 us each. The inward/outward motion of the activation loop is depicted on
the y-axis (larger numbers indicate more inward), and the inward/outward motion of the
αC-helix is depicted on the x-axis (larger numbers indicate more outward). Snapshots are
from the end of one of the three independent simulations. WT transitioned to the Src-like
inactive state in one of the three simulations. The glycine-rich loop is colored yellow, the
β3αC-loop and αC-helix are blue, and the activation loop is green. . . . . . . . . . . . . 31

3.4 Conformational free energy landscapes of ex19del variants from umbrella sampling MD
simulations. Collective variables describe the (A) active and (B) inactive states as the
pseudo-dihedral angle formed by the alpha carbon atoms of residues D855, F856, G857,
and L858 (x-axis) as well as the difference in distance between the capping sidechain
atoms of E762 and K745 (d1) and E762 and K860 (d2) (y-axis). Conformational free en-
ergies are shown for (C) WT, (D) E746 A750, (E) E746 S753¿V, and (F) L747 A750>P.
Plots are contoured at 0.5 kcal/mol and colored within the range 0 (blue) and 15 (red)
kcal/mol. Contours above 15 kcal/mol are colored white. . . . . . . . . . . . . . . . . . 32

3.5 Conformational free energy landscapes of EGFR variants from umbrella sampling MD
simulations. Collective variables describe the active and inactive states as the pseudo-
dihedral angle formed by the alpha carbon atoms of residues D855, F856, G857, and
L858 (x-axis) as well as the difference in distance between the capping sidechain atoms
of E762 and K745 (d1) and E762 and K860 (d2) (y-axis). Conformational free energies
are shown for (A) WT, (B) L858R, (C) L747P, (D) E746 A750, (E) L747 P753>S, (F)
L747 T751, (G) E746 S752>V, and (H) L747 A750>P. Plots are contoured at 0.5 kcal/-
mol and colored within the range 0 (blue) and 9.5 (red) kcal/mol. Contours above 9.5
kcal/mol are colored white. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Ex19del variants display allele-specific differences in dimerization and oncogenic growth.
(A) Cross correlation values of transfected EGFR variants with (+) or without (-) ligand
(EGF) stimulation. The dark and light blue boxes indicate the ƒc value regions for dimers
and multimers, respectively. (B) Diffusion coefficient values of EGFR variants with (+)
or without (-) ligand (EGF) stimulation. The light orange box indicates EGF-stimulated
groups. (C) Ba/F3 cells were stably transfected with different EGFR ex19del variants, WT,
or empty vector. Cellular lysates were probed with the indicated antibodies to measure
phosphorylation. (D) Rate of IL-3-independent growth of Ba/F3 cells stably transfected
with different ex19del variants, WT, or empty vector. Data and illustrations for figure
panels A and B produced by Soyeon Kim, Abigail Leigh Hartzler, and Adam W. Smith.
Data and illustrations for figure panels C and D produced by Yun-Kai Zhang, Yingjun Yan,
Zhenfang Du, Jiyoon Kim, and Christine M. Lovly. . . . . . . . . . . . . . . . . . . . . 35

xii



3.7 Allele-specific differences in ex19del TKI sensitivity may not be due to differences in
TKI binding affinity. (A) Ba/F3 cells were stably transfected with different EGFR ex19del
variants and treated with increasing concentrations (0, 30, or 100 nM) of osimertinib. Cel-
lular lysates were probed with the indicated antibodies to measure phosphorylation. (B)
Lung adenocarcinoma cell lines expressing E746 A750 (PC9), E746 S752>V (SH450),
or L747 A750>P (HCC4006) were treated with increasing concentrations (0, 30, or 100
nM) of osimertinib. Cellular lysates were probed with the indicated antibodies to mea-
sure phosphorylation. Quantifications are represented as the average grayscale ratio of
pEGFR/EGFR/Actin+/- standard deviation across three independent biological replicates.
(C) Time-dependent growth of lung adenocarcinoma cell lines expressing E746 A750
(PC9), E746 S752>V (SH450), or L747 A750>P (HCC4006) treated with either 100
nM osimertinib or buffer. Each condition was performed with 9 replicates (thin lines)
and averaged (bold lines). (D) Structural models of EGFR in complex with osimertinib
in either the bent (F723 facing osimertinib in the ATP binding pocket) or straight (F723
projecting away from the ATP binding pocket) conformations. (E) Osimertinib binding
affinities for each ex19del variant, WT, and the double mutant E746 S752>V/G724S from
simulations starting in the active and inactive states. Bent and straight states were sepa-
rated by a small 2-state Markov state model based on the G/S724 backbone phi angle.
MM-PBSA was not performed if the stationary distribution for a state was estimated at
less than 0.05 or the model failed to pass a Chapman-Kalmogorov test. Binding energies
are computed as the average MM-PBSA energies of 1000 randomly selected frames from
the corresponding MSM cluster. For each EGFR variant, six simulations of 2.0 us each
were performed such that there were three each from the active and inactive states (except
E746 S752>V/G724S, for which no inactive state simulations were performed). (F) Cell
viability assays performed in lung adenocarcinoma cell lines stably expressing E746 A750
(PC9), E746 S752>V (SH450), or L747 A750>P (HCC4006) with first (erlotinib), sec-
ond (afatinib), and third (osimertinib) generation EGFR TKIs. Data and illustrations for
figure panels A, B, C, and F produced by Yun-Kai Zhang, Yingjun Yan, Zhenfang Du,
Jiyoon Kim, and Christine M. Lovly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Conventional MD simulations demonstrate ex19del β3αC hydrogen bond networks. Apo-
state conventional MD simulation snapshots of β3αC hydrogen bond networks in (A)
WT, (B) E746 A750, (C) E746 S752>V, and (D) L747 A750>P. (E) Quantification of
hydrogen bond stability of select β3αC hydrogen bonds at the interface. Hydrogen bonds
are defined by donor/acceptor heavy atom distances of 3.5 and angles between 135 and
180 degrees. Quantifications are based on three independent trials of 4.0 us apo-state
simulations of each system starting from the active state. . . . . . . . . . . . . . . . . . . 40
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3.9 Neratinib effectively inhibits E746 S752>V. (A) Neratinib binding affinities for each ex19del
variant and WT from simulations starting in the active and inactive states. Three bind-
ing modes of neratinib distinguished by the dihedral conformations of the hydroxymethyl
pyridine were distinguished with a simple Markov state model. MM-PBSA was not per-
formed if the stationary distribution for a state was estimated at less than 0.05 or the
model failed to pass a Chapman-Kalmogorov test for three or two states. Binding ener-
gies are computed as the average MM-PBSA energies of 1000 randomly selected frames
from the corresponding MSM cluster. For each EGFR variant, six simulations of 2.0
us each were performed such that there were three each from the active and inactive
states. (B) Ba/F3 cells were stably transfected with different EGFR ex19del variants and
treated with increasing concentrations (0, 30, or 150 nM) of neratinib. Cellular lysates
were probed with the indicated antibodies to measure phosphorylation. (C) Quantifica-
tion of Ba/F3 neratinib inhibition Western blots are represented as the average grayscale
ratio of pEGFR/EGFR/Action +/- standard deviation across three independent biological
replicates. (D) Ba/F3 cell Lung adenocarcinoma cell lines expressing E746 A750 (PC9),
E746 S752>V (SH450), or L747 A750>P (HCC4006) were treated with increasing con-
centrations (0, 0.3, 3, 30, or 150 nM) of neratinib. Cellular lysates were probed with the
indicated antibodies to measure phosphorylation. (E) Quantification of lung adenocarci-
noma cell line neratinib inhibition Western blots are represented as the average grayscale
ratio of pEGFR/EGFR/Actin+/- standard deviation across three independent biological
replicates. (F) Cell viability assays performed in lung adenocarcinoma cell lines stably ex-
pressing E746 A750 (PC9), E746 S752>V (SH450), or L747 A750>P (HCC4006) with
neratinib. Data and illustrations for figure panels B - F produced by Yun-Kai Zhang,
Yingjun Yan, Zhenfang Du, Jiyoon Kim, and Christine M. Lovly. . . . . . . . . . . . . . 42

3.10 Model of ex19del allele-specific functional differences and strategy for inhibition. Dis-
cretized classification scheme for EGFR ex19del variants: non-oncogenic with ligand-
dependent activation (orange; WT); oncogenic super acceptor with ligand-dependent acti-
vation (blue; E746 A750, E746 S752>V); tight ATP binder (pink; E746 S752>V, L747 A750>P);
oncogenic hyper acceptor with ligand-independent activation (green; L747 A750>P). . . 44

4.1 Mutations disrupting the potential intra-molecular dimer interface abrogate phosphoryla-
tion of EGFR-KDD and anchorage independent growth. a, Ribbon diagram and space-
filling model of EGFR-KDD kinase domains. Mutations constructed in this study were
labeled. b, Schematic representation of mutations we constructed in this study. We gener-
ated point mutations disrupting the potential intra- (C1, N2) and inter-molecular (N1, C2)
dimer interface as well as mutations inactivating kinase activity of each kinase domain
(Dead1, Dead2). c, YAMC cells stably expressing EGFR-KDD and its mutants. Cells
were cultured for 48 hours and then harvested and lysed for analysis. Total EGFR and the
auto-phosphorylation at three tyrosine sites were evaluated by western blot. n=3 experi-
ment was repeated independently with similar results. EV, empty vector; WT, EGFR-WT;
KDD, EGFR-KDD. d, Soft agar assays were performed in 6 well plates by using YAMC
cells. 5,000 cells were seeded in each well and colonies were counted after 4 weeks. n=3
biologically independent samples were examined over 3 independent experiments. Data
are presented as mean values ± SD. Statistical differences were analyzed by two-sided un-
paired Student’s t-test. Data and illustrations for figure panels C and D produced by Du,
Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. . . . . . . . . 54
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4.2 Mutations disrupting the potential intra-molecular dimer interface abrogate the auto-phosphorylation
of EGFR-KDD activation and anchorage independent growth in soft agar. a, NR6 cells sta-
bly expressing EGFR-KDD and its mutants were cultured in serum-free medium for 48
hrs and then cells were harvested and lysed for Western blot. This result is the represen-
tative of five independent experiments. b, Anchorage-independent soft agar assays were
performed in 6 well plates by seeding 5,000 NR6 in each well. n=3 biologically indepen-
dent samples were examined over 3 independent experiments. Data are presented as mean
values ± SD. Statistical differences were analyzed by two-sided unpaired Student’s t-test.
EV, empty vector; LR, EGFR L858R mutation. Data and illustrations produced by Du, Z.,
Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. . . . . . . . . . 55

4.3 The EGFR-KDD linker has distinct enthalpic and entropic contributions to intra-molecular
dimer formation. a, Amino acid sequence alignment of EGFR-WT, HER2, HER3, and
HER4 JMB domain. b, Amino acid sequence alignment of EGFR-KDD mutants to eval-
uate linker contributions. Residues in the activator C-terminus kinase domain (TKD1)
highlighted in blue (white font). Residues in the receiver JMB domain highlighted in gray
(black font). Mutations indicated by red font. c, Per-residue root-mean-square-fluctuation
(RMSF) of the EGFR-KDD linker region following an additional 1 µs of MD simulation
(post-Rosetta modeling and initial 1 µs MD simulation). RMSF values are mapped onto
the structure to indicate regional flexibility. Color gradient and cartoon structure width in-
dicate flexibility. Less flexible = smaller width, colored blue; more flexible = larger with,
colored red. d, Graphical representation of per-residue RMSF displays linker residue on
x-axis and RMSF on y-axis; black horizontal line indicates JMB residues, red dashed
horizontal line indicates average RMSF of JMB residues. e, HEK293 cells transiently
transfected with EGFR-KDD or (GGS)n mutants. After 48 hours transfection, cells were
collected for western blot analysis. EV, empty vector. f, Detailed structural models of
the EGFR-WT homodimer with the JMB domain, and the EGFR-KDD intra-molecular
dimer, were generated with Rosetta and refined with 1 µs MD simulations. g, HEK293
cells transiently transfected with EGFR-KDD and different JMB interface mutants. After
48 hours transfection, cells were collected for western blot analysis. p-Y/EGFR, the ratio
of phosphotyrosine content at Y1068 to total EGFR expression for each construct relative
to EGFR-KDD was shown. EV, empty vector. Data and illustrations for figure panels E
and G produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and
Lovly, C. M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 EGFR-KDD intra-molecular dimer model building and refinement. a, Models of the
EGFR-KDD intra-molecular dimer were generated with Rosetta. Models from rounds
2 and 3 of the model building process were clustered based on the structure of the linker
domain. b, The best scoring model from each of the top three clusters (C1, green; C2,
purple; C3, blue) were selected for refinement in Amber18 (left panel). Binding scores for
each of the linker conformations (left panel) were computed with MM-GBSA neglecting
the entropic contribution to binding (right panel). Frames for inclusion in the MM-GBSA
calculation were selected every 100 ps across the entire 1.0 µs trajectory. MM-GBSA
scores are represented as mean ± SD. c, Stability of the linker region over each 1 µs MD
trajectory was analyzed by computing the RMSD of linker heavy atoms to the position
of the conformation at the beginning of the production run (black trace) and the average
coordinates from the whole production run (blue trace) for C1 (left panel), C2 (middle
panel), and C3 (right panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Comparison of EGFR-KDD computational models with X-ray structure of EGFR-WT
juxtamembrane latch. a, X-ray structure of the EGFR-WT homodimer with juxtamem-
brane latch; b, Rosetta model of EGFR-WT homodimer with juxtamembrane latch post-
equilibration for 1.0 µs MD simulation; c, Rosetta model of EGFR-KDD intra-molecular
dimer post-equilibration for 1.0 µs MD simulation; d, Rosetta model of EGFR-KDD intra-
molecular dimer post-equilibration for 2.0 µs MD simulation; the receiver kinase domain
N-terminal JMB domain is colored green; residues within 6.0 Å of JMB are colored blue. 60
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4.6 EGFR-KDD forms inter-molecular dimers and higher order oligomers after ligand stimu-
lation. a, YAMC cells were cultured in serum-free medium for 12 hours and then treated
with 50 ng/mL EGF ligand for 5min. Total EGFR and the autophosphorylation at three
tyrosine sites were assessed by western blot. b. YAMC cells were starved for 12 hrs and
treated with cetuximab (10 µg/ml in serum-free medium) for 3hrs 45min, and EGF ligand
(50 ng/mL in serum-free medium) was added for 15min. The cells were harvested and
analyzed by Western blot. WT, EGFR-WT; KDD, EGFR-KDD. c, Template-based struc-
tural models of the intracellular portion of the EGFR-KDD inter-molecular dimer based
on end-to-end and EGFR-WT tetramer models. d, Template-based structural models of
EGFR-KDD inter-molecular dimer based on side-by-side EGFR-WT tetramer model. e,
Cross correlation values of EGFR-WT and EGFR-KDD with (+) or without (-) ligand
(EGF) stimulation is shown. The blue box indicates the ƒc value region for dimers. The
median values are reported next to the boxplot. Each grey dot represents the averaged
acquisition (10 sec, 6 acquisitions) per area per cell. All data points are shown. Numbers
in parenthesis above the boxplot are the total number of cells that data were taken on.
Data and illustrations for figure panels A and B produced by Du, Z., Gallant, J.-N.; Zhang,
Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. Data and illustrations for figure panel E
produced by Kim, S. and Smith, A.W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Disruption of EGF-induced inter-molecular activation of EGFR-KDD with cetuximab and
mAb806. a, NR6 cells were cultured in serum-free medium for 36 hrs and then treated
with 50ng/mL EGF ligand for 5min. Total EGFR and the autophosphorylation at three
tyrosine sites were assessed by Western blot. b, NR6 cells were starved overnight and
treated with cetuximab (10 µg/ml in serum-free medium) for 3hrs 45min, and then were
treated with EGF (50 ng/mL in serum-free medium) and cetuximab (10 µg/ml in serum-
free medium) for 15min, then cells were harvested for western blot. c, YAMC EGFR-WT
and EGFR-KDD cells were starved for 12 hrs and pre-treated with mAb806 antibody (10
µg/ml in serum-free medium) for 3hrs 45min, respectively, and EGF ligand (50 ng/mL
in serum-free medium) was added for 15min. The cells were harvested and analyzed by
Western blot (left panel). The ratio of phospho-EGFR (Y1068) to total EGFR expression
was also shown (right panel). Results represent the mean values of three independent
experiments ± SD. d, YAMC EGFR-KDD cells were starved for 12 hrs and pre-treated
with cetuximab (10 µg/ml in serum-free medium) and mAb806 antibody (10 µg/ml in
serum-free medium) for 3hrs 45min, respectively, and EGF ligand (50 ng/mL in serum-
free medium) was added for 15min. The cells were harvested and analyzed by Western
blot (left panel). The ratio of phospho-EGFR (Y1068) to total EGFR expression was also
shown (right panel). Results represent the mean values of three independent experiments
+/- SD. Data and illustrations produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.;
Red-Brewer, M., and Lovly, C. M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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4.8 EGFR-KDD directly interacts with ErbB family members. a, V5-epitope tagged EGFR-
WT and EGFR-KDD was co-transfected with Myc-epitope tagged EGFR-WT and EGFR-
KDD in HEK293 cells. Cell lysates were immunoprecipitated by using Myc antibody.
Immunoblotting were probed by V5 and Myc antibody. b, Average diffusion coefficient of
EGFR WT homodimers with (+) or without (-) ligand (EGF) stimulation is shown. c, V5-
epitope tagged HER2 was co-transfected with Myc-epitope tagged EGFR-WT and EGFR-
KDD in HEK293 cells. Cell lysates were immunoprecipitated by using Myc antibody. Im-
munoblotting were probed by V5 and Myc antibody. d, V5-epitope tagged HER3 was co-
transfected with Myc-epitope tagged EGFR-WT and EGFR-KDD in HEK293 cells. Cell
lysates were immunoprecipitated by using Myc antibody. Immunoblotting were probed
by V5 and Myc antibody. e, Average diffusion coefficient of EGFR WT and EGFR KDD
mutant with (+) or without (-) ligand (EGF) stimulation is shown. f, Average diffusion
coefficient of HER2 and EGFR-KDD mutant with (+) or without (-) ligand (EGF) stimu-
lation is shown. g, Average diffusion coefficient of HER3 and EGFR-KDD mutant with
(+) or without (-) ligand (EGF or NRG1) stimulation is shown. Data and illustrations
for figure panels A, C, and D produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.;
Red-Brewer, M., and Lovly, C. M. Data and illustrations for figure panels B, E, F, and G
produced by Kim, S. and Smith, A.W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 EGFR-KDD directly interacts with ERBB family members. a, V5-epitope tagged EGFR-
WT and EGFR-KDD was co-transfected with Myc-epitope tagged EGFR-WT and EGFR-
KDD in HEK293 cells. After 48 hours transfection, cells were lysed by hypotonic buffer
and the cell lysates were immunoprecipitated by using V5 antibody. Immunoblotting were
probed by V5 and Myc antibody. b, Cross correlation values of co-transfected EGFR-
WT (mCherry-fused) and EGFR-KDD mutant (eGFP-fused) with (+) or without (-) ligand
(EGF) stimulation is shown. The light orange box indicates the ƒc value region for dimers.
c, Myc-epitope tagged EGFR-KDD was co-transfected with V5-epitope tagged EGFR-
WT, HER2 and HER3 in HEK293 cells. Cell lysates were immunoprecipitated by using
V5 antibody. Immunoblotting were probed by V5 and Myc antibody. d, Cross correlation
values of co-transfected HER2 (mCherry-fused) and EGFR-KDD mutant (eGFP-fused)
with (+) or without (-) ligand (EGF) stimulation is shown. e, Cross correlation values of
co-transfected HER3 (mCherry-fused) and EGFR-KDD mutant (eGFP-fused) with (+) or
without (-) ligand (EGF) stimulation is shown. For Figure 4.9B, D and E, the median val-
ues are reported next to the boxplot. Each grey dot represents the averaged acquisition (10
sec, 6 acquisitions) per area per cell. All data points are shown. Numbers in parenthesis
above the boxplot are the total number of cells where data were taken on. Both One-Way
ANOVA test and Uncorrected Fisher’s LSD test were down to obtain adjusted and indi-
vidual p values. Source data and statistical analysis are provided in the Source Data file.
Data and illustrations for figure panels A and C produced by Du, Z., Gallant, J.-N.; Zhang,
Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. Data and illustrations for figure panels
B, D, and E produced by Kim, S. and Smith, A.W. . . . . . . . . . . . . . . . . . . . . . 67
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4.10 Inhibition of EGFR-KDD is maximally achieved by blocking both intra- and inter-molecular
dimerization a, YAMC cells were starved for 12 hours and treated with afatinib (10 nM
in serum-free medium) and cetuximab (10 µg/ml in serum-free medium) for 3 hours 45
minutes, and then were treated with EGF (50 ng/mL in serum-free medium) for 15 min-
utes. The cells were harvested and analyzed by Western blot. b, Cell Viability Assay was
performed in mIL3-independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del and
L858R supplemented with 0.5% FBS. 5,000 cells were seeded in 96-well plate with the
treatment of afatinib and cetuximab. Three days after incubation, CellTiter-Blue Reagent
was added, and the fluorescence was detected at 560EX/590EM with a Synergy HTX mi-
croplate reader (BioTek Instruments, Winooski, VT, USA). c, Cell Viability Assay was
performed in mIL3-independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del and
L858R supplemented with 10% FBS. For b and c, n=3 biologically independent samples
were examined over 3 independent experiments. Data are presented as mean values +/-
SD. Results in a, b and c are the representative of three independent experiments. Data
and illustrations produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer,
M., and Lovly, C. M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.11 Inhibition of EGFR-KDD is maximally achieved by blocking both intra- and inter-molecular
dimerization. a, Quantification of YAMC antibody/TKI treatment Western blots in Figure
4.10A. pEGFR/EGFR was presented as mean values of three independent experiments ±
SD. b, BaF3 cell growth at different concentration of fetal bovine serum (FBS). 5,000 cells
were seeded in 96-well plate with the treatment of afatinib and cetuximab. Three days af-
ter incubation, CellTiter-Blue Reagent was added, and the fluorescence was detected at
560EX/590EM with a Synergy HTX microplate reader (BioTek Instruments, Winooski,
VT, USA). c, Cell Viability Assay was performed in mIL3-independent Ba/F3 cells stably
expressing EGFR-KDD, Ex19Del and L858R in RPMI1640 supplemented with 10% FBS.
d, Cell Viability Assay was performed in mIL3-independent Ba/F3 cells stably express-
ing EGFR-KDD, Ex19Del and L858R in RPMI1640 supplemented with 10% FBS and
5ng/mL EGF. e, Cell Viability Assay was performed in mIL3-independent Ba/F3 cells
stably expressing EGFR-KDD, Ex19Del and L858R in RPMI1640 supplemented with
10% FBS and 50ng/mL EGF. Data and illustrations produced by Du, Z., Gallant, J.-N.;
Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. . . . . . . . . . . . . . . . . . 71

4.12 EGF ligand stimulation induces the formation of EGFR-KDD inter-molecular dimers. a,
Cross correlation values of PIE-FCCS control constructs. The monomer control (Myr-
FP: myristoylated fluorescent protein [mCh or eGFP; coexpressed together]) had an fc
value of 0.01 indicating no interaction. Upon cross-linking by a synthetic dimerizer (AP:
AP20187) the dimer control (1xFKBP-FP) had an average fc value of 0.11, consistent with
dimerization. The multimer control (3xFKBP-FP) had an fc value of 0.29 consistent with
the formation of a mixture trimer and tetramer species. b, Average molecular brightness of
PIE-FCCS negative and positive controls in Figure 4.7c (Left: constructs with eGFP tag;
right: constructs with mCh tag). The oligomer control (3xFKBP+AP) has much higher
molecular brightness as expected due to clustering. mCh-tagged constructs show subtle
changes in the molecular brightness due to the photophysical properties of mCherry. How-
ever, the molecular brightness changes are still statistically significant between all con-
structs. c, Representative FCCS data for EGFR-WT and EGFR-KDD expressed in COS-7
cells. The scatter plot connected with red, green and blue lines indicates the normalized
auto-correlation function for mCherry-fused/eGFP-fused receptors and cross-correlation
function, respectively. Black solid line shows the fit model of each curves. For a and b, the
numbers in parenthesis above the boxplot/bar graph are the total number of cells where
data were taken on. Both One-Way ANOVA test and Uncorrected Fisher’s LSD test were
down to obtain adjusted and individual p values. . . . . . . . . . . . . . . . . . . . . . . 79
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5.1 ERBB2 and ERBB3 mutations co-occur in breast and other cancers. (A) 277 breast can-
cers with ERBB2 mutations and (B) 1,561 ERBB2-mutant cancers (all tumor types) in
the Project GENIE database were interrogated for co-occurring alterations in the indicated
genes. ERBB2 variants of unknown significance (VUS) are excluded. (C) Mutations in the
indicated genes were analyzed for co-occurrence or mutual exclusivity with ERBB2 mu-
tations using cBioPortal. (D) The most common co-occurring HER2/HER3 mutations in
breast cancer were determined using databases from Project GENIE, cBioPortal [TCGA,
METABRIC, MBC Project, Mutational Profiles of MBC (France), and Breast Invasive
Carcinoma (Broad)], and Foundation Medicine. Data and illustrations produced by Han-
ker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.;
Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A.
S.; and Arteaga, C. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Gain-of-function, but not passenger, missense mutations in ERBB2 and ERBB3 have a
tendency to co-occur. (A) Breast cancers and (B) all cancers with ERBB2 VUS in the
Project GENIE database were interrogated for co-occurring alterations in the indicated
genes. (C) Mutations in the indicated genes were analyzed for co-occurrence or mutual
exclusivity with ERBB2 mutations in breast cancers from Project GENIE using cBioPor-
tal. (D,E) Lollipop plots of ERBB2 (D) and ERBB3 (E) mutations in breast cancer from
Project GENIE. Data and illustrations produced by Hanker, A. B., Marı́n, A.; Jayanthan,
H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.;
Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L. . . . . . 86

5.3 Co-occurring HER2/HER3 mutants enhance HER2/HER3 kinase domain association and
HER2 kinase activity. (A) Comparison of the computational structural models of the
HER2WT/HER3WT and HER2WT/HER3E928G at the asymmetric dimer interface. HER2
is colored purple and HER3 is colored blue. The hydrogen bond between residues G927-
O and L790-NH is represented by a yellow line. The hydrogen bond angle given by the
L790-N, L790-H, and G927-O atoms is also depicted with a yellow line. (B) Probabil-
ity density plots of HER2WT/HER3WT and HER2WT/HER3E928G HER3 G927-O – HER2
L790-N hydrogen bond distance (left), HER2 K716-NZ – HER2 E719-OE1,2 bond dis-
tance (middle), and HER2 K716-NZ – HER2 D742-OD1,2 bond distance (right). (C)
Rosetta HER2/HER3 heterodimerization binding energy. (D) Pairwise sums of per-residue
binding energy decomposition for HER2/HER3 heterodimerization. (E) Activation state
conformational free energy landscape of HER2WT (upper left quadrant), HER2L755S (up-
per right quadrant), HER2V777L (lower left quadrant), and HER2L869R (lower right quad-
rant). (F) Quantification of free energy difference between active and inactive states for
each mutant (gray), relative free energy difference compared to HER2WT (yellow), and
integration along the lowest free energy path(s) (green and purple). . . . . . . . . . . . . 88

xix



5.4 HER2 and HER3 missense mutations enhance receptor heterodimerization with com-
plementary but distinct mechanisms. (A) Thermodynamic cycle relating HER2WT to
HER2mutant active to inactive conformational state transition free energy. HER2L869R

is displayed as an example of HER2mutant mutants. (B) Thermodynamic cycle relating
HER2WT to HER2mutant heterodimerization free energy with HER3WT. (C) Thermody-
namic cycle relating HER2/HER3WT and HER2/HER3E928G heterodimerization free ener-
gies. Here, we evaluated the relative free energies of HER2mutant activation compared to
HER2WT (A) with steered MD and umbrella sampling simulations. We evaluated the rela-
tive free energies of HER2WT and HER2mutant heterodimerization with HER3WT (B) and
HER3E928G (C) with Rosetta. We also utilized conventional MD simulations to investi-
gate differences in heterodimerization affinity of HER2WT with HER3WT vs. HER3E928G.
(D) Per-residue energy decomposition of select HER2 residues at the HER2/HER3 dimer-
ization interface. (E) Per-residue energy decomposition of select HER3 residues at the
HER2/HER3 dimerization interface. All per-residue energies reported as mean +/- stan-
dard error across 20 lowest interface energy samples per group. (F) Log-scaled survival
curves of the G927 – L790 backbone hydrogen bond rupture event with a 3.5 Å cutoff.
(G) Hydrogen bond forward (rupture) and reverse (formation) rates and the free energy
associated with hydrogen bond rupture using hydrogen bond distance cutoff values of 3.5
Å or 4.0 Å. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Structural features of HER2 missense mutants. (A) Computational structural model of
the near full-length HER2WT (green) and HER3WT (cyan) heterodimer with in complex
with NRG1 (purple). The modeled heterodimer includes the extracellular domain (ECD;
subdomains I – IV), transmembrane domain (TMD), juxtamembrane domain (JMD), and
kinase domain (KD) of both HER2 and HER3. The unstructured C-terminal tails were
excluded from modeling. (B) Rosetta HER2/HER3 heterodimerization binding energies
for the HER2S310F and HER2S310Y mutants with HER3WT and HER3E928G. Reported as
mean +/- standard error across 5 lowest interface energy samples per group. (C) HER2WT

active state depicting L755 interacting with hydrophobic core residues at the β3-αC in-
terface. (D) HER2L755S active state depicting S755 interacting with hydrophobic core
residues at the β3-αC interface. (E) HER2WT inactive state depicting L869 interacting
with hydrophobic core. (F) HER2L869R inactive state depicting R869 interacting with
hydrophobic core. (G) HER2WT active state depicting V777 interacting with the back hy-
drophobic pocket. (H) HER2V777L active state depicting L777 interacting with the back
hydrophobic pocket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 HER3E928G enhances HER2/HER3 association and PI3K pathway activation. (A) HEK293
cells were co-transfected with WT or mutant HER2 and HER3WT or HER3E928G. For
immunoprecipitation, lysates were incubated with HER2 antibody Ab-17 overnight at
4°C, followed by incubation with Protein G beads and magnetic separation. (B) Im-
munoblot bands from (A) were quantified using ImageJ. (C) HEK293 cells were co-
transfected with WT or mutant HER2 and HER3WT or HER3E928G. Cells were serum-
starved overnight, then lysed. Cell lysates were probed with the indicated antibodies. (D)
MCF10A cells stably expressing WT or mutant HER2 and HER3WT or HER3E928G were
starved in EGF/insulin-free media + 1% CSS overnight. Lysates were probed with the
indicated antibodies. (E) MCF10A cells stably expressing the indicated transgenes were
starved and lysed as in (D). Where indicated, western blot bands were quantified using
ImageJ. The ratios were normalized to the WT/WT condition. Data and illustrations pro-
duced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.;
Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.;
Lalani, A. S.; and Arteaga, C. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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5.7 Effects of co-occurring HER2/HER3 mutations or HER2 insertion mutations on HER2
kinase activity and HER2/HER3 KD interaction. (A) The intracellular domains (ICDs)
of WT or mutant HER2 and HER3 were transiently transfected into HEK-293 cells. Cell
lysates were probed with the indicated antibodies. EG, E928G. (F) Illustration of exon
20 insertion mutants. Exon 20 insertion mutations are highlighted in purple. (G) Activa-
tion state conformational free energy landscapes of the HER2YVMA and HER2GSP inser-
tion mutants. (D) MCF10A cells stably expressing the indicated genes were cultured in
EGF/insulin-free media. Lysates were subjected to immunoprecipitation with the HER2
Ab-17 antibody. Western blot bands were quantified using ImageJ and normalized to the
HER2L755S/HER3WT condition. (E) HEK293 cells were co-transfected with full-length
HER2WT or HER2S310F along with WT or mutant HER3 (ECD mutations). Cells were
serum-starved overnight. Cell lysates were probed with the indicated antibodies. Data and
illustrations for figure panels A, B, C D, E, H, and I produced by Hanker, A. B., Marı́n, A.;
Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan,
D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L. . 94

5.8 Co-occurring HER2/HER3 mutations enhance oncogenic growth and invasion of breast
epithelial cells. (A) MCF10A cells stably expressing WT or mutant HER2 and HER3
were grown in 2D in EGF/insulin-free media + 1% CSS for 6 days. Cell viability was
measured by Cell Titer Glo. (B) MCF10A cells were grown in 3D Matrigel in EGF-
insulin-free media + 1% CSS and stained with MTT. The total volume of colonies per
well was quantified using the Gelcount instrument. Data represent the average +/- SEM
of three replicates (****, p¡0.0001, one-way ANOVA + Bonferroni multiple comparisons
test). (C) MCF10A cells stably expressing WT or mutant HER2 and HER3 were grown
in 3D Matrigel in EGF-free media + 1% CSS +/- 10 ng/ml NRG1. (D) The number of
colonies showing invasive branching per field of view (FOV) was quantified. Data repre-
sent the average +/- SD of three replicates (**, p¡0.01, student t-test). (E) MCF10A cells
stably expressing the indicated genes were seeded on Matrigel-coated chambers. After
22 h, invading cells were stained with crystal violet. (F) Relative invasion (normalized
to HER2WT/HER3WT) from two FOVs per well was quantified using ImageJ. Data repre-
sent the average +/- SD of 3-4 replicates (****, p¡0.0001, One-way ANOVA + Bonferroni
multiple comparisons test). Data and illustrations produced by Hanker, A. B., Marı́n, A.;
Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan,
D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L. . 96

5.9 Co-occurring HER2/HER3 missense mutations or HER2 insertion mutations increase the
invasive capacity of breast epithelial cells. (A) MCF10A cells stably expressing the indi-
cated genes were grown in 3D Matrigel in EGF-free media + 1% CSS. (B) MCF10A cells
stably expressing the indicated genes were seeded on Matrigel-coated chambers. After
22 h, invading cells were stained with crystal violet. (C) Relative invasion (normalized
to HER2WT/HER3WT) from two FOVs per well was quantified using ImageJ. Data repre-
sent the average +/- SEM (n¿3). P values, two-way ANOVA + Bonferroni. (D) MCF10A
cells stably expressing the indicated genes were seeded on Matrigel-coated chambers and
stained as in (B). (E) Relative invasion (normalized to HER2L755S/HER3E928G was quan-
tified as in (C). Data represent the average +/- SEM (n¿4). Data and illustrations produced
by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee,
K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.;
Lalani, A. S.; and Arteaga, C. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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5.10 HER3E928G promotes resistance to HER2- and HER3-targeting antibodies by retaining
HER2/HER3 kinase domain association. A) Model of HER2/HER3E928G heterodimer
bound to trastuzumab, pertuzumab, PanHER antibody mixture, or LJM716. The enhanced
kinase domain association mediated by HER3E928G is not predicted to be disrupted by an-
tibodies blocking the associationof the HER2 and HER3 ECDs. (B) MCF10A cells sta-
bly expressing the indicated genes were grown in 3D Matrigel in EGF/insulin-free media
treated with vehicle (PBS), 20 g/ml PanHER, 20 g/ml each trastuzumab + pertuzumab and
stained with MTT. (C) The total volume of colonies per well was quantified using the Gel-
count instrument. Data represent the average +/- SD of three replicates. (D) MCF10A cells
stably expressing HER2S310F/HER3WT or HER2S310F/HER3E928G were treated with vehi-
cle (PBS) or 20 g/ml each trastuzumab and pertuzumab for 24 h in EGF/insulin-free media
+ 1% CSS. Following an acid wash to remove bound antibodies, HER2 immunoprecipita-
tion was performed as described in STAR Methods. (E) MCF10A cells stably expressing
HER2S310F/HER3WT or HER2S310F/HER3E928G were treated with vehicle (PBS), 20 g/ml
each trastuzumab and pertuzumab, or 20 g/ml PanHER for 24h in EGF/insulin-free media
+ 1% CSS. Lysates were probed with the indicated antibodies. Data and illustrations pro-
duced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.;
Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.;
Lalani, A. S.; and Arteaga, C. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.11 HER2S310F-induced transformation is blocked by anti-HER2 antibodies. (A) MCF10A
cells stably expressing the indicated genes were grown in 3D Matrigel in EGF/insulin-
free media treated with vehicle (PBS) or 20 g/ml each trastuzumab + pertuzumab for 7
d. Scale bar, 500 m. (B) MCF10A cells stably expressing the indicated transgenes were
stained with 0.2 g/ml trastuzumab and an Alexa Fluor 647-conjugated goat anti-human
IgG secondary antibody and analyzed by flow cytometry. Data and illustrations produced
by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee,
K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.;
Lalani, A. S.; and Arteaga, C. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.12 Co-occurring HER3 mutations modulate neratinib sensitivity in HER2-mutant cells. (A)
Molecular dynamics MM/GBSA binding affinity estimates of ATP to HER2WT/HER3WT

and HER2WT/HER3E928G. (B) Probability density kinase domain hinge – ATP hydro-
gen bond distance in HER2WT, HER2L755S, HER2V777L, and HER2L869R dimerized with
HER3WT. (C) Probability density kinase domain hinge – ATP hydrogen bond distance
in HER2WT, HER2L755S, HER2V777L, and HER2L869R dimerized with HER3E928G. (D)
Molecular dynamics MM/GBSA relative binding affinity estimates of neratinib to differ-
ent HER2 missense mutants heterodimerized with either HER3WT or HER3E928G. (E)
MCF10A cells stably expressing the indicated genes were grown in EGF/insulin-free me-
dia + 1% CSS and treated with the indicated concentrations of neratinib for 6 days. Cell
viability was measured using CellTiterGlo. (F) Neratinib IC50s were determined as in (E).
Data represent the average of 3 independent dose-response curves containing 4 replicates
each. (G) MCF10A cells stably expressing WT or mutant HER2 and HER3 were grown
in 3D Matrigel in EGF-free media + 1% CSS ± 10 nM neratinib and stained with MTT.
The total volume of colonies per well was quantified using the Gelcount instrument. Data
represent the average ± SD of three replicates. Data and illustrations for figure panels D -
G produced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu,
H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.;
He, J.; Lalani, A. S.; and Arteaga, C. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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5.13 The growth of CW2 HER2L755S/HER3E928G colon cancer cells depends on HER2L755S

and HER3. A) Electropherograms of ERBB2 cDNA from CW2 cells, indicating heterozy-
gous expression of HER2L755S and HER3E928G. A reverse primer was used for HER2
sequencing. (B) CW2 cells were transfected with siControl or siRNA specifically target-
ing HER2L755S. qRT-PCR was performed using primers specific for HER2WT (black) or
HER2L755S (blue). **, p¡0.01, two-way ANOVA + Bonferroni multiple comparisons test.
(C) CW2 cells were transfected control or HER3 siRNA. qRT-PCR was performed using
HER3 primers. (D) CW2 cells were transfected with the indicated siRNA and lysed after
48h. Lysates were probed with the indicated antibodies. (E) CW2 cells were transfected
with the indicated siRNA. Cell viability after 4 days was measured using the CyQuant
assay. **, p¡0.01; ***, p¡0.001, one-way ANOVA + Bonferroni. (F) CW2 cells were
transfected with the indicated siRNA. Total cell number was measured after 4 days using
a Coulter counter. ***, p¡0.001; ****, p¡0.0001, one-way ANOVA + Bonferroni. Data
represent the average ± SD of three independent experiments. Data and illustrations pro-
duced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.;
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alpelisib, or the combination for 14 days, starting when tumors reached 200 mm3. Data
and illustrations produced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin,
C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M.
R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L. . . . . . . . . . . . . . . . . . . 104

xxiii
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cated siRNA and lysed after 48h. Lysates were probed with the indicated antibodies. (E)
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sured using the CyQuant assay. P values, one-way ANOVA + Bonferroni. Data represent
the average ± SD of three independent experiments. (F) CW2 cells were transfected with
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covering the native pose under 2.0 Å RMSD (A) within the top 3 poses, (B) within the top
2 poses, and (C) within the top 1 poses. Error bars indicate the 90% confidence interval.
Green indicates BCL-DockANNScore. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
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changes and sequence design. a, Induced-fit design simulations of Type I or Type II tyro-
sine kinase inhibitors for Abl kinase captures activation loop conformational preferences.
Design simulations were initiated with a common scaffold (magenta). Chemical pertur-
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CHAPTER 1

Summary

Computer-aided drug design (CADD) has become a core component of modern drug discovery (Macalino

et al., 2015). CADD is typically separated into two categories: ligand-based (LB) and structure-based (SB)

(Sliwoski et al., 2014). LB methods do not require information on mechanism of action to yield predictions

of molecular properties of interest (e.g., biological activity on a target receptor, solubility, etc.) and are

frequently utilized in small molecule virtual high-throughput screening (vHTS). LB models are built using

information from datasets of existing ligands, and therefore prediction quality is dependent on the quality and

volume of training data. Quantitative structure-activity relationship (QSAR) modeling, which mathematically

relates chemical descriptors of small molecules to properties of interest, has emerged as a powerful approach

to leverage continual advancements in machine learning (ML) (Yang et al., 2019).

SB methods model interactions between ligands and target receptors. The interaction score predicts the

activity of the ligand on the target. The primary benefits of SB methods are arguably twofold: (1) they do

not require training data and thus in principle can be applied indiscriminately to any target receptor; (2) they

are generally chemically intuitive and can guide rational design. There are also arguably two significant

challenges associated with SB methods: (1) ranking compounds based on interaction scores first requires

determination of the biologically relevant mode of interaction, the lack of which leads to substantial error in

compound ranking; (2) they are orders of magnitude more computationally expensive than LB methods using

even the simplest approaches, with accuracy being negatively correlated with cost (Macalino et al., 2015;

Sliwoski et al., 2014; Leelananda and Lindert, 2016).

In recent years, both LB QSAR models and SB docking vHTS have come-of-age as powerful tools for

small molecule hit discovery (Geanes et al., 2016; Butkiewicz et al., 2013; Stein et al., 2020). Advances

in molecular mechanics methods such as free energy perturbation (FEP) and thermodynamic integration

(TI) have led to unprecedented in silico rank-ordering of scaffold derivatives during hit-to-lead optimization

(Wang et al., 2019a, 2015; Zou et al., 2019; Jorgensen and Thomas, 2008). Ongoing investigations in machine

learning (ML) and quantum chemistry are poised to increase the predictive power of our CADD score func-

tions (Lu et al., 2019; Brown et al., 2021; Kirkpatrick et al., 2021). Emerging strategies leverage principles

from ML methods developed for LB CADD with physics-based methods developed for SB CADD (Gentile

et al., 2022, 2020).

Traditionally, LB and SB CADD methods have been employed to perform vHTS. More recently, how-

ever, a number of algorithms have emerged that enable on-the-fly drug design. Some of these are tantamount
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to vHTS and leverage the one-shot synthetic accessibility of made-on-demand libraries to propose efficient

routes for molecular design (Bellmann et al., 2022; Schmidt et al., 2021; Sadybekov et al., 2022). Com-

pared with other drug design approaches, the one-shot made-on-demand strategy greatly increases the syn-

thetic throughput and synthesizability of candidate compounds. Other algorithms leverage ML, combinatorial

chemistry, and/or multi-component reaction-based design to generate small molecule libraries with favorable

predicted properties and activities (Popova et al.; Zhavoronkov et al., 2019; Brown et al., 2022). Combined

with novel approaches aimed at improving the accuracy of predictions for physicochemical properties, such

as solubility (Boobier et al., 2020), these methods have the potential to accelerate the drug discovery process.

All of these methods represent important advances; however, they exist largely in isolation as highly

specialized protocols. CADD requires adaptability. The nature and scope of a CADD challenge is heavily

influenced by factors such as the availability of training data, knowledge of the target chemical space, the

presence (or absence) of experimental characterization of the drug target and putative binding pocket(s), the

flexibility (dynamics) of the target, the size of the system under investigation, the expected accuracy of the

score function in the given system, and more. While specialized tools can be highly valuable in certain

circumstances, they may be of limited utility in others.

Indeed, there remains substantial attrition in the development of a compound from lead to FDA-approved

therapy (Moreno and Pearson, 2013; Waring et al., 2015). The primary causes for these failures in clinical

trials are lack of efficacy or safety (Harrison, 2016). In oncology specifically, kinases are a frequent drug

target, and toxicity due to off-target effects is widely appreciated (Klaeger et al., 2017; Lin et al., 2019).

Thus, in order to increase the success of candidate drugs in clinical trials, it is critical to develop new CADD

technologies that directly address these limitations and are extensible to future challenges.

This dissertation is thematically separated into two major components. First, it describes novel mech-

anisms of oncogenic activation and therapeutic resistance in human epidermal growth factor receptors 1

(EGFR) and 2 (HER2), demonstrating in the process how mutation-induced changes in protein conforma-

tional free energy landscapes require innovative solutions in drug design. Second, it details the development

of a new framework for small molecule drug design that integrates the BioChemical Library (BCL) chemin-

formatics toolkit with the Rosetta macromolecular modeling software suite. The new drug design framework

is built specifically to address difficulties involved in designing small molecules to bind to dynamic proteins,

such as EGFR kinase.

Chapter 2 describes the mechanism of action of the G724S resistance mutation in EGFR, which emerges

in some non-small cell lung cancer (NSCLC) oncogenic variants as a response to first-line treatment with the

third-generation tyrosine kinase inhibitor (TKI) osimertinib. Portions of this chapter are taken from Brown,

B. P.*; Zhang, Y.-K.*; Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z.; Smith, J. A.; Ross, J. S.; Miller,
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V. A.; Ali, S.; Bazhenova, L.; Schrock, A. B.; Meiler, J.; Lovly, C. M. On-Target Resistance to the Mutant-

Selective EGFR Inhibitor Osimertinib Can Develop in an Allele-Specific Manner Dependent on the Original

EGFR-Activating Mutation. Clin. Cancer. Res. 2019, 25 (11), 3341–335135.

Chapter 3 demonstrates that EGFR Ex19Del variants are a heterogeneous class of oncogenic mutants

whose activation and TKI sensitivity are dictated by unique conformational preferences and catalytic activ-

ity. Portions of this chapter are in review for publication. This chapter is a collaborative work of Benjamin

P. Brown*, Yun-Kai Zhang*, Soyeon Kim*, Yingjun Yan, Zhenfang Du, Jiyoon Kim, Abigail Leigh Hart-

zler, Michele L. LeNoue-Newton, Adam W. Smith, Jens Meiler, and Christine M. Lovly (*These authors

contributed equally).

Chapter 4 describes the mechanistic basis of oncogenic activation for a new class of EGFR variants in

NSCLC – kinase domain duplications (KDD). It also discusses the role of EGFR-KDD linker dynamics in

promoting enhanced activity relative to wild-type. Portions of this chapter are taken from Du, Z.*; Brown,

B. P.*; Kim, S.; Ferguson, D.; Pavlick, D. C.; Jayakumaran, G.; Benayed, R.; Gallant, J.-N.; Zhang, Y.-K.;

Yan, Y.; Red-Brewer, M.; Ali, S. M.; Schrock, A. B.; Zehir, A.; Ladanyi, M.; Smith, A. W.; Meiler, J.;

Lovly, C. M. Structure–Function Analysis of Oncogenic EGFR Kinase Domain Duplication Reveals Insights

into Activation and a Potential Approach for Therapeutic Targeting. Nature Communications 2021, 12 (1),

138236.

Chapter 5 explores therapeutic strategies for breast cancer involving various HER2 oncogenic mutations.

It also provides a mechanistic explanation for the preferential co-mutation of HER3 E928G with specific

HER2 kinase domain mutations. Portions of this chapter are taken from Hanker, A. B.*; Brown, B. P.*;

Meiler, J.*; Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.;

Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; Sheehan, J. H.; He, J.; Lalani, A. S.; Arteaga,

C. L. Co-Occurring Gain-of-Function Mutations in HER2 and HER3 Modulate HER2/HER3 Activation,

Oncogenesis, and HER2 Inhibitor Sensitivity. Cancer Cell 2021, 39 (8), 1099-1114.e837.

Collectively, Chapters 2 – 5 demonstrate that mutation-induced changes in conformational equilibrium

can be responsible for profound alterations in protein-protein dimerization propensities, enzymatic activity,

and sensitivity and resistance to TKIs. They identify areas for improvement in our current standard-of-care

treatments for patients with NSCLC and breast cancer. Importantly, they highlight the need for software that

is capable of simulating drug design while accounting for large conformational transitions, protein sequence

changes, and other complex system-specific challenges.

Our approach for creating a modular, customizable drug design platform requires several algorithmic

advancements. Chapter 6 introduces a new flexible, property-based small molecule flexible alignment algo-

rithm in the BCL. The algorithm combines a customizable chemical property distance metric with efficient
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alignment co-space sampling moves to identify alignments. Portions of this chapter are taken from Brown,

B. P.; Mendenhall, J.; Meiler, J. BCL::MolAlign: Three-Dimensional Small Molecule Alignment for Phar-

macophore Mapping. J. Chem. Inf. Model. 2019, 59 (2), 689–70138.

Chapter 7 describes a novel approach for rapid, interpretable SB scoring of protein-ligand interactions

using deep neural networks (DNN). The score function is target agnostic and minimizes ligand bias by only

utilizing protein-ligand atomic property correlations discretized into signed distance bins. Portions of this

chapter are taken from Brown, B. P.; Mendenhall, J.; Geanes, A. R.; Meiler, J. General Purpose Structure-

Based Drug Discovery Neural Network Score Functions with Human-Interpretable Pharmacophore Maps. J.

Chem. Inf. Model. 2021, 61 (2), 603–62017.

Chapter 8 illustrates the new drug design framework, which in addition to the components in Chapters

6 and 7 also includes a series of chemical perturbations, a mutable atom selection module, and internal

druglikeness filters. This chapter also discusses the integration of the BCL into Rosetta to enable protocol

development that also makes use of Rosetta’s extensive array of macromolecular modeling tools. Portions of

this chapter are in review for publication. This chapter is a collaborative work of Benjamin P. Brown, Jeffrey

Mendenhall, Rocco Moretti, Sergey Lyskov, Alexander R. Geanes, Darwin Fu, Sandeep Kothiwale, Edward

W. Lowe, and Jens Meiler.

Chapter 9 summarizes the collective works of Chapters 2 – 8 and identifies ongoing and future directions.
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CHAPTER 2

On-target resistance to the mutant-selective EGFR inhibitor osimertinib can develop in an allele

specific manner dependent on the original EGFR activating mutation

This chapter is taken from Brown, B. P.*; Zhang, Y.-K.*; Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z.;

Smith, J. A.; Ross, J. S.; Miller, V. A.; Ali, S.; Bazhenova, L.; Schrock, A. B.; Meiler, J.; Lovly, C. M. Clin.

Cancer. Res. 2019, 25 (11), 3341–335135 (*These authors contributed equally).

2.1 Introduction

Oncogenic mutations in the EGFR tyrosine kinase domain are found in 15-30% of non-small cell lung carci-

nomas (NSCLC) (Lynch et al., 2004; Pao et al., 2004). Of these cases, approximately 90% can be attributed

to in-frame deletions within exon 19 (Ex19Del) or missense mutations in exon 21 (L858R), which occur

with approximately equal prevalence (Lynch et al., 2004; Pao et al., 2004). Multiple phase III clinical trials

have shown that patients with EGFR-mutant tumors experience >70% radiographic response rates (RRs) and

a statistically significant improvement in progression-free survival (PFS) when treated with first-generation

(erlotinib, gefitinib) or second-generation (afatinib) EGFR tyrosine kinase inhibitors (TKIs) as compared with

platinum based chemotherapy (Sequist et al., 2013; Rosell et al., 2012; Mitsudomi et al., 2010; Maemondo

et al., 2010). However, response to these targeted agents is transient, and acquired therapeutic resistance typi-

cally develops within 8-10 months. In approximately 60% of cases, resistance is acquired through acquisition

of a secondary EGFR mutation, EGFR T790M (Oxnard et al., 2018; Stewart et al., 2015; Yu et al., 2013). Os-

imertinib, a mutant-selective third-generation covalent inhibitor, was developed specifically to target T790M.

For these reasons, the clinical standard of care for EGFR-mutant NSCLC has been treatment with first or

second generation TKIs followed by treatment with osimertinib post-progression on first line therapy (Yang

et al., 2017). Recently, osimertinib became approved as first-line therapy (Soria et al., 2018).

Unfortunately, resistance mutations may also emerge against osimertinib therapy (Papadimitrakopoulou VA,

2018; Ramalingam SS, 2018). The most well described to date is C797S, which is detected in approximately

10%-19% of patients with first-line and second-line osimertinib resistance (Piotrowska et al., 2018; Rama-

lingam et al., 2018). Mutation of C797 to serine prevents covalent adduct formation between osimertinib

and the EGFR kinase domain (Thress et al., 2015; Yosaatmadja et al., 2015). We (Oztan et al., 2017) and

others (Piotrowska et al., 2018; Peled et al., 2017; Fassunke et al., 2018) have also identified G724S as a mu-

tation which is selected for in osimertinib resistant tumors. Unlike C797S, G724S was not predicted based

on in vitro studies (Yu et al., 2007; Ercan et al., 2015), and the precise mechanism whereby G724S mutation
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confers osimertinib resistance is unknown.

The most fundamental principle of structural biology is that sequence determines structure and structure

determines function. To determine the relationship between classical EGFR kinase activating mutations

(Ex19Del and L858R), acquired G724S mutation, and osimertinib resistance, we employed an integrated

computational / experimental approach. Our results suggest that G724S is a resistance mutation that develops

with Ex19Del but not L858R and provide mechanistic insight into this process at the structural level.

2.2 Results

2.2.1 A G724S-mediated conformational change in the glycine-rich P-loop reduces binding affinity of

osimertinib to Ex19Del/G724S but not to L858R/G724S

To determine the structural effects of G724S mutation on osimertinib binding, we performed a series of

Gaussian accelerated molecular dynamics (GaMD) simulations (Miao and McCammon, 2017; Miao et al.,

2015) of wild-type EGFR (WT), Ex19Del (unless otherwise stated, the canonical variant E746 A750del),

Ex19Del/G724S, L858R, and L858R/G724S in the drug-unbound (apo) state. Analysis of our initial simula-

tions suggests G724S may increase P-loop backbone conformation fluctuations (Figure 2.1). These data are

intriguing because EGFR has previously been shown to bind osimertinib with a characteristic “bent” P-loop

conformation (Yosaatmadja et al., 2015), and we hypothesized that G724S could reduce osimertinib binding

through disruption of the bent P-loop conformation. Previous literature on protein conformational dynam-

ics has cautioned against inferring functional mechanisms from RMSF statistics alone (Farmer et al., 2017).

Therefore, to test our hypothesis, we performed GaMD simulations of Ex19Del, Ex19Del/G724S, L858R,

and L858R/G724S reversibly bound with osimertinib. We similarly examined these four mutants with the

second-generation, wild-type selective EGFR TKI, afatinib, as a control. Afatinib was selected as a control

in our study for multiple reasons. Afatinib has previously been reported to be a potential therapeutic agent in

the setting of Ex19Del/G724S-mediated NSCLC based on a patient case report (Oztan et al., 2017). Similar

to osimertinib, afatinib is an irreversible EGFR inhibitor that has received regulatory approval for treatment

of EGFR-mutant lung cancer.

Osimertinib and afatinib both irreversibly bind EGFR through covalent adduct formation. In order to form

an irreversible complex, they must first form a reversible, non-covalent complex (Figure 2.2A). Disruption

of the reversible complex formation is expected to reduce formation of adduct. A previously determined

crystallographic structure of EGFR kinase reversibly bound to osimertinib demonstrates that osimertinib

binding is accommodated through a well-defined “bent” P-loop conformation (Figure 2.2B) (Yosaatmadja

et al., 2015). This bent P-loop conformation allows the F723 phenyl ring to make an energetically favorable

contact with the indole ring of osimertinib, contributing to its affinity (Yosaatmadja et al., 2015).
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Figure 2.1: G724S increases P-loop backbone fluctuations. We performed 500 ns GaMD simulations of
EGFR (A) WT, (B) G724S, (C) L858R, (D) L858R/G724S, (E) E746 A750, (F) E746 A750/G724S, (G and
I) E746 S752>V, and (H and J) E746 S752>V/G724S. Per-residue RMSF is scaled between 0 (green) and
3 (red) Å (A-H) or 0 and 5 Å (I-J).
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Figure 2.2: Stability of osimertinib in reversible complexes with EGFR mutants. EGFR mutants reversibly
bound to osimertinib were simulated with GaMD. A schematic representation of a simplified binding equi-
librium for a covalently-binding inhibitor is depicted such that E = Enzyme target, I = Inhibitor, and EI =
Enzyme-Inhibitor complex (A). Each simulation was performed in triplicate for a total of 12 independent
250 ns GaMD simulations. Representative images of osimertinib reversibly bound to WT (PDB ID 4ZAU;
the solid black line indicates the bent P-loop; the dashed black line indicates the contact between the F723
phenyl and osimertinib indole ring; (B), Ex19Del and Ex19Del/G724S (C), and L858R and L858R/G724S
(D) are displayed. Trajectory frames were extracted every 10 ps and plotted as osimertinib RMSD from
the equilibrated start structure (x-axis) and distance between the phenyl ring of F723 and the indole ring of
osimertinib (y-axis; E – F). RMSD vs. distance plots include data from 3 independent trajectories for each
mutant – inhibitor pair (E – F). Select relative osimertinib binding free energies are plotted as averages across
3 independent trajectories; error bars indicate standard error of the mean (G).
∆Gbind =∆EMM+∆Gsolv–T ∆S
∆GF723int =∆EMM+∆Gsolv
∆∆G = ∆G1 – ∆G2
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Our GaMD simulations illustrate that G724S rigidifies the tip of the P-loop by stabilizing a β -bend con-

formation (Figure 2.2C, D; Figure 2.3).

Figure 2.3: G724S induces an α-turn to β -bend conformational shift in the P-loop.

As a result, Ex19Del/G724S and L858R/G724S cannot form a stable bent P-loop conformation when

bound to osimertinib. The rigidified P-loop displaces F723 from contact with osimertinib (Figure 2.2C –

F). Interestingly, however, we found evidence of reduced stability of the osimertinib-bound Ex19Del/G724S

complex but not the osimertinib-bound L858R/G724S complex. In our simulations, osimertinib maintains an

RMSD of 1 – 2 Å from its native binding pose in Ex19Del and L858R. Displacement of F723 from contact

with osimertinib is associated with an increase in osimertinib RMSD to 3 – 4 Å in Ex19Del/G724S but not

in L858R/G724S (Figure 2.2E, F). In contrast, afatinib forms a stable reversible complex in all four cases

(Ex19del, Ex19del/G724S, L858R, and L858R/G724S) (Figure 2.4). These models suggest that structural

perturbations from G724S, which disrupt binding of osimertinib, fail to notably effect binding of afatinib.

These data support a potential role for afatinib in treating patients with G724S.

To further investigate these differences, we applied the molecular mechanics-generalized Born surface

area method (MM/GBSA) to compute the binding free energies of osimertinib with Ex19Del, Ex19Del/G724S,

L858R, and L858R/G724S. Our calculations predict a 2.3 kcal/mol reduction in osimertinib binding free en-

ergy (∆∆Gbind) with Ex19Del/G724S (Figure 2.2G). Our binding free energy calculations also suggest that

9



Figure 2.4: Afatinib forms a stable reversible complex with EGFR independent of G724S status.

osimertinib reversibly binds L858R more tightly than Ex19Del by 1.9 kcal/mol. (Figure 2.2G). The os-

imertinib binding free energies computed for Ex19Del and L858R/G724S are indistinguishable, within error,

suggesting that the reduction in binding affinity accompanying the addition of the G724S mutation in L858R

should not confer osimertinib resistance.

In addition, energy decomposition analysis supports our qualitative observation that F723 contributes

favorably to osimertinib binding in both Ex19Del and L858R (the interaction energy of F723, ∆GF723int, de-

fined ∆GF723int = ∆EMM + ∆Gsolv, is approximately -1.8 and -1.5 kcal/mol, respectively), and that addition

of G724S prevents this interaction (Figure 2.2G). As expected based on crystallographic evidence, our sim-

ulations show that F723 contributes considerably less to the interaction of EGFR with afatinib (Solca et al.,

2012). Consistent with Fassunke et al. (Fassunke et al., 2018), our afatinib relative binding free energies are

less affected by G724S versus osimertinib. Altogether, these data suggest G724S may function as a resistance

mutation to osimertinib in Ex19Del/G724S, but not in L858R/G724S.

2.2.2 In vitro expression of Ex19Del/G724S, but not L858R/G724S, is associated with osimertinib

resistance

To test our simulation predictions, we first examined the ability of osimertinib to inhibit EGFR autophos-

phorylation of various EGFR single, double, and triple mutants. Of note, to date, G724S has been detected

in both the absence and presence of T790M (Oztan et al., 2017; Peled et al., 2017). Therefore, we mod-

eled all possibilities in our experimental studies. Osimertinib was effective at inhibiting EGFR autophos-

phorylation in 293FT cells expressing Ex19Del and Ex19Del/T790M, but not in 293FT cells expressing
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Ex19Del/C797S or Ex19Del/T790M/C797S, as C797S mutation has previously been associated with osimer-

tinib resistance(16,27) (Figure 2A). Likewise, osimertinib was ineffective at blocking autophosphorylation of

EGFR Ex19Del/G724S and Ex19Del/T790M/G724S mutants.

We also tested the efficacy of osimertinib against L858R variant combinations. Analogous to the Ex19Del

data above, phosphorylation of L858R and L858R/T790M were inhibited by osimertinib while C797S con-

taining variants (L858R/C797S and L858R/T790M/C797S) were insensitive to this agent (Figure 2B). In

contrast to the Ex19Del variant data, phosphorylation of L858R/G724S and L858R/T790M/G724S were po-

tently inhibited by osimertinib (Figure 2B). These data are consistent with our simulations, which suggested

a difference in the drug binding properties between Ex19Del and L858R when combined with G724S muta-

tion. Altogether, these data suggest that G724S functions as a resistance mutation in the context of Ex19Del

but not L858R.

Next, we attempted to define strategies to overcome osimertinib resistance mediated by G724S mutation.

In particular, we focused on the efficacy of earlier generations of wild-type selective EGFR TKIs. Previous

studies have demonstrated that C797S-containing EGFR variants, which are resistant to osimertinib, retain

sensitivity to the first generation EGFR TKIs (erlotinib, gefitinib) (16). We sought similar strategies for

G724S-containing EGFR variants. We quantitatively evaluated several TKIs on Ex19Del-series mutants by

stably transducing Ex19Del EGFR variants into Ba/F3 cells and measuring IL-3-independent growth at multi-

ple inhibitor concentrations (Figure 2.5 C-E). As expected, growth of cells expressing EGFR Ex19del/C797S

and EGFR Ex19del/G724S was insensitive to osimertinib. Cell lines expressing Ex19del/C797S and Ex19del/G724S

were also cross-resistant to another mutant-selective EGFR-TKI, rociletinib (Figure 2.6).

In accord with previous data (Thress et al., 2015), cells expressing Ex19Del/C797S were sensitive to the

effects of the first generation EGFR TKI, erlotinib, with an EC50 paralleling that of the original Ex19Del

single mutant (16.12 nM vs. 13.71 nM, respectively, Figure 2D). However, the Ex19Del/G724S mutant was

insensitive to the effects of erlotinib (EC50 > 1 µM). Our structural data suggested that afatinib may retain

efficacy against the Ex19Del/G724S double mutant (Figure 2.4). In accord with these data, the growth of

cells expressing this double mutant was inhibited with an EC50 of 29.63 nM afatinib (Figure 2E). Likewise,

autophosphorylation of the Ex19Del/G724S in stably transduced NR6 cells was potently inhibited by afatinib,

but not erlotinib or osimertinib (Figure 2F, Figure 2.7), while the autophosphorylation of the L858R/G724S

was potently inhibited by both afatinib and osimertinib (Figure 2G, Figure 2.7).

Importantly, previous in vitro screens failed to identify G724S as a resistance mutation (Yu et al., 2007;

Ercan et al., 2015). Our data suggest that this may be because these screens generated missense mutants be-

ginning with WT, L858R, or L858R/T790M. Our data suggest that G724S functions as a resistance mutation

in the context of Ex19Del but not L858R. Moreover, our results provide additional evidence that afatinib, but
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Figure 2.5: EGFR G724S mediates osimertinib resistance in EGFR Ex19Del but not EGFR L858R mutants.
(A) 293FT cell transduced with different EGFR del19 variants were treated with 100 nM osimertinib for 4
hours. Cellular lysates were probed with the indicated antibodies. (B) 293FT cell transduced with different
EGFR L858R variants were treated with 100 nM osimertinib for 4 hours. Cellular lysates were probed
with the indicated antibodies. Ba/F3 EGFR Ex19Del, Ex19Del19/C979S, Ex19Del/G724S were treated with
increasing amount of (C) osimertinib, (D) erlotinib or (E) afatinib for 72 hours. CellTiter Blue assays were
performed to assess cell viability. Each point represents three replicates. Data are presented as the mean
percentage of viable cells compared to control ± SD. NR6 cells transduced with (F) different EGFR del19
variants or (G) different EGFR L858R variants were treated with either DMSO, 100 nM erlotinib, 100 nM
afatinib, or 100 nM osimertinib for 4 hours. Relative pEGFR/tEGFR values are calculated by the density of
pEGFR signal divided by the density of tEGFR signal, then normalized by the DMSO-treated group in each
cell line. Density of western blots was analyzed by ImageJ. *: p < 0.05 as compared to DMSO-treated group
in each cell line. Data and illustrations for this figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.; Qiao,
H.; Huang, V.; Du, Z., and Lovly, C.M.
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Figure 2.6: Efficacy of Rociletinib against EGFR Ex19Del containing variants. Data and illustrations for this
figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z., and Lovly, C.M.

not osimertinib or erlotinib, can function effectively as an inhibitor of Ex19Del/G724S.

2.2.3 G724S emerges as a resistance mutation in Ex19Del but not L858R-mediated NSCLC

To date, four independent reports (Piotrowska et al., 2018; Oztan et al., 2017; Peled et al., 2017; Fassunke

et al., 2018) have identified G724S as an emergent mutation in patients who have developed acquired re-

sistance to osimertinib, with the frequency of G724S being 13% (higher than the frequency of C797S) in

a recent paper by Fassunke and colleagues (Fassunke et al., 2018). Interestingly, all of these patients har-

bored Ex19Del as the original activating mutation (Piotrowska et al., 2018; Oztan et al., 2017; Peled et al.,

2017; Fassunke et al., 2018). Our computational and experimental data suggest that G724S confers resis-

tance to osimertinib in Ex19Del but not L858R; nevertheless, it is possible that L858R/G724S exists in a

subset of EGFR-mutant NSCLC patients. To investigate the prevalence of EGFR G724S mutation, we ana-

lyzed data from tissue and plasma DNA samples within the Foundation Medicine database. Consistent with

our computational and experimental evidence, G724S co-occurred with an Ex19Del variant in 15/19 cases,

and L858R/G724S was not identified (Figure 2.8A). Given that the likelihood of observing Ex19Del versus

L858R in EGFR-mutant NSCLC is approximately equal (Zhang et al., 2016), it is exceedingly unlikely that
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Figure 2.7: TKI inhibition profile of autophosphorylation against EGFR Ex19Del and L858R containing
variants. Data and illustrations for this figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.; Qiao, H.;
Huang, V.; Du, Z., and Lovly, C.M.
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L858R activating mutation would not be found in any of our patient samples without an additional bias.

In four cases (all Ex19Del variants), we were able to obtain tissue genomic profiling data at two unique

time points. In three of these cases (Figure 2.8C-E), G724S allelic frequency is positively correlated with

Ex19Del allelic frequency over time and decline of the T790M allele. Moreover, G724S is not present in the

tumor biopsy from any of these four patients prior to Ex19Del; that is, the mutant allele frequency (MAF) of

G724S starts at zero in all of these matched cases (Figure 2.8B – E). These data suggest that G724S emerges

in a fraction of Ex19Del patients to promote disease progression.

To highlight one particular case (patient #15, Figure 2.8E), a 54 year old Caucasian gentleman never

smoker was diagnosed with stage IV lung adenocarcinoma after presenting with abdominal pain. Tumor

mutational testing was positive for an EGFR Ex19Del mutation. He was treated with first line erlotinib plus

bevacizumab with partial response. Fifteen months after starting this combination therapy, he experienced

progression of disease with enlargement of bilateral pulmonary nodules and a ground glass opacity in the left

upper lobe. Repeat biopsy confirmed metastatic lung adenocarcinoma and tumor genetic testing at that time

revealed the presence of EGFR Ex19Del and T790M mutations. He was thereafter treated with osimertinib

and had a partial response lasting thirty months (Figure 2.8F). He experienced progression of disease with

new metastases to the skull, liver, and bone. Tumor genetic testing of a repeat biopsy revealed the presence of

EGFR Ex19Del, loss of T790M mutation, and gain of EGFR G724S mutation. He was treated with radiation

therapy to the skull followed by systemic therapy with carboplatin and pemetrexed. Approximately four

months after starting cytotoxic chemotherapy, he developed symptomatic pleural and pericardial effusions,

which ultimately resulted in his demise.

Of note, G724S was also detected with the oncogenic missense mutant S768I in 2/19 cases, Shan and

colleagues previously demonstrated that S768I stabilizes the active conformation by improving hydrophobic

packing between the αC-helix and the β9-strand. G724S also occurred as an individual missense mutation

in 2/19 cases (Figure 2.8A). The latter suggests that G724S could potentially be independently oncogenic.

Indeed, G724S could support oncogenic growth of Ba/F3 cells (Figure 2.9A).

Of note, the G724S single mutant exhibits a TKI sensitivity profile very similar to Ex19Del in that this

mutant can be effectively inhibited by erlotinib, afatinib, and osimertinib (Figure 2.10, Figure 2.9B). In

addition, we identified nine cases of EGFR G724S as an isolated mutation in patients with small-cell lung

carcinoma, bladder urothelial carcinoma, glioblastoma, breast cancer, and colorectal cancer. These data are

consistent with recent evidence implicating G724S as an oncogenic driver in colorectal cancer (Cho et al.,

2014) and suggest that patients with tumors harboring an isolated G724S mutation could be treated with

FDA-approved EGFR TKIs, such as afatinib.
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Figure 2.8: Prevalence of oncogenic EGFR mutations in NSCLC patient samples with G724S. (A) Bar chart
depicting the number of cases of each oncogenic EGFR mutation associated with G724S in NSCLC patient
samples with genomic profiling obtained through Foundation Medicine (total n=19). (B-E) Allelic frequen-
cies for the specific Ex19Del variant, T790M, and G724S are plotted versus time between measurements for
four cases for which tissue genomic profiling results were available at two independent time points. (F-G)
Radiographic images for Patient 15 taken prior to osimertinib therapy (left) and after 8 cycles of osimertinib
(right). The red arrows in the CT scan images show sites of disease that responded to osimertinib. Data and
illustrations for this figure produced by Ross, J. S.; Miller, V. A.; Ali, S.; Bazhenova, L.; and Schrock, A. B.
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Figure 2.9: TKI inhibition profile of G724S, Ex19Del and Ex19Del/G724S. Data and illustrations for this
figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z., and Lovly, C.M.
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Figure 2.10: The EGFR G724S single mutant can be effectively inhibited by EGFR TKIs. Ba/F3 cells
stably expressing EGFR Ex19Del, G724S, and Ex19Del/G724S were treated with increasing amounts of (A)
erlotinib, (B) afatinib or (C) osimertinib for 72 hours. CellTiter Blue assays were performed to assess cell
viability. Each point represents four replicates. Data are presented as the mean percentage of viable cells
compared to control +/- SD. (D) Ba/F3 cells transduced with EGFR G724S were treated with either DMSO,
100 nM erlotinib, 100 nM afatinib, or 100 nM osimertinib for 4 hours. Cellular lysates were probed with the
indicated antibodies. Data and illustrations for this figure produced by Zhang, Y.-K., Westover, D.; Yan, Y.;
Qiao, H.; Huang, V.; Du, Z., and Lovly, C.M.
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2.2.4 The catalytically active conformation of EGFR is better stabilized by E746 S752>VG724S than

by E746 A750delG724S

Unexpectedly, all of the Ex19Del alterations co-occurring with G724S in patient tumor samples were rare

variants. The Ex19Del variant occurring most frequently with G724S in this cohort was E746 S752>V

(10/19), followed by S752 I759del (3/19), E746 S752>I (1/19), and L747 S752del (1/19). For context,

approximately 67% of Ex19Del cases are attributed to the canonical variant, E746 A750del, while less than

2% are attributed E746 S752>V (Kobayashi and Mitsudomi, 2016). To better understand this enrichment

in Ex19Del rare variants, we performed GaMD simulations for E746 S752>V and E746 S752>V/G724S in

the apo-state and in reversible complex with osimertinib.

We utilized MM/GBSA to compute the relative binding free energies between the two sets of Ex19Del

variants. The results displayed large statistical uncertainty in the calculation of the binding free energies,

that we attribute to increased P-loop fluctuations in E746 S752>V and E746 S752>V/G724S relative to WT

and the other variants (Figure 2.1). The majority of this difference is attributable to increased fluctuations in

E746 S752>V, and just as in the cases of WT and E746 A750del the additional fluctuations associated with

G724S in E746 S752>V occur primarily at the tip of the P-loop (Figure 2.1). Nevertheless, E746 S752>V,

but not E746 S752>V/G724S, is able to stabilize a favorable contact between F723 and the indole ring

of osimertinib, consistent with results obtained in the previous E746 A750del and E746 A750del/G724S

osimertinib-binding simulations.

EGFR kinase activation is achieved through asymmetric dimerization of an acceptor EGFR kinase αC-

helix with a donor kinase αH-helix. The acceptor kinase is the catalytically active dimer subunit (Zhang et al.,

2006). In a seminal paper on EGFR dynamics, Shan and colleagues demonstrated that common oncogenic

mutations increase activity by stabilizing the αC-helix inward conformation to promote asymmetric dimer-

ization (Shan et al., 2012). We hypothesized that the unexpected enrichment of the E746 S752>V/G724S

double mutant in clinical samples may result from increased stabilization of the αC-helix inward confor-

mation in E746 S752>V/G724S relative to E746 S752>V. To test this hypothesis, we performed a detailed

analysis of the conformational free energy landscape profiles of each EGFR variant in the apo-state.

Consistent with Shan and colleagues, results from our GaMD simulations of WT, E746 A750del, and

L858R demonstrate increased stabilization of the αC-helix inward conformation compared to WT (Shan

et al., 2012). Additionally, our simulations show that E746 S752>V stabilizes the αC-helix inward con-

formation relative to WT. Critically, our computational analyses suggest that E746 S752>V/G724S stabi-

lizes the active αC-helix inward conformation even more than E746 S752>V (Figure 2.11E). In contrast,

E746 A750del/G724S visits αC-in conformations less frequently than E746 A750del (Figure 2.11D). These
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results suggest that E746 S752>V/G724S could lead to enhanced dimerization-dependent activation com-

pared to E746 S752>V, while E746 A750del/G724S could lead to reduced dimerization-dependent activa-

tion compared to E746 A750del.

Figure 2.11: Conformational free energy landscape of EGFR kinase domain mutants. The reaction coordinate
reference for the conformational free energy landscape of EGFR kinase mutants is indicated on a model of
WT in the active (PDB ID 2ITX; bold colors) and inactive (PDB ID 3GT8; faded colors) conformations (A).
Green spheres represent the distance (Å) between Hα1 of G721 and Cβ of A839. Blue spheres represent the
distance between Cβ of K745 and Cβ of E762. The potential of mean force (PMF) with respect to the posi-
tions of the αC helix (x-axis) and P-loop (y-axis) are plotted for WT and G724S, L858R and L858R/G724S,
E746 A750 and E746 A750/G724S, and E746 S752>V and E746 S752>V/G724S (B). The left and right
vertical dashed lines on the free energy plots (C-E) indicate center-of-mass distances between K745 and E762
in active (PDB ID 2GS6) and inactive (PDB ID 2GS7) EGFR kinase, respectively. The left vertical dashed
lined therefore represents the canonical EGFR kinase αC-helix inward conformation, while the right vertical
dashed line represents the canonical EGFR kinase αC-helix outward conformation. All depicted simulations
start from the active (αC-helix inward, activation loop outward) conformation. The energetic reweighting
factor was approximated with cumulant expansion to the 2nd order. Free energy landscapes from the 500 ns
GaMD simulations are depicted here.

Collectively, these data support G724S as a resistance mutation in Ex19Del over L858R, and that specific

Ex19Del mutants may preferentially co-occur with G724S, potentially driven by differences in active con-

formation stability in the presence of G724S. In addition, our results suggest that G724S (as a single point

mutation) also stabilizes the αC-helix inward conformation, consistent with reports that G724S may function

as an oncogenic variant in colorectal cancer (Cho et al., 2014) (Figure 2.11A – D). Our data more broadly

suggest that the underlying activating mutation profile of EGFR influences the development of drug resistance

mutations. This has important implications for clinical management of patients with EGFR-mutant NSCLC.
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2.3 Discussion

Notable advancements have been observed through the development of increasingly selective inhibitors of

mutant oncoproteins (11). The design and clinical implementation of mutant-selective third generation EGFR

TKIs, such as osimertinib, are an excellent example. Unfortunately, despite these advances, the development

of resistance mutations to TKI therapy remains a significant barrier in attaining the best outcomes for pa-

tients with EGFR-mutant NSCLC. In addition to the previously identified C797S resistance mutation, our

results demonstrate osimertinib resistance may emerge in the form of G724S mutations within the P-loop of

the EGFR kinase domain. However, unlike C797S, our results also suggest that G724S-mediated resistance

preferentially occurs in Ex19Del but not L858R. Indeed, extensive atomic-detail simulations at the structural

level, multiple independent in vitro models, and patient genomic profiling all demonstrate G724S to be an

Ex19Del-specific resistance mechanism to osimertinib. Retrospectively, we identified multiple patient cases

now observed in the literature where patients with EGFR Ex19Del–mutant NSCLC displayed tumor progres-

sion post-osimertinib treatment in the presence of G724S (Piotrowska et al., 2018; Oztan et al., 2017; Peled

et al., 2017; Fassunke et al., 2018). Together with the data we have presented here, these case studies suggest

G724S functions as a resistance mutation in an allele-specific manner. To our knowledge, ours is the first

evidence directly demonstrating that the underlying activating mutation (e.g. Ex19Del vs. L858R) influences

the emergence of resistance mutations under selective pressure from a specific TKI.

Enhanced αC-helix stabilization in L858R results from polar interactions between the substituted arginine

and neighboring negatively charged amino acids. In contrast, enhanced αC-helix stabilization in Ex19Del

mutations likely results from alterations at the β3-αC interface. Structural superimposition of our active state

deletion models onto EGFR WT shows that the position of L747 in WT is occupied by S752 (WT numbering)

in E746 A750del and by the inserted valine in E746 S752>V (Supplementary Figure S8). Our data suggest

that the P-loop conformational changes induced by G724S lead to destabilization of the αC-helix inward

conformation in the presence of polar β3-αC interface substitutions.

Interestingly, Ex19Del/G724S displays phospho-EGFR levels similar to Ex19Del, but reduced phospho-

EGFR compared to Ex19Del/C797S (Figure 2A). Our modeling suggests that stabilization of the αC-helix

can vary between mutants upon introduction of G724S (Figure 2.11). Similarly, C797S may preferentially

stabilize the αC-helix inward conformation of specific Ex19Del variants. C797 is a critical member of the

structurally distinct catalytic spine (C-spine). The C-spine does not contribute to the interface formed by the

glycine rich loop and β3-αC linker region. Nevertheless, previous network analysis by McClendon et al.

(McClendon et al., 2014) suggests that the dynamics of the glycine rich loop and the C-spine may be highly

correlated. We therefore suspect C797S may influence inter-domain correlations.
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Fundamentally, our observations are similar to a concept familiar to clinical oncologists – that sequence

variations in mutant proteins can impact drug binding. Osimertinib was developed to bind T790M with higher

affinity than non-T790M EGFR mutants (Cross et al., 2014). Here, we show that sequence variations corre-

sponding to the original activating mutation should also be taken into account when considering mechanisms

of TKI resistance. Our findings have several important and immediate clinical implications. First, we further

knowledge on a novel osimertinib resistance mutation that was not predicted by in vitro studies (Yu et al.,

2007; Ercan et al., 2015). Recent studies have shown that G724S may be as prevalent as C797S in osimer-

tinib resistant tumors (Fassunke et al., 2018). However, there are critical differences. While C797S containing

EGFR mutants (e.g., Ex19Del/C797S) regain sensitivity to first-generation EGFR TKIs, erlotinib and gefi-

tinib, the same G724S containing EGFR variants are cross-resistant to these inhibitors. In fact, there is an

ongoing phase I clinical trial (NCT03122717) of osimertinib plus gefitinib combination therapy in patients

with treatment naı̈ve advanced EGFR-mutant NSCLC. This trial aims to test the hypothesis that circumvent-

ing C797S-mediated osimertinib resistance with gefitinib will prolong response. This concept will clearly

not apply for patients with G724S mediated osimertinib resistance. However, our results support a role for

afatinib therapy in treating Ex19Del patients with disease progression on osimertinib via C797S or G724S in

the absence of T790M (Figure 2.5). Furthermore, in cases where G724S is potentially an independent onco-

genic driver of other cancers, our results suggest possible treatment strategies with existing FDA-approved

inhibitors. This level of evidence is critical to nominate variants of uncertain clinical significance, such as

isolated G724S mutation, for eligibility into clinical trials such as NCI MATCH (NCT02465060).

These clinical consequences are rooted in structural perturbations to EGFR kinase. Detailed mechanistic

understanding of these perturbations can provide critical insight to guide therapeutic intervention. Just prior

to submission of the present manuscript, Fassunke et al. published investigations into the structural basis of

EGFR G724S-mediated osimertinib (Fassunke et al., 2018). The authors coupled structure-based alignment

of EGFR WT to EGFR D770 N771insNPG (exon 20 mutation) with P-loop RMSF calculations derived from

short, single-trajectory cMD simulations. Specifically, Fassunke et al. demonstrated an elevated RMSF

in both WT and E746 A750del when G724S is introduced. From that result, the authors postulated two

potential, opposing mechanisms of G724S-mediated third-generation TKI resistance: (1) steric repulsion of

the inhibitor, or (2) loss of important interactions with the inhibitor. However, RMSF calculations alone

are rarely sufficient to provide detailed mechanistic insights (Farmer et al., 2017). Moreover, osimertinib

resistance occurs in Ex19Del/G724S variants (Figure 2.5) but not G724S single mutants (Figure 2.10). The

broad mechanisms previously posited do not provide adequate detail to address these data.

Here, we performed multiple independent GaMD enhanced sampling simulations in the presence and ab-

sence of osimertinib or afatinib totaling over 23 µs. For each EGFR mutant, we computed the relative binding
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free energies of osimertinib and afatinib as well as the conformational free energy landscape profiles of the

apo-state structures. While our RMSF calculations are consistent with Fassunke et al., our results further

suggest that G724S hyper-stabilizes a β -bend conformation of the glycine-rich P-loop. This prevents contact

of the F723 phenyl ring with the osimertinib indole ring. Our calculations suggest that L858R reversibly

binds osimertinib with higher affinity than Ex19Del, and consequently loss of the F723 – osimertinib contact

fails to disrupt binding in L858R. In Ex19Del, the addition of G724S destabilizes the reversible complex

necessary for covalent adduct formation (Figure 2.2).

Moreover, we identified differences in P-loop conformational preferences between Ex19Del/G724S and

L858R/G724S. (Figure 2.10A – D). In addition to our findings in Figure 2.2, it is possible that L858R/G724S

is less poised to accommodate substrate binding vs. Ex19Del/G724S, resulting in L858R/G724S functioning

as a catalytically inefficient receiver kinase in an asymmetric dimer; however, additional experiments would

be required to test this hypothesis. It is also possible that L858R/G724S conformations may be less primed to

support dimerization compared with L858R. The αC-helix of L858R/G724S bows outward over the course

of the simulation, suggesting increased local instability. Despite still favoring the active state relative to WT,

it is possible that with longer simulation times the αC-helix of L858R/G724S would more rapidly transition

to a state incapable of supporting asymmetric dimerization than L858R (Figure 2.10C).

Importantly, our simulations also suggest that G724S increases the stability of the EGFR active confor-

mation in the E746 S752 variant of Ex19Del, but reduces stability of the E746 A750del variant. Greater

stability of the active αC-inward conformation in E746 S752>V/G724S offers a possible explanation for the

enrichment of the rare variant Ex19Del in the Foundation Medicine cohort of NSCLC patients with G724S.

Interestingly, of the four patients with genomic profiling data presented in Fassunke et al., all of them saw an

increase in molecular fraction of G724S post-osimertinib therapy, and all of them had uncommon variants of

Ex19Del (Fassunke et al., 2018).

These findings have implications in other, non-EGFR-mutant cancers as well. For example, ALK (anaplas-

tic lymphoma kinase) rearrangements can be found in approximately 5% of NSCLC cancers (Lin et al.,

2017). Over a dozen fusion partners have been identified across ALK+ cancers (Lin et al., 2017). Even the

most frequently occurring fusion partner in ALK+ NSCLC, echinoderm microtubule-associated protein-like

4 (EML4), has > 10 identified unique fusion variants (Shaw and Engelman, 2013). In addition, on-target

acquired resistance to first- and second- generation ALK TKIs occurs in the form of approximately a dozen

unique missense mutations (Gainor et al., 2016). Recent data suggests that a particularly recalcitrant ALK

solvent front mutation, G1202R, is more likely to cause resistance in the context of EML4-ALK E6;A20 (V3)

fusion rather than the more common EML4-ALK E13;A20 (V1) fusion (Lin et al., 2018). A structural basis

for this observation was not presented; however, analogous to our current study, it could be that the unique
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structural and biochemical properties of the original activating mutation foreshadowed the development of a

specific resistance mutation.

In summary, we have employed an interdisciplinary computational and experimental approach which

provides evidence that on-target osimertinib resistance in EGFR-mutant NSCLC occurs in an allele-specific

manner dependent on the underlying activating mutation. Our data support a potential structural mechanism

for Ex19Del/G724S osimertinib resistance, and open the door for further studies on TKI-EGFR interactions.

We hope these mechanistic studies will be exploited to develop novel EGFR TKIs that circumvent multiple

drug resistance mutations. Finally, we hope that insights from our investigations will be applied to develop

increasingly effective targeted therapies for additional genetically-defined cancers.

2.4 Methods

2.4.1 Inhibitor source and preparation

EGFR TKIs were purchased from Selleck Chemicals (Houston, TX, USA). All drugs were prepared and

stored as a stock solution at 10 mM in DMSO (Sigma-Aldrich, St. Louis, MO, USA).

2.4.2 Cell culture

293FT cells were purchased from Invitrogen (Carlsbad, CA, USA). NR-6 cells were a gift from Dr. William

Pao (39). 293FT and NR-6 cells were cultured in DMEM with 4.5 g/L glucose, L-glutamine & sodium

pyruvate (Mediatech, Corning, NY, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS)

(Atlanta Biologicals, Flowery Branch, GA, USA) and penicillin (100 U/mL)/streptomycin (100 µg/mL) (Me-

diatech). Ba/F3 cells were purchased from DSMZ and were cultured in RPMI 1640 with L-glutamine (Medi-

atech) supplemented with 10% heat-inactivated FBS, penicillin (100 U/mL)/streptomycin (100 µg/mL), and

1 ng/mL interleukin-3 (IL-3) (Thermo Fisher Scientific, Waltham, MA, USA) until retroviral transduction

and subsequent IL-3 withdrawal. Cells were grown in a humidified incubator with 5% CO2 at 37°C and were

routinely evaluated for mycoplasma using a Venor GeM Mycoplasma Detection Kit (Sigma-Aldrich).

2.4.3 Immunoblot analysis

Cells were washed with PBS and lysed in radioimmunoprecipitation analysis buffer (50 mM TrisHCl pH 8.0,

150 mM sodium chloride, 5 mM magnesium chloride, 1% Triton X-100. 0.5% sodium deoxycholate, 0.1%

SDS, 40 mM sodium fluoride, 1 mM sodium orthovanadate, and complete Protease Inhibitor Cocktail [Roche

Diagnostics, Indianapolis, IN, USA]). Western Lightning ECL reagent (PerkinElmer, Waltham, MA, USA)

was used for signal detection. β -actin antibody (A2066) was purchased from Sigma-Aldrich. EGFR (#2232),

pEGFR Y1068 (#2234), pEGFR Y1173 (#2244), ERK (#9102), pERK T202/Y204 (#9101), horseradish
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peroxidase (HRP)-conjugated anti-mouse (#7076) and HRP-conjugated anti-rabbit (#7074) antibodies were

purchased from Cell Signaling (Danvers, MA, USA). Each experiment was performed twice.

2.4.4 CellTiter Blue cell viability assay

Ba/F3 cells were seeded in 96-well plates at a density of 20,000 cells/well and treated with varying concen-

trations of indicated compounds, with six technical replicates per concentration. After 72 hours, CellTiter

Blue Reagent (Promega, Madison, WI, USA) was added to wells according to manufacturer’s instructions,

and cells were incubated at 37°C with 5% CO2 for 2 to 4 hours. Absorbance was detected at 590 nm with a

Synergy HTX microplate reader (BioTek Instruments, Winooski, VT, USA). Each experiment was performed

three times.

2.4.5 Statistical analysis

All experiments were performed at least three times and the differences were determined by one-way ANOVA.

Differences were considered significant when p < 0.05.

2.4.6 Molecular Modeling

Structural models of the EGFR kinase exon 19 deletion mutants (Ex19Del) were generated through com-

plementary use of the structure-prediction software package Rosetta utilizing the REF2015 score function

(40-42) and molecular dynamics (MD) simulation with AMBER16 (43). Comparative models of Ex19Del

kinase domain were created with RosettaCM (40,41) by modeling the kinase domain sequence sans β3-αC

residues E746–A750 for the canonical variant model, or a valine substituted for the range E746–S752 for

the rare variant model, and applying PDB IDs 2GS6 and 2GS7 as templates for the active and inactive state

models, respectively (31). Active and inactive state Rosetta models of EGFR were minimized and allowed

to equilibrate in a rectangular box of TIP4PEW explicit solvent neutralized with monovalent chlorine anions

(44,45). Solute was buffered on all sides with 12 Å solvent. Afterward, dual-boost Gaussian accelerated

MD (GaMD) simulations were performed to enhance conformational sampling (23,24,46,47). Protein-ligand

binding free energy calculations were performed with MM/GBSA implemented in the AMBER suite in com-

bination with the quasi-harmonic approximation (QHA) of entropy (48). For a detailed description of model

building, molecular dynamics simulations, and binding free energy calculations, please see the Supplemen-

tary Methods section.

2.4.7 Genomic profiling of patient samples

Hybrid capture-based next generation sequencing (NGS) was performed on formalin-fixed paraffin embedded

tissue sections or circulating tumor DNA isolated from blood samples in a Clinical Laboratory Improvement
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Amendments (CLIA)- certified, CAP (College of American Pathologists)-accredited laboratory (Foundation

Medicine, Cambridge, MA) as described previously (49,50). Approval for this study, including a waiver of

informed consent and a HIPAA waiver of authorization, was obtained from the Western Institutional Review

Board (Protocol No. 20152817).
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CHAPTER 3

Allele-specific activation and inhibitor sensitivities of EGFR exon 19 deletion mutations in lung cancer

This chapter is a collaborative work of Benjamin P. Brown*, Yun-Kai Zhang*, Soyeon Kim*, Patrick Finneran,

Yingjun Yan, Zhenfang Du, Jiyoon Kim, Abigail Leigh Hartzler, Michele L. LeNoue-Newton, Adam W.

Smith, Jens Meiler, and Christine M. Lovly (*These authors contributed equally).

3.1 Introduction

Epidermal growth factor receptor (EGFR) mutations are responsible for 15 – 30% of all cases of non-small-

cell lung cancer (NSCLC) (Pao et al., 2004; Lynch et al., 2004). Of these mutations, >90% can be attributed

to either the L858R mutation in the kinase domain (KD) activation loop (A-loop), or deletion/insertion mu-

tations in exon 19 (henceforward categorically referred to as ex19del mutations) corresponding structurally

to the β3-αC loop in the KD (Pao et al., 2004; Lynch et al., 2004). Historically, ex19del mutations have not

been clinically differentiated. In the first clinical trials to establish the superior efficacy of EGFR tyrosine

kinase inhibitors (TKIs) compared to chemotherapy, EGFR KD oncogenic mutations were all considered

interchangeable (Mitsudomi et al., 2010). Today, the current clinical standard of care for EGFR-mediated

NSCLC is osimertinib. The seminal phase 3 clinical trial that demonstrated osimertinib’s increased effi-

cacy compared to standard gefitinib or erlotinib TKI therapy, FLAURA, did separately annotate and compare

L858R and ex19del (Soria et al., 2018; Ramalingam et al., 2020); however, heterogeneity within the ex19del

group was not considered.

This is in stark contrast to the less frequently occurring EGFR exon 20 insertion (ex20ins) mutations.

It has been appreciated in the literature that ex20ins display heterogeneity in enzyme activity, clinical phe-

notype, and sensitivity to existing FDA-approved TKIs (He et al., 2012; Kosaka et al., 2017; Naidoo et al.,

2015; Yasuda et al., 2012, 2013). At the structural level, molecular dynamics (MD) simulations suggest that

ex20ins mutants can lower the free energy barrier associated with adopting the KD active conformation in

an allele-specific manner (Ruan and Kannan, 2018). There are multiple ongoing drug development efforts

aimed at designing TKIs to treat ex20ins-mediated cancers differently (Gonzalvez et al., 2021; Riely et al.,

2021; Jang et al., 2018). Several retrospective studies have now suggested that there are differences in patient

outcomes between ex19del patient populations (Tokudome et al., 2020; Zhao et al., 2020; Xu et al., 2020;

Chung et al., 2012; Su et al., 2017; Stewart et al., 2018). Not surprisingly then, emerging evidence suggests

that the lack of allele-specific resolution of ex19del variants in clinical practice can impede our ability to

provide optimal therapeutic strategies for NSCLC and other cancer patients.
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It is also noteworthy that investigations into ex19del often use the verbiage “exon 19 deletion” to refer to

different allele variants, making it more challenging to functionally characterize them and develop appropriate

therapeutic strategies. For example, the mechanism of activation of ex19del has been reported to be both

ligand-independent (Cho et al., 2013; Greulich et al., 2005; Valley et al., 2015; Okabe et al., 2007) and

ligand-dependent (Sordella et al., 2004; Carey et al., 2006; Mulloy et al., 2007), and it is unclear to what

extent the discrepancy is a result of the use of different experimental methodologies or different ex19del

variants. We have also previously found that the development of osimertinib resistance to the G724S mutant is

dependent on the specific ex19del variant (Brown et al., 2019a), suggesting that ex19del structural differences

can have therapeutic implications. Thus, to maximize the efficacy of targeted therapies we need to refine our

understanding of oncogenic variants at the atomic level.

In this study, we tested the hypothesis that sequence variation between EGFR oncogenic ex19del muta-

tions can lead to allele-specific activation and TKI sensitivity. We probed the AACR GENIE database (31)

and identified 60 unique ex19dels and built structural models of each variant. Next, we selected three of

the most common variants predicted to be structurally distinct for detailed computational, biophysical, and

biochemical evaluation: E746 A750, E746 S752>V, and L747 A750>P. Altogether, our results demonstrate

that ex19dels are a functionally heterogeneous population with potentially unique considerations for optimal

therapeutic targeting.

3.2 Results

3.2.1 ex19del sequence variants cluster by chemical conservation and thus function

We first investigated the sequence heterogeneity of ex19del variants by probing the AACR GENIE database

(Consortium, 2017). We identified 60 variants and mapped these variants to the EGFR kinase domain (KD)

(Figure 3.1). Structurally, exon 19 corresponds to the β3 sheet, β3-αC loop, and N-terminal half of the

αC helix (Figure 3.1A). All residues are numbered with respect to WT in the immature form (e.g., we

reference L858R instead of L834R). We identified mutants ranging in size from a single residue deletion to

a net eight residue deletion. The starting and stopping points for the deletions predominantly occurred at

residues E746, L747, A750, T751, S752, and P753, such that the length of the β3-αC loop is highly subject

to sequence variation in comparison to the β3 or αC regions (Figure 3.1B). The predominant mutations are

E746 A750 (62.9%), L747 P753>S (7.4%), L747 T751 (5.2%), E746 S752¿V (4.0 %), and L747 A750>P

(3.7%) (Figure 3.1C).

The breadth of variants is substantial, ranging from deletions that occur entirely in β3 (K739 I744>N)

to those occurring almost entirely in αC (e.g., P753 I759). To help characterize the mutations, we first built

structural models of all variants utilizing the Rosetta comparative modeling approach coupled with Gaussian
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Figure 3.1: Frequently occurring mutations in the EGFR β3-αC motif. (A) Schematic representation of the
active EGFR-WT asymmetric dimer. Oncogenic and TKI resistance mutations have been reported in exons
18 (wheat), 19 (red), 20 (yellow), and 21 (blue). (B) The majority of deletion mutations begin at residues
E746, L747, or T751. Deletion mutants frequently terminate with or without an insertion at position A750,
T751, S752, or P753. Spheres indicate the residue Cα . (C) Multiple sequence alignment of the β3-αC motif
between EGFR-WT and ex19del variants with >2% frequency. (D) Residues at the β3αC interface can be
referenced with respect to their index after the conserved K745 residue in the majority of mutants.

accelerated MD (GaMD) (Miao et al., 2015) (see Methods). Our models suggested several recurring structural

features of ex19del. First, the most common ex19del variants, including E746 A750, L747 P753>S, and

L747 T751 (Figure 3.1C), replace L747 at the β3-αC interface with a serine and simultaneously remove at

least one full turn from the N-terminus of the αC helix (Figure 3.2A). Second, mutants with net deletions

of size three, such as L747 A750>P and E746 T751>APS, frequently converge on the same β3-αC loop

conformation, characterized by a β3-αC tight turn with proline in the second position (Figure 3.2B). Third,

we observed that several mutants project polar residues into the ATP binding pocket in the vicinity of the

canonical K745 – E754 salt bridge, such as L747 S752>Q and E746 S752>V (cis-trans proline-dependent).

To deeply evaluate potential functional differences between mutants, we selected three mutants that are

prevalent in patients based on our AACR GENIE analysis (Figure 3.1C) and cover the breadth of features

described above: E746 A750, E746 S752>V, and L747 A750>P. For clarity, we periodically reference

residues by their position relative to K745 (Figure 3.1D).
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Figure 3.2: Structural comparison of modeled ex19del β3αC motifs. (A) Superimposition of the β3αC re-
gion of the most common ex19del variants with WT. Rendering of the β3αC loop in (B) WT, (C) L747P, and
(D) L747 A750>P. L747P and L747 A750>P both form a tight turn in the β3αC loop. The L747 A750>P
tight turn contains a proline in the second position and fewer residues on the N-terminus of the αC-helix.

3.2.2 ex19del variants adopt unique β3-αC conformations with different energetic barriers to activa-

tion

We began with the hypothesis that ex19dels can display allele-specific differences in their propensity to adopt

the active conformation. Wild-type EGFR (WT) is activated when ligand binds the extracellular domain

(ECD) to promote intermolecular dimerization and multimer/oligomerization (Cohen S Fau Carpenter et al.,

1980; Needham et al., 2016a; Huang et al., 2016). Intracellularly, this results in asymmetric dimerization

between two KD where the “receiver” KD is stabilized in an active conformation by the “donor” KD (Zhang

et al., 2006). Previous investigations have shown that oncogenic variants in the KD often stabilize the αC-

helix by suppressing intrinsic disorder (Shan et al., 2012) leading to enhanced dimerization where the mutant

KD behaves as a “super acceptor” (Red Brewer et al., 2013).

Subsequently, we performed six (E746 A750, E746 S752>V, and L747 A750>P, in active and inactive

state respectively) independent conventional molecular dynamics (cMD) simulations of 4.0 – 6.0 s for each

structure, such that three simulations were initiated from each state (120.0 s total). Consistent with previous

reports (Shan et al., 2013), the αC helix of WT readily departed from the active conformation to adopt

an unstructured intermediate state, and 1/3 active state simulations transitioned completely to the Src-like

inactive conformation (αC helix out, A-loop in, DFG in) (Figure 3.3A).
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Figure 3.3: Conventional MD simulations of several ex19del variants starting from the active state.
Boltzmann-weighted probability distributions of (A) WT, (B) E746 A750, (C) E746 S752>V, and (D)
L747 A750>P conformational changes in conventional MD simulations. All simulations were started from
the active state. Three independent simulations for each system were run for 4.0 us each. The inward/out-
ward motion of the activation loop is depicted on the y-axis (larger numbers indicate more inward), and the
inward/outward motion of the αC-helix is depicted on the x-axis (larger numbers indicate more outward).
Snapshots are from the end of one of the three independent simulations. WT transitioned to the Src-like
inactive state in one of the three simulations. The glycine-rich loop is colored yellow, the β3αC-loop and
αC-helix are blue, and the activation loop is green.
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In comparison, each of the ex19del variants remained stable in the active state (αC helix in, A-loop out,

DFG in, Figure 3.3B – D). The tight turn predicted in the Rosetta/GaMD model of L747 A750>P is highly

stable, preventing inactivation (Figure 3.3D). Unfortunately, no transitions were observed from the inactive

to the active state or vice versa in any of the ex19del cMD simulations. Therefore, we combined steered MD

(SMD) with umbrella sampling (UMD) simulations to map the conformational free energy landscape (FEL)

of the transition.

Following a procedure similar to that previously employed for ex20ins variants (Ruan and Kannan, 2018)

we defined our umbrella sampling collective variables (CV) along two dimensions: (1) Activation state of the

αC helix as defined by the difference in distance between K860 – E762 and K745 – E762, and (2) activation

state of the A-loop as defined by the dihedral angle formed by the Cα atoms of D855 – F856 – G857 – L858

(Figure 3.4A, B).

Figure 3.4: Conformational free energy landscapes of ex19del variants from umbrella sampling MD sim-
ulations. Collective variables describe the (A) active and (B) inactive states as the pseudo-dihedral angle
formed by the alpha carbon atoms of residues D855, F856, G857, and L858 (x-axis) as well as the dif-
ference in distance between the capping sidechain atoms of E762 and K745 (d1) and E762 and K860 (d2)
(y-axis). Conformational free energies are shown for (C) WT, (D) E746 A750, (E) E746 S753¿V, and (F)
L747 A750>P. Plots are contoured at 0.5 kcal/mol and colored within the range 0 (blue) and 15 (red) kcal/-
mol. Contours above 15 kcal/mol are colored white.

Using these 2 CVs, we measured the free energy difference between the active and inactive states of

WT and found it to be approximately 1.0 kcal/mol in favor of the inactive state (Figure 3.4C), in good

agreement with prior estimates (Ruan and Kannan, 2018). In contrast to WT and the previously reported

exon 20 insertion mutations (Ruan and Kannan, 2018), all three ex19del variants favored the active state

32



(Figure 3.4D – F). E746 A750 and E746 S752>V favored the active state by approximately 1.0 kcal/mol

and 4.5 kcal/mol, respectively (Figure 3.4D – E). We also performed SMD+UMD simulations on the other

two most commonly occurring ex19dels, L747 P753>S and L747 T751. L747 T751 displays an activation

profile similar to E746 S752>V, while L747 P753>S may be more comparable to several ex20ins variants

(Ruan and Kannan, 2018) (Figure 3.5).

Figure 3.5: Conformational free energy landscapes of EGFR variants from umbrella sampling MD simula-
tions. Collective variables describe the active and inactive states as the pseudo-dihedral angle formed by the
alpha carbon atoms of residues D855, F856, G857, and L858 (x-axis) as well as the difference in distance
between the capping sidechain atoms of E762 and K745 (d1) and E762 and K860 (d2) (y-axis). Confor-
mational free energies are shown for (A) WT, (B) L858R, (C) L747P, (D) E746 A750, (E) L747 P753>S,
(F) L747 T751, (G) E746 S752>V, and (H) L747 A750>P. Plots are contoured at 0.5 kcal/mol and colored
within the range 0 (blue) and 9.5 (red) kcal/mol. Contours above 9.5 kcal/mol are colored white.

Interestingly, L747 A750>P appears to be trapped in the active state, with prohibitively large free energy

barriers to the inactive state (Figure 3.4F). We considered that this may be a result of the proline substitution at

position 747. We tested this hypothesis by building models for the oncogenic missense variant L747P (Liang

et al., 2019) and performing SMD+UMD simulations. L747P induces an ordered tight turn in the β3-αC
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loop, stabilizing the active state over the inactive state by approximately 1.0 kcal/mol (Figure 3.5C), but not

by as large a margin as L747 A750>P. The substantially larger barrier to inactivation in L747 A750>P may

result from the proline in its β3αC tight turn coupled with the net three residue deletion (Figure 3.2B). Al-

together, our results suggest that ex19del variants adopt unique conformations near the receiver KD interface

that translate into potentially substantial differences in activation propensity.

3.2.3 L747 A750>P, but not E746 A750 or E746 S752>V, dimerizes in a ligand-independent manner

Previous studies have suggested that KD mutants may promote ligand-dependent “inside-out” dimerization

(Tsai and Nussinov, 2019). Based on our simulation results, we hypothesized that the L747 A750>P vari-

ant forms dimers in the absence of ligand stimulation because it is trapped in a receiver kinase active state.

To test our hypothesis, we measured the homo-interaction stoichiometry of each variant in the presence and

absence of EGF ligand using two-color pulsed interleaved excitation fluorescence cross-correlation spec-

troscopy (PIE-FCCS) (Huang et al., 2016; Du et al., 2021). Live cell PIE-FCCS measurements and analysis

were completed on single cells expressing individual ex19del variants with WT data recorded as a negative

control for each experiment (see Methods).

First, we performed PIE-FCCS experiments in the absence of EGF ligand. Samples were serum starved

for 24 hours to ensure no residual ligand-dependent effects. As expected, WT has a median cross-correlation

(ƒc) value near zero (ƒc = 0.01), indicating that it exists predominantly as a monomer. Our results also

suggest that E746 A750 and E746 S752>V are predominantly monomeric in the absence of ligand (ƒc = 0.05

and 0.06, respectively). In contrast, L747 A750>P displays significantly higher median cross-correlation

(ƒc = 0.13) (Figure 3A.6). Consistent with the cross-correlation values, the diffusion coefficients of eGFP-

tagged WT (0.35 µm2/s), E746 A750 (0.35 µm2/s), and E746 S752>V (0.33 µm2/s) are significantly higher

than L747 A750>P (0.18 µm2/s) (Figure 3B.6). The increased median cross correlation and decreased

diffusion coefficient of L747 A750>P relative to WT is indicative of dimer formation in the absence of

ligand stimulation.

Next, we performed PIE-FCCS experiments in the presence of EGF ligand to evaluate whether or not

ex19del variants differ in their response to extracellular stimulation. A recent study demonstrated that KD

mutations can directly change the conformational preferences of the ECD, potentially modulating signaling

responses to ligand (Huang et al., 2020). Here, we observed that WT forms multimers upon stimulation with

EGF, consistent with prior studies (ƒc = 0.31; D = 0.13 µm2/s) (Needham et al., 2016a; Huang et al., 2016;

Du et al., 2021; Clayton et al., 2005). EGF stimulation caused E746 A750 (ƒc = 0.16; D = 0.23 µm2/s)

E746 S752>V (ƒc = 0.17; D = 0.18 µm2/s), and L747 A750>P (ƒc = 0.18; D = 0.17 µm2/s) to form a

mixture of dimers and multimers (Figure 3A.6, B). The fact that each of the mutants show lower cross-
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Figure 3.6: Ex19del variants display allele-specific differences in dimerization and oncogenic growth. (A)
Cross correlation values of transfected EGFR variants with (+) or without (-) ligand (EGF) stimulation. The
dark and light blue boxes indicate the ƒc value regions for dimers and multimers, respectively. (B) Diffu-
sion coefficient values of EGFR variants with (+) or without (-) ligand (EGF) stimulation. The light orange
box indicates EGF-stimulated groups. (C) Ba/F3 cells were stably transfected with different EGFR ex19del
variants, WT, or empty vector. Cellular lysates were probed with the indicated antibodies to measure phos-
phorylation. (D) Rate of IL-3-independent growth of Ba/F3 cells stably transfected with different ex19del
variants, WT, or empty vector. Data and illustrations for figure panels A and B produced by Soyeon Kim,
Abigail Leigh Hartzler, and Adam W. Smith. Data and illustrations for figure panels C and D produced by
Yun-Kai Zhang, Yingjun Yan, Zhenfang Du, Jiyoon Kim, and Christine M. Lovly.
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correlation and faster diffusion compared to WT suggests that the ex19del mutations have a significant effect

on the formation of ligand-depended multimeric assemblies.

3.2.4 E746 S752>V and L747 A750>P display enhanced oncogenic activation relative to E746 A750

The strong energetic preference of L747 A750>P to adopt the active conformation (Figure 3.4E) and corre-

sponding propensity to form ligand-independent dimers (Figure 3A.6) led us to hypothesize that L747 A750>P

would display enhanced oncogenic growth compared with other ex19del variants in vitro. To test our hy-

pothesis, we generated expression vectors containing empty vector, WT, E746 A750, E746 S752>V, or

L747 A750>P and introduced these into murine lymphoid Ba/F3 cells (45). After selection of stable ex-

pression in puromycin, the cells were collected, lysed and blotted for EGFR autophosphorylation (pEGFR).

Our results confirmed that all three ex19del variants exhibit strong pEGFR compared to WT. In support of

our hypothesis, we observed that L747 A750>P displays substantially higher levels of pEGFR compared

with either E746 A750 or E746 S752>V (Figure 3C.6).

To further investigate ex19del variant differences in IL-3 independent oncogenic growth in Ba/F3 cells,

we depleted IL-3 from the growth medium to monitor changes in cell counts over time (Figure 3D.6).

As expected, the Ba/F3 cells expressing either vector or WT EGFR died shortly upon withdrawal of ex-

ogenous IL-3, while cells expressing EGFR ex19del variants survived and proliferated. Cells express-

ing either E746 S752>V or L747 A750>P proliferated at a higher rate compared with cells expressing

E746 A750del (Figure 3D.6). Despite not undergoing ligand-independent dimerization as did L747 A750>P

in PIE-FCCS experiments, cells expressing E746 S752>V displayed statistically similar growth rates com-

pared with L747 A750>P. Collectively with our MD simulations, our results suggest that ex19del variants

differentially promote growth and enzymatic activity as a function of their energetic barriers to activation.

3.2.5 E746 S752>V and L747 A750>P are less sensitive to TKI treatment than E746 A750

We considered the possibility that differences may also exist between ex19del variant TKI sensitivities,

which also may explain differences in outcomes between patients with specific ex19dels (17, 21). We previ-

ously found that some ex19del variants, in particular E746 S752>V, are especially likely to develop G724S-

mediated resistance in response to osimertinib, while L858R and other ex19del variants are not (Brown et al.,

2019a; Fassunke et al., 2018). Recently, it was further suggested that L747 A750>P has reduced sensitivity to

erlotinib and osimertinib relative to E746 A750 in functional assays due to steric effects (Truini et al., 2019).

Thus, we sought to evaluate the relative TKI sensitivity of E746 A750 in comparison to E746 S752>V and

L747 A750>P.

We first treated Ba/F3 cells expressing E746 A750, E746 S752>V, or L747 A750>P with either 30 or
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100 nM osimertinib. We observed that autophosphorylation was markedly reduced in both E746 A750 and

L747 A750>P, but not in E746 S752>V (Figure 3.7A). Subsequently, we performed the same experiment

in well-established lung adenocarcinoma cell lines expressing E746 A750 (PC9), E746 S752>V (SH450),

or L747 A750>P (HCC4006). Again, we observed that E746 S752>V was less sensitive to osimertinib

than E746 A750 or L747 A750>P. To model the clinical exposure of EGFR TKIs in lung adenocarcinoma,

we performed long-term treatments of osimertinib in these cell lines at a clinically relevant dose (100 nM)

(48) with periodic medium/TKI refreshment (Figure 3.7C). The untreated PC9, SH450, and HCC4006 cells

underwent exponential growth and quickly reached confluence within 3 days. The growths of PC9 and

HCC4006 cells were inhibited effectively by osimertinib treatment, and the cells initially stopped growing. In

particular, the proliferation of PC9 cells was successfully inhibited by osimertinib for more than three weeks.

We observed that the HCC4006 cells gradually adapted to the treatment and proliferated to confluence in 20

days. Most notably, however, osimertinib only partially inhibited the proliferation of SH450 cells, and after

an incomplete response continued growing, reaching confluence within a week. Thus, consistent with our

Western blots, we found that E746 S752>V was least responsive to osimertinib, followed by L747 A750>P,

while E746 A750 was completely inhibited (Figure 3.7C).

Based on our in vitro data, we hypothesized that E746 S752>V has a lower osimertinib binding affinity

than E746 A750 and L747 A750>P. To test this hypothesis, we performed MD simulations of each of the

ex19del variants in complex with osimertinib. We performed three independent MD simulations of 2.0 s each

for each EGFR variant (WT, E746 A750, E746 S752>V, E746 S752>V/G724S, or L747 A750>P) bound

to osimertinib starting from either the active or inactive conformation (sans inactive E746 S752>V/G724S;

60.0 s aggregate simulation time). As expected based on the available crystallographic evidence (Yosaatmadja

et al., 2015), osimertinib binding energies were estimated to be better in the active state than the inactive

state in all cases. Both E746 A750 and L747 A750>P were estimated to have a better osimertinib binding

free energy than WT (Figure 3.7E). Contrary to our hypothesis, E746 S752>V was not predicted to bind

osimertinib with a lower affinity than E746 A750 or L747 A750>P. In contrast to previous studies (Truini

et al., 2019), L747 A750>P was not estimated to have reduced osimertinib binding free energy (Figure 3.7E).

To better understand our simulation results, we quantitatively evaluated the inhibitory efficacy of three

generations of EGFR TKIs (erlotinib, afatinib, and osimertinib) by measuring cell viabilities of isogenic

Ba/F3 cells stably transfected with either E746 A750, E746 S752>V, or L747 A750>P in the presence

of each TKI separately. We observed that L747 A750>P and E746 S752>V were both at least 10x less

sensitive to TKI than E746 A750 (Figure SX). We corroborated these results by measuring cell viabili-

ties of lung adenocarcinoma cell lines expressing different ex19del variants. Here, we also observed that

SH450 (E746 S752>V) or HCC4006 (L747 A750>P) were at least 10x less sensitive to erlotinib than PC9
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Figure 3.7: Allele-specific differences in ex19del TKI sensitivity may not be due to differences in TKI bind-
ing affinity. (A) Ba/F3 cells were stably transfected with different EGFR ex19del variants and treated with
increasing concentrations (0, 30, or 100 nM) of osimertinib. Cellular lysates were probed with the indi-
cated antibodies to measure phosphorylation. (B) Lung adenocarcinoma cell lines expressing E746 A750
(PC9), E746 S752>V (SH450), or L747 A750>P (HCC4006) were treated with increasing concentrations
(0, 30, or 100 nM) of osimertinib. Cellular lysates were probed with the indicated antibodies to measure
phosphorylation. Quantifications are represented as the average grayscale ratio of pEGFR/EGFR/Actin+/-
standard deviation across three independent biological replicates. (C) Time-dependent growth of lung adeno-
carcinoma cell lines expressing E746 A750 (PC9), E746 S752>V (SH450), or L747 A750>P (HCC4006)
treated with either 100 nM osimertinib or buffer. Each condition was performed with 9 replicates (thin lines)
and averaged (bold lines). (D) Structural models of EGFR in complex with osimertinib in either the bent
(F723 facing osimertinib in the ATP binding pocket) or straight (F723 projecting away from the ATP binding
pocket) conformations. (E) Osimertinib binding affinities for each ex19del variant, WT, and the double mu-
tant E746 S752>V/G724S from simulations starting in the active and inactive states. Bent and straight states
were separated by a small 2-state Markov state model based on the G/S724 backbone phi angle. MM-PBSA
was not performed if the stationary distribution for a state was estimated at less than 0.05 or the model failed
to pass a Chapman-Kalmogorov test. Binding energies are computed as the average MM-PBSA energies of
1000 randomly selected frames from the corresponding MSM cluster. For each EGFR variant, six simula-
tions of 2.0 us each were performed such that there were three each from the active and inactive states (except
E746 S752>V/G724S, for which no inactive state simulations were performed). (F) Cell viability assays per-
formed in lung adenocarcinoma cell lines stably expressing E746 A750 (PC9), E746 S752>V (SH450), or
L747 A750>P (HCC4006) with first (erlotinib), second (afatinib), and third (osimertinib) generation EGFR
TKIs. Data and illustrations for figure panels A, B, C, and F produced by Yun-Kai Zhang, Yingjun Yan,
Zhenfang Du, Jiyoon Kim, and Christine M. Lovly.
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(E746 A750). SH450 were also greater than 10x less sensitive to afatinib and osimertinib as compared to PC9

or HCC4006 (Figure 3.7F). L747 A750>P displays a similar response to afatinib as E746 A750. Our results

suggest that E746 S752>V and L747 A750>P are intrinsically less sensitive to ATP-competitive TKIs in

vitro. E746 A750 displays the most TKI sensitivity among the three ex19dels.

3.2.6 Differences in ATP binding may modulate TKI sensitivity across ex19del variants

Our in vitro data suggest that E746 S752>V and L747 A750>P display intrinsic resistance to standard first-,

second-, and third-generation TKIs. Simultaneously, our MD simulations estimate that E746 S752>V and

L747 A750>P reversibly bind osimertinib at least as well as E746 A750. Thus, we hypothesized that the

reduced sensitivity of E746 S752>V or L747 A750>P to ATP-competitive inhibitors is the result of higher

ATP binding affinities in these receptors than other EGFR oncogenic variants, thereby reducing the relative

binding affinity of TKI to ATP.

To test this hypothesis, we estimated the apparent ATP Km and erlotinib Ki for WT, E746 A750, L747 A750>P,

and an additional uncommon variant L747 E749 using the ADP-Glo assay as described in the Methods. We

chose erlotinib for the TKI binding affinity analysis to enable explicit comparison of the effects of ATP Km

on noncovalent TKI interactions. Our ADP-Glo assay results suggest that there are substantial differences in

ATP kinetics between EGFR variants, consistent previous reports on L858R and G719S (Carey et al., 2006;

Yun et al., 2008a).

E746 A750 and L747 E749 display ATP Km values of 100 µM. In contrast, L747 A750>P displays

an ATP Km of 6 µM. Interestingly, the rate of phosphate transfer in L747 A750>P is 17x lower than

E746 A750, but the reduced Km results in comparable catalytic efficiencies (Table 3.1). In contrast to ATP

Km, the difference in erlotinib binding is comparatively small between the tested variants (all within a factor

of 2 to one another). This results in the apparent erlotinib potency, taken as the ratio of Ki to ATP Km, to

be 18x lower in L747 A750>P than E746 A750 (Table 3.1). These data are consistent with the reduced

sensitivity of L747 A750>P in vitro and suggest a general mechanism by which ex19del variants may differ

in their responses to TKI.

Table 3.1: Enzyme kinetic parameters and erlotinib binding affinity for EGFR WT and ex19del vari-
ants. Data produced by SignalChem and analyzed by Patrick Finneran and Benjamin P. Brown.
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Our simulations create structural hypotheses for these differences: First, ex19del variants make distinct

hydrogen bonding interactions at the β3αC interface (Figure 3.8A – D). E746 A750 places S752 at the β3αC

i+2 position (Figure 3.1D) such that the sidechain donates a H-bond to the F723 backbone and is simulta-

neously stabilized as a H-bond acceptor from the K754 backbone (Figure 3.8B). Neither E746 S752>V nor

L747 A750>P, both of which place a proline at i+2, can make this H-bond (Figure 3.8C, D). Quantitation of

apo-state H-bonding supports this observation, suggesting the glycine-rich loop is more tightly coupled to the

β3αC-loop in E746 A750 (Figure 3.8E). These data, together with previous crystallographic (Brown et al.,

2017) and kinetic (Yosaatmadja et al., 2015) studies of EGFR L858R, suggest generally that tight coupling

of the β3αC-loop to the glycine-rich loop in αC-helix-stabilizing oncogenic mutants leads to reduced ATP

binding affinity.

Figure 3.8: Conventional MD simulations demonstrate ex19del β3αC hydrogen bond networks. Apo-state
conventional MD simulation snapshots of β3αC hydrogen bond networks in (A) WT, (B) E746 A750, (C)
E746 S752>V, and (D) L747 A750>P. (E) Quantification of hydrogen bond stability of select β3αC hydro-
gen bonds at the interface. Hydrogen bonds are defined by donor/acceptor heavy atom distances of 3.5 and
angles between 135 and 180 degrees. Quantifications are based on three independent trials of 4.0 us apo-state
simulations of each system starting from the active state.
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3.2.7 New therapeutic strategies may be required to maximally inhibit E746 S752>V-mediated dis-

ease

We previously identified the TKI neratinib as a potential therapeutic agent for certain forms of HER2/HER3-

mutant cancers in which pan-TKI resistance seems to be associated with enhanced ATP binding affinity

(Hanker et al., 2021). Employing the same strategy for neratinib as we did for osimertinib, we performed MD

simulations and subsequent MMPBSA binding free energy estimates of ex19dels complexed with neratinib.

Our simulations suggest that all of the tested ex19dels reversibly bind neratinib better than osimertinib, but

that E746 S752>V has a better neratinib binding energy than E746 A750 or L747 A750>P (Figure 3.9A).

Evaluation of neratinib function inhibition in Ba/F3 cells stably transfected with E746 A750, E746 S752>V,

or L747 A750>P demonstrate a complete ablation of pEGFR in E746 S752>V and L747 A750>P at 30

nM. Phosphorylation is largely reduced in E746 A750 at 30 nM and completely ablated at 150 nM (clinical-

relevant dose, Figure 3.9B, C). We also observed that neratinib effectively reduced pEGFR in lung adenocar-

cinoma cell lines expressing E746 A750, E746 S752>V, or L747 A750>P (Figure 3.9D – F).

3.3 Discussion

Considerable effort has been paid over the last decade to define the molecular mechanisms of oncogenesis and

acquired drug resistance in the most commonly occurring EGFR mutations, specifically L858R and “exon

19 deletion” (Carey et al., 2006; Mulloy et al., 2007; Zhang et al., 2006; Shan et al., 2012; Yun et al., 2008b;

Red Brewer et al., 2013). These efforts resulted in development of more effective targeted therapies, includ-

ing today’s first-line therapy for EGFR-mutant NSCLC, osimertinib (Yver, 2016). Despite next-generation

sequencing has identified the heterogeneity in the various distinct ex19del variants, the allele-specific mech-

anisms have not been extensively evaluated. The potential reduced likelihood of non-canonical ex19del

variants developing T790M or C797S in response to first or third generation TKI, respectively (Zhao et al.,

2020; Zheng et al., 2020), may be because a number of these variants have reduced TKI sensitivity in the

setting of higher ATP binding affinity. Indeed, both our group (Brown et al., 2019a) and others (Fassunke

et al., 2018) found the G724S resistance mutation to occur preferentially to C797S in E746 S752>V and

related non-canonical variants in response to osimertinib. However, at present, there has not been a system-

atic evaluation of patient responses to different TKI based on the specific ex19del variant present in tumor.

Thus, it is imperative that we investigate individual ex19del variants pre-clinically to ultimately help guide

clinicians in therapeutic decision-making.

Here, we have performed detailed computational, biophysical, and biochemical analyses on a diverse sub-

set of some of the most frequently occurring ex19del variants: E746 A750, E746 S752>V, and L747 A750>P.

Our data show clear differences in the activation profiles and TKI sensitivities of these ex19del variants with
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Figure 3.9: Neratinib effectively inhibits E746 S752>V. (A) Neratinib binding affinities for each ex19del
variant and WT from simulations starting in the active and inactive states. Three binding modes of neratinib
distinguished by the dihedral conformations of the hydroxymethyl pyridine were distinguished with a simple
Markov state model. MM-PBSA was not performed if the stationary distribution for a state was estimated
at less than 0.05 or the model failed to pass a Chapman-Kalmogorov test for three or two states. Binding
energies are computed as the average MM-PBSA energies of 1000 randomly selected frames from the cor-
responding MSM cluster. For each EGFR variant, six simulations of 2.0 us each were performed such that
there were three each from the active and inactive states. (B) Ba/F3 cells were stably transfected with different
EGFR ex19del variants and treated with increasing concentrations (0, 30, or 150 nM) of neratinib. Cellular
lysates were probed with the indicated antibodies to measure phosphorylation. (C) Quantification of Ba/F3
neratinib inhibition Western blots are represented as the average grayscale ratio of pEGFR/EGFR/Action
+/- standard deviation across three independent biological replicates. (D) Ba/F3 cell Lung adenocarcinoma
cell lines expressing E746 A750 (PC9), E746 S752>V (SH450), or L747 A750>P (HCC4006) were treated
with increasing concentrations (0, 0.3, 3, 30, or 150 nM) of neratinib. Cellular lysates were probed with
the indicated antibodies to measure phosphorylation. (E) Quantification of lung adenocarcinoma cell line
neratinib inhibition Western blots are represented as the average grayscale ratio of pEGFR/EGFR/Actin+/-
standard deviation across three independent biological replicates. (F) Cell viability assays performed in lung
adenocarcinoma cell lines stably expressing E746 A750 (PC9), E746 S752>V (SH450), or L747 A750>P
(HCC4006) with neratinib. Data and illustrations for figure panels B - F produced by Yun-Kai Zhang, Yingjun
Yan, Zhenfang Du, Jiyoon Kim, and Christine M. Lovly.
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potential structural correlates. Specifically, our data suggest that the ligand dependency of receptor activa-

tion differs between ex19dels. The L747 A750>P mutant displayed robust αC-helix stabilization from a

proline-locked tight turn in MD simulations that translated to ligand-independent dimerization and increased

in vitro activity in experiments. We also observed that E746 S752>V and L747 A750>P were less sensitive

to inhibition by TKI than E746 A750, with E746 S752>V displaying the least sensitivity. We were unable to

attribute this effect to binding affinity based on MD simulations of osimertinib or ADP-Glo inhibition assays

for erlotinib. Instead, our data suggest a role for variable ATP binding affinity as a potential mediator of

these differences in TKI sensitivity. It has previously been observed that some oncogenic EGFR mutations

can modulate ATP binding and TKI sensitivity (Carey et al., 2006; Mulloy et al., 2007; Yun et al., 2008b;

Yoshikawa et al., 2013).

Collectively, our data demonstrate that ex19dels are a heterogenous group of oncogenic variants. EGFR

WT is a monomer in the absence of ligand and stimulated by extracellular EGF to form dimers and mul-

timers/oligomers (Figure 3.10, yellow). The most frequently occurring ex19del oncogenic mutants, such

as E746 A750, increase the propensity for dimerization by stabilizing the acceptor KD (Figure 3.10, blue).

These “classical super acceptors” (Zhang et al., 2006; Red Brewer et al., 2013) are ligand-dependent and

have lower ATP binding affinity (Carey et al., 2006), increasing their sensitivity to TKIs with lower reversible

binding affinity, such as osimertinib (Schwartz et al., 2014). Our simulations and TKI sensitivity data sug-

gest that a subset of ex19del variants, such as E746 S752>V and L747 A750>P, are “tight ATP binders”

(Figure 3.10, pink). These are characterized by ATP binding affinities higher than that of classical super

acceptors, making them more resistant to ATP-competitive TKIs, reminiscent of T790M-comutant EGFR.

Unlike e.g., L858R/T790M, the apparent inhibitor potency does not differ from the single oncogenic vari-

ant e.g., L858R by several orders of magnitude (Yun et al., 2008b); instead, the difference is 20x. Thus,

we distinguish differences in sensitivity from differences in resistance. Finally, another subset of ex19dels,

such as L747 A750>P, are characterized by enhanced dimerization propensities greater than that of supper

acceptors. These “hyper acceptors” display increased functional activation and exist as ligand-independent

dimers (Figure 3.10, green). The ligand-independent activity of hyper acceptors suggest that some oncogenic

variants may be activated via “inside-out” dimerization.

Based on our proposed model, L747 A750>P is both a hyper acceptor and a tight ATP binder, while

E746 S752>V is a classical super acceptor and potentially a tight ATP binder. E746 A750 is strictly a classi-

cal super acceptor. We hypothesize that ex19del variants exist along a spectrum of dimerization propensities

and ATP affinities. Based on predicted structural similarity to the mutants studied in depth here, we pro-

pose initial classifications of the rarer ex19del variants identified in AACR GENIE along this spectrum. We

anticipate that additional functional characterization of ex19del variants along these axes will allow more
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Figure 3.10: Model of ex19del allele-specific functional differences and strategy for inhibition. Discretized
classification scheme for EGFR ex19del variants: non-oncogenic with ligand-dependent activation (orange;
WT); oncogenic super acceptor with ligand-dependent activation (blue; E746 A750, E746 S752>V); tight
ATP binder (pink; E746 S752>V, L747 A750>P); oncogenic hyper acceptor with ligand-independent acti-
vation (green; L747 A750>P).

personalized treatment of ex19del NSCLC patients.

Generally, our data lead us to suggest that treatment of ex19del variants may require unique considera-

tion of the variant’s functional properties. For example, we speculate that mutations with enhanced ligand-

independent dimerization would be less amenable to EGF-blocking antibody / TKI combination therapies

than classical super acceptor-like variants. We also suggest that for ex19dels with high ATP binding affini-

ties, the use of covalent TKIs with higher reversible binding affinities may be necessary to overcome reduced

TKI sensitivity, such as neratinib or mobocertinib. Alternatively, because increasing the reversible binding

affinity on covalent inhibitors can reduce mutant selectivity and cause undesirable side-effects, recognition

of tight ATP binding ex19dels may motivate the design of mutant-selective PROTACs or allosteric inhibitors.

On the basis of predicted structural similarity to these three ex19del variants and existing structures of

EGFR WT and L858R, we hypothesize functional classifications of the remaining variants from AACR GE-

NIE. Aside from the rarity of most of the ex19del variants we identified in AACR GENIE, only 50% of

patients even receive standard-of-care biomarker testing for targetable variants in EGFR and other genes

(Robert et al., 2021). Biochemical characterization and stratification into actionable groups is therefore of

considerable interest for providing the best possible clinical care to patients with these mutations. To facilitate

future comparisons and refinement of our proposed framework, we have made our computational structural

models of these variants publicly available on GitHub.

This study is not a comprehensive guide to EGFR ex19del variants. We hope that subsequent work ex-

pands upon this study to better characterize uncommon ex19dels. While in silico modeling can provide useful

insight to generate hypotheses, it can be limited by factors such as the quality of the predicted structures, the

short simulation timescales currently accessible, the start- and end-state dependency of umbrella sampling
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simulations, and the simplification of the system from transmembrane dimers/multimers to monomeric intra-

cellular KDs. Similarly, in vitro data in the absence of structural characterization and dynamical insight can

make it challenging to generalize findings and perform rational drug design. We anticipate that continued

characterization of ex19del structures through experimental structural biology, detailed kinetics studies, and

receptor signaling/crosstalk studies will be an important next step in ongoing efforts to design new treatment

strategies for patients with EGFR-mutant NSCLC.

3.4 Materials and Methods

3.4.1 Tyrosine kinase inhibitor source and preparation

Inhibitors were purchased from Selleck Chemicals.

3.4.2 Cell culture

Ba/F3 cells (DSMZ), PC9 (ATCC), SH450 (ATCC), and HCC4006 (ATCC) were cultured in RPMI 1640 with

L-glutamine (Mediatech) supplemented with 10% heat-inactivated FBS (Thermo Fisher Scientific), penicillin

(100 U/mL; Thermo Fisher Scientific), streptomycin (100 µg/mL; Thermo Fisher Scientific), and IL3 (1

ng/mL; Thermo Fisher Scientific) until retroviral transduction and subsequent IL3 withdrawal. Cells were

grown in a humidified incubator with 5% CO2 supply at 37°C. Mycoplasma contamination was evaluated

routinely during cell culture using a VenorGeM Mycoplasma Detection Kit (Sigma-Aldrich).

3.4.3 Generation of EGFR-expression constructs and generation of Ba/F3 cell lines

pBabe plasmids with EGFR ex19del mutation encoding cDNAs (EGFR E746 A750, EGFR E746 S752>V,

EGFR L747 A750>P) and EGFR WT were purchased from Addgene. The empty pBABE-puro retroviral

vector or pBABE-EGFR mutants were transfected, along with the envelope plasmid pCMV-VSV-G (Cell

Biolabs, San Diego, CA, USA), into cells Plat-GP packaging cells (Cell Biolabs). 48 hours after transfection,

viral media was collected, and the debris were removed by centrifugation. For each separate transduction, 1

x 106 Ba/F3 were re-suspended in the viral media and supplemented with 10 µg/mL polybrene (Santa Cruz

Biotechnology, Dallas, TX, USA). Transduced cells were selected using 2 µg/mL puromycin (Invitrogen).

EGFR construct expressions were checked before experiments, and only stable polyclonal populations were

used.

3.4.4 Quantitative assessment of cell proliferation during IL-3 withdrawal

Ba/F3 cells that had been transduced with EGFR-expressing constructs, selected with 2 µg/mL puromycin,

and growing in media containing 1 ng/mL IL-3 were washed twice with warm PBS to remove IL-3. Cells

were re-suspended in media without IL-3 and seeded in 96-well imaging plates at a density of 3,000 cells/well.
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Cells were periodically scanned in IncuCyte® ZOOM every 6 hours using Incucyte® Nuclight Rapid Red

Dye for nuclear labeling. Cell doubling values were calculated using the cell counts at each time point divided

by the cell counts at start time point.

3.4.5 Immunoblot and antibodies

Antibody EGFR (#2232), pEGFR Y1068, pEGFR Y992, pEGFR Y1184, horseradish peroxidase (HRP)-

conjugated anti-rabbit (#7074) were all purchased from Cell Signaling Technology, and the actin antibody

(A2066) was purchased from Sigma-Aldrich. For immunoblotting, cells were harvested before or after ligand

or drug treatment, washed using PBS, and lysed with RIPA buffer [50 mmol/L Tris HCl (pH 8.0), 150 mmol/L

sodium chloride, 5 mmol/L magnesium chloride, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS,

40 mmol/L sodium fluoride, 1 mmol/L sodium orthovanadate, and complete protease inhibitiors (Roche

Diagnostics)]. For signal detection, Western Lightning ECL reagent (PerkinElmer) was used. Phosphorylated

bands were quantified using ImageJ.

3.4.6 Viability assays

Experiments were conducted in the Vanderbilt High Throughput Screening Facility. Cells were seeded at

approximately 800 cells per well in 384-well plates using Multidrop™ Combi Reagent Dispenser (Thermo

Scientific). Medium containing different drug concentrations were prepared using a column-wise serial 3X

dilution in 384-well plates using a Bravo Liquid Handling System (Agilent) and were added to the cells. Cell

viabilities are obtained using CellTiter-Blue® Cell Viability Assay (Promega).

3.4.7 Statistical analysis

All experiments were performed at least three time and the difference were determined by ordinary one-way

ANOVA using GraphPad Prism 9.2.0. Difference was considered significant when p < 0.05.

3.4.8 Enzymatic analysis

EGFR WT (#E10-112G, lot J3837-8), E746 A750 (#E10-122JG, lot O3886-10), L747 A750>P (#E10-

12MG, lot G1200-3), and L747 E749 (#E10-12LG, lot G1344-5) were purchased from SignalChem. The

Promega ADP-Glo™ kinase assay kit was used to quantify the amount of ADP produced by each EGFR

variant in 1XBFA buffer and in the presence or absence of erlotinib at varying concentrations. Poly(4:1 Glu,

Tyr) at a concentration of 0.2 µM was used as the peptide substrate. Reactions were performed at room

temperature for 40 minutes each at varying ATP concentrations: 3.125, 6.25, 12.5, 25, 100, 500 µM. Re-

actions were performed on 384-well plates with each ATP concentration performed in duplicate. Following

incubation for 40 minutes, the Promega ADP-Glo™ reagent is utilized to quench the enzymatic reaction and
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remove residual ATP. The kinase detection agent provided with the assay kit is subsequently used to convert

product ADP back into ATP and measure luminescence from the ATP-powered luciferase/luciferin reaction.

ATP Km and erlotinib Ki were fit according a mixed model of inhibition using GraphPad Prism 9.3.1.

3.4.9 Pulsed Interleaved Excitation Fluorescence Cross-Correlation Spectroscopy (PIE-FCCS)

FCCS data were taken on a customized microscope system to introduce pulsed interleaved excitation (PIE)

and time-correlated single photon detection as shown in previous works (Huang et al., 2016). A supercontin-

uum pulsed white laser (9.74 MHz repetition rate, SuperK EXW-12 NKT Photonics, Birkerød, Denmark) was

split into 488 nm and 561 nm using filters and mirrors for the excitation of eGFP and mCherry, respectively.

The 50 ns time delay for PIE was introduced by directing the splitted beams through two different-length op-

tical fibers (Kaliszewski et al., 2018; Comar et al., 2014). The beams were cleaned, overlapped, and directed

to the microscope. A 100X TIRF oil objective (Nikon, Tokyo, Japan) was used for the excitation beam focus

and fluorescence emission collection. NIST traceable fluorescein (50 nM; Thermo Fisher Scientific) was

used for optical path alignment, and a short, fluorescent-tagged DNA was used as both alignment and as ƒc

value control. Previously published negative and/or positive controls (Kaliszewski et al., 2018; Comar et al.,

2014) were tested before the experiment for data quality control and comparisons of the fit parameters. The

overlapped excitation beams were focused on to the fluorescently tagged EGFR (WT or mutant)-transfected

COS7 cell membrane. The z axis scan was done to ensure that the laser beam was focused on the flat, periph-

eral membrane area. One 60-second data acquisition was taken per area per cell. The emitted fluorescence

was collimated, separated, and filtered before focused onto single-photon avalanche diodes (Micro Photon

Devices, Bolzano, Italy) independently. A time-correlated single photon counting module (Picoharp 300,

PicoQuant, Berlin, Germany) recorded the time-tagged photon counts for each channel. For analysis, the

time-tagged photon counts were divided into six 10-second acquisitions, binned, and gated for channel dif-

ferentiation. Auto- and cross-correlation curves corresponding to each species were calculated and generated

using a custom MATLAB script. Curves of each acquisition per area were filtered, averaged, then fitted to

a single component, 2D diffusion model. The averaged and fitted auto-correlation curves show the average

dwell time (τD) that we use to calculate the effective diffusion coefficient, Deff = ωo2/4τD. The amplitude

of the curves can be used to calculate the local concentration of the diffusing receptors in the detection area.

Using the cross-correlation curve, we can calculate cross-correlation values (ƒc) that indicate the degree of

oligomerization. Based on the ƒc calibration using live cell control system, expected ƒc value for a monomer-

dimer equilibrium is 0.10 to 0.15. Higher ƒc values indicates higher order oligomerization (Kaliszewski et al.,

2018; Comar et al., 2014).
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3.4.10 Computational modeling

Structural modeling of proteins was carried out using the Rosetta v.3.12 package (Song et al., 2013). Molecu-

lar dynamics simulations were performed with Amber18 utilizing the Amber ff14SB and GAFF2 forcefields

for proteins and ligands, respectively (Case et al., 2018). We estimated protein-ligand binding free energies

using the MMPBSA.py package in AmberTools18 (Miller et al., 2012). RMSD, atom-atom distances, and

dihedrals angles were obtained using CPPTRAJ in AmberTools (Roe and Cheatham, 2013). Markov mod-

eling analysis was performed with PyEMMA2 (Scherer et al., 2015). The initial structure of osimertinib

was taken from PDB ID 4ZAU (Yosaatmadja et al., 2015). The initial structure of neratinib was obtained

PDB ID 3W2Q (Sogabe et al., 2012). The structures were geometry optimized using Gaussian 09 revision

D.01 at B3LYP/6-31G(d) level of theory and the electrostatic potential of the optimized structures computed

with HF/6-31G(d) in the gas phase. Atomic partial charges were fit with the restrained electrostatic potential

(RESP) algorithm in AmberTools. ATP parameters were developed previously (Meagher Kristin et al., 2003)

and coordinates initialized from PDB ID 2ITX. For protein-ligand complexes of variants with osimertinib,

neratinib, or ATP, we utilized the above PDB structures for ligand placement.

3.4.11 EGFR ex19del structural modeling

We first built structural models of the 60 ex19del variants identified in AACR GENIE with RosettaCM using

the REF2015 score function (Alford et al., 2017). As templates, we selected the active state EGFR WT

structures from PDB IDs 2ITX and 2GS6. We also used the active state model of L858R from PDB ID 4I20.

We also included as templates the MD equilibrated structural models of E746 A750 and E746 S752>V we

made for our prior study (Brown et al., 2019a). We generated 5,000 RosettaCM models for each variant.

The best scoring variant from each was simulated with GaMD for 1.0 us (60.0 µs total). GaMD simulation

trajectories were clustered with DBSCAN in CPPTRAJ based on β3αC loop RMSD. Each variant was

subsequently remodeled with RosettaCM to generate 10,000 more models using the DBSCAN cluster centers

as additional templates alongside the prior templates. The best scoring model in round two is the final model.

Active state L747P was modeled as a point mutation using the Rosetta PackRotamersMover and FastRelax

mover starting from EGFR WT in PDB ID 2ITX. We performed a 1.0 us GaMD simulation on the resulting

L747P structure, followed by DBSCAN clustering with CPPTRAJ as above. A representative structure from

each cluster was relaxed in Rosetta with progressively ramped-down constraints to the starting coordinates to

produce 50 models for each cluster. The best scoring model was carried forward for additional simulations.

Inactive state structural models of E746 A750, E746 S752>V, L747 A750>P, L747 T751, L747 P753>S,

and L747P were modeled with RosettaCM using the inactive state symmetric dimer EGFR WT in PDB ID

3GT8 as a template.
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3.4.12 Conventional MD (cMD) simulations

Each structure was solvated in a rectangular TIP3P box (12 Å buffer) neutralized with monovalent Cl- and

Na+ ions (Joung and Cheatham, 2008). Minimization proceeded in three stages: solvent minimization with

constraints on solute atoms, solute minimization with constraints on solvent, and subsequently full system

minimization without constraints. Each of these stages consisted of 1,000 steps of steepest gradient descent

followed by 4,000 steps of conjugate gradient descent. The system was heated in the canonical (NVT)

ensemble to 100 K over 100 ps. The system was then heated in the isothermal-isobaric (NPT) ensemble

at 1 bar from 100 K to physiologic 310 K over 400 ps. Equilibration was performed in NPT ensemble at

310K for an additional 1000 ps. NPT simulations utilized a Monte Carlo barostat. The temperature was

controlled using Langevin dynamics with a collision frequency of 2.0 ps-1. A unique random seed was

used for each simulation. SHAKE was implemented to constrain bonds involving hydrogen atoms. Periodic

boundary conditions were applied and the particle mesh Ewald (PME) algorithm was adopted for long-range

electrostatics with a switching distance of 10 Å. Hydrogen mass repartitioning was employed on solute atoms

to allow an integration time step of 4 fs.

3.4.13 Gaussian Accelerated MD (GaMD) simulations

Gaussian accelerated MD (GaMD) is an enhanced sampling method that adds a boost potential to the poten-

tial energy surface to accelerate transitions between low-energy states (Miao et al., 2015). The dual boost

potential scheme was applied to the system in order to enhance conformational sampling. Systems were equi-

librated for 50 ns in cMD. Subsequently, potential statistics for GaMD acceleration were computed from a

10 ns cMD simulation. After addition of the GaMD boost potential, simulations were equilibrated for an ad-

ditional 50 ns before production. All GaMD simulations were performed in NVT ensemble with a Langevin

thermostat and collision frequency of 5.0 ps-1. The upper limit of the boost potential standard deviation was

set to 6.0 kcal/mol.

3.4.14 Umbrella sampling and conformational free energy landscapes

Conformational free energy landscapes (FEL) of EGFR WT and ex91del mutants were obtained with con-

stant velocity steered MD (SMD) coupled with Umbrella sampling (US) simulations. The weighted his-

togram analysis method (WHAM) as implemented by Alan Grossfield (Grossfield) was used to perform final

statistical reweighting of the US simulations. SMD simulations of 100 ns were performed with a harmonic

bias potential and spring constant of 1000 kcal/mol/Å2. SMD simulations were performed from the active

to the inactive state and vice versa using Cα RMSD to the reference coordinates as the collective variable.

A minimum of 250 windows were selected from each forward and backward simulation with which to seed

49



US simulations. Therefore, a total of at least 500 windows per system were used to ensure overlap. A 2D

harmonic restraining potential was applied to two CVs for the US simulations. CV1 (y-axis) was defined

as the difference in the distance between K860(NZ) – E762(OE1, OE2) and K745(NZ) – E762(OE1, OE2).

CV2 (x-axis) was defined as the dihedral angle formed by the Cα atoms of the following residues: D855,

F856, G857, and L858. A 2.0 kcal/mol/Å2 spring constant was used for CV1, and a 10.0 kcal/mol/rad2

spring constant was used for CV2. At each umbrella center a 5 ns simulation was performed. The first 1

ns was used for equilibration, and the following 4 ns were used for analysis in WHAM. Lowest free energy

pathway (LFEP) analysis completed with the LFEP package freely available from the Moradi Laboratory at

the University of Arkansas.

3.4.15 Markov model analysis of molecular dynamics simulations

We constructed hidden Markov state models (MSM) to distinguish between two backbone conformations of

the glycine-rich loop at residue positions 723 and 724 for osimertinib binding free energy estimates. We also

constructed MSMs to distinguish between up to three dihedral conformations of the hydroxymethyl pyridine

ring of neratinib for binding free energy estimates. Each MSM was constructed with 6.0 µs (3 x 2.0 µs

for each variant for a given active/inactive state) of MD simulation trajectories where frames were collected

every 100 ps. All MSMs were constructed with a lag time of 100 ps. The discretized feature trajectories

were clustered using KMeans clustering into 500 microstates. All MSMs were validated with Chapman-

Kolmogorov tests. In the case of the neratinib binding mode MSMs, if a receptor-neratinib complex did

not sample three binding modes, the MSM was regenerated as a two-state model. If only a single dihedral

conformer was effectively sampled throughout all three simulations, it was manually assigned a stationary

distribution of 1.0. Otherwise, stationary distributions were estimated from MSMs and used to weight the

estimated non-covalent binding free energy.

3.4.16 Binding free energy calculations

The estimated binding free energies between EGFR and TKI (osimertinib or neratinib) was computed with

the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method using the MMPBSA.py pro-

gram in AmberTools18. From each MSM metastable state, we randomly resampled 1,000 structures to use

for binding free energy calculations. For the MM-PBSA calculations, the internal and external dielectric

constants were set to 4.0 and 80.0, respectively. The nonpolar component of the solvation free energy was

estimated from the solvent accessible surface area with the classical method (INP=1) using default coefficient

and offset values. Atomic radii were taken from the parameter-topology file (RADIOPT=0).
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CHAPTER 4

Structure-function analysis of oncogenic EGFR Kinase Domain Duplication reveals insights into

activation and a potential approach for therapeutic targeting

This chapter is taken from Du, Z.*; Brown, B. P.*; Kim, S.; Ferguson, D.; Pavlick, D. C.; Jayakumaran, G.;

Benayed, R.; Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M.; Ali, S. M.; Schrock, A. B.; Zehir, A.;

Ladanyi, M.; Smith, A. W.; Meiler, J.; Lovly, C. M. Nature Communications 2021, 12 (1), 138236 (*These

authors contributed equally).

4.1 Introduction

Next generation sequencing (NGS) based assays have demonstrated high utility as a diagnostic tool for mul-

tiple cancer types (Wheler et al., 2016; Ross et al., 2015; Qin et al., 2019; Disel et al., 2020). Interpretation

of tumor genomic test results is often complicated by discovery of ‘variants of unknown significance’ (VUS),

because insufficient evidence is available to confirm whether the variant is a driver (deleterious) mutation

(Richards et al., 2015; Li et al., 2017). Previously, we identified a VUS in EGFR that contains a tandem

in-frame duplication of exons 18 - 25 in an index patient with metastatic lung adenocarcinoma. Since exons

18-25 encode the entire tyrosine kinase domain, we termed this variant ‘EGFR Kinase Domain Duplication’

(EGFR-KDD) (Gallant et al., 2015).

The ability to effectively treat patients is rooted in our mechanistic understanding of genomic variants

identified via sequencing. The classic example is BRAF mutations, which are detected in numerous tumors

(Dankner et al., 2018). There are three classes of BRAF mutations, stratified by mechanism and therapeutic

actionability (Dankner et al., 2018; Yao et al., 2015). Generally, class I mutations, most notably V600E,

are treated with a B-RAF inhibitor such as vemurafenib or dabrafenib, while class II and III mutations are

insensitive to vemurafenib/dabrafenib (Yao et al., 2015). Thus, a primary goal in precision medicine is to

identify and mechanistically characterize mutations and translate these findings into clinically actionable

therapeutic strategies.

Regarding EGFR, mutations in the kinase domain involving small deletions in exon 19 or point mutation

in exon 21 (L858R) have been well described (Pao and Chmielecki, 2010). These mutations increase enzy-

matic activity by stabilizing the active conformation of the kinase domain to promote receptor dimerization

(Shan et al., 2012). Numerous studies have now shown that patients with EGFR kinase domain mutations

benefit from treatment with EGFR tyrosine kinase inhibitors (TKIs), whereas patients with tumors contain-

ing wild-type EGFR do not derive benefit (Pao and Chmielecki, 2010). Analogously, mutations in the EGFR
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extracellular domain (ECD) are detected in patients with glioblastoma but are significantly less sensitive to

EGFR TKIs in vitro compared to the EGFR kinase domain mutations found in lung cancer (Vivanco et al.,

2012), reinforcing the concept that not all mutations within a given gene can be therapeutically targeted in

the same manner. In the case of EGFR-KDD, the entire gene contains wild-type sequence with an intragenic

duplication of exons 18-25. The addition of a second kinase domain to the intracellular region of EGFR in-

troduces a potentially significant structural perturbation. The functional and therapeutic implications of this

variant remain uncertain. Moreover, the unique biology of this variant may make it a valuable tool in the

study of ERBB family members and, more generally, suggests a strategy for the study of kinases.

In the present study, we evaluate the prevalence of KDD in ERBB family members (EGFR/EGFR,

ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4) across multiple types of human cancers in order to refine

our understanding of KDD as an oncogenic driver. In addition, we combine detailed structural modeling,

biochemical assays, and experimental and computational biophysical analyses to understand the mechanism

whereby EGFR-KDD aberrantly activates EGFR. Collectively, these complementary approaches suggest that

EGFR-KDD is activated through formation of ligand-independent intra-molecular dimers and signaling am-

plified through ligand-dependent inter-molecular dimers/multimers. Furthermore, we show that inhibition of

EGFR-KDD activity is maximally achieved by blocking both intra- and inter-molecular dimerization. These

studies have important implications for the treatment of patients whose tumor harbor EGFR-KDD.

4.2 Results

4.2.1 ERBB family KDDs are recurrent in multiple cancer types

To investigate the prevalence of KDD in all ERBB family members, we analyzed clinical NGS data from

237,701 tumor samples within the Foundation Medicine (FMI) database. In total, we identified 799 KDDs

in ERBB family members (0.34%, 799/237,701). Of those 799 KDDs, EGFR accounts for 443 (55.4%),

ERBB2 217 (27.2%), ERBB3 92 (11.5%), and ERBB4 47 (5.9%). Among the cancers present in the FMI

database, ERBB-KDD was found most frequently in glioma (2.4%, 227/9,381 total glioma cases), followed

by upper gastrointestinal cancer (upper GI; 0.8%, 89/11,822) and non-small cell lung cancer (NSCLC; 0.2%,

109/48,699). For EGFR-KDD, glioma has the highest frequency (2.4%, 222/9,381), followed by NSCLC

(1.4%, 70/48,699) and GI (0.3%, 40/11,822). We observed lower incidences of KDD in ERBB2, ERBB3

and ERBB4 than EGFR, with distributions mirroring those of other observed oncogenic mutations in brain

tumors and NSCLC (Brennan et al., 2013; Imielinski et al., 2012; Frattini et al., 2013; Cancer Genome

Atlas Research, 2014; Mishra et al., 2017).

We also analyzed 40,165 tumor samples from the Memorial Sloan Kettering Cancer Center (MSKCC)

IMPACT database (MSK-IMPACT) (Zehir et al., 2017). These data confirm that KDD occurs most frequently

52



in EGFR, followed by ERBB2. EGFR-KDD is most prevalent in glioma and NSCLC, while ERBB2-KDD

is most prevalent in breast and gynecological cancers (GYN). These distributions are consistent with the

observed distributions of other EGFR oncogenic mutations in glioblastoma (Imielinski et al., 2012; Cancer

Genome Atlas Research, 2014) and NSCLC (Frattini et al., 2013; Mishra et al., 2017) and other ERBB2 muta-

tions in breast cancer (Nik-Zainal et al., 2016), supporting the notion that specific genes may be genomically

altered through a variety of mechanisms in a given tumor context.

The overall frequency of ERBB-KDDs from the two datasets is between 0.58 - 2.4% in glioma, 0.07 -

0.22% in NSCLC, and 0.05 - 0.40% in breast cancer. Differences in detection between the two datasets are

likely the result of the different methodologies employed for each dataset to identify KDDs (see Methods).

Nevertheless, these data suggest that ERBB-KDD is a recurring oncogenic driver in tumor types known to be

dependent on ERBB signaling (lung, breast, etc.).

4.2.2 EGFR-KDD is a constitutively active intra-molecular dimer

Even within a single driver gene, the type of mutation that occurs can influence prognosis and drug respon-

siveness. It is therefore critical to fully characterize the functional consequences of genomic variants in

clinically relevant genes. To help us probe the biochemistry of the EGFR-KDD intra-molecular dimer, we

leverage core principles of EGFR receptor biology.

ERBB family members are transmembrane tyrosine kinases that possess an extracellular ligand binding

domain, a single-pass transmembrane domain, a juxtamembrane (JM) region, an intracellular tyrosine ki-

nase domain (TKD), and a carboxy (C-) terminal tail with multiple tyrosine phosphorylation sites (Lemmon

and Schlessinger, 2010). Biochemical and crystallographic studies have shown that activation of EGFR-wild

type (WT) involves ligand-induced asymmetric homo- or hetero- dimerization of two TKDs. In the pres-

ence of ligand, the C-lobe of one TKD (activator) contacts the N-lobe of another TKD (receiver) to relieve

autoinhibition and activate the receiver TKD21. Previous studies of EGFR-WT have identified mutations at

the inter-molecular dimer interface that can disrupt dimerization and prevent EGFR-WT enzymatic activity

(Zhang et al., 2006).

EGFR-KDD is composed of two intact kinase domains7 (Figure 4.1A). We hypothesized that the forced

proximity of the two adjoined kinase domains could form a constitutively active intra-molecular asymmetric

dimer in the absence of ligand. To test this hypothesis, we engineered EGFR-KDD constructs with putative

intra-molecular dimer disruption mutants (For EGFR mutations, we utilized protein numbering of the human

immature EGFR sequence that includes the 24-residue signal sequence) (Figure 4.1A – B): V948R (C1; C-

lobe of TKD1) and I706Q (N1; N-lobe of TKD1) in TKD1, and V1299R (C2; C-lobe of TKD2) and I1057Q

(N2; N-lobe of TKD2) in TKD2. We also introduced catalytically inactivating mutations (kinase dead) into
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each TKD individually (D837N in TKD1 and D1188N in TKD2; Dead1 and Dead2, respectively) (Figure

4.1B). We reasoned that these mutants would help us to determine: (1) if EGFR-KDD is catalytically active

in the absence of ligand stimulation, (2) the relative orientation of the two intra-molecular kinase domains

(i.e. activator vs. receiver), and (3) which of the kinase domains (or both) is catalytically active.

Figure 4.1: Mutations disrupting the potential intra-molecular dimer interface abrogate phosphorylation of
EGFR-KDD and anchorage independent growth. a, Ribbon diagram and space-filling model of EGFR-KDD
kinase domains. Mutations constructed in this study were labeled. b, Schematic representation of mutations
we constructed in this study. We generated point mutations disrupting the potential intra- (C1, N2) and inter-
molecular (N1, C2) dimer interface as well as mutations inactivating kinase activity of each kinase domain
(Dead1, Dead2). c, YAMC cells stably expressing EGFR-KDD and its mutants. Cells were cultured for 48
hours and then harvested and lysed for analysis. Total EGFR and the auto-phosphorylation at three tyrosine
sites were evaluated by western blot. n=3 experiment was repeated independently with similar results. EV,
empty vector; WT, EGFR-WT; KDD, EGFR-KDD. d, Soft agar assays were performed in 6 well plates by
using YAMC cells. 5,000 cells were seeded in each well and colonies were counted after 4 weeks. n=3
biologically independent samples were examined over 3 independent experiments. Data are presented as
mean values ± SD. Statistical differences were analyzed by two-sided unpaired Student’s t-test. Data and
illustrations for figure panels C and D produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-
Brewer, M., and Lovly, C. M.

EGFR-KDD and the mutants described above were stably expressed in NR6 (Pruss and Herschman,

1977) (low endogenous EGFR expression) and YAMC (EGFR-/-) (Dise et al., 2008) cells. We evaluated
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EGF ligand-independent phosphorylation at EGFR C-terminal tyrosine sites. Ligand-induced dimerization

of EGFR-WT results in auto-phosphorylation of its C-terminal tyrosine residues, including Y992 (Walton

et al., 1990), Y1068 (Helin et al., 1991) and Y1173 (Helin et al., 1991) (Y1343, Y1419 and Y1524 for

EGFR-KDD, respectively). For EGFR phosphorylation sites, we utilized protein numbering of mature EGFR

sequence that does not include the 24-residue signal sequence. We observed that EGFR-KDD, but not EGFR-

WT, displays phosphorylation of all three tyrosine residues in the absence of EGF ligands (Figure 4.1C, lane

2, 3), indicating that EGFR-KDD is catalytically active without ligand stimulation. We also found that the

intra-molecular dimer interface mutants, C1 and N2 (Figure 4.1C, lane 6, 7; Figure 4.2A, lane 6, 7), abolish

phosphorylation at all three sites, while N1 and C2 mutants remain phosphorylated in YAMC and NR6

cells (Figure 4.1C, lane 4, 9; Figure 4.2a, lane 4, 9), suggesting that the auto-activation of EGFR-KDD was

disrupted by C1 and N2 mutants, rather than N1 and C2 mutants. These data suggest that the N-lobe-mutated

TKD1 can activate the C-lobe-mutated TKD2, but not the reverse (Figure 4.1A).

Figure 4.2: Mutations disrupting the potential intra-molecular dimer interface abrogate the auto-
phosphorylation of EGFR-KDD activation and anchorage independent growth in soft agar. a, NR6 cells
stably expressing EGFR-KDD and its mutants were cultured in serum-free medium for 48 hrs and then cells
were harvested and lysed for Western blot. This result is the representative of five independent experiments.
b, Anchorage-independent soft agar assays were performed in 6 well plates by seeding 5,000 NR6 in each
well. n=3 biologically independent samples were examined over 3 independent experiments. Data are pre-
sented as mean values ± SD. Statistical differences were analyzed by two-sided unpaired Student’s t-test. EV,
empty vector; LR, EGFR L858R mutation. Data and illustrations produced by Du, Z., Gallant, J.-N.; Zhang,
Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M.

Our catalytically inactive EGFR-KDD TKD2 mutant (Dead2) failed to autophosphorylate all three tyro-

sine sites. In contrast, the Dead1 mutant retained phosphorylation levels comparable to EGFR-KDD in both

YAMC and NR6 cells (Figure 4.1C, lane 5, 8 and Figure 4.2A, lane 5, 8). Therefore, in this intra-molecular

dimer model, TKD2 functions as the enzymatically active receiver to TKD1, while TKD1 functions as acti-

vator to TKD2 (Figure 4.1A).
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We further sought to evaluate EGFR-KDD in a phenotypic assay. In both YAMC and NR6 cells, we ob-

served robust colony growth in cells stably expressing EGFR-KDD (Figure 4.1D, Figure 4.2B). We observed

that there were comparable numbers of colonies in N1 and C2 mutants compared with EGFR-KDD, while

significantly fewer colonies were observed in the intra-molecular dimer-disrupted C1 and N2 mutants (Figure

1D, Figure 4.2B). We also found that Dead1, but not Dead2, could support anchorage-independent growth

of YAMC (Figure 4.1D) and NR6 (Figure 4.2b) cells. Therefore, our phenotypic data provide evidence that

reduced phosphorylation in the C1 and N2 intra-molecular dimer-disrupted mutants diminish anchorage-

independent growth. Taken together, these data are evidence that EGFR-KDD forms a catalytically active

asymmetric intra-molecular dimer in the absence of EGF ligand.

4.2.3 Linker contributions to intra-molecular dimer stability

The juxtamembrane B (JMB) domain is an integral component of HER-family homo- and hetero-dimerization.

The receiving kinase JMB domain forms specific stabilizing enthalpic contacts in the activator kinase C-lobe

(e.g. the hydrophobic residues L688, V689, and L692, and multiple polar contacts) (Red Brewer et al.,

2009). Not surprisingly, the JMB residues are highly conserved in HER-family receptors (Figure 4.3A). In

EGFR-KDD, the TKD2 JMB is linked directly to the C-terminus of TKD1 (Figure 4.3B). Thus, an important

question remained as to whether constitutive EGF-independent activation of EGFR-KDD is the result of (A)

sequence-specific structural perturbations to the JMB region, or (B) the sterically imposed forced proximity

of TKD1 and TKD2. To address this question, we generated all-atom structural models of EGFR-KDD with

Rosetta and molecular dynamics (MD) simulations (Figure 4.4A – C). For comparison, we also modeled the

EGFR-WT homodimer.

We measured the per-residue root-mean-square-fluctuations (RMSF) of the linker residues in EGFR-

KDD. Our modeling suggests that the linker region corresponding to the JMB is less flexible than the activator

C-terminus region, particularly near the N-terminal portion of the JMB (Figure 4.3C – D). Therefore, we

hypothesized that the EGFR-KDD JMB forms enthalpically stabilizing contacts at the intra-molecular dimer

interface.

To test this hypothesis, we replaced pieces of the linker with unstructured glycine-glycine-serine (GGS)

repeats. We substituted (GGS)3 for the JMB part of the linker (KDD-(GGS)3) and (GGS)6 for the activator

C-terminus part of the linker (KDD-(GGS)6) (Figure 4.3B). Substitution with (GGS)¬x exchanges sequence-

specific contacts with a non-interacting, flexible sequence of matching length28. We transiently transfected

the mutants into HEK293 cells and measured EGF-independent receptor phosphorylation via Western blot

analysis. KDD-(GGS)3 displays decreased phosphorylation relative to EGFR-KDD, while KDD-(GGS)6

retained similar levels of phosphorylation as EGFR-KDD (Figure 4.3E, lane 3 – 5). Importantly, KDD-
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Figure 4.3: The EGFR-KDD linker has distinct enthalpic and entropic contributions to intra-molecular dimer
formation. a, Amino acid sequence alignment of EGFR-WT, HER2, HER3, and HER4 JMB domain. b,
Amino acid sequence alignment of EGFR-KDD mutants to evaluate linker contributions. Residues in the
activator C-terminus kinase domain (TKD1) highlighted in blue (white font). Residues in the receiver JMB
domain highlighted in gray (black font). Mutations indicated by red font. c, Per-residue root-mean-square-
fluctuation (RMSF) of the EGFR-KDD linker region following an additional 1 µs of MD simulation (post-
Rosetta modeling and initial 1 µs MD simulation). RMSF values are mapped onto the structure to indicate
regional flexibility. Color gradient and cartoon structure width indicate flexibility. Less flexible = smaller
width, colored blue; more flexible = larger with, colored red. d, Graphical representation of per-residue RMSF
displays linker residue on x-axis and RMSF on y-axis; black horizontal line indicates JMB residues, red
dashed horizontal line indicates average RMSF of JMB residues. e, HEK293 cells transiently transfected with
EGFR-KDD or (GGS)n mutants. After 48 hours transfection, cells were collected for western blot analysis.
EV, empty vector. f, Detailed structural models of the EGFR-WT homodimer with the JMB domain, and the
EGFR-KDD intra-molecular dimer, were generated with Rosetta and refined with 1 µs MD simulations. g,
HEK293 cells transiently transfected with EGFR-KDD and different JMB interface mutants. After 48 hours
transfection, cells were collected for western blot analysis. p-Y/EGFR, the ratio of phosphotyrosine content
at Y1068 to total EGFR expression for each construct relative to EGFR-KDD was shown. EV, empty vector.
Data and illustrations for figure panels E and G produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.;
Red-Brewer, M., and Lovly, C. M.

57



Figure 4.4: EGFR-KDD intra-molecular dimer model building and refinement. a, Models of the EGFR-
KDD intra-molecular dimer were generated with Rosetta. Models from rounds 2 and 3 of the model building
process were clustered based on the structure of the linker domain. b, The best scoring model from each of
the top three clusters (C1, green; C2, purple; C3, blue) were selected for refinement in Amber18 (left panel).
Binding scores for each of the linker conformations (left panel) were computed with MM-GBSA neglecting
the entropic contribution to binding (right panel). Frames for inclusion in the MM-GBSA calculation were
selected every 100 ps across the entire 1.0 µs trajectory. MM-GBSA scores are represented as mean ± SD. c,
Stability of the linker region over each 1 µs MD trajectory was analyzed by computing the RMSD of linker
heavy atoms to the position of the conformation at the beginning of the production run (black trace) and the
average coordinates from the whole production run (blue trace) for C1 (left panel), C2 (middle panel), and
C3 (right panel).
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(GGS)3 retains increased activity compared to EGFR-WT (Figure 4.3E, lane 2, 4). Taken together, these

data suggest that residues in the JMB portion of the linker contribute to the stability of the EGFR-KDD

intra-molecular dimer.

Interestingly, the most stable EGFR-KDD linker model packs two leucine residues (L1038 and L1039)

against helices αE and αI, corresponding structurally to residue V689 in EGFR-WT (Figure 4.3F, Figure

4.4B – C, Figure 4.5A – D). EGFR-WT V689 has previously been shown to be necessary for EGFR-WT

dimer-dependent phosphorylation27. In agreement with these data, our equilibrated EGFR-WT homodimer

preserves the V689 contact (Figure 4.3F, Figure 4.5B). Because L1038 and L1039 were among the most stable

residues in the model and correspond structurally to an EGFR-WT residue known to stabilize dimerization

(V689), we hypothesized that mutation of these residues would impair EGFR-KDD EGF-independent intra-

molecular dimer activity.

To test this hypothesis, we performed site-directed mutagenesis at residues L1038 and L1039. In support

of this hypothesis, simultaneous introduction of L1038A/R and L1039A/R (KDD-LLAA and KDD-LLRR)

resulted in a substantial reduction in phosphorylation (Figure 4.3G, lane 6, 9). Critically, however, KDD-

(GGS)3, KDD-LLAA, and KDD-LLRR all retain increased phosphorylation relative to EGFR-WT (Figure

4.3E, lane 2,4; Figure 4.3G, lane 2, 6, 9). Individual point mutations L1038A/R and L1039A/R do not

appreciably reduce phosphorylation; only the combined mutations reduce phosphorylation. Importantly, the

sequential leucine residues in the linker are a unique feature of EGFR-KDD resulting from the domain fusion.

Altogether, this suggests that despite sequence-dependent JMB contributions to stability, the forced proxim-

ity of TKD1 and TKD2 is sufficient for the formation of EGF-independent active intra-molecular dimers.

Nevertheless, the linker sequence can provide additional enthalpic stabilization to increase activation.

4.2.4 Ligand induces inter-molecular multimer activity

EGFR-WT activation is achieved through ligand-induced inter-molecular dimerization21. Recent evidence

demonstrates that EGFR-WT also forms tetramers and other small oligomers that increase phosphorylation

in an EGF concentration-dependent manner29, 30, 31, 32. We wanted to know if EGFR-KDD activity is

similarly augmented by EGF-ligand stimulation.

To differentiate between EGFR-KDD activity caused by EGF-dependent inter-molecular dimerization and

EGF-independent intra-molecular dimerization, we utilized cetuximab, an anti-EGFR extracellular domain

antibody that blocks EGF-mediated EGFR dimerization33. EGF binding leads to inter-molecular dimeriza-

tion of EGF receptors. Cetuximab prevents EGF binding by blocking the EGF binding site. We stimulated

cells expressing various EGFR-KDD constructs with EGF. We found that phosphorylation of EGFR-KDD

is dramatically increased in the presence of EGF stimulation (Figure 4.6A, lane 5, 6; Figure 4.6B, lane 5,
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Figure 4.5: Comparison of EGFR-KDD computational models with X-ray structure of EGFR-WT juxtamem-
brane latch. a, X-ray structure of the EGFR-WT homodimer with juxtamembrane latch; b, Rosetta model of
EGFR-WT homodimer with juxtamembrane latch post-equilibration for 1.0 µs MD simulation; c, Rosetta
model of EGFR-KDD intra-molecular dimer post-equilibration for 1.0 µs MD simulation; d, Rosetta model
of EGFR-KDD intra-molecular dimer post-equilibration for 2.0 µs MD simulation; the receiver kinase do-
main N-terminal JMB domain is colored green; residues within 6.0 Å of JMB are colored blue.
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7; Figure 4.7A, lane 5, 6). Addition of cetuximab effectively mitigates EGF-induced phosphorylation of

EGFR-KDD (Figure 4.6B, lane 5 - 8, Figure 4.7B, lane 9 - 12). These data suggest that EGF stimulation may

promote EGFR-KDD activity through the formation of at least inter-molecular dimers; however, cetuximab

does not preclude the formation of dimers entirely.

To further test the hypothesis that EGF stimulation promotes the formation of at least inter-molecular

dimers in EGFR-KDD, we administered mAb806 to YAMC EGFR-KDD cells. The mAb806 antibody in-

hibits EGFR dimerization by binding to extracellular domain II (residues 287–302)34, rather than the EGF

ligand binding site in domain III33. Thus, inhibition with mAb806 is highly complementary to similar exper-

iments performed with cetuximab. As expected based on our cetuximab results, we found that mAb806 had

no impact on phosphorylation level in the absence of EGF ligand (Figure 4.7c, lane 1, 2, 5, 6) and decreased

the level of phosphorylation with EGF-ligand stimulation (Figure 4.7d, lane 3, 4, 7, 8). We also note that

phosphorylation was reduced more by cetuximab than mAb806 at approximately equimolar concentrations,

consistent with previous reports that the EGFR inhibitory potency of mAb806 is considerably lower than

cetuximab35.

We showed above (Figure 4.1C – D) that intra-molecular dimer-disrupted mutants C1 and N2 are not ac-

tive in the absence of ligand. Unexpectedly, we noticed that EGF-stimulation rescued these mutants, leading

to a robust increase in phosphorylation (Figure 4.6A, lanes 11-14; Figure 4.7A, lanes 11-14). We specu-

lated that this could result from either (A) compensatory stabilization of the intra-molecular receiver kinase

domains or (B) stabilization of the donor kinase domains during inter-molecular dimerization.

To better understand how inter-molecular dimerization increases EGFR-KDD autophosphorylation, we

built template-based structural models of the intracellular portion of the EGFR-KDD inter-molecular dimer

based on two proposed EGFR-WT tetramer models: (1) an extension of the inter-molecular dimer model in

which each kinase domain is successively asymmetrically docked with another (end-to-end model) (Huang

et al., 2016) (Figure 4.6C), and (2) two asymmetric dimers oriented such that the N-lobe and C-lobe of

one dimer are in contact with the N-lobe and C-lobe of the other dimer, respectively (side-by-side model)

(Needham et al., 2016b) (Figure 4.6D). Other models are possible (e.g. the receiver kinase of one intra-

molecular dimer could act as the donor to the receiver kinase of a second intra-molecular dimer). There

are currently no experimental structures (e.g. from X-ray crystallography or cryogenic electron microscopy)

elucidating the organization of EGFR-WT tetramer or EGFR-KDD inter-molecular dimer. Thus, we built

our template-based models of EGFR-KDD intracellular inter-molecular dimer on two published EGFR-WT

tetramer models both of which have experimental and computational support.

Our models each consist of two EGFR-KDDs containing an intra-molecular donor (TKD1 or TKD3) and

receiver (TKD2 or TKD4) kinase. Both structural models suggest a mechanism for active-state stabilization
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Figure 4.6: EGFR-KDD forms inter-molecular dimers and higher order oligomers after ligand stimulation.
a, YAMC cells were cultured in serum-free medium for 12 hours and then treated with 50 ng/mL EGF ligand
for 5min. Total EGFR and the autophosphorylation at three tyrosine sites were assessed by western blot. b.
YAMC cells were starved for 12 hrs and treated with cetuximab (10 µg/ml in serum-free medium) for 3hrs
45min, and EGF ligand (50 ng/mL in serum-free medium) was added for 15min. The cells were harvested
and analyzed by Western blot. WT, EGFR-WT; KDD, EGFR-KDD. c, Template-based structural models
of the intracellular portion of the EGFR-KDD inter-molecular dimer based on end-to-end and EGFR-WT
tetramer models. d, Template-based structural models of EGFR-KDD inter-molecular dimer based on side-
by-side EGFR-WT tetramer model. e, Cross correlation values of EGFR-WT and EGFR-KDD with (+) or
without (-) ligand (EGF) stimulation is shown. The blue box indicates the ƒc value region for dimers. The
median values are reported next to the boxplot. Each grey dot represents the averaged acquisition (10 sec, 6
acquisitions) per area per cell. All data points are shown. Numbers in parenthesis above the boxplot are the
total number of cells that data were taken on. Data and illustrations for figure panels A and B produced by
Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. Data and illustrations for
figure panel E produced by Kim, S. and Smith, A.W.
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Figure 4.7: Disruption of EGF-induced inter-molecular activation of EGFR-KDD with cetuximab and
mAb806. a, NR6 cells were cultured in serum-free medium for 36 hrs and then treated with 50ng/mL EGF
ligand for 5min. Total EGFR and the autophosphorylation at three tyrosine sites were assessed by Western
blot. b, NR6 cells were starved overnight and treated with cetuximab (10 µg/ml in serum-free medium) for
3hrs 45min, and then were treated with EGF (50 ng/mL in serum-free medium) and cetuximab (10 µg/ml in
serum-free medium) for 15min, then cells were harvested for western blot. c, YAMC EGFR-WT and EGFR-
KDD cells were starved for 12 hrs and pre-treated with mAb806 antibody (10 µg/ml in serum-free medium)
for 3hrs 45min, respectively, and EGF ligand (50 ng/mL in serum-free medium) was added for 15min. The
cells were harvested and analyzed by Western blot (left panel). The ratio of phospho-EGFR (Y1068) to to-
tal EGFR expression was also shown (right panel). Results represent the mean values of three independent
experiments ± SD. d, YAMC EGFR-KDD cells were starved for 12 hrs and pre-treated with cetuximab (10
µg/ml in serum-free medium) and mAb806 antibody (10 µg/ml in serum-free medium) for 3hrs 45min, re-
spectively, and EGF ligand (50 ng/mL in serum-free medium) was added for 15min. The cells were harvested
and analyzed by Western blot (left panel). The ratio of phospho-EGFR (Y1068) to total EGFR expression
was also shown (right panel). Results represent the mean values of three independent experiments +/- SD.
Data and illustrations produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly,
C. M. 63



of TKD3 during inter-molecular dimerization (Figure 4.6C – D). In the end-to-end model, active-state sta-

bilization of TKD3 (inter-molecular receiver, intra-molecular donor) could occur by canonical asymmetric

dimerization with TKD2 (inter-molecular donor, intra-molecular receiver) (Huang et al., 2016) (Figure 4.6C).

In the side-by-side model, active-state stabilization of TKD3 could occur through sterically impaired inacti-

vation by TKD1 (inter-molecular donor, intra-molecular donor) (Figure 4.6D), as observed in the 40 µs MD

simulation of the EGFR-WT full-length tetramer model in Needham et al. 2016 (Needham et al., 2016b).

We previously observed that Dead2 (TKD2 and TKD4 are inactive), but not Dead1 (TKD1 and TKD3

are inactive), ablates EGFR-KDD activity in the absence of EGF (Figure 4.1C, lane 3, 5, and 8). Here, we

see that EGF-ligand stimulation robustly revives phosphorylation in Dead2 (Figure 4.6A, lane 15, 16; Figure

4.6B, lane 21, 23; Figure 4.7A, lane 15, 16), suggesting active-state stabilization of TKD3 through the for-

mation of at least inter-molecular dimers (Figure 4.6C – D). Less dramatic increases in Dead1 from baseline

intra-molecular dimer phosphorylation are consistent with changes due to ligand-induced EGFR recruitment

(Figure 4.6A, lane 9, 10; Figure 4.7A, lane 9, 10). Consistent with these results, pre-administration with

cetuximab prevents EGF-dependent phosphorylation of Dead2 and has only a minor impact on Dead1 phos-

phorylation. Taken together, these data suggest that in addition to activation of TKD2 and TKD4 by TKD1

and TKD3, respectively, TKD3 becomes catalytically active in the inter-molecular dimer.

To better characterize the effect of EGF on EGFR-KDD and quantify the extent of EGFR-KDD oligomer-

ization in live cells, we performed two-color pulsed interleaved excitation fluorescence cross-correlation

spectroscopy (PIE-FCCS). PIE-FCCS has been previously applied to evaluate EGFR dimerization and multi-

merization (Huang et al., 2016). For these experiments, the protein of interest was expressed as a mixture of

eGFP and mCherry fusions and single, live-cell measurements were recorded and analyzed as described in the

Methods section. In the absence of ligand, both EGFR-WT and EGFR-KDD have median cross-correlation

(ƒc) values of 0.00, indicating that they are predominantly monomeric (Figure 4.6E, Figure 4.8B). Stimulation

with EGF ligand leads to a significant level of cross-correlation for EGFR-WT (ƒc = 0.19) and EGFR-KDD

(ƒc = 0.17) (Figure 4.6E, Figure 4.8B), indicating that ligand stimulation induces dimerization and multimer-

ization in both EGFR-WT and EGFR-KDD36, 38. There is no statistically significant difference between

EGFR-WT and EGFR-KDD, suggesting that the kinase duplication does not sterically restrict dimerization

and multimerization. Taken together, these data demonstrate that EGFR-KDD forms multimers upon ligand

binding.

4.2.5 EGFR-KDD directly interacts with ERBB family members

Our biophysical studies demonstrate that EGFR-KDD forms ligand-induced homodimers/multimers. We

hypothesized that EGFR-KDD could also heterodimerize with EGFR-WT in the presence of ligand. To

64



Figure 4.8: EGFR-KDD directly interacts with ErbB family members. a, V5-epitope tagged EGFR-WT and
EGFR-KDD was co-transfected with Myc-epitope tagged EGFR-WT and EGFR-KDD in HEK293 cells. Cell
lysates were immunoprecipitated by using Myc antibody. Immunoblotting were probed by V5 and Myc anti-
body. b, Average diffusion coefficient of EGFR WT homodimers with (+) or without (-) ligand (EGF) stim-
ulation is shown. c, V5-epitope tagged HER2 was co-transfected with Myc-epitope tagged EGFR-WT and
EGFR-KDD in HEK293 cells. Cell lysates were immunoprecipitated by using Myc antibody. Immunoblot-
ting were probed by V5 and Myc antibody. d, V5-epitope tagged HER3 was co-transfected with Myc-epitope
tagged EGFR-WT and EGFR-KDD in HEK293 cells. Cell lysates were immunoprecipitated by using Myc
antibody. Immunoblotting were probed by V5 and Myc antibody. e, Average diffusion coefficient of EGFR
WT and EGFR KDD mutant with (+) or without (-) ligand (EGF) stimulation is shown. f, Average diffusion
coefficient of HER2 and EGFR-KDD mutant with (+) or without (-) ligand (EGF) stimulation is shown. g,
Average diffusion coefficient of HER3 and EGFR-KDD mutant with (+) or without (-) ligand (EGF or NRG1)
stimulation is shown. Data and illustrations for figure panels A, C, and D produced by Du, Z., Gallant, J.-N.;
Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M. Data and illustrations for figure panels B, E, F, and
G produced by Kim, S. and Smith, A.W.
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test this hypothesis, we performed co-immunoprecipitation in HEK293 cells with transiently co-transfected

Myc-epitope tagged EGFR-KDD/EGFR-WT and V5-epitope tagged EGFR-WT/EGFR-KDD. We observed

that V5-epitope tagged EGFR-WT can interact with Myc-epitope tagged EGFR-KDD, and vice versa (Fig-

ure 4.9A, Figure 4.8A). We further evaluated potential interactions between EGFR-WT and EGFR-KDD

with PIE-FCCS. With the ƒc values, we can distinguish homo- and heterodimerization, which cannot be as-

sessed with diffusion coefficients alone. EGFR-WT-eGFP and EGFR-KDD-mCherry were simultaneously

expressed in COS7 cells. In the absence of EGF ligand, there was no interaction (ƒc = 0.00). Upon addition

of EGF-ligand, there was a significant increase in cross-correlation (ƒc = 0.22) indicating the formation of

heteromeric complexes (Figure 4.9B, Figure 4.8E). The positive cross-correlation is rigorous evidence for

heteromeric complex formation, but alone is not sufficient to define the interaction strength or stoichiometry

of the complexes. For simplicity we will refer to these complexes as heterodimers as this is the minimal size

consistent with positive cross-correlation. In agreement with changes to the ƒc values, the diffusion coeffi-

cients of both EGFR-WT and EGFR-KDD decreased after ligand addition, indicating slower diffusion due to

homo- and hetero-dimerization/multimerization (Figure 4.8B and E).

Heterodimerization is especially important for the activation of HER2 and HER3. HER2 has lost the

capacity to bind ligands and activates primarily as a receiver kinase domain through heterodimerization with

other ERBB family members39, 40. In contrast, the TKD of HER3 has low kinase activity, and HER3 acts

as an activator in heterodimers41. We hypothesized that EGFR-KDD can also interact with wild-type HER2

and HER3. To test this hypothesis, we performed co-immunoprecipitation. We transiently co-transfected

Myc-epitope tagged EGFR-KDD with V5-epitope tagged HER2-WT and HER3-WT in HEK293 cells. Inde-

pendent pulldowns with V5 and Myc antibodies demonstrate that EGFR-KDD could interact with HER2 and

HER3 (Figure 4.9C, Figure 4.8C – D). Moreover, we observed quantitatively with PIE-FCCS that EGFR-WT

and EGFR-KDD heterodimerize with HER2 to a larger extent in the presence of EGF-ligand (ƒc = 0.10 and

ƒc = 0.16, respectively) than in its absence (ƒc = 0.00 and ƒc = 0.06, respectively) (Figure 4.9D, Figure 4.8F).

Interestingly, our biophysical data suggest that like EGFR-WT, EGFR-KDD also heterodimerizes with HER3

to a greater extent in the presence of NRG1 than in the presence of EGF (Figure 4.9E, Figure 4.8G). These

data demonstrate that EGFR-KDD forms direct interactions with EGFR-WT, HER2 and HER3.

4.2.6 Intra- and inter-molecular dimer activity dual inhibition

The dual nature of EGFR-KDD as an EGF-independent active intra-molecular dimer and as an EGF-dependent

active inter-molecular dimer/multimer poses a unique therapeutic challenge. Our computational models and

experimental data suggest that the ideal therapy would simultaneously reduce intra- and inter-molecular

dimer-mediated activity. One potential treatment strategy is therefore the combination of cetuximab with
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Figure 4.9: EGFR-KDD directly interacts with ERBB family members. a, V5-epitope tagged EGFR-WT
and EGFR-KDD was co-transfected with Myc-epitope tagged EGFR-WT and EGFR-KDD in HEK293 cells.
After 48 hours transfection, cells were lysed by hypotonic buffer and the cell lysates were immunoprecipitated
by using V5 antibody. Immunoblotting were probed by V5 and Myc antibody. b, Cross correlation values
of co-transfected EGFR-WT (mCherry-fused) and EGFR-KDD mutant (eGFP-fused) with (+) or without
(-) ligand (EGF) stimulation is shown. The light orange box indicates the ƒc value region for dimers. c,
Myc-epitope tagged EGFR-KDD was co-transfected with V5-epitope tagged EGFR-WT, HER2 and HER3
in HEK293 cells. Cell lysates were immunoprecipitated by using V5 antibody. Immunoblotting were probed
by V5 and Myc antibody. d, Cross correlation values of co-transfected HER2 (mCherry-fused) and EGFR-
KDD mutant (eGFP-fused) with (+) or without (-) ligand (EGF) stimulation is shown. e, Cross correlation
values of co-transfected HER3 (mCherry-fused) and EGFR-KDD mutant (eGFP-fused) with (+) or without
(-) ligand (EGF) stimulation is shown. For Figure 4.9B, D and E, the median values are reported next to
the boxplot. Each grey dot represents the averaged acquisition (10 sec, 6 acquisitions) per area per cell. All
data points are shown. Numbers in parenthesis above the boxplot are the total number of cells where data
were taken on. Both One-Way ANOVA test and Uncorrected Fisher’s LSD test were down to obtain adjusted
and individual p values. Source data and statistical analysis are provided in the Source Data file. Data and
illustrations for figure panels A and C produced by Du, Z., Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer,
M., and Lovly, C. M. Data and illustrations for figure panels B, D, and E produced by Kim, S. and Smith,
A.W.
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a TKI (here afatinib). Prior pre-clinical literature has suggested that such a combination may be effective in

L858R but not Ex19Del42.

The combination of cetuximab with various EGFR TKIs, including gefitinib43 and afatinib44, 45, has

been tested in lung cancer patients. In a phase I trial, no responses were observed with the combination of

cetuximab plus gefitinib43, and therefore has not been subsequently used in patients. The combination of

cetuximab plus afatinib has advanced in the clinic, including a phase I trial (NCT01090011) that included

an expansion cohort44, 45. Results from this trial of cetuximab plus afatinib demonstrated that the combi-

nation therapy was effective in achieving tumor reduction (as assessed by CT scans using RECIST criteria)

in patients with both Ex19Del and L858R EGFR-mutant lung cancer, in contrast to prior pre-clinical data42.

Importantly, the combination of cetuximab plus TKI is not FDA-approved because there was no benefit (in

terms of PFS, intracranial response, and OS) compared to TKI alone, and thus not standardly used in the

treatment of patients with Ex19Del or L858R mutations. The current standard of care for these patients is the

mutant-selective EGFR TKI, osimertinib, based on a seminal phase 3 clinical trial46, 47.

In contrast, no pre-clinical study or clinical trial has evaluated antibody/TKI combination vs. either

alone in EGFR-KDD patients. Indeed, the index patient for EGFR-KDD described in Gallant et al. 2015

unfortunately only had a partial response to afatinib7. The anti-tumor response was short-lived (7 cycles of

afatinib, or approximately 7 months) before the patient developed acquired resistance to afatinib driven by

amplification of the EGFR-KDD allele7. Collectively, these observations suggested that more potent EGFR

blockade is necessary to overcome the oncogenic activity of EGFR-KDD. Here, we test the hypothesis that

combined TKI and cetuximab treatment will reduce EGFR-KDD-mediated phosphorylation in vitro more

than either treatment alone.

We treated YAMC cells stably expressing EGFR Ex19Del (E746 A750del), L858R, and EGFR-KDD

with afatinib and cetuximab both in the absence and presence of EGF ligand (Figure 4.10A, Figure 4.11a).

Importantly, we observed that in both the absence and presence of EGF, afatinib resulted in a near complete

ablation of p-EGFR in Ex19Del (Figure 4.10a, lanes 1, 2, 5, 6) and L858R (Figure 4.10A, lanes 9, 10, 13,

14), but substantial residual phosphorylation existed in EGFR-KDD (Figure 4.10A, lanes 17, 18, 21, 22). As

expected, cetuximab alone reduced phosphorylation in Ex19Del, L858R and EGFR-KDD in the presence of

EGF ligand (Figure 4.10A, lane 7, 15, 23). Notably, the greatest reduction of phosphorylation for EGFR-

KDD occurred with the combination of cetuximab + afatinib in the presence of EGF (Figure 4.10A, lanes 21,

22, 23, 24). These data suggest that phosphorylation of EGFR Ex19Del and L858R is abolished by afatinib

(TKI) or cetuximab alone, and addition of cetuximab to afatinib does not add substantially more inhibition to

the decrease in auto-phosphorylation. Unlike EGFR Ex19Del and L858R, phosphorylation of EGFR-KDD

is inhibited by both afatinib and cetuximab as single agent, but the combination treatment yielded more
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inhibitory effects.

We also performed viability assays with BaF3 cells stably expressing EGFR-KDD, Ex19Del (E746 A750del)

or L858R. First, we evaluated Ba/F3 cell growth in serum starved (0.5% fetal bovine serine; FBS) conditions

to minimize EGF activation (Figure 4.11b). At 0.5% FBS, cetuximab maximally exhibited 40% inhibition

of EGFR-KDD, 80% inhibition of Ex19Del, and almost 100% inhibition of L858R cell viability (Figure

4.10B). These data are consistent with a model in which EGFR-KDD retains an active intra-molecular dimer

in the absence of EGF stimulation (Figure 4.1) and previously published models of Ex19Del and L858R in

which intrinsic αC-helix stabilization transforms them into dimer-dependent “super acceptor” kinases. In-

deed, progressively higher concentrations of FBS and the addition of exogenous EGF resulted in stable or

increased viability of all mutants in the presence of cetuximab, though EGFR-KDD proved to be the least

inhibited (Figure 4.10C, Figure 4.11C – E).

In 0.5% FBS conditions with minimal EGF-ligand present, the potency of afatinib on EGFR-KDD is

approximately equivalent in the absence (0 g/ml) and presence (10 g/mL) of cetuximab (EC50 = 0.103 ± 0.035

nM and 0.095 ± 0.040 nM, respectively). Similar results are observed in Ex19Del (EC50 = 0.061 ± 0.027

nM and 0.060 ± 0.017 nM, respectively). The near complete ablation of Ba/F3 L858R viability at higher

concentrations of cetuximab mask any potential similar effects. Generally, we observe that Ex19Del and

L858R are more sensitive to afatinib than is EGFR-KDD (Figure 4.10B), consistent with our phosphorylation

assays (Figure 4.10A and Figure 4.11A).

As the concentration of EGF-ligand in the medium is increased, we observe not only an increase in via-

bility with cetuximab and increased EC50 of afatinib, but also a greater potentiation of afatinib by cetuximab

(Figure 4.10B – C and Figure 4.11c – e). In 10% FBS + 50 ng/ml exogenous EGF, we observe a 5.8x increase

in afatinib potency transitioning from 0 g/ml to 10 g/ml in Ba/F3 EGFR-KDD cells. We also observe poten-

tiation of afatinib in Ex19Del (4.7x) and L858R (3.7x) (Figure 4.11E). Compared to Ex19Del and L858R,

the larger potentiation of afatinib inhibition of Ba/F3 EGFR-KDD by cetuximab seems to be mediated by the

lower inhibition of EGFR-KDD by afatinib. Together, our data suggests that a lower dose of afatinib can be

administered to maximally inhibit EGFR-KDD when supplemented with cetuximab.

4.3 Discussion

In this study, we combined methods in clinical genomics, computational structural biology, biochemistry, and

biophysics to mechanistically characterize a former VUS, EGFR exon 18–25 Kinase Domain Duplication

(EGFR-KDD). To investigate the prevalence of KDD in all ERBB family members across various cancers,

we analyzed comprehensive genomic profiling data from two large databases. We discovered that ERBB-

KDDs are recurrent at a frequency between 0.58 - 2.4% in glioma, 0.07 - 0.22% in NSCLC, and 0.05 - 0.40%
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Figure 4.10: Inhibition of EGFR-KDD is maximally achieved by blocking both intra- and inter-molecular
dimerization a, YAMC cells were starved for 12 hours and treated with afatinib (10 nM in serum-free medium)
and cetuximab (10 µg/ml in serum-free medium) for 3 hours 45 minutes, and then were treated with EGF (50
ng/mL in serum-free medium) for 15 minutes. The cells were harvested and analyzed by Western blot. b, Cell
Viability Assay was performed in mIL3-independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del
and L858R supplemented with 0.5% FBS. 5,000 cells were seeded in 96-well plate with the treatment of
afatinib and cetuximab. Three days after incubation, CellTiter-Blue Reagent was added, and the fluorescence
was detected at 560EX/590EM with a Synergy HTX microplate reader (BioTek Instruments, Winooski, VT,
USA). c, Cell Viability Assay was performed in mIL3-independent Ba/F3 cells stably expressing EGFR-
KDD, Ex19Del and L858R supplemented with 10% FBS. For b and c, n=3 biologically independent samples
were examined over 3 independent experiments. Data are presented as mean values +/- SD. Results in a, b
and c are the representative of three independent experiments. Data and illustrations produced by Du, Z.,
Gallant, J.-N.; Zhang, Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M.
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Figure 4.11: Inhibition of EGFR-KDD is maximally achieved by blocking both intra- and inter-molecular
dimerization. a, Quantification of YAMC antibody/TKI treatment Western blots in Figure 4.10A.
pEGFR/EGFR was presented as mean values of three independent experiments ± SD. b, BaF3 cell growth
at different concentration of fetal bovine serum (FBS). 5,000 cells were seeded in 96-well plate with the
treatment of afatinib and cetuximab. Three days after incubation, CellTiter-Blue Reagent was added, and the
fluorescence was detected at 560EX/590EM with a Synergy HTX microplate reader (BioTek Instruments,
Winooski, VT, USA). c, Cell Viability Assay was performed in mIL3-independent Ba/F3 cells stably ex-
pressing EGFR-KDD, Ex19Del and L858R in RPMI1640 supplemented with 10% FBS. d, Cell Viability
Assay was performed in mIL3-independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del and L858R
in RPMI1640 supplemented with 10% FBS and 5ng/mL EGF. e, Cell Viability Assay was performed in
mIL3-independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del and L858R in RPMI1640 supple-
mented with 10% FBS and 50ng/mL EGF. Data and illustrations produced by Du, Z., Gallant, J.-N.; Zhang,
Y.-K.; Yan, Y.; Red-Brewer, M., and Lovly, C. M.
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in breast cancer. We identified fractions of KDDs in multiple other tumor types as well. No previous studies

have reported KDD in ERBB2, ERBB3 and ERBB4. These data indicate that ERBB-KDDs account for

a small but significant fraction of ERBB family-mediated cancers, and suggest utility of approved targeted

therapies for patients based on standard of care clinical genomic testing. Importantly, developing targeted

therapies for uncommon variants has precedent. ROS1 variants account for 1% of lung cancers49 and have

been detected with lower prevalence in multiple other cancers50 and NTRK fusions have been implicated

in 0.31% of adult tumors and in 0.34% of pediatric tumors51. There are TKIs targeting both ROS1 and

NTRK52, 53 that are FDA approved and additional agents in clinical development. Further, in the case of

KDD, both TKIs and antibody therapies already exist for ERBB receptors, thus new trials and therapeutic

strategies for this population does not depend on new therapy development.

We sought to elucidate the mechanisms of EGFR-KDD-driven oncogenicity. We demonstrate that EGFR-

KDD forms a catalytically active asymmetric intra-molecular dimer in the absence of EGF-ligand stimulation.

Mutations disrupting the intra-molecular dimerization interface abolish the phosphorylation of EGFR-KDD

in its monomeric form, and the loss of phosphorylation in these mutants can be recovered by the forma-

tion of inter-molecular dimerization and multimerization. These data demonstrate that ligand-independent

constitutive activation EGFR-KDD is driven by asymmetric intra-molecular dimerization.

We next characterized differences in the functionality of the JMB region of EGFR-KDD relative to EGFR-

WT. The JMB is a conserved stretch of amino acids critical for inter-molecular dimerization in wild-type

HER-family receptor kinases. In EGFR-KDD, the JMB region of TKD2 is covalently linked to the C-

terminus of TKD1. All-atom computational modeling investigations coupled with in vitro mutagenesis sug-

gests the EGFR-KDD linker region is capable of forming specific stabilizing JMB domain contacts within the

intra-molecular dimer; however, the forced proximity of the two kinase domains by the linker is sufficient for

elevated EGFR-KDD activity relative to EGFR-WT. In comparison, EGFR-WT depends on stable contacts

in the JMB domain for dimer activity (Jura et al., 2009; Red Brewer et al., 2009). We focused our analysis

on EGFR-KDD with duplication of exons 18-25, but other groups have recently identified EGFR-KDD with

longer duplications (e.g. exons 14-26 and exon 17-25) (Wang et al., 2019b) that may reduce the likelihood of

forming stabilizing contacts at the linker JMB interface of the intra-molecular dimer. We speculate that there

may be selective pressure for specific linker lengths/sequences in the formation of KDDs. Recent investiga-

tions have suggested similar structural constraints in the context of EGFR exon 19 deletion mutations (Foster

et al., 2016).

EGFR-KDD further forms EGF-dependent inter-molecular dimers. Inter-molecular dimerization of EGFR-

KDD increases activity in part by stabilizing the active conformation of the EGFR-KDD donor kinase do-

main. This has broad implications for HER-family signaling as well. We speculate that the formation of
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dual activator/receiver kinases in higher order oligomers of HER-family receptors may contribute to ligand-

dependent increases in phosphorylation29, 31. In the present study, we did not identify the configuration

of the EGFR-KDD inter-molecular dimer/multimer. Mutations at N1 and C2 only partially disrupted EGF-

dependent phosphorylation (Figure 4.6A, lane 7, 8, 17, 18; Figure 4.7A, lane 7, 8, 17, 18). Moreover, in

the side-by-side structural model, the N-termini of TKD1 and TKD3 are oriented in close proximity (Fig-

ure 4.6C, yellow), while in the end-to-end model they are separated (Figure 4.6B, yellow). Consequently,

we considered the end-to-end model less likely to form interactions between the N-terminal juxtamembrane

A (JMA) and TM domains of the two interacting proteins, a key feature of inter-molecular dimerization in

EGFR-WT (Jura et al., 2009; Red Brewer et al., 2009). Nevertheless, it is clear that EGFR-KDD is forming

an EGF-dependent inter-molecular dimer. We anticipate that future investigations will identify the mostly

likely inter-molecular configuration(s).

Interestingly, EGF-stimulated EGFR-KDD displays substantially more phosphorylation than EGF-stimulated

canonical activating mutations (Figure 4.10A and Figure 4.7A). We speculate that this may be because of the

increased ratio of EGF-ligand to active recruited kinase domains in EGFR-KDD (i.e. EGF-mediated dimer-

ization of two extracellular domains results in an effective tetramer of intracellular kinase domains with

potentially 2 – 3 active TKDs, versus typical oncogenic activation with 1 – 2 active TKDs). Alternatively,

it may be that the EGFR-KDD inter-molecular dimer forms a more favorable interface than other oncogenic

mutants, thus resulting in increased dimerization and activity. A combination of factors likely contributes to

the overall increase in phosphorylation that we observe. Additional studies are needed to characterize the

EGFR-KDD inter-molecular dimer.

Through a combination of biochemical and biophysical methods, we also determined that EGF-ligand

stimulation induces formation of catalytically active homo- and hetero- inter-molecular dimers and multimers.

Critically, this demonstrates that EGFR-KDD retains the ability to activate other ERBB family members.

This has important implications for the therapeutic management of patients whose tumors harbor EGFR-

KDD. Indeed, we found neither cetuximab nor afatinib alone were able to completely ablate EGFR-KDD

phosphorylation. We demonstrate, however, that cetuximab can be used to potentiate afatinib inhibitory

activity for greater overall inhibition. We suspect that this is because of the synergistic mechanisms of the

two drugs: cetuximab disassembles dimers and removes the ability of EGFR-KDD to activate other ERBB

kinases, and afatinib inhibits the active intra-molecular dimer EGFR-KDD. It has been well-recognized that

cetuximab induces degradation of EGFR mutants in different NSCLC cells (Doody et al., 2007; Perez-Torres

et al., 2006). In this study, no degradation of EGFR-Ex19Del, L858R and EGFR-KDD levels were observed

in YAMC (Figure 4.10A) and NR6 cells (Figure 4.7B), probably due to the shorter treatment time than

previous studies (4hrs versus 24 – 72hrs) (Doody et al., 2007; Perez-Torres et al., 2006).
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Finally, our computational and biochemical insights raise important considerations for the use of EGFR-

KDD as a research tool. Whereas the inactive form of EGFR can be readily studied by the introduction of

inter-molecular dimer-disrupting interface mutations (Zhang et al., 2006), controlling the active fraction of

EGFR in vitro has typically required introduction of known oncogenic point mutations or stimulation with

EGF-ligand. The former causes well-documented perturbations to enzyme kinetics (Yun et al., 2007; Carey

et al., 2006; Gilmer et al., 2008; Yun et al., 2008a), while recent literature has demonstrated that the latter

can influence EGFR multimerization and phosphorylation in a concentration-dependent manner (Needham

et al., 2016a). Moreover, dimerization and activation of EGFR oncogenic missense mutants is dependent on

protein concentration (Sholl et al., 2009) and/or EGF- ligand stimulation (Red Brewer et al., 2013). EGFR-

KDD provides a model of a fully active EGFR dimer in an EGF-independent setting, and may provide a more

native-like control than kinase domain missense mutants without the complexity of concentration-dependent

signaling effects.

Kinase Domain Duplications (KDDs) represent a novel form of activation for oncogenic kinases via a

mechanism of constitutive dimerization. In this study, we have systematically characterized the fundamen-

tal biochemical and biophysical features of a prototypical KDD, EGFR-KDD. Subsequently, we identified

potential treatment strategies in pre-clinical models of EGFR-KDD-mediated disease. This represents the

first comprehensive mechanistic and pre-clinical evaluation of treatment strategies specifically for a KDD-

mediated disease. We anticipate that our results will also be used to inform additional studies on kinase

duplication domains.

4.4 Methods

4.4.1 Cell Culture, Reagents and Transfection

Ba/F3 cells were purchased from DSMZ. NR6 cells were a kind gift from Dr. William Pao (Regales et al.,

2009). YAMC EGFR-/- cells were a kind gift from Dr. Robert H. Whitehead (Dise et al., 2008). Plat-GP cells

were purchased from CellBioLabs. HEK293 cells were purchased from ATCC. Ba/F3 cells were maintained

in RPMI 1640 medium (Mediatech, Inc.) supplemented with 1 ng/mL murine IL3 (Gibco, Life Technologies).

NR6 cells were maintained in DMEM (Gibco). The Plat-GP cell line was cultured in full DMEM with

selection of 1 g/mL blasticidin (Gibco). YAMC cells were cultured as previously described (Dise et al.,

2008; Whitehead et al., 1993), 64. COS-7 cells were cultured in DMEM (Calsson Lab, Smithfield, UT).

All media were supplemented with 10% heat inactivated FBS (Gibco) and penicillin-streptomycin (Gibco) to

final concentrations of 100 U/mL and 100 g/mL, respectively. All cell lines were maintained in a humidified

incubator with 5% CO2 at 37°C (33°C for YAMC cells (Whitehead et al., 1993)) and routinely evaluated for

mycoplasma contamination.
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Cetuximab was purchased from Bristol-Myers Squibb (Princeton, NJ). mAb806 is produced and purified

in the Biological Production Facility (Ludwig Institute for Cancer Research, Melbourne) (Johns et al., 2003,

2002). Transient transfection for expression in HEK293 cells was carried out using Lipofectamine 2000 (In-

vitrogen) according to the manufacturer’s instructions. A total of 0.45 g of each expression plasmid was used

per well in 6 well plates. To assess ligand-dependent EGFR activation, cells were serum starved overnight

and treated with 50 ng/mL EGF for 5min.

For PIE-FCCS experiments, COS-7 cells were transiently transfected 24 hours before the experiment

using Lipofectamine 2000 (Invitrogen). A total of 5 µg DNA (1:1 ratio of mCherry-tagged and eGFP-tagged

plasmids mixture) was used per 35 mm MatTek plate (MatTek Corporation, Ashland, MA) to express both

fluorescent-tagged species evenly and acquire the local density of 100-2000 receptors/µm2. The media was

changed to Opti-MEM I Reduced Serum Medium without phenol red (Thermo Fisher Scientific) before

placing the plate in the on-stage incubator (37 °C) for FCCS measurement. Measurements were taken for

both ligand-free and ligand-stimulated state of each construct, with 2 g/mL recombinant human EGF (Sigma

Aldrich, St. Louis, MO) or NRG1 (RD Systems, Inc., Minneapolis, MI) as the ligand.

4.4.2 Plasmid Construction

Generation of EGFR-KDD, EGFR-WT and EGFR-L858R constructs was described previously7. EGFR-

KDD mutations were constructed by using multisite-directed mutagenesis (Agilent) on the pMa-EGFR-KDD

plasmid per the manufacturer’s recommendations - with the exception of extension time being set at 1.5 mins

/ kb. To specifically introduce mutations into each TKD due to the presence of two identical TKDs at the

genomic level, after bi-directional dideoxy sequencing, pMa-EGFR-KDD-mutants were digested with ClaI

and recombined with other pMa-EGFR-KDD fragments to create all single mutants: ClaI digests mutated

pMa-EGFR-KDD plasmid were recombined with a ClaI–ClaI segments from unmutated pMa-EGFR-KDD

and/or ClaI digests of unmutated pMa-EGFR-KDD plasmid were recombined with ClaI–ClaI segments from

mutated pMa-EGFR-KDD. pMa-EGFR-KDD mutants were then subcloned to the pMSCV vector by HpaI

digest and then subcloned to pcDNA3.1(-) vector by XhoI /HindIII digest. All plasmids were verified in the

forward and reverse directions by Sanger sequencing. To obtain V5-epitope tagged EGFR-KDD, we used

PCR to add AgeI to the 3’ end of EGFR-KDD fragment by using pMSCV-EGFR-KDD as template, then

EGFR-KDD fragment was inserted into pcDNA6-V5 HisB vector by using SnaBI and XhoI. To obtain Myc-

epitope tagged EGFR-KDD, the EGFR-KDD fragment was subcloned to pEF4Myc-HisB vector by using

MfeI and XhoI. pcDNA6-EGFR-WT with Myc-epitope tag was purchased from Addgene (42665). V5-

epitope tagged HER2 and HER3 were kind gift from Dr. Carlos L. Arteaga67. For PIE-FCCS experiments,

EGFR-WT, HER2 and HER3 was subcloned to eGFP-N1 and mCherry-N1 vectors by XhoI and AgeI digest.
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EGFR-KDD was subcloned to eGFP-N2 and mCherry-N2 vectors by using SnaBI and XhoI digest. For V5

tagged epitope EGFR-WT, we replaced the eGFP fragment of pEGFR-N1-EGFR-WT by V5 tagged epitope.

In this study, for EGFR mutations, we utilized codon numbering of the human immature EGFR sequence that

includes the 24-residue signal sequence.

4.4.3 Generation of stable cell lines

Constructs of pMSCV, EGFR-WT, EGFR-L858R, EGFR-KDD and EGFR-KDD-I706Q, D837N, V948R,

I1057Q, D1188N and V1299R mutations were introduced into NR6 and YAMC cells separately by retroviral

transduction system as described previously7. Construct of EGFR Ex19Del (E746 A750del) was stably

introduced into YAMC cells, and constructs of EGFR Ex19Del (E746 A750del), EGFR-L858R and EGFR-

KDD were stably introduced into Ba/F3 cells as described previously (Brown et al., 2019a).

4.4.4 Immunoblotting and Antibodies

For immunoblotting, cells were washed in cold PBS, and lysed in RIPA buffer (150 mmol/L NaCl, 1% Triton-

X-100, 0.5% Na-deoxycholate, 0.1% SDS, 50 mmol/L Tris-HCl, pH 8.0) with freshly added 40 mmol/L NaF,

1 mmol/L Na3VO4, and protease inhibitor (Thermo Fisher Scientific, Waltham, MA). Lysates were quantified

by Bradford assay in SmartSpec Plus Spectrophotometer (Bio-Rad, Hercules, CA) following the manufac-

turer’s instructions. Lysates were subjected to SDS-PAGE followed by blotting with the indicated antibodies

and detection by Western Lightning ECL reagent (Perkin Elmer, Waltham, MA). The densitometry for both

phosphotyrosine content at Y1068 and total EGFR expression was quantified by ImageJ Software. The ratio

of phosphotyrosine to total EGFR expression for each construct relative to EGFR-KDD was calculated. All

immunoblotting experiments were performed three independent times and one representative replicate was

shown in the manuscript. Raw uncropped and unprocessed scans of all blots, quantifications and standard

deviations were included in the Source Data file.

For co-immunoprecipitation experiments, cells were washed in cold PBS and lysed in hypotonic buffer

(20mM HEPES pH7.5, 10mM KCl, 1mM EDTA, 1mM EGTA, 1mM mgCl2, 0.1% NP-40, EDTA-free Pro-

tease Inhibitor Cocktail (Sigma-Aldrich 04693159001)). The lysates were supplemented with 150 mM NaCl

before centrifuging. Protein G Dynabeads ( 10004D, Life Technologies, Carlsbad, CA) were incubated with

the primary antibody for 30 minutes at room temperature. Lysates were then added and incubated for 3

hours at 4°C. Immobilized beads were washed three times with hypotonic buffer supplemented with 0.65

M NaCl. 2xSDS loading buffer was added to the beads and then used for immunoblotting analysis. All

co-immunoprecipitation experiments were performed two independent times and one representative replicate

was shown in the manuscript.
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4.4.5 Antibodies

Antibodies used included: EGFR (1:2000, 4267), phospho-EGFR (Y992) (1:1000, 2235), phospho-EGFR

(Y1068) (1:1000, 2234), phospho-EGFR (Y1173) (1:1000, 4407) (For EGFR phosphorylation sites, we uti-

lized codon numbering of mature EGFR sequence that does not include the 24-residue signal sequence),

horseradish peroxidase (HRP) - conjugated anti-mouse (1:5000, 7076), and HRP-conjugated anti-rabbit

(1:5000, 7074) (Cell Signaling, Beverly, MA); V5 (1:5000, MCA1360GA, AbD Serotec), Myc (1:2500,

Sigma-Aldrich A5963); actin antibody (1:5000, Sigma-Aldrich A2066).

4.4.6 Pulsed Interleaved Excitation Fluorescence Cross-Correlation Spectroscopy (PIE-FCCS)

FCCS data were taken on a customized inverted microscope setup coupled with pulsed interleaved excita-

tion and time-correlated single photon detection as described in previous works (Huang et al., 2016; Endres

et al., 2013). A supercontinuum pulsed laser (9.2 MHz repetition rate, SuperK NKT Photonics, Birkerød,

Denmark) was split into two beams of 488 nm and 561 nm through a series of filters and mirrors for the

excitation of eGFP and mCherry respectively. The beams were directed through two different-length single

mode optical fiber to introduce 50 ns time delay for pulsed interleaved excitation to eliminate possible spec-

tral crosstalk (Comar et al., 2014). The beams were overlapped before entering the microscope through a

dichroic beam splitter (LM01-503-25, Semrock) and a customized filter block (zt488/561rpc, zet488/561m,

Chroma Technology). A 100X TIRF oil objective (Nikon, Tokyo, Japan) was used for the excitation beam

focus and fluorescence emission collection. A short fluorescently tagged DNA fragment was used to ver-

ify the alignment of the system, including the confocal volume overlap. Negative and/or positive controls

were tested regularly prior to the experimental samples for comparisons of the fit parameters. The excita-

tion beams were focused to the peripheral membrane of the cell to allow the fluorescence measurements of

only the membrane-bound receptors. Data were only taken on the flat, peripheral membrane area, where

the distance between the basal and apical membranes were within a few hundred nanometers, to avoid in-

clusion of fluorescence from cytosolic organelles or vesicles. For each cell, one area of the membrane was

selected for data collection. Six 10-second acquisitions were taken per area. The fluorescence signal was col-

lected through a home-built confocal detection unit with a 50 µm confocal pinhole and dichroic beam splitter

(LM01-503-25, Semrock, Rochester, NY). The two signals were filtered (91032, Chroma Technology Corp.,

Bellows Falls, VT; zt488/561rpc and zet488/561m, Chroma Technology Corp., Bellows Falls, VT) and then

focused independently on to single-photon avalanche diodes (Micro Photon Devices, Bolzano, Italy). The

photon counts were recorded by a time-correlated single photon counting module (Picoharp 300, PicoQuant,

Berlin, Germany). For analysis, the time-tagged photon data were gated to isolate photons that arrived within

40 ns after each laser pulse arrival time. Then we calculated auto- and cross-correlation curves correspond-
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ing to each species using our custom MATLAB script. Curves of six consecutive acquisitions per area were

averaged then fitted to a single component, 2D diffusion model as described in previous works (Endres et al.,

2013; Kaliszewski et al., 2018; Comar et al., 2014).

The auto-correlation curves contain two types of decay. The first decay is due to the photophysical activ-

ity, such as triplet relaxation or blinking. The second decay indicates the average dwell time (τD), which is

used to calculate the effective diffusion coefficient using Deff = ωo2/4τD. The amplitude of the correlation

curves indicates local concentration of the diffusing receptors. Using the cross-correlation curve, we can cal-

culate cross-correlation values, or fraction correlated (ƒc) values that indicate the degree of oligomerization.

For an ideal system undergoing on dimerization, the ƒc value varies from 0 to 1, with 0 indicating the system

is monomeric and 1 indicating complete dimerization. For real systems, effects like photostability, interac-

tion statistics, and relative expression levels drop the expected ƒc value for dimerization into the range of

0.10 to 0.15 for a monomer-dimer equilibrium. For higher order oligomerization the ƒc values will increase,

allowing us to compare the degree of oligomerization for more complex systems (Comar et al., 2014).

4.4.7 Anchorage-Independent Assays and Cell Viability Assay

Anchorage-independent assays were performed as previously described (Borowicz et al., 2014; Horibata

et al., 2015). For the bottom layer of agar, 1.5 mL of a 1:1 mix of 1.0% agar (prepared in 1xPBS) and medium

was plated in each well of 6-well plate. For the upper layer of agar, 1.5 mL of a 1:1 mix of 0.6% agar (prepared

in 1xPBS) and medium containing 5,000 cells was plated into each well of 6-well plate. Colonies were

counted using GelCount (Oxford Optronix) with identical acquisition and analysis settings. Cell viability

assay was performed on IL3 independent Ba/F3 cells stably expressing EGFR-KDD, Ex19Del and L858R

by using CellTiter-Blue® Cell Viability Assay (G8080, Promega, Madison, WI) following manufacturer’s

instructions. All experiments of anchorage-independent assays and cell viability assay were performed three

independent times in triplicate, and one representative replicate was shown in the manuscript.

4.4.8 Molecular Modeling

Previously, we performed de novo loop modeling to determine a geometrically plausible model of the EGFR-

KDD linker region (Gallant et al., 2015). Here, an all-atom structural model of the EGFR-KDD intracellular

domain was generated with RosettaCM (Song et al., 2013) with the active EGFR WT dimer PDB ID 2GS6

as the base template. Missing density in the β3-αC region was templated with PDB ID 2ITX. The N- and C-

termini of the donor and receiver kinases of the EGFR-KDD intra-molecular dimer, respectively, as well as

the connecting linker region, are based on three templates: the previously modeled linker region from Gallant

et al. 2015 (Gallant et al., 2015); the JMB domain of PDB ID 4RIW; and the JMB domain of PDB ID 3GOP.
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Figure 4.12: EGF ligand stimulation induces the formation of EGFR-KDD inter-molecular dimers. a, Cross
correlation values of PIE-FCCS control constructs. The monomer control (Myr-FP: myristoylated fluorescent
protein [mCh or eGFP; coexpressed together]) had an fc value of 0.01 indicating no interaction. Upon cross-
linking by a synthetic dimerizer (AP: AP20187) the dimer control (1xFKBP-FP) had an average fc value of
0.11, consistent with dimerization. The multimer control (3xFKBP-FP) had an fc value of 0.29 consistent
with the formation of a mixture trimer and tetramer species. b, Average molecular brightness of PIE-FCCS
negative and positive controls in Figure 4.7c (Left: constructs with eGFP tag; right: constructs with mCh tag).
The oligomer control (3xFKBP+AP) has much higher molecular brightness as expected due to clustering.
mCh-tagged constructs show subtle changes in the molecular brightness due to the photophysical properties of
mCherry. However, the molecular brightness changes are still statistically significant between all constructs.
c, Representative FCCS data for EGFR-WT and EGFR-KDD expressed in COS-7 cells. The scatter plot
connected with red, green and blue lines indicates the normalized auto-correlation function for mCherry-
fused/eGFP-fused receptors and cross-correlation function, respectively. Black solid line shows the fit model
of each curves. For a and b, the numbers in parenthesis above the boxplot/bar graph are the total number of
cells where data were taken on. Both One-Way ANOVA test and Uncorrected Fisher’s LSD test were down
to obtain adjusted and individual p values.
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Missing residues are modeled de novo with RosettaCM fragment insertion. Three rounds of comparative

modeling were performed. After rounds two and three, the best scoring models with varying RMSDs from

the lowest scoring model in each round were selected as additional starting templates for the next round. After

the third round, distance-based clustering of the linker region identified three low energy clusters. The best

scoring model from each cluster was refined with a 1 s molecular dynamics (MD) simulation in Amber18

(Case et al., 2018). The final EGFR-KDD model and EGFR-WT homodimer subsequently each underwent 1

µs MD simulations.

Models were solvated in a rectangular box of SPC/E explicit solvent neutralized with monovalent anions.

Protein was buffered on all sides with 12 Å solvent. Solvent and ions were minimized with 500 steps steepest

gradient descent followed by 1000 steps of conjugate gradient descent while protein atoms were restrained

with a force constant of 10.0 kcal/mol/Å2. The protein was then minimized for 200 steps steepest gradient

descent followed by 800 steps of conjugate gradient descent in buffer restrained with a force constant of 5.0

kcal/mol/A2. Finally, restraints were removed from the system for 100 additional steps of steepest gradient

descent followed by 900 steps of conjugate gradient descent minimization.

Post-minimization, SHAKE was implemented to constrain covalent bonds to hydrogen atoms. Systems

were slowly heated in NVT ensemble to 100K over 50 ps with a 1 fs timestep. Subsequently, systems were

heated in NPT ensemble at 1 bar with isotropic position scaling from 100K to 300K over 500 ps and 1 fs

timestep. Equilibration/production simulations were run in the NPT ensemble at 300K with a Monte Carlo

barostat. Temperature was controlled using Langevin dynamics with a collision frequency of 1 ps-1 and a

unique random seed for each simulation. Periodic boundary conditions were imposed on the system through-

out heating and equilibration. Electrostatics were evaluated using the Particle Mesh Ewald (PME) method

and a distance cutoff of 8.0 Å. A 2 fs integration timestep was employed during production simulations. All

RMSD and RMSF calculations were performed with CPPTRAJ (Roe and Cheatham, 2013).

Approximations of the linker interaction energies of the top three EGFR-KDD clusters were performed

with the single-trajectory molecular mechanics / generalized Born solvent-accessible surface area (MM-

GBSA) method as implemented in MMPBSA.py (Miller et al., 2012). GBSA was calculated with the OBCII

Generalized born solvent model with a surface tension of 0.0072 kcal/mol/Å2 and salt concentration of 0.15

M, and nonpolar contributions to the solvation free energy were computed with the LCPO method. Entropic

contributions to binding were neglected. The final reported values are averaged over frames collected every

100 ps.
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4.4.9 Kinase Domain Duplication Detection from Foundation Medicine and MSK-IMPACT datasets

For the Foundation Medicine dataset, a minimum of 50 ng of DNA was extracted from formalin-fixed

paraffin-embedded sections and comprehensive genomic profiling was performed on hybridization-captured,

adaptor ligation-based libraries to a median exon coverage depth of ¿ 500X for all coding exons of 315

(FoundationOne®, n = 152,674), or 324 (FoundationOneCDx®, n = 86,824) cancer-related genes plus se-

lected introns from genes frequently rearranged in cancer to identify base substitutions, small insertions or

deletions, copy number alterations (focal amplifications and homozygous deletions), and rearrangements,

as previously described (Frampton et al., 2013). Testing was performed in a Clinical Laboratory Improve-

ment Amendments-certified, College of American Pathologists-accredited reference laboratory (Foundation

Medicine, Cambridge, MA). We interrogated the Foundation Medicine dataset of n = 239,498 consecutive

unique solid tumor specimens for kinase domain duplications (KDD) in EGFR, ERBB2, ERBB3 and ERBB4.

These rearrangement duplications were detected by clustering chimeric and semi-mapped paired-end reads

within each gene of interest and mapping breakpoints onto the hg19 reference genome assembly, as pre-

viously described75. A KDD was therein defined as a large genomic duplication where breakpoints both

flanked and did not disrupt the region corresponding to the respective gene’s kinase domain. Statistical en-

richment including p-value and odds-ratio (OR) was calculated using Fisher’s exact testing. For Foundation

Medicine cases, approval for this study, including a waiver of informed consent and a Health Insurance Porta-

bility and Accountability Act waiver of authorization, was obtained from the Western Institutional Review

Board (protocol no. 20152817).

MSK-IMPACT sequencing data from patients whose tumor and matched normal samples were prospec-

tively sequenced between January 2014 and September 2019 (n=40,165) were used in this study. Structural

variant detection was performed on the paired-end reads using Delly (version 0.7.5; https://github.com/dellytools/delly).

Duplication events that surrounded or overlapped known kinase domains were selected for further manual re-

view. For copy number-based analysis, coverage data from the tumor and an unmatched normal sample were

used to generate a fold change value (Ross et al., 2017) for each exon in a kinase gene. Using k-mean clus-

tering (k = 2), we identified samples where one of the clusters was overlapping (requiring at least 70% of

the kinase domain to be involved) or encompassing the kinase domain with a median cluster fold change

difference of at least 0.4. We combined the two datasets for further manual review to identify a subset of

confident KDD calls.

4.4.10 Statistical analysis

Statistical significance was analyzed using unpaired Student’s t-test for two groups or one-way ANOVA for

multiple groups. Results were displayed as mean values ± standard deviation (SD). For all tests, the criteria
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for significance were P ¡ 0.05 (*), P ¡ 0.01 (**), and P ¡ 0.001 (***). Statistical analysis was carried out using

Prism 9 (GraphPad Software).
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CHAPTER 5

Co-Occurring Gain-of-Function Mutations in HER2 and HER3 Modulate HER2/HER3 Activation,

Oncogenesis, and HER2 Inhibitor Sensitivity

This chapter is taken from Hanker, A. B.*; Brown, B. P.*; Meiler, J.*; Marı́n, A.; Jayanthan, H. S.; Ye, D.;

Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J.

P.; Sheehan, J. H.; He, J.; Lalani, A. S.; Arteaga, C. L. Cancer Cell 2021, 39 (8), 1099-1114.e837 (*These

authors contributed equally).

5.1 Introduction

Activating mutations in HER2 (also known as ERBB2) are oncogenic drivers in a subset of breast and other

cancers (Bose et al., 2013; Hanker et al., 2017; Hyman et al., 2018). In breast cancer, HER2 mutations

typically occur in the absence of HER2 amplification, are more common in invasive lobular breast cancer

(Deniziaut et al., 2016; Desmedt et al., 2016; Ping et al., 2016; Ross et al., 2013), and are associated with poor

prognosis (Kurozumi et al., 2020; Ping et al., 2016; Wang et al., 2017). Recurrent HER2 mutations promote

resistance to antiestrogen therapy in estrogen receptor-positive (ER+) breast cancers (Croessmann et al.,

2019; Nayar et al., 2019) and are found in 5̃% of endocrine-resistant metastatic breast cancers (Razavi et al.,

2018). They have also been implicated in resistance to HER2 inhibitors in HER2-amplified breast cancers

(Cocco et al., 2018; Xu et al., 2017) and can be targeted with HER2 tyrosine kinase inhibitors (TKIs), such as

neratinib. Approximately 30% of HER2-mutant metastatic breast cancers respond to neratinib (Hyman et al.,

2017, 2018), suggesting that co-occurring mutations may modulate HER2 TKI response.

HER2 is a member of the ERBB receptor tyrosine kinase family, which includes EGFR, HER3 (ERBB3),

and HER4 (ERBB4). Upon ligand-induced homo- and heterodimerization of the extracellular domain (ECD),

ERBB receptors undergo a conformational change that triggers asymmetric dimerization of the kinase do-

mains (KDs), leading to kinase activation and subsequent signal transduction through oncogenic pathways,

such as the phosphoinositide-3-kinase (PI3K)/AKT/mTOR and RAS/RAF/MEK/ERK pathways (Zhang et al.,

2006). Although HER2 lacks a high-affinity ligand, its natural conformation resembles a ligand-activated

state and is the preferred heterodimer of EGFR and HER3 (Arteaga and Engelman, 2014). HER3 is cat-

alytically impaired and its signaling depends on heterodimerization with catalytically active partner, such as

EGFR and HER2 (Wallasch et al., 1995).

The most common HER2 mutations in breast cancer are missense mutations in the KDs, such as HER2L755S

and HER2V777L. While HER2 missense mutants exhibit gain-of-function activity (Bose et al., 2013), they are
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not potently transforming in the absence of amplification and may require cooperation with other oncogenes

to confer a fully transformed phenotype. For example, co-occurring PIK3CA mutations (encoding PI3K)

cooperate with HER2 mutations to augment pathway activation (Zabransky et al., 2015). However, PIK3CA

mutations are only found in 1̃/3 of HER2-mutant breast cancers; other alterations that cooperate with HER2

mutations are not known.

Gain-of-function mutations in HER3 are found in 2% of breast cancers (Cancer Genome Atlas, 2012;

Jaiswal et al., 2013; ?). HER2/HER3 heterodimers exhibit high catalytic activity, strongly activate the

PI3K/AKT/mTOR pathway, and induce transformation more potently than any other ERBB dimers (Choi

et al., 2020; Holbro et al., 2003; Yarden and Sliwkowski, 2001). In the HER2/HER3 asymmetric dimer, the

HER3 KD serves as the “activator,” stimulating the kinase activity of the HER2 “receiver” (Choi et al., 2020).

Co-occurring HER3 mutations have previously been found in HER2-mutant tumors (Hanker et al., 2017) and

are associated with lower clinical response to neratinib in the clinic (Hyman et al., 2018; Smyth et al., 2020).

We hypothesized that the mutant HER3 receptor cooperates with mutant HER2 to promote tumor growth via

enhanced HER2 and PI3K activation.

5.2 Results

5.2.1 Activating mutations in HER2 and HER3 co-occur in breast and other cancers

We interrogated 277 breast cancers (Figures 5.1A and 5.2A) and 1,561 pan-cancers harboring somatic HER2

mutations from the Project GENIE dataset (genie.cBioPortal.org) for co-occurring alterations in EGFR,

ERBB3, ERBB4, PIK3CA, and PTEN (Figures 5.1B and 5.2B). Since HER2 mutations are known to be

associated with lobular breast cancer (Desmedt et al., 2016), we also included the CDH1 gene, which is mu-

tated frequently in lobular breast cancer. Mutations in HER2 and HER3 showed a significant tendency to

co-occur in breast cancer (q = 0.006) and in all cancers (q = 1.01x10-26; Figures 5.1C and 5.2C).

Most co-occurrences were between known activating missense mutations in both genes rather than vari-

ants of unknown significance (Figures 5.2A and 5.2B). In breast cancer, neither EGFR nor ERBB4 alterations

were found to co-occur with HER2 (Figure 5.2C). We also noted that HER3 mutations did not co-occur with

HER2 in-frame insertion mutations or when HER2 was both mutated and amplified (Figures 5.1A and 5.1B).

Intriguingly, in HER2-mutant breast cancers, co-occurring HER3 mutations were mutually exclusive with

co-occurring PIK3CA, suggesting that HER3 and PIK3CA mutations are functionally redundant.

To identify the most common co-occurring HER2 and HER3 mutant allele pairs in breast cancer, we

expanded our search to include additional datasets from Foundation Medicine and cBioPortal. We identified

67 breast cancers harboring mutations in both genes. The most common HER2 mutations were L755S (n

= 24), S310F/Y (n = 16), V777L (n = 14), and L869R/Q (n = 7). The most common HER3 mutations
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Figure 5.1: ERBB2 and ERBB3 mutations co-occur in breast and other cancers. (A) 277 breast cancers with
ERBB2 mutations and (B) 1,561 ERBB2-mutant cancers (all tumor types) in the Project GENIE database
were interrogated for co-occurring alterations in the indicated genes. ERBB2 variants of unknown signifi-
cance (VUS) are excluded. (C) Mutations in the indicated genes were analyzed for co-occurrence or mutual
exclusivity with ERBB2 mutations using cBioPortal. (D) The most common co-occurring HER2/HER3
mutations in breast cancer were determined using databases from Project GENIE, cBioPortal [TCGA,
METABRIC, MBC Project, Mutational Profiles of MBC (France), and Breast Invasive Carcinoma (Broad)],
and Foundation Medicine. Data and illustrations produced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye,
D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch,
J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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Figure 5.2: Gain-of-function, but not passenger, missense mutations in ERBB2 and ERBB3 have a tendency
to co-occur. (A) Breast cancers and (B) all cancers with ERBB2 VUS in the Project GENIE database were
interrogated for co-occurring alterations in the indicated genes. (C) Mutations in the indicated genes were
analyzed for co-occurrence or mutual exclusivity with ERBB2 mutations in breast cancers from Project GE-
NIE using cBioPortal. (D,E) Lollipop plots of ERBB2 (D) and ERBB3 (E) mutations in breast cancer from
Project GENIE. Data and illustrations produced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin,
C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He,
J.; Lalani, A. S.; and Arteaga, C. L.
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were E928G (n = 35), V104L/M (n = 8), T355A/I (n = 5), and K329E/I (n = 5). These were similar to

the most common single HER2 and HER3 missense mutations found in breast tumors (Figures 5.2D and

5.2E). The most common pairs are shown in Figure 5.2D. Since HER3E928G is the most common co-mutated

HER3 allele, we focused our studies on that mutation paired with HER2L755S, HER2V777L, HER2L869R, and

HER2S310F.

5.2.2 Co-occurring HER2/HER3 mutants enhance KD dimerization and HER2 kinase activation

To determine the mechanisms of activation of mutant HER2 and HER3, we systematically evaluated the con-

tributions of each mutation to HER2 kinase activation and HER2/HER3 dimerization (Figures 5.4A–5.4C).

Previous work demonstrated an increase in HER2WT kinase activity when bound to HER3E928G relative to

HER3WT (Collier et al., 2013). Subsequent work showed that HER3E928G enhances EGFR/HER3 dimer-

ization affinity, potentially as a result of charge neutralization at the asymmetric dimer interface. However,

neutralization of a glutamate interface residue in EGFR resulted in <2-fold increase in dimerization affinity,

suggesting that charge neutralization may not be the primary contributor to HER3E928G gain of function (Lit-

tlefield et al., 2014). Therefore, we probed the effects of HER3E928G on HER2/HER3 dimerization using a

combination of Rosetta DDG calculations and molecular dynamics (MD) simulations.

Consistent with previous studies, our Rosetta simulations suggest an enhanced dimerization affinity of

HER2WT/HER3E928G relative to HER2WT/HER3WT (Figure 5.3A). Per-residue decomposition of Rosetta

binding energy suggests that the largest contributions can be attributed to HER2 L790 and HER3 G927

(Figures 5.3B, 5.4D, and 5.4E). MD simulations displayed a reduced HER2 L790-HER3 G927 backbone

hydrogen bond (H bond) distance (Figures 5.3C and 5.3D) and a 1̃.3 kcal/mol increase in H bond stability

in HER2WT/HER3E928G relative to HER2WT/HER3WT (Figures 5.4F and 5.4G). We failed to observe an

increase in favorable contacts between charged interface residues (Figures 5.3B, 5.3D, 5.4D, and 5.4E). Our

results suggest that the increased flexibility conferred to HER3E928G at the dimerization interface by adjacent

glycine residues (G927 and G928) increases dimerization affinity through backbone H bond optimization.

We next sought to understand the structural basis for potential synergy of HER3E928G with the most

common co-occurring HER2 mutants in breast cancer (Figure 5.1D): L755S, V777L, and L869R. Previous

studies have shown that HER2 KD mutant monomers, including HER2V777L, displayed enhanced kinase ac-

tivity compared with the HER2WT monomer; HER2 activity was further increased by homodimerization of

mutant HER2 compared with the mutant monomer (Bose et al., 2013; Collier et al., 2013). Here, we inves-

tigated to what extent these mutations increase stability of the KD active conformation (Figure 5.4A) versus

the stability of the asymmetric heterodimer interface (Figure 5.4B). We performed Rosetta DDG calculations

of HER2 missense mutations in complex with HER3WT or HER3E928G (Figures 5.4B and 5.4C). The HER2
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Figure 5.3: Co-occurring HER2/HER3 mutants enhance HER2/HER3 kinase domain association and HER2
kinase activity. (A) Comparison of the computational structural models of the HER2WT/HER3WT and
HER2WT/HER3E928G at the asymmetric dimer interface. HER2 is colored purple and HER3 is colored blue.
The hydrogen bond between residues G927-O and L790-NH is represented by a yellow line. The hydrogen
bond angle given by the L790-N, L790-H, and G927-O atoms is also depicted with a yellow line. (B) Proba-
bility density plots of HER2WT/HER3WT and HER2WT/HER3E928G HER3 G927-O – HER2 L790-N hydro-
gen bond distance (left), HER2 K716-NZ – HER2 E719-OE1,2 bond distance (middle), and HER2 K716-NZ
– HER2 D742-OD1,2 bond distance (right). (C) Rosetta HER2/HER3 heterodimerization binding energy.
(D) Pairwise sums of per-residue binding energy decomposition for HER2/HER3 heterodimerization. (E)
Activation state conformational free energy landscape of HER2WT (upper left quadrant), HER2L755S (upper
right quadrant), HER2V777L (lower left quadrant), and HER2L869R (lower right quadrant). (F) Quantification
of free energy difference between active and inactive states for each mutant (gray), relative free energy differ-
ence compared to HER2WT (yellow), and integration along the lowest free energy path(s) (green and purple).
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KD mutants did not increase dimerization affinity with HER3WT (Figure 5.3A). In contrast, HER2S310F/Y

did increase dimerization affinity of the ECDs, potentially because the aromatic side chain of HER2 F/Y310

can make a stable hydrophobic contact with HER3 L272 (Figures 5.5A and 5.5B). HER3E928G enhanced

dimerization affinities over HER3WT in all cases (Figures 5.3C and 5.5B).

We tested the hypothesis that HER2 missense mutants increase the stability of the KD active conformation

using steered MD and umbrella sampling (US) simulations. We reasoned that mutations that reduce the

energetic barrier to activation increase the propensity for dimer formation through conformational selection

(Figures 5.4A and 5.4B). HER2WT is more stable in the inactive conformation than the active conformation

in our US simulations (Figures 5.3E and 5.3F). In contrast, both HER2L869R and HER2L755S favor the active

conformation (Figures 5.3E and 5.3F). Consistent with previous accelerated MD simulations (Robichaux

et al., 2019), HER2V777L retained a preference for the inactive conformation in our simulations; however, the

barrier to activation is reduced, suggesting that HER2V777L is more readily activated than HER2WT. These

results suggest that the tested HER2 KD missense mutations lower the free energy barrier between the inactive

and active KD conformations, while HER3E928G enhances the stability of the dimerization interface, such that

HER2missense/HER3E928G co-mutations cooperatively promote oncogenic activation.

5.2.3 Co-occurring HER2/HER3 mutants enhance ligand-independent HER2/HER3 and PI3K acti-

vation

To test our computational predictions, we performed co-immunoprecipitation (co-IP) in HEK293 cells tran-

siently transfected with WT (wild type) or mutant HER2 and HER3. In agreement with the structural pre-

dictions (Figures 5.3A and 5.5B), co-expression of HER3E928G enhanced the interaction with HER2S310F,

L755S, or V777L compared with HER3WT (Figures 5.6A and 5.6B). The stronger association between

HER2L755S and HER3E928G compared with either mutant alone was confirmed by proximity ligation assay

(PLA) (Figures 5.7A and 5.7B).

Treatment with the HER3 ligand neuregulin (NRG) triggers HER2/HER3 heterodimerization and path-

way activation. We asked whether HER3E928G can bypass the effect of NRG stimulation via enhanced interac-

tion with the KD of HER2. Coexpression of HER3E928G with HER2WT strongly enhanced ligand-independent

HER3 phosphorylation in serum-starved HEK293 cells (Figure 5.6C) in agreement with previous studies

(Jaiswal et al., 2013). Similarly, HER2L755S and HER2V777L, when co-expressed with HER3WT, increased

ligand-independent HER2 and HER3 phosphorylation. Levels of P-HER3 were highest in the double-mutant

cells. Similar results were obtained when only the intracellular domains of WT or mutant HER2 and HER3

were expressed (Figure 5.7C). Treatment with NRG was sufficient to stimulate HER2 and HER3 phospho-

rylation in cells co-expressing HER2WT and HER3WT, similar to the effects of HER2/HER3 double mutants
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Figure 5.4: HER2 and HER3 missense mutations enhance receptor heterodimerization with complementary
but distinct mechanisms. (A) Thermodynamic cycle relating HER2WT to HER2mutant active to inactive con-
formational state transition free energy. HER2L869R is displayed as an example of HER2mutant mutants.
(B) Thermodynamic cycle relating HER2WT to HER2mutant heterodimerization free energy with HER3WT.
(C) Thermodynamic cycle relating HER2/HER3WT and HER2/HER3E928G heterodimerization free energies.
Here, we evaluated the relative free energies of HER2mutant activation compared to HER2WT (A) with
steered MD and umbrella sampling simulations. We evaluated the relative free energies of HER2WT and
HER2mutant heterodimerization with HER3WT (B) and HER3E928G (C) with Rosetta. We also utilized con-
ventional MD simulations to investigate differences in heterodimerization affinity of HER2WT with HER3WT

vs. HER3E928G. (D) Per-residue energy decomposition of select HER2 residues at the HER2/HER3 dimeriza-
tion interface. (E) Per-residue energy decomposition of select HER3 residues at the HER2/HER3 dimeriza-
tion interface. All per-residue energies reported as mean +/- standard error across 20 lowest interface energy
samples per group. (F) Log-scaled survival curves of the G927 – L790 backbone hydrogen bond rupture
event with a 3.5 Å cutoff. (G) Hydrogen bond forward (rupture) and reverse (formation) rates and the free
energy associated with hydrogen bond rupture using hydrogen bond distance cutoff values of 3.5 Å or 4.0 Å.
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Figure 5.5: Structural features of HER2 missense mutants. (A) Computational structural model of the near
full-length HER2WT (green) and HER3WT (cyan) heterodimer with in complex with NRG1 (purple). The
modeled heterodimer includes the extracellular domain (ECD; subdomains I – IV), transmembrane domain
(TMD), juxtamembrane domain (JMD), and kinase domain (KD) of both HER2 and HER3. The unstructured
C-terminal tails were excluded from modeling. (B) Rosetta HER2/HER3 heterodimerization binding energies
for the HER2S310F and HER2S310Y mutants with HER3WT and HER3E928G. Reported as mean +/- standard
error across 5 lowest interface energy samples per group. (C) HER2WT active state depicting L755 interacting
with hydrophobic core residues at the β3-αC interface. (D) HER2L755S active state depicting S755 interacting
with hydrophobic core residues at the β3-αC interface. (E) HER2WT inactive state depicting L869 interacting
with hydrophobic core. (F) HER2L869R inactive state depicting R869 interacting with hydrophobic core. (G)
HER2WT active state depicting V777 interacting with the back hydrophobic pocket. (H) HER2V777L active
state depicting L777 interacting with the back hydrophobic pocket.

91



Figure 5.6: HER3E928G enhances HER2/HER3 association and PI3K pathway activation. (A) HEK293 cells
were co-transfected with WT or mutant HER2 and HER3WT or HER3E928G. For immunoprecipitation, lysates
were incubated with HER2 antibody Ab-17 overnight at 4°C, followed by incubation with Protein G beads
and magnetic separation. (B) Immunoblot bands from (A) were quantified using ImageJ. (C) HEK293 cells
were co-transfected with WT or mutant HER2 and HER3WT or HER3E928G. Cells were serum-starved
overnight, then lysed. Cell lysates were probed with the indicated antibodies. (D) MCF10A cells stably
expressing WT or mutant HER2 and HER3WT or HER3E928G were starved in EGF/insulin-free media + 1%
CSS overnight. Lysates were probed with the indicated antibodies. (E) MCF10A cells stably expressing the
indicated transgenes were starved and lysed as in (D). Where indicated, western blot bands were quantified
using ImageJ. The ratios were normalized to the WT/WT condition. Data and illustrations produced by Han-
ker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan,
D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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in unstimulated cells (Figure 5.6C). These results support a model whereby the concurrent HER2/ HER3 KD

mutants promote ligand-independent HER2/HER3 KD association and HER2 kinase activation.

Next, we stably transduced MCF10A breast epithelial cells with WT and mutant HER2, each with WT

or mutant HER3. In low-serum conditions, cells expressing the double mutants showed the highest levels

of P-HER3 (Figure 5.6D). Unlike HER2, P-HER3 can directly bind to the p85 subunit of PI3K, inducing

PI3K activity (Haikala and Janne, 2021). Consistent with this, levels of P-AKT were also highest in double-

mutant cells (Figure 5.6D). P-HER3 and P-AKT were enhanced to a similar degree by NRG stimulation in

HER2-mutant/HER3WT cells (Figure 5.7D).

The above experiments were performed in the context of ectopic expression of HER2 and HER3; how-

ever, most concurrent HER2 and HER3 mutations occur in the absence of HER2 gene amplification (Figures

5.1A and 5.1B). Therefore, we expressed HER3WT or HER3E928G in (1) OVCAR8 ovarian cells, which con-

tain an activating somatic HER2G776V mutation without HER2 amplification (Sudhan et al., 2020), and (2)

MCF7 HER2-non-amplified breast cancer cells isogenically modified to express HER2L755S or HER2V777L

at endogenous levels (Zabransky et al., 2015). Expression of HER3E928G enhanced co-IP with mutant HER2

in OVCAR8 cells and enhanced P-HER3 in both models compared with HER3WT (Figures 5.6E and 5.7E).

Levels of P-AKT were also increased in OVCAR8 cells expressing HER3E928G, but not in MCF7 double-

mutant cells, perhaps because these cells harbor an activating PIK3CA mutation. These results suggest that

concurrent HER2/HER3 mutants enhance ligand-independent PI3K activity, providing a plausible explana-

tion for the mutual exclusivity of co-occurring HER3 and PIK3CA mutations in HER2-mutant breast cancers

(Figure 5.1A).

We noted above that HER2 insertion mutations did not cooccur with HER3 mutations (Figures 5.1A

and 5.1B). Therefore, we asked whether the HER2Y772 A775dup (HER2YVMA) insertion mutant could ac-

tivate HER2/PI3K to a similar degree as cooccurring HER2 and HER3 missense mutants. We modeled

the insertion mutants HER2YVMA and HER2G778 P780dup (HER2GSP) mutations based on the HER2WT and

EGFRD770 N771insNPG structures (Figure 5.7F). Simulations suggest that HER2GSP and HER2YVMA have re-

duced free energy barriers to activation relative to HER2WT (Figures 5.7F and 5.7G). Next, we stably trans-

duced MCF10A cells with HER2YVMA and HER3WT or HER3E928G. Both HER2/HER3 co-IP and P-AKT

levels were similar in cells expressing HER2YVMA/HER3WT and HER2L755S/HER3E928G (Figures 5.6 and

5.7H). Co-expression of HER3E928G with HER2YVMA did not further increase P-AKT, suggesting that HER2

insertion mutations and HER3 mutations are stronger activators of PI3K than HER2 missense mutations

alone.

While HER3E928G is the most common HER3 mutation in breast cancer, we noted several cases of co-

occurring HER2/ HER3 ECD mutations (Figure 5.1D). Thus, we expressed each HER3 ECD mutation to-
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Figure 5.7: Effects of co-occurring HER2/HER3 mutations or HER2 insertion mutations on HER2 kinase
activity and HER2/HER3 KD interaction. (A) The intracellular domains (ICDs) of WT or mutant HER2 and
HER3 were transiently transfected into HEK-293 cells. Cell lysates were probed with the indicated antibod-
ies. EG, E928G. (F) Illustration of exon 20 insertion mutants. Exon 20 insertion mutations are highlighted
in purple. (G) Activation state conformational free energy landscapes of the HER2YVMA and HER2GSP in-
sertion mutants. (D) MCF10A cells stably expressing the indicated genes were cultured in EGF/insulin-free
media. Lysates were subjected to immunoprecipitation with the HER2 Ab-17 antibody. Western blot bands
were quantified using ImageJ and normalized to the HER2L755S/HER3WT condition. (E) HEK293 cells were
co-transfected with full-length HER2WT or HER2S310F along with WT or mutant HER3 (ECD mutations).
Cells were serum-starved overnight. Cell lysates were probed with the indicated antibodies. Data and illus-
trations for figure panels A, B, C D, E, H, and I produced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye,
D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch,
J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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gether with HER2WT or HER2S310F in HEK293 cells. HER2S310F expression with HER3WT resulted in in-

creased ligand-independent HER2 and HER3 phosphorylation compared with HER2WT (Figure 5.7I). How-

ever, co-expression of HER3 ECD mutants did not further enhance phospho-HER2 or -HER3, suggesting

that these HER3 mutants do not promote ligand-independent HER2/HER3 activation.

5.2.4 Co-occurring HER2/HER3 mutants enhance oncogenic growth and invasion

Next, we asked whether concurrent HER2/HER3 mutants cooperate to transform breast cancer cells. While

most of the cooccurring mutations enhanced growth in 2D and 3D (Figures 5.8A and 5.8B), expression of

the most common pair, HER2L755S/HER3E928G, did not further enhance monolayer 2D growth above that of

HER2L755S alone.

However, when cultured in 3D Matrigel, MCF10A HER2L755S/HER3E928G cells formed large invasive

acini in the absence of added NRG1 (Figures 5.8C and 5.8D), suggestive of a more transformed phenotype.

Similar invasive acini were formed by cells expressing HER2S310F/HER3E928G and HER2L869R/HER3E928G,

but not by cells expressing either HER2 variant with HER3WT (Figure 5.9A). Notably, NRG1 treatment phe-

nocopied the effect of HER3E928G in cells expressing HER3WT and HER2 mutants (Figure 5.8C). Ligand-

independent invasive acini were formed by cells transduced with HER2YVMA, but this effect was not enhanced

by co-transduction with mutant HER3. Invasion through Matrigel-coated chambers was strongly enhanced

by all of the double mutants or by HER2YVMA/HER3WT (Figures 5.8E, 5.8F, and Figure 5.9B–Figure 5.9E).

Together, these results suggest that concurrent HER2/HER3 mutants enhance ligand-independent PI3K path-

way activation, which is associated with increased invasion (Samuels et al., 2005).

5.2.5 HER3E928G promotes resistance to HER2-targeting antibodies

We next asked whether HER2- and HER3-targeting antibodies could disrupt the association of HER3E928G

with HER2 and the enhanced oncogenicity conferred by co-occurring HER2/HER3 mutations. We used the

HER2 antibodies trastuzumab and pertuzumab, which disrupt ligand-dependent and -independent HER2/HER3

dimers (Agus et al., 2002; Junttila et al., 2009) and PanHER, a mixture of antibodies targeting EGFR, HER2,

and HER3 that induces ERBB receptor downregulation (Jacobsen et al., 2015). In agreement with previous

studies (Greulich et al., 2012; Kavuri et al., 2015), MCF10A cells expressing the extracellular HER2S310F

mutation were exquisitely sensitive to the combination of trastuzumab and pertuzumab and to PanHER (Fig-

ures 5.10A–5.10C and 5.11A). However, co-expression of HER3E928G reversed this response (Figures 5.10B

and 5.10C).

co-IP of cell lysates with HER2 antibodies showed that HER2S310F/HERWT dimerization was disrupted

by trastuzumab and pertuzumab. In cells expressing HER2S310F/HER3E928G, dimerization was not affected
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Figure 5.8: Co-occurring HER2/HER3 mutations enhance oncogenic growth and invasion of breast epithelial
cells. (A) MCF10A cells stably expressing WT or mutant HER2 and HER3 were grown in 2D in EGF/insulin-
free media + 1% CSS for 6 days. Cell viability was measured by Cell Titer Glo. (B) MCF10A cells were
grown in 3D Matrigel in EGF-insulin-free media + 1% CSS and stained with MTT. The total volume of
colonies per well was quantified using the Gelcount instrument. Data represent the average +/- SEM of three
replicates (****, p¡0.0001, one-way ANOVA + Bonferroni multiple comparisons test). (C) MCF10A cells
stably expressing WT or mutant HER2 and HER3 were grown in 3D Matrigel in EGF-free media + 1% CSS
+/- 10 ng/ml NRG1. (D) The number of colonies showing invasive branching per field of view (FOV) was
quantified. Data represent the average +/- SD of three replicates (**, p¡0.01, student t-test). (E) MCF10A cells
stably expressing the indicated genes were seeded on Matrigel-coated chambers. After 22 h, invading cells
were stained with crystal violet. (F) Relative invasion (normalized to HER2WT/HER3WT) from two FOVs
per well was quantified using ImageJ. Data represent the average +/- SD of 3-4 replicates (****, p¡0.0001,
One-way ANOVA + Bonferroni multiple comparisons test). Data and illustrations produced by Hanker, A.
B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.;
Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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Figure 5.9: Co-occurring HER2/HER3 missense mutations or HER2 insertion mutations increase the invasive
capacity of breast epithelial cells. (A) MCF10A cells stably expressing the indicated genes were grown in
3D Matrigel in EGF-free media + 1% CSS. (B) MCF10A cells stably expressing the indicated genes were
seeded on Matrigel-coated chambers. After 22 h, invading cells were stained with crystal violet. (C) Relative
invasion (normalized to HER2WT/HER3WT) from two FOVs per well was quantified using ImageJ. Data
represent the average +/- SEM (n¿3). P values, two-way ANOVA + Bonferroni. (D) MCF10A cells stably
expressing the indicated genes were seeded on Matrigel-coated chambers and stained as in (B). (E) Relative
invasion (normalized to HER2L755S/HER3E928G was quantified as in (C). Data represent the average +/- SEM
(n¿4). Data and illustrations produced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.;
Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.;
Lalani, A. S.; and Arteaga, C. L.
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Figure 5.10: HER3E928G promotes resistance to HER2- and HER3-targeting antibodies by retaining
HER2/HER3 kinase domain association. A) Model of HER2/HER3E928G heterodimer bound to trastuzumab,
pertuzumab, PanHER antibody mixture, or LJM716. The enhanced kinase domain association mediated by
HER3E928G is not predicted to be disrupted by antibodies blocking the associationof the HER2 and HER3
ECDs. (B) MCF10A cells stably expressing the indicated genes were grown in 3D Matrigel in EGF/insulin-
free media treated with vehicle (PBS), 20 g/ml PanHER, 20 g/ml each trastuzumab + pertuzumab and stained
with MTT. (C) The total volume of colonies per well was quantified using the Gelcount instrument. Data
represent the average +/- SD of three replicates. (D) MCF10A cells stably expressing HER2S310F/HER3WT

or HER2S310F/HER3E928G were treated with vehicle (PBS) or 20 g/ml each trastuzumab and pertuzumab
for 24 h in EGF/insulin-free media + 1% CSS. Following an acid wash to remove bound antibodies, HER2
immunoprecipitation was performed as described in STAR Methods. (E) MCF10A cells stably expressing
HER2S310F/HER3WT or HER2S310F/HER3E928G were treated with vehicle (PBS), 20 g/ml each trastuzumab
and pertuzumab, or 20 g/ml PanHER for 24h in EGF/insulin-free media + 1% CSS. Lysates were probed with
the indicated antibodies. Data and illustrations produced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye,
D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch,
J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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by antibody treatment (Figure 5.10D). Similarly, the antibodies blocked P-HER3, P-AKT, and the down-

stream effector P-S6 in MCF10A cells expressing HER2S310F/HER3WT, but failed to do so in cells express-

ing HER2S310F/HER3E928G (Figure 5.10E). Flow cytometry analysis revealed that HER3E928G did not disrupt

trastuzumab binding to cell surface HER2 (Figure 5.11B). These results suggest that HER3E928G may enable

the intracellular association of HER2 and HER3 KD mutants, even when the ECD interaction is disrupted by

neutralizing antibodies.

Figure 5.11: HER2S310F-induced transformation is blocked by anti-HER2 antibodies. (A) MCF10A cells
stably expressing the indicated genes were grown in 3D Matrigel in EGF/insulin-free media treated with
vehicle (PBS) or 20 g/ml each trastuzumab + pertuzumab for 7 d. Scale bar, 500 m. (B) MCF10A cells
stably expressing the indicated transgenes were stained with 0.2 g/ml trastuzumab and an Alexa Fluor 647-
conjugated goat anti-human IgG secondary antibody and analyzed by flow cytometry. Data and illustrations
produced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.;
Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C.
L.

5.2.6 HER3E928G modulates sensitivity to neratinib

The HER2 TKI neratinib has emerged as a promising treatment for HER2-mutant metastatic breast cancer.

However, only a subset of HER2-mutant patients respond to neratinib (Hyman et al., 2018; Ma et al., 2017;

Smyth et al., 2020). Therefore, we asked whether concurrent HER3E928G mutations affect the ability of ner-

atinib to inhibit HER2. Neratinib is an ATP-competitive TKI, so its efficacy is a function of ATP-binding

affinity. MD simulations and molecular mechanics generalized Born and surface area binding energy calcu-

lations of the HER2WT-ATP complex heterodimerized with HER3WT or HER3E928G suggest that HER3E928G
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enhanced binding affinity to ATP (Figure 5.12A). Similar results were seen in simulations of missense vari-

ants (Figures 5.12B and 5.12C). Our simulations suggest that HER3E928G reduces the binding affinity of

neratinib to HER2WT, HER2L755S, and HER2L869R (Figure 5.12D). They also suggest that HER2L755S, and

to a lesser extent HER2L869R, may have reduced sensitivity to neratinib that is compounded by co-occurrence

with HER3E928G, consistent with previous reports that HER2L755S may be less sensitive to HER2 TKIs (Li

et al., 2019; Robichaux et al., 2019). In contrast, HER2V777L is expected to mostly retain sensitivity to

neratinib even when co-occurring with HER3E928G (Figure 5.12D).

We subsequently tested the neratinib sensitivity of MCF10A cells co-expressing WT or mutant HER2 and

HER3. Co-expression of HER3E928G resulted in a 15-fold shift in neratinib halfmaximal inhibitory concentra-

tion (IC50) in MCF10A HER2S310Fexpressing cells (Figure 5.12E). Similar results were obtained with other

HER2 TKIs (poziotinib, afatinib, and tucatinib), suggesting that expression of HER3E928G reduces sensitiv-

ity to most HER2 ATP-competitive inhibitors (Figure 5.13A). However, the shift in IC50 varied in a HER2

allele-specific manner (Figures 5.12F and 5.13B), consistent with our computational predictions (Figures

5.12D). For example, HER2L755S cells were less sensitive to neratinib compared with HER2S310F, consistent

with previous reports (Li et al., 2019; Robichaux et al., 2019). This trend was similar in 3D Matrigel cultures:

treatment with neratinib blocked growth of MCF10A HER2S310F/HER3WT and HER2V777L/HER3WT cells

and partially blocked growth of MCF10A HER2L869R/HER3WT cells, whereas cells expressing HER2L755S

were largely resistant (Figure 5.12G). Co-expression of HER3E928G reduced the response to neratinib in cells

expressing most HER2 mutants. Consistent with the effects on cell growth, neratinib treatment blocked

P-HER3, P-AKT, and P-S6 in MCF10A cells expressing HER2mutant/HER3WT, but to a lesser degree in

cells expressing HER2L755S/HER3WT, while neratinib failed to block HER3/PI3K signaling in cells express-

ing HER3E928G (Figure 5.13C). Furthermore, OVCAR8 cells (somatic HER2G776V) ectopically expressing

HER3E928G (Figure 5.6E) exhibited reduced sensitivity to neratinib compared with cells expressing HER3WT

(Figure 5.13D).

Next, we established organoids from an HER2-mutant, nonamplified breast tumor model: the SA493

patient-derived xenograft (PDX), derived from an ER+/HER2S310F lobular breast cancer (Eirew et al., 2015).

We confirmed that the organoids retained the HER2S310F mutation (Figure 5.13E). Next, we stably trans-

duced these organoids with HER3WT or HER3E928G (Figure 5.13F); expression of HER3E928G in these

HER2-mutant organoids increased P-HER3, P-AKT, and P-S6 (Figure 5.13G). In ligand-free media, cells

expressing HER3E928G formed larger, less-organized organoids compared with those expressing HER3WT,

suggesting that HER3E928G promotes a more aggressive phenotype of this HER2-mutant breast cancer model

(Figure 5.13H). While parental organoids and those expressing HER3WT were quite sensitive to trastuzumab

+ pertuzumab, neratinib, or the combination, organoids expressing HER3E928G exhibited markedly reduced
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Figure 5.12: Co-occurring HER3 mutations modulate neratinib sensitivity in HER2-mutant cells. (A) Molec-
ular dynamics MM/GBSA binding affinity estimates of ATP to HER2WT/HER3WT and HER2WT/HER3E928G.
(B) Probability density kinase domain hinge – ATP hydrogen bond distance in HER2WT, HER2L755S,
HER2V777L, and HER2L869R dimerized with HER3WT. (C) Probability density kinase domain hinge – ATP
hydrogen bond distance in HER2WT, HER2L755S, HER2V777L, and HER2L869R dimerized with HER3E928G.
(D) Molecular dynamics MM/GBSA relative binding affinity estimates of neratinib to different HER2 mis-
sense mutants heterodimerized with either HER3WT or HER3E928G. (E) MCF10A cells stably expressing
the indicated genes were grown in EGF/insulin-free media + 1% CSS and treated with the indicated concen-
trations of neratinib for 6 days. Cell viability was measured using CellTiterGlo. (F) Neratinib IC50s were
determined as in (E). Data represent the average of 3 independent dose-response curves containing 4 repli-
cates each. (G) MCF10A cells stably expressing WT or mutant HER2 and HER3 were grown in 3D Matrigel
in EGF-free media + 1% CSS ± 10 nM neratinib and stained with MTT. The total volume of colonies per
well was quantified using the Gelcount instrument. Data represent the average ± SD of three replicates. Data
and illustrations for figure panels D - G produced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin,
C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He,
J.; Lalani, A. S.; and Arteaga, C. L.
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Figure 5.13: The growth of CW2 HER2L755S/HER3E928G colon cancer cells depends on HER2L755S and
HER3. A) Electropherograms of ERBB2 cDNA from CW2 cells, indicating heterozygous expression of
HER2L755S and HER3E928G. A reverse primer was used for HER2 sequencing. (B) CW2 cells were trans-
fected with siControl or siRNA specifically targeting HER2L755S. qRT-PCR was performed using primers
specific for HER2WT (black) or HER2L755S (blue). **, p¡0.01, two-way ANOVA + Bonferroni multiple com-
parisons test. (C) CW2 cells were transfected control or HER3 siRNA. qRT-PCR was performed using HER3
primers. (D) CW2 cells were transfected with the indicated siRNA and lysed after 48h. Lysates were probed
with the indicated antibodies. (E) CW2 cells were transfected with the indicated siRNA. Cell viability after
4 days was measured using the CyQuant assay. **, p¡0.01; ***, p¡0.001, one-way ANOVA + Bonferroni.
(F) CW2 cells were transfected with the indicated siRNA. Total cell number was measured after 4 days using
a Coulter counter. ***, p¡0.001; ****, p¡0.0001, one-way ANOVA + Bonferroni. Data represent the aver-
age ± SD of three independent experiments. Data and illustrations produced by Hanker, A. B., Marı́n, A.;
Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.;
Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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sensitivity to these agents (Figure 5.12H). Together, our results suggest that HER3E928G increases ligand-

independent growth and reduces sensitivity to HER2-targeting agents in multiple HER2-mutant tumor mod-

els.

5.2.7 Cancer cells with co-occurring HER2/HER3 mutations are sensitive to combined inhibition of

HER2 and PI3Kα

Our results suggest that HER2/HER3 co-mutations hyperactivate the PI3K/AKT pathway and result in rel-

ative resistance to HER2-targeted therapies. Therefore, we tested the combination of neratinib with a PI3K

inhibitor in MCF10A cells expressing the double mutants. The combination of neratinib with the PI3Ka in-

hibitor alpelisib or with the pan-PI3K inhibitor buparlisib blocked P-AKT and P-S6 in MCF10A HER2L755S/HER3E928G

and HER2- YVMA cells more potently than either drug alone (Figure 5.14A).

The combination of neratinib and alpelisib also strongly reduced colony growth and invasive acini for-

mation in 3D Matrigel by these cells (Figures 5.14B and 5.14C). Next, we examined CW2 colorectal cancer

cells, which harbor somatic HER2L755S/HER3E928G mutations (Figure 5.15A) (Kloth et al., 2016). Small in-

terfering RNA (siRNA)-induced knockdown of either HER2L755S or HER3 showed that the proliferation and

PI3K activity in these cells is partially dependent on both mutant HER2 and HER3 (Figures 5.15B–5.15F).

The combination of neratinib and alpelisib was required to eliminate P-AKT and synergistically blocked

proliferation in these cells (combination index = 0.42) (Figures 5.14D and 5.14E). While 4 h treatment with

neratinib + alpelisib strongly blocked P-ERK and P-S6 in CW2 and MCF10A HER2L755S/HER3E928G cells,

a rebound was seen at 24 h of treatment (Figures 5.15G and 5.15H), perhaps reflecting activation of feedback

pathways (Chakrabarty et al., 2012; Chandarlapaty et al., 2011).

In addition, the combination delayed growth of CW2 xenografts more potently than each drug alone (Fig-

ures 5.14F and 5.15I). Together, our data suggest that addition of a PI3Ka inhibitor increases the sensitivity

of tumors with HER2mut/HER3E928G to HER2 TKIs.

5.3 Discussion

Somatic HER2 mutations are increasingly being recognized as targetable alterations in breast and other can-

cers (Mishra et al., 2017; Cocco et al., 2018), prompting a number of studies testing HER2 TKIs in HER2-

mutant cancers (Hyman et al., 2018; Robichaux et al., 2019; Smyth et al., 2020). Here, we investigated the

intriguing co-occurrence of mutations in HER2 and HER3, genes that encode members of the same signaling

complex. We reasoned that such patterns of co-occurrence indicate a selective advantage conferred by both

oncogenes during tumor evolution. Recent studies have found that a number of oncogenes, including HER2,

HER3, and PIK3CA, often harbor more than one mutation in the driver oncogene, termed ’composite muta-
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Figure 5.14: Cancer cells harboring co-occurring mutations in HER2 and HER3 are sensitive to com-
bined inhibition of HER2 and PI3Kα . (A) MCF10A cells stably expressing HER2L755S/HER3E928G or
HER2YVMA/HER3WT were treated with vehicle (DMSO), 500 nM neratinib, 500 nM buparlisib, 50 nM ner-
atinib, or the indicated combinations for 4 h in EGF/insulin-free media + 1% CSS. Lysates were probed
with the indicated antibodies. (B) MCF10A cells stably expressing the indicated genes were grown in
3D Matrigel in EGF/insulin-free media + 1% CSS treated with vehicle (DMSO), 20 nM neratinib, 1 M
alpelisib, or the combination. (C) The number of colonies showing invasive branching per field of view
(FOV) from (B) was quantified. Data represent the average ± SD of three replicates. (D) CW2 colon cancer
cells (HER2L755S/HER3E928G) were treated with vehicle (DMSO), 500 nM alpelisib, 50 nM neratinib, or the
combination in serum-free media for 4 h. Lysates were probed with the indicated antibodies. (E) CW2 cells
were treated with increasing concentrations of neratinib (0-100 nM) or alpelisib (0-1000 nM) alone or in
combination for 72 h. Cell viability was quantified using the CyQuant assay and combination indices were
determined using the Chou-Talalay test. Numbers inside each box represent the average % viability (relative
to untreated controls) from two independent experiments. (F) Mice carrying CW2 xenografts were treated
with vehicle, 40 mg/kg neratinib, 40 mg/kg alpelisib, or the combination for 14 days, starting when tumors
reached 200 mm3. Data and illustrations produced by Hanker, A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.;
Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D. R.; Servetto, A.; Brewer, M. R.; Koch, J.
P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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Figure 5.15: The growth of CW2 HER2L755S/HER3E928G colon cancer cells depends on HER2L755S and
HER3. (A) Electropherograms of ERBB2 cDNA from CW2 cells, indicating heterozygous expression of
HER2L755S and HER3E928G. A reverse primer was used for HER2 sequencing. (B) CW2 cells were trans-
fected with siControl or siRNA specifically targeting HER2L755S. qRT-PCR was performed using primers
specific for HER2WT (black) or HER2L755S (blue). P values, two-way ANOVA + Bonferroni. (C) CW2 cells
were transfected control or HER3 siRNA. qRT-PCR was performed using HER3 primers. P values, one-
way ANOVA + Bonferroni. (D) CW2 cells were transfected with the indicated siRNA and lysed after 48h.
Lysates were probed with the indicated antibodies. (E) CW2 cells were transfected with the indicated siRNA.
Cell viability after 4 d was measured using the CyQuant assay. P values, one-way ANOVA + Bonferroni.
Data represent the average ± SD of three independent experiments. (F) CW2 cells were transfected with
the indicated siRNA. Total cell number was measured after 4 d using a Coulter counter. P values, one-way
ANOVA + Bonferroni. Data represent the average ± SD of three independent experiments. (G,H) MCF10A
HER2L755S/HER3E928G (G) and CW2 (H) cells were treated with vehicle (DMSO), 500 nM alpelisib, 50 nM
neratinib, or the combination in serum-free media for 24 h. Lysates were probed with the indicated antibod-
ies. (I) Mice carrying CW2 xenografts were treated with vehicle, 40 mg/kg neratinib, 30 mg/kg alpelisib,
or both drugs for 14 d, starting when tumors reached 200 mm3. Data represent the average tumor volme ±
SEM. P value, student’s t-test, vehicle vs. combination (Day14). Data and illustrations produced by Hanker,
A. B., Marı́n, A.; Jayanthan, H. S.; Ye, D.; Lin, C.-C.; Akamatsu, H.; Lee, K.-M.; Chatterjee, S.; Sudhan, D.
R.; Servetto, A.; Brewer, M. R.; Koch, J. P.; He, J.; Lalani, A. S.; and Arteaga, C. L.
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tions’ (Gorelick et al., 2020; Saito et al., 2020). In particular, composite PIK3CA mutations have been shown

to increase PI3K activity and PI3K-dependent tumor growth (Vasan et al., 2019). We speculate that single

gain-of-function missense mutations may not fully maximize HER2/HER3 activation, such that either com-

posite HER2 mutations, or co-occurring HER2/HER3 mutations, increase pathway activation and provide a

selective advantage.

It is well established that HER2-driven transformation, invasion, and metastasis depends on HER3/PI3K

signaling (Holbro et al., 2003; Smirnova et al., 2012; Xue et al., 2006). In addition, activating mutations

PIK3CA cooperate with amplified WT HER2, enhancing invasion and metastasis (Chakrabarty et al., 2010;

Hanker et al., 2013). In line with these data, co-mutant HER2/HER3 hyperactivate PI3K/AKT and enhance

transformation/invasion (Figures 5.6 and 5.8), potentially explaining the observed mutual exclusivity of these

alterations in HER2-mutant breast tumors (Figure 5.1A). While clinical information of patients with co-

occurring HER2/HER3 mutations is scarce, future studies should address whether this genomic subset of

patients correlates with increased metastasis.

We observed strong concordance between our computational structural predictions and biological results.

Our simulations suggest that co-occurring HER2 and HER3 mutants enhance the coupling of the receptor

KDs, such that HER2 missense mutants increase kinase conformational activation relative to HER2WT, while

HER3E928G enhances heterodimerization affinity (Figure 5.16B). This model is supported by co-IP, PLA,

and immunoblot assays (Figures 5.6 and 5.7). Our simulations also predicted that HER2L755S binds nera-

tinib with reduced affinity (Figure 5.12D). Indeed, HER2L755S was less sensitive to neratinib than the other

HER2 mutants in our cell viability and 3D Matrigel assays (Figures 5.12F, 5.12G, 5.13B, and 5.13C), con-

sistent with previous reports (Li et al., 2019; Robichaux et al., 2019). Likewise, our computational modeling

predicted that neratinib binding depends on the specific HER2 mutation within the HER2/HER3E928G het-

erodimer (Figure 5.12D). This was confirmed in cell-based assays: while HER3E928G strongly reduced nera-

tinib sensitivity and neratinib binding in the absence of HER2 KD mutations (i.e., HER2S310F/HER3E928G),

the HER2V777L/HER3E928G double mutant retained a strong interaction with neratinib and a high degree of

sensitivity to neratinib (Figures 5.12F and 5.12G). Thus, HER3E928G reduces sensitivity to neratinib in a

HER2 allele-specific manner.

Our results suggest that HER2 allele-specific differences in neratinib sensitivity are related to unique

mechanisms of activation of each mutant. We hypothesize that HER2L755S stabilizes the N-terminal region

of the αC helix (Figures 5.5C and 5.5D). In contrast, we hypothesize that HER2V777L increases hydrophobic

contacts in the back hydrophobic pocket, but may also function similar to KD insertion mutants (Figures

5.5E and 5.5F). Because L755S more rigidly pulls the αC helix inward from the N-terminal region, the

force applied perpendicularly to the αC helix by the neratinib pyridine ring may be greater than in V777L,

106



Figure 5.16: Model of HER2/PI3K pathway activation by co-occurring HER2/HER3 mutations. In the ab-
sence of ligand, HER3WT is in the closed conformation and does not interact with HER2WT. NRG1 treatment
(hot pink circle) promotes HER2/HER3 heterodimerization, and a HER2 missense mutation further increases
HER3 phosphorylation to recruit the p85 subunit of PI3K and activate PI3K signaling. In the absence of
ligand, the HER3E928G mutation phenocopies NRG1 treatment by increasing HER2/HER3 association via
enhanced binding of the HER2/HER3 kinase domains, leading to constitutive activation of PI3K. HER2 in-
sertion mutations alone, without HER3 mutations, also increase ligand-independent HER2/HER3 association
and PI3K activation. (B) A schematic equilibrium model showing how HER2missense mutations cooperate
with HER3E928G to enhance receptor heterodimerization and drive oncogenic activation.
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analogous to EGFRL858R (Sogabe et al., 2012). Finally, we hypothesize that HER2L869R decreases the

stability of the KD inactive conformation. The intermediate neratinib sensitivity of HER2L869R may be the

result of increased occupancy of the active conformation without direct stabilization of the αC helix (Figures

5.5G and 5.5H). Crystallographic studies coupled with detailed structure-activity relationship profiling and

long-timescale MD simulations are needed to fully elucidate the structural basis of TKI sensitivity/resistance.

In recent clinical trials of neratinib in patients with HER2- mutant cancer, patients with concurrent HER3

mutations in their tumors exhibited a lower clinical response and shorter progression-free survival (Hyman

et al., 2018; Smyth et al., 2020). Our results provide evidence that HER3E928G confers reduced sensitivity to

neratinib in HER2-mutant breast cancer cells. In addition to reducing neratinib sensitivity, we found that ex-

pression of HER3E928G strongly promoted resistance to HER2- and HER3-targeting antibodies (trastuzumab

+ pertuzumab or PanHER; Figure 5.12B). Similarly, (Jaiswal et al., 2013) found that HER3E928G was insen-

sitive to HER2- and HER3-targeting antibodies. We predict that small molecules that block HER2/ HER3

KD association would be most likely to block the oncogenic effects of concurrent HER2missense/HER3E928G

mutations. To the best of our knowledge, clinical compounds that disrupt HER2/HER3 KD heterodimeriza-

tion have not been reported. In the absence of such a molecule, we hypothesized that the combination of

a HER2 TKI + PI3Ka inhibitor would block the increased oncogenicity caused by co-occurring HER2 and

HER3 mutations. Indeed, the combination of neratinib and alpelisib strongly reduced growth and invasion

of double-mutant cells. Similarly, the combination of HER2 and PI3Ka inhibitors has been suggested for

HER2-amplified breast cancers harboring PIK3CA mutations (Hanker et al., 2013; Rexer et al., 2014). While

initial clinical trials indicated that the combination of a pan-PI3K inhibitor with the HER2 TKI lapatinib

resulted in significant toxicities (Guerin et al., 2017), a recent trial suggested that the combination of the

HER2 antibody-drug conjugate T-DM1 and a more specific PI3Ka inhibitor is tolerable (Jain et al., 2018).

Our results suggest that single-agent HER2 TKIs may not sufficiently block the growth of HER2-mutant

tumors with co-occurring HER3 mutations. Therefore, clinical trials investigating the efficacy and safety of

combining an HER2 TKI and PI3Ka inhibitor are warranted in cancers harboring cooccurring HER2/HER3

mutations.

5.4 Methods

5.4.1 Database searches

The Foundation Medicine database was queried for breast cancers harboring co-occurring mutations in

ERBB2 and ERBB3 in January 2019. Breast cancers from METABRIC (n=2509), Broad (n=103), Sanger

(n=100), TCGA (n=1108), INSERM Metastatic Breast Cancer (n=216), and the Metastatic Breast Cancer

Project (n=237) were queried in April 2019 using www.cBioPortal.org (Cerami et al., 2012). Breast can-
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cers from Project GENIE from Centers reporting alterations in ERBB2 and ERBB3 (n=8545; Centers =

COLU, CRUK, DFCI, DUKE, MSK, PHS, UCSF, VHIO, VICC, and YALE) were queried in June 2019

using www.cBioPortal.org/GENIE(Consortium, 2017). All breast cancers with co-occurring ERBB2 and

ERBB3 mutations were cross-referenced using at least two additional mutations in other genes to ensure that

individual patients were not counted more than once.

5.4.2 Computational modeling

Structural modeling of proteins was carried out using the Rosetta 3.12 macromolecular modeling software

package (Bender et al., 2016; Leman et al., 2020). The RosettaLigand application was used for molecular

docking (Combs et al., 2013; Meiler and Baker, 2006). Molecular dynamics simulations were carried out

using AMBER 18 (Case et al., 2018). Protein-protein interaction energy was obtained using the InterfaceAn-

alyzer mover in Rosetta. Protein-ligand interaction energy was estimated using MMPBSA.py (Miller et al.,

2012). RMSD, atom-atom distances, and dihedrals angles were obtained using various applications: Am-

berTools (Case et al., 2018), CPPTRAJ (Roe and Cheatham, 2013), and Rosetta. We used the following

forcefields / score functions for molecular modeling and simulation: AMBER ff14SB for proteins (Maier

et al., 2015), generalized AMBER force field 2 (GAFF2) for ligands (neratinib), REF2015 for Rosetta ki-

nase domain modeling, and Franklin 2019 for Rosetta HER2/HER3 near-full-length heterodimer modeling.

Neratinib geometry optimization was performed with Gaussian 09 at the B3LYP/6-31G* level of theory.

The electrostatic surface potential (ESP) was estimated with HF/6-31G* calculation. Partial charges gener-

ated with Gaussian 09 were fit to neratinib for MD simulations with the RESP procedure in AmberTools18

(Cornell et al., 1993). All structures were rendered with PyMOL 2.2. Graphs were generated with Matplotlib.

5.4.3 Structural modeling of the HER2-HER3 heterodimer

Modeling of the HER2/HER3 heterodimer was carried out in the Rosetta package (Song et al., 2013) utiliz-

ing multi-template comparative modeling (RosettaCM) with PDB structures 4RIW and 3PP0 as templates

(Aertgeerts et al., 2011; Littlefield et al., 2014). HER3 was retained from 4RIW. The HER2 sequence was

threaded on the receiver kinase EGFR structure from 4RIW during templated modeling, or was templated on

the HER2 structure from 3PP0 superimposed on EGFR from 4RIW. In both instances, fragments from either

structure were incorporated during RosettaCM refinement. Following the comparative modeling step, each

structure underwent a single repeat of constrained FastRelax in the REF2015 score function. A total of 5000

structures were generated, and the top 20 best scoring structures were subjected to FastRelax with five repeats

and constraints on starting coordinates. Constraints were ramped down during FastRelax. The best scoring

complex was taken for subsequent analysis.
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The near-full-length HER2/HER3 heterodimer was constructed with RosettaCM multi-template model-

ing. The HER2/HER3 KD heterodimer generated in the previous step, which included the juxtamembrane

B (JMB) region, was used for the most of the intracellular component. C-terminal tails were excluded from

modeling because they are primarily disordered. The transmembrane domain (TMD) and juxtamembrane A

(JMA) regions were modeled based on the EGFR homodimer NMR structural ensemble in PDB ID 2M20.

The HER2 extracellular domain (ECD) domains I – III were modeled from the HER2 crystallographic struc-

ture PDB ID 1N8Z. The HER3 ECD domains I – II were modeled from the EGFR crystallographic structure

PDB ID 3NJP with fragments from the HER3 tethered structure PDB ID 1M6B. The PDB ID 1HAE NMR

ensemble of Neuregulin 1 (NRG1) was superimposed with EGF from 3NJP prior to incorporation into the

model of HER3 ECD. The ECD domain IV was modeled from 3NJP for both HER2 and HER3. Initial

threaded models of each of these structures were combined with the Rosetta Domain Assembly application

(Koehler Leman and Bonneau, 2018). Subsequently, the assembled structure underwent iterative rounds of

all-atom minimization in the Franklin2019 score function with POPC implicit membrane and ramped con-

straints to start coordinates (weights successively lowered: 1.0, 0.5, 0.1, 0.0). The minimized structure was

relaxed with constraints to start coordinates. Each domain (KD, JM, TM, and ECD) were separately and suc-

cessively relaxed to produce 100 structures in each round, after which the best scoring structure was moved to

the next round. The final structure was relaxed with constraints ramped down before being used in subsequent

Rosetta mutational studies.

The fully inactivated HER2WT monomeric KD were generated with RosettaCM utilizing a structure of

EGFR in the inactive state (PDB ID 3GT8) and refined with three independent 2.0 ms MD simulations. Struc-

ture snapshots were nominally collected every 20 ns from each trajectory and relaxed without constraints. The

best scoring relaxed structure was taken to be the inactive HER2 conformation for steered MD and umbrella

sampling simulations.

5.4.4 Molecular docking of HER2 protein and ligand (neratinib)

The initial structure of the inhibitor neratinib was downloaded from the PubChem database. The structures

were then optimized using Gaussian 09 D.01 version at b3lyp/6-31G(d)* level. Electrostatic potential charges

were calculated using Gaussian 09 and assigned using AmberTools. Small molecule conformers were gen-

erated with the BioChemical Library (BCL) conformer generator using default settings to create a maximum

of 100 conformers (Mendenhall et al., 2020). Ligand (neratinib) docking was carried out using the Roset-

taLigand application in Rosetta 3.12 (Combs et al., 2013; DeLuca et al., 2015). The docking of ligands into

proteins is divided into two phases: low resolution docking and high resolution docking. During the low-

resolution docking phase, each ligand is allowed to explore the binding site in a 6.0 A radius. Rigid body
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transformation is combined with ligand conformation swaps for 500 cycles of Monte Carlo Metropolis op-

timization. During the high-resolution docking phase, 6 cycles of side-chain rotamer and ligand conformer

sampling were coupled with 0.2 Å in a Monte Carlo simulated annealing algorithm. 5000 docked protein-

ligand complexes were generated. The interface score of the protein-ligand complex was calculated using the

InterfaceAnalyzer mover in Rosetta 3.12 and the “ligand.wts” score weights. The root-mean-square deviation

was computed using the lowest interface scored structure as the reference pose.

5.4.5 Classical MD simulations

Structures from the above modeling methods were used as an initial structure for further studies. The active

and inactive reference frames of HER2 were set using previous studies and allowed to equilibrate based in

our classical MD simulations. Each structure was solvated in a rectangular TIP3P box (12 Å buffer) neutral-

ized with monovalent ions Cl and Na+ ions (Vega and Abascal, 2011). Solvent molecules were minimized

with 2,000 steps of steepest gradient descent followed by 5,000 steps of conjugate gradient descent, while the

protein/protein-ligand complex was restrained. The protein/protein-ligand complex was minimized in 2,000

steps of steepest gradient descent followed by 5,000 steps of conjugate gradient descent. Restraints were

subsequently removed and the whole system underwent 2,000 steps of steepest gradient descent followed by

5,000 steps of conjugate gradient descent minimization. The system was slowly heated in NVT ensemble to

100K over 100 ps. The system was then heated in NPT ensemble at 1 bar from 100K to physiologic temper-

ature (310K) over 500 ps. Equilibration was performed in NPT ensemble at 310K for 100 ns with a Monte

Carlo barostat. The temperature was controlled using Langevin dynamics and a unique random seed was

used for each simulation. SHAKE was implemented to constrain bonds involving hydrogen atoms. Periodic

boundary conditions were applied and the particle mesh Ewald (PME) algorithm was adopted for the calcu-

lation of long-range electrostatic interactions with a cutoff distance of 10 A. Hydrogen mass repartitioning

was employed to allow an integration time step of 4 fs.

5.4.6 Conformational free energy calculations

Potential of mean force (PMF) profiles for the active – inactive conformational transition in HER2 monomeric

KD were obtained by performing constant velocity steered MD (SMD) and Umbrella sampling (US) simu-

lations prior to free energy determination with the weighted histogram analysis method (WHAM) as imple-

mented by Alan Grossfield (Grossfield, ). SMD simulations were performed over 100 ns with a harmonic

bias potential and spring constant of 500 kcal/mol/A 2. SMD simulations were performed in both directions

(from the active to the inactive state and vice versa) using the Ca RMSD to the reference coordinates as the

collective variable. A minimum of 250 windows were selected from each forward and backward simulation
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with which to seed US simulations, such that each US simulation contained at least 500 windows to ensure

overlap. A 2D harmonic restraining potential was applied to two CVs for the US simulations. CV1 (y-axis)

was defined as the difference in the distance between R868(NE, CZ, NH1, NH2) – E770(OE1, OE2) and

K753(NZ) – E770(OE1, OE2). CV2 (x-axis) was defined as the dihedral angle formed by the Ca atoms

of the following residues: D863, F864, G865, and L866. A 2.0 kcal/mol/Å 2 spring constant was used for

CV1, and a 10.0 kcal/mol/rad2 spring constant was used for CV2. At each umbrella center a 5 ns simulation

was performed. The first 1 ns was used for equilibration, and the following 4 ns were used for analysis in

WHAM. Lowest free energy pathway (LFEP) analysis completed with the LFEP package freely available

from the Moradi Laboratory at the University of Arkansas.

5.4.7 Protein-ligand free energy calculations

Protein-ligand binding free energy calculations were performed with MM/GBSA implemented in the Am-

berTools18 MMPBSA.py (Miller et al., 2012). Trajectories were stripped of water and ions. Energies were

computed with a surface tension of 0.0072 kcal/ mol/A 2 and salt concentration of 0.15 M. The non-polar

contribution to the solvation free energy was approximated using the LCPO method (Weiser et al., 1999).

Default radii assigned with Leap were kept for GBSA calculations. The enthalpic and solvation free en-

ergy contributions were computed every 100 ps. All calculations were completed from three independent

trajectories and averaged.

5.4.8 Protein-protein interface energy

The protein-protein interface energy, or DG dimerization, was determined using a modified version of the

CartesianDDG protocol from Frenz et al. (Frenz et al., 2020). The best scoring HER2WT/HER3WT KD

heterodimer comparative model was transferred to the REF2015 Cartesian score function to an additional

20 rounds of FastRelax. The best scoring model from this subset was passed to the CartesianDDG applica-

tion in Rosetta with interface mode enabled in order to generate optimized models for HER2WT/HER3WT,

HER2L755S/HER3WT, HER2V777L/HER3WT, HER2L869R/HER3WT, HER2WT/HER3E928G, HER2L755S/HER3E928G,

HER2V777L/HER3E928G, and HER2L869R/HER3E928G. The backbone degrees of freedom were set to i +/- 1

from the mutation site and 5 iterations were performed for each mutation. The all-atom attractive energy and

solvation implicit energy score terms were given cutoffs of 9.0 Å . Finally, an additional 100 structures were

generated for each heterodimer KD complex by performing unrestrained Cartesian FastRelax beginning with

the best scoring model by the dG separated score term from the InterfaceAnalyzer mover (repacking both

monomers after separation). Final binding affinity estimates for each complex are obtained by averaging the

top 20 best structures by dG separated from the final round of relax. Results are reported as mean +/- standard
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error over those 20 models.

5.4.9 Plasmids

The Gateway Cloning system (Thermo Fisher Scientific) was used to generate pLX302-HER2 and pLX304-

HER3 plasmids. The pDONR-223 vector encoding either HER2WT or HER3WT was subjected to site-directed

mutagenesis (Genewiz) to generate HER2 or HER3 mutants. HER2WT and mutant plasmids were recombined

into the lentiviral expression vector pLX-302 containing a C-terminal V5 epitope tag and puromycin resis-

tance marker. HER3WT and mutant plasmids were recombined into pLX-304, also containing a C-terminal

V5 tag, and blasticidin resistance marker. pFlag-CMV5.1 HER2 WT and HER3 WT ICDs were described

previously (Hanker et al., 2017) and were subjected to site-directed mutagenesis (Genewiz) to generate mu-

tants.

5.4.10 Transient transfections

Transient transfections were performed using Lipofectamine 2000 (Thermo Fisher Scientific) according to the

manufacturer’s instructions. Co-transfection of pFlag-CMV5.1 HER2 and HER3 WT and mutant ICDs was

performed as described (Red Brewer et al., 2013). siRNA transfections were performed using Lipofectamine

RNAiMAX Transfection Reagent (Thermo Fisher Scientific) according to the manufacturer’s instructions.

5.4.11 Lentiviral infections

Lentiviral supernatant was produced in early-passage 293FT cells by transfection with psPAX2 and pMD2.G

packaging plasmids along with the appropriate pLX302-HER2 or pLX304-HER3 plasmid. Target cells or

organoids were spin-infected the next day with viral supernatant in the presence of 8 mg/ml polybrene. Two

d later, target cells/organoids were selected with puromycin (MCF10A: 2 mg/ml; OVCAR8: 0.7 mg/ml;

MCF7: 0.5 mg/ml; SA493 organoids: 1 mg/ml) and/or 10 mg/ml blasticidin for at least 4 d. Stable cell lines

were maintained in media containing puromycin and/or blasticidin.

5.4.12 Immunoprecipitation

If cells were pre-treated with antibodies (trastuzumab/pertuzumab), prior to lysis, cells were incubated with

cold acid wash buffer (0.5 mol/L NaCl, 0.2 mol/L Na acetate, pH 3.0) for 6 min to remove bound antibodies.

Monolayers were then washed 3 times with ice-cold PBS. Cell lysates were harvested using ice ND lysis

buffer [1% Triton X100, 20 mM Tris HCl, 150 mM NaCl, supplemented with 1X protease inhibitor (Roche)

and phosphatase inhibitor (Roche) cocktails] and rotated at 4◦C for 1 h. Lysates were then clarified by

spinning at 10,000 3 g at 4◦C for 15 min. Protein concentrations were measured using BCA standard curves

(Pierce). Four-eight mL of HER2 Ab-17 antibody (Thermo Fisher Scientific) was added to 500-1000 mg
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protein lysate and rotated at 4◦C overnight. IP was carried out using the Invitrogen Dynabeads Protein G

Immunoprecipitation Kit (10007D) as directed. Lysates were next subjected to SDS-PAGE and immunoblot

analysis. Each immunoprecipitation experiment was performed a minimum of two times.

5.4.13 Proximity ligation assay

MCF10A cells (5 x 104 cells/well) were seeded in 8-well chamber slides (Lab-Tek, 177445) in triplicate and

incubated in EGF/insulinfree media + 1% CSS overnight. PLA was performed with Duolink In Situ Red

Starter Kit Mouse/Rabbit (Sigma) using mouse antiHER2 (Thermo Fisher Scientific; Cat MS-730-P1-A)

and rabbit anti-HER3 (Cell Signaling Technologies; Cat 12708) antibodies according to the manufacturer’s

protocol and then imaged with a DMi8 inverted microscope (Leica). The number of PLA foci per cell was

quantified using ImageJ as described (Prado Martins et al., 2018). A minimum of 7 images per sample were

analyzed.

5.4.14 Western blot analysis

Prior to lysing, organoids were dissociated into single cell suspension by mechanical shearing and enzymatic

digestion using TrypLE express (Gibco, 12604021). Adherent cells or organoid cell pellets were washed

with ice-cold PBS and lysed with RIPA buffer (Sigma) supplemented with 1X protease inhibitor (Roche)

and phosphatase inhibitor (Roche) cocktails. Lysates were centrifuged at 13,500 rpm for 15 min. Protein

concentrations in supernatants were quantified using BCA protein assay kit (Pierce). 20-40 mg of total protein

was fractionated on bis-tris 4-12% gradient gels (NuPAGE) and transferred to nitrocellulose membranes

(BioRad). Membranes were blocked with 5% non-fat dry milk/TBST at room-temperature for 1 h, followed

by overnight incubation with primary antibodies of interest at 4C in 5% BSA/TBST. All antibodies were

purchased from Cell Signaling – P-HER2 Y1221/2 (2243; 1:500), HER2 (2242; 1:1000), P-HER3 Y1197

(4561; 1:500), P-HER3 Y1289 (4791; 1:500), P-HER3 Y1197, HER3 (12708; 1:1000), P-AKT S473 (9271;

1:500), P-AKT T308 (13038; 1:500), P-S6 S235/6 (2211; 1:1000), PS6 S240/4 (2215; 1:1000), P-ERK

T202/Y204 (9101; 1:1000), and b-actin (4970; 1:1000). Membranes were cut horizontally to probe with

multiple antibodies. In some cases, P-Akt S473, P-Erk, and P-S6 S240/244 antibodies were combined during

primary incubation. Nitrocellulose membranes were washed and incubated with HRP-conjugated a-rabbit or

a-mouse secondary antibodies for 1 h at room temperature. Protein bands were detected with an enhanced

chemiluminescence substrate (Perkin Elmer) using the ChemiDoc Imaging System (Bio-Rad). Immunoblots

were quantified using ImageJ.
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5.4.15 Flow cytometry

HER-2 cell surface staining was performed with the trastuzumab antibody. MCF10A stable cells (8 x 105)

were incubated with 0.2 mg/ml trastuzumab for 30 min at 4◦C. Cells were washed in FACS buffer (Thermo

Scientific) then incubated with an Alexa Fluor 647-conjugated goat anti-human IgG secondary antibody

(Thermo Scientific; 1 mg/ml) for 30 min at 4◦C. After 2 additional washes, the cells were analyzed on an

LSR Fortessa flow cytometer (BD Biosciences). Ten thousand cellular events were analyzed per sample.

Data were analyzed using FlowJo software (BD Biosciences).

5.4.16 Organoid establishment and culture

Fresh/frozen tumor chunks from SA493 (HER2S310F) PDXs were rinsed twice with 10 ml AdDF+++ media

(advanced DMEM/F12 containing 1X Glutamax, 10 mM HEPES and antibiotics) and minced into 1-2 mm

pieces. 10 ml dissociation media (1:1 vol/vol F12, DMEM supplemented with 2% w/v bovine serum albumin,

300 U/ml collagenase, 100 U/ml hyaluronidase, 10 ng/ml epidermal growth factor (EGF), 1 mg/ml insulin,

and 0.5 mg/ml hydrocortisone) was added to tumor fragments and incubated for 2 hr at 37◦C with constant

shaking at 275 rpm. Dissociated tumor fragments were centrifuged at 1200 rpm for 5 min and subjected

to RBC lysis as per manufacturer’s protocol (BD Biosciences), if the cell pellet was visibly red. Tumor

fragments were further dissociated by adding 3 ml pre-warmed trypsin and incubating in a 37C bead bath

for 5-7 min. 6 ml neutralization solution (2% FBS in PBS) was added and centrifuged at 1200 rpm for 5

min. Tumor pellets were then treated with the Dispase/DNAse cocktail for 5-7 min at 37◦C, and neutralized

and centrifuged as above. Tumor cell suspension was subjected to magnetic separation of CD298+ human

cells (biotin-conjugated a-CD298 antibody, Miltenyi Biotec, 130-101-292) to eliminate potential mouse cell

contamination, using EasySep human biotin positive selection kit II (STEMCELL technologies 17663). The

cell pellet was resuspended in appropriate volume of cold BME and 40 ml of cell suspension was added to the

center of each well of a 24-well plate and allowed to solidify by placing in a 37◦C incubator for 20 min. 500

ml organoid medium (DMEM/F12 containing 250 ng/ml R-Spondin 3, 5 nM Neuregulin 1, 5 ng/ml FGF7,

20 ng/ml FGF10, 5ng/ml EGF, 100 ng/ml Noggin, 500 nM A83-01, 5 mM Y-27632, 500 nM SB202190,

1X B27 supplement, 1.25 mM N-Acetylcysteine, 5 mM Nicotinamide, 1X GlutaMax, 10 mM Hepes, 50

mg/ml primocin, and 100 U/ml penicillin/100 mg/ml streptomycin) was added to each well and the plate

was returned to a 37◦C incubator maintained at 2% O2 level. For viability assays, established organoids

were dissociated into single cell suspension by mechanical shearing and enzymatic digestion using TrypLE

express (Gibco, 12604021). Dissociated cells were resuspended in 100 ml of cold organoid media containing

5% BME and 1000 cells/well were seeded into BME-coated 96-well plate in organoid media lacking EGF

and NRG1. The next day, organoid cultures were treated with drugs and the effect on viability was assessed
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6 d later using CellTiter-Glo 3D viability assay kit (Promega G9681). Organoids were photographed using a

Leica DMi1 inverted microscope.

5.4.17 Sanger sequencing of ERBB2 and ERBB3

RNA was isolated from CW2 cells using the Maxwell RSC simplyRNA Cells Kit (Promega) on the Maxwell

RSC Instrument (Promega). RNA was isolated from SA493 organoids using the Qiagen RNeasy Micro

Kit. Reverse transcription was performed using the iScript cDNA Synthesis Kit (Bio-Rad). The appro-

priate regions of ERBB2 and ERBB3 were PCR-amplified using the following primers: 5’GCCTGCCTC-

CACTTCAACCA (ERBB2 foward; S310F), 5’ GTAACTGCCCTCACCTCTCG (ERBB2 reverse; S310F),

5’ GTGAAGGTGCTTGGATCTGG (ERBB2 foward; L755S), 5’ ATCTGCATGGTACTCTGTCT (ERBB2 reverse;

L755S), 5’ TGAGGCGATACTTGGAACGG (ERBB3 forward), and 5’AGGTTGGGCGAATGTTCTCA (ERBB3

reverse). Sanger sequencing for ERBB2S310F, ERBB2L755S, and ERBB3 was performed using the 5’

CATCTGTGAGCTGCACTGCC, 5’GTTGGGACTCTTGACCAGCA, and 5’GTGCATAGAAACCTGGCTGC

sequencing primers, respectively.

5.4.18 Quantitative RT-PCR

Total RNA was isolated using the Maxwell RSC simplyRNA Cells Kit (Promega) on the Maxwell RSC

Instrument (Promega). cDNA was synthesized using the iScript cDNA synthesis Kit (Bio-Rad) and then

subjected to qPCR using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific) and Qiagen RT2

qPCR primer assays for human ERBB2, ERBB3, and YWHAZ (housekeeping control). To specifically

detect ERBB22264T>C (L755S), the following qPCR primers were used: 5’CAGTGGCCATCAACGTGTC

(forward) and 5’TACACCAGTTCAGCAGGTCCT (reverse). qPCR was performed using the QuantStudio3

Real-Time PCR System (Thermo Fisher Scientific).

5.4.19 Cell viability assay and IC50 estimation

Cell viability was determined using the Cell Titer Glo assay (Promega) according to the manufacturer’s

instructions. Briefly, singe-cell suspensions were generated by straining trypsinized cells through a 40mm

cell strainer (Fisher Scientific). 500-1000 cells per well were plated in 96-well white clear-bottom plates in

quadruplicate. Cells were treated with 10 concentrations of inhibitor or vehicle alone at a final volume of 150

mL per well. After 6 d of treatment, 25 mL of Cell Titer Glo was added to each well. Plates were shaken

for 15 min, and bioluminescence was determined using the GloMax Discover Microplate Reader (Promega).

Blank-corrected bioluminescence values were normalized to DMSO-treated wells and normalized values

were plotted in GraphPad Prism using non-linear regression fit to normalized data with a variable slope (four
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parameters). IC50 values were calculated by GraphPad Prism at 50% inhibition.

5.4.20 Cell proliferation assay

CW2 cells were transfected with Control or HER3 siRNA in triplicate. Four d after transfection, cells were

trypsinized and counted with a Z2 Coulter Counter Analyzer (Beckman coulter).

5.4.21 Three-dimensional morphogenesis assay

Cells were seeded on growth factor–reduced Matrigel (BD Biosciences) in 48-well plates following published

protocols (Debnath et al., 2003). Inhibitors were added to the medium at the time of cell seeding. Fresh media

and inhibitors were replenished every 3d. Following 7-10 d, colonies were stained with 5 mg/ml MTT for 20

min. Plates were scanned and colonies measuring R100 mm were counted using GelCount software (Oxford

Optronix). Colonies were photographed using a Leica DMi1 inverted microscope.

5.4.22 Cell invasion assay

Transwell invasion assays were performed using BioCoat Growth Factor Reduced Matrigel Invasion Cham-

bers (Corning) according to the manufacturer’s instructions. Briefly, MCF10A cells were seeded at 100,000

cells/well in serum-free DMEM/F12 media. DMEM/F12 media containing 5% FBS was added to the bot-

tom chamber as a chemoattractant. The cells were incubated under the desired conditions and 22 h later,

cells that invaded to the underside of the membrane were stained with 0.5% crystal violet. Transwells were

photographed using a Leica DMi1 inverted microscope. Brightfield images were quantified using ImageJ

software. Images were converted to RGB stack. The green channel was thresholded and filtered (3 pixels) to

remove the pores. The total thresholded area was measured.

5.4.23 Xenograft Studies

CW2 cells were re-suspended in serum-free RPMI and Growth Factor-Reduced Matrigel (1:1 ratio) and

injected subcutaneously into the right flank of 4-6 week old female athymic nu/nu mice (Envigo). When

the average tumor volume reached 2̃00 mm3, mice received daily doses of vehicle (0.5% Methylcellulose +

0.4% Tween 80, orogastric gavage), neratinib (40 mg/kg; orogastric gavage), alpelisib (30 mg/kg; orogastric

gavage), or neratinib + alpelisib. In our previous studies, we have found neratinib to cause anorexia and

moderate body weight loss. To avoid these toxicities, all mice were prophylactically supplemented with

DietGel 76A (Clear H2O) in addition to regular chow. Tumor diameters were measured twice weekly using

calipers and tumor volumes were calculated using the formula: volume = width2 x length/2.
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5.4.24 Quantification and statistical analysis

Statistical analysis was performed using GraphPad Prism 8.1.2. For analyses involving multiple comparisons,

one-way or two-way (for grouped bar graphs) ANOVA with Bonferroni posthoc test was used. Otherwise

student’s t-test was used. Bar graphs show mean +/- S.E.M. The neratinib/alpelisib combination index was

calculated using the Chou-Talalay test (Chou, 2010).
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CHAPTER 6

BCL::MolAlign: Three-Dimensional Small Molecule Alignment for Pharmacophore Mapping

This chapter is taken from Brown, B. P.; Mendenhall, J.; Meiler, J. J. Chem. Inf. Model. 2019, 59 (2),

689–70138.

6.1 Introduction

Small molecule flexible alignment is the process of organizing 3D molecular structures in space according

to their similarities. It is a necessary step in a number of computer-aided drug discovery (CADD) strategies

that utilize 3D structural information to evaluate putative ligands (Wolber et al., 2008). Ligand alignment is

necessary because the protein-bound ligand pose is distinct from the pose adopted by the ligand in free solu-

tion (Vieth et al., 1998; Perola and Charifson, 2004; Hao et al., 2007). Bioactive ligand conformations result

not just from low-energy ligand conformational selection, but also from protein conformational accessibility

(Seo et al., 2014; Greives and Zhou, 2014). Consequently, the binding conformation of the ligand cannot be

reliably determined by minimizing ligand internal strain alone if the ligand can adopt multiple conformations

that have comparable energy.

Determination of the most likely ligand binding-pose is a critical component of ligand- and structure-

based drug discovery. One of the most extensively utilized and actively developed methods in CADD is

pharmacophore modeling (Yang, 2010). Recent innovation has led to the development of interactive software

for building pharmacophores and designing lead compounds from them (Vlachakis et al., 2015; Beccari et al.,

2013). Among the most significant challenges in pharmacophore modeling is obtaining an accurate and infor-

mative molecular alignment (Yang, 2010). Structure-based methods are also enhanced by effective molecular

alignment. Effective protein-ligand docking usually requires a priori knowledge of an approximate binding

mode (Leelananda and Lindert, 2016; Sliwoski et al., 2014; Hecker et al., 2002; Kubinyi, 2003). Despite

significant advances in the field (Cleves and Jain, 2018; Chan, 2017; Roy and Skolnick, 2015; Urniaz and

Jozwiak, 2013; Thormann et al., 2012; Sastry et al., 2011; Tosco et al., 2011; Korb et al., 2010; Heifets and

Lilien, 2010; Jain, 2007; Richmond et al., 2006; Wildman and Crippen, 2001), small molecule flexible align-

ment remains a challenging problem. Here, we present a novel small-molecule flexible alignment algorithm

in the BioChemical Library (BCL) molecular modeling suite called BCL::MolAlign.

A successful alignment algorithm must provide: (1) Efficient sampling of each molecule’s conformational

space, (2) efficient sampling of possible alignments, and (3) scoring aligned poses according to their fit. There

are generally two strategies employed to account for ligand flexibility during the search procedure: (1) Rigid-
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body alignment with an ensemble of molecule conformers, or (2) bond angle sampling as a discrete step

during alignment7. Methods which rely exclusively on pre-generated conformers (e.g. LIGSIFT, ROCS,

Shapelets, PL-PatchSurfer) are limited in their predictive potential by the initial conformers produced (Roy

and Skolnick, 2015; McGaughey et al., 2007; Tawa et al., 2009; Proschak et al., 2007; Tervo et al., 2005;

Cheeseright et al., 2006; Shin et al., 2015). Several other approaches, such as FlexS (Andrews and Cramer,

2000) or the flexible alignment software available through Chemical Computing Group’s MOE (Labute et al.,

2001; Chan and Labute, 2010), account for ligand flexibility by including torsional sampling during the

alignment procedure. These algorithms must simultaneously enforce rules minimizing ligand internal strain

against rules maximizing alignment score. This can result in unrealistic ligand poses in cases where the

molecules being compared are of substantially different size or shape (Labute et al., 2001).

To address deficiencies in conformational sampling, we have implemented a unique combination of both

of the above approaches. We first utilize BCL::Conf to generate an ensemble of conformers for one or both

molecules. The difficulty in applying pre-generated conformations for molecular alignment is generating

native-like, physically realistic conformations. BCL::Conf combines a CSD-derived rotamer library with a

conformer scoring function based on dihedral rotamer propensity and atomic clashes to rate the likelihood

of a given conformer. With this scoring scheme, BCL::Conf is able to recover more native-like conformers

than other widely used conformer generation protocols (Kothiwale et al., 2015). We subsequently apply lim-

ited on-the-fly flexible refinement of the target conformer during pose sampling. On-the-fly conformational

changes that do not pass the BCL::Conf clash score are rejected.

An additional challenge is in developing a robust search algorithm to navigate the shared conforma-

tional space (co-space) of the molecules being aligned. The majority of programs employ a deterministic

algorithm based on maximum overlap of molecular volume (Roy and Skolnick, 2015; McGaughey et al.,

2007; Tawa et al., 2009). While rapid, such an approach necessarily becomes less effective as the number

of rotatable bonds (and correspondingly, the non-degenerate conformations) of the target molecule increases.

We address this deficiency by utilizing multi-trajectory Monte Carlo Metropolis (MCM) sampling to over-

lay nearby substructures of the molecules. Our method allows rapid convergence on the co-space of the

molecules while maintaining dynamic conformational sampling. Moreover, BCL::MolAlign may optionally

superimpose molecules based on maximal common substructures defined by specific atom and bond type

features.

Finally, a scoring metric is needed that is capable of ranking molecule superimpositions based on the

degree to which chemically similar functional groups are best superimposed. Many algorithms implement

a Tanimoto coefficient to grade chemical and/or shape similarity (Roy and Skolnick, 2015; McGaughey

et al., 2007; Tawa et al., 2009). Strict Tanimoto comparisons are incapable of grading alignments when the
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molecules being compared are of sufficiently different sizes. This prohibits accurate alignment and ranking of

derivatives to substructure scaffolds. Many methods are based on Gaussian overlap, where a Gaussian decay

is applied to each property and the score is simply the 3D-spatial integral of the overlap, often computed solely

at the centers of each atom (Roy and Skolnick, 2015; Vainio et al., 2009). This approach suffers from the

offset problem – if the properties are continuous, such as van-der Waals volume, then the optimal alignment of

two atoms very different in size will be offset. Additionally, Gaussian based methods typically define a single

length scale for each property, which is arbitrary and inappropriate for binding pockets of different levels of

flexibility (Vainio et al., 2009). An alternative approach is to generate a comparison function from weighted

linear combinations of chemical properties (Chan and Labute, 2010). We took the latter approach; our scoring

function is computed by summing the weighted property-distance between nearest-neighbor atoms of the

molecules being aligned. Our method has the added advantage that atoms in one molecule that have no

corresponding partner in the other molecule do not influence the search procedure.

6.2 Results

6.2.1 BCL::MolAlign uses a three-tiered Monte Carlo Metropolis protocol to identify optimal super-

impositions for two molecules

BCL::MolAlign perturbations are implemented primarily through a Monte Carlo Metropolis (MCM) search

procedure (Table 6.1).

An overview of the algorithm is presented in Figure 6.1. Briefly, at least one MC trajectory is performed

for each alignment with the option to specify additional independent trajectories. Each trajectory will per-

form three tiers of optimization (Figure 6.1). In the first tier, pre-generated conformer pairs (one from each

molecule) undergo limited optimization to remove the lowest scoring 25% of conformer pairs. The total num-

ber of conformer pairs tested is a user-specified quantity. Tier two iteratively refines the best alignments and

removes the lowest scoring user-specified fraction after each iteration. Tier three performs a final optimization

of the top N user-specified pairs from round two. BCL::MolAlign can align a single target molecule against

another ligand in a known binding pose (herein referred to as the “scaffold” ligand), or it can independently

move both molecules in a pair to optimize their alignment.

Each step of the MCM is scored. If the score is the best that has been sampled so far, or if it is improved

over the previously accepted step, then that step is automatically accepted. If the score is not improved then

there is a probability that it will be accepted dependent on the magnitude of the score difference and the

temperature (Figure 6.1). The temperature automatically adjusts to satisfy user-specified acceptance ratios

over the course of the simulation (Karakas et al., 2012).

At the beginning of each alignment, BCL::Conf will attempt to generate a user-specified number of con-
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Table 6.1: Summary of sampling strategies employed in BCL::MolAlign.
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Figure 6.1: Outline of the BCL::MolAlign flexible alignment algorithm. Rigid alignment is equivalent to
a single tier of MCM optimization with a single conformation each for Molecule A and Molecule B. MC
moves alter the current Molecule A or B during each optimization tier. The same moves are used in each tier,
but number of steps differ in each tier.
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formations, or a default number of 100 unique conformations, for each molecule for which flexibility is

allowed. Subsequently, conformers of the two molecules will be randomly paired until the number of con-

former pairs is equal to the minimum of the total number of possible pairs and a user-specified conformer

pair number (the default conformer pair number is equal to 100 pairs). For example, if BCL::Conf generates

50 conformers of each of the two molecules being aligned, then there are 2500 possible conformer pairs.

With the default settings, 100 conformer pairs would be randomly selected as starting points for alignment.

An MCM ConformerSwap mover is implemented to allow access to the other 2400 possible conformer pairs

during the alignment. Alternatively, if each molecule has only one conformation, then only one conformation

pair would be selected as a starting point because the total number of possible pairs is less than the default

conformer pair number of 100.

Conformational sampling is incorporated into the search procedure through a combination of pre-generated

conformer swapping and on-the-fly bond rotation. Specifically, we either swap one conformer for a separate

conformer from those generated at the beginning of the alignment with BCL::Conf (ConformerSwap), or ro-

tate particular bonds (BondRotate; Table 6.1). ConformerSwap randomly selects a conformer from the entire

conformational ensemble of one of the molecules in the pair. The coordinates of that conformer in 3D real

space are then transformed to minimize the RMSD to the original conformation of the same molecule.

BondRotate rotates non-conjugated, non-ring, single bonds between heavy atoms that form dihedral an-

gles with adjacent heavy atoms. To ensure that the bond rotation yields an energetically favorable conforma-

tion, we first obtain a set of allowed rotations for each dihedral from BCL::Conf’s rotamer library. Initially we

observed that this move was very rarely accepted when it was applied to bonds near the core of the molecule,

presumably because altering a dihedral near the core of the molecule often perturbs the entire conforma-

tion. Likewise, we restricted BondRotate to only work on the outermost heavy-atom dihedral angles in the

molecule. The purpose of BondRotate is to allow refinement of otherwise well-aligned conformers when the

probability of substituting the correct conformer is prohibitively low or null due to the necessarily incomplete

coverage of conformational space. If BondRotate results in a molecule conformation which does not satisfy

the BCL:Conf atom clash score (Kothiwale et al., 2015) then the move is rejected prior to scoring and an

alternative MCM move is attempted.

BCL::Conf, and by extension BCL::MolAlign, does not perform explicit calculations of conformer in-

ternal energy, and instead relies on statistical potentials. While conformers with higher internal strain can

potentially be sampled, it is also possible for protein-bound ligands to exhibit conformers of higher internal

energy relative to the solution state (Perola and Charifson, 2004; Hao et al., 2007). If additional restrictions on

acceptable conformers are desired, conformation sampling can easily be turned off, and externally generated

conformers can be used as the input for separate rigid alignment runs.

124



6.2.2 BCL::MolAlign iteratively samples alignments through superimposition of bonded atoms

In addition to conformational changes, BCL::MolAlign samples possible alignments through multiple movers,

or sampling functions, implemented in the MC protocol. The most intuitive perturbations for both rigid and

flexible alignment implemented in BCL::MolAlign are rotation and translation of a whole molecule. Trans-

late1 translates molecules between 0-1 Å (uniformly distributed) from their starting positions, in a randomly

chosen direction. RotateSmall rotates molecules between 0-5°, uniformly distributed on the unit sphere within

these bounds, from their starting conformations. RotateLarge rotates molecules randomly between 0-180°

(Kuffner, 2004). BCL::MolAlign also utilizes a series of moves designed to superimpose the coordinates of

nearest-neighbor atoms (BondAlign, BondAlign2, and MatchAtomNeighbors) without explicitly comparing

common substructures. BondAlign, BondAlign2, and MatchAtomNeighbors provide progressively higher

resolution sampling of the local alignment space.

Consider two molecules, designated A and B. The BondAlign mover identifies in A the heavy atom that is

nearest in Cartesian space to a randomly-chosen heavy atom in B, irrespective of their atom types. BondAlign

then superimposes a randomly-chosen bond from the selected atoms of A and B (Figure 6.2A).

Similarly, BondAlign2 superimposes two randomly-chosen bonds of a randomly-selected atom (S) in A

with two randomly-selected bonds from the closest atom in B to S. Only atoms with two or more bonds are

considered for this step. (Figure 6.2B).

The MatchAtomNeighbors mover computes all mutually nearest atom pairs between A and B within a

maximum distance threshold (see subsection Variable distance cutoffs dictate which atom pairs are included

in alignment scoring). Subsequently, A is transformed such that the total mean square distance between the

mutually nearest atoms in A and B is minimized (Figure 6.2C).

BondSwap differs from the previous three movers in that it is not based on nearest-neighbor atoms be-

tween the two molecules being aligned. The BondSwap mover randomly selects two unique bonds between

heavy atoms within A. The molecule is rotated and translated such that the position of the first bond becomes

the position of the second bond, or vice versa (Figure 6.2D).

The probability that a particular mover is selected is proportional to the total amount that each mover

improved the scores on the Astra-Zeneca overlay set when all movers were used with equal probability.

6.2.3 Variable distance cutoffs dictate which atom pairs are included in alignment scoring

The scoring system was inspired by previous work in our lab, which used Euclidean distance combined with a

property value as an additional dimension to evaluate docked conformations of mGluR allosteric modulators

(Gregory et al., 2014). In the present study, we expanded that score function to compute the weighted property

distances between atom pairs.
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Figure 6.2: Schematic of sampling strategies implemented in BCL::MolAlign. From a given starting align-
ment on the left side of the arrow, the resulting alignment following each operation is depicted on the right side
of the arrow. Once atoms and bonds have been chosen, BondAlign (A), BondAlign2 (B), and MatchAtom-
Neighbors (C) each have one possible outcome. BondSwap (D) has an equal probability of sampling two
possible outcomes. Highlighted segments correspond to the chosen atoms and bonds for alignment. Atom
numberings in MatchNeighborAtoms correspond to mutually matched pairs between molecules A and B.
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For a given alignment of molecules Ma and Mb, W (Mb,i, j) is the matching weight of the j-th atom of

molecule Mb on the i-th atom of molecule Ma, and is defined by:

(6.1)

where D(M(a,i),M(b, j)) is the distance of the i-th atom in molecule Ma from the j-th atom in molecule Mb.

Dmax is the maximum distance cutoff determining whether or not two atoms are paired (Figure 6.3). Similarly,

we compute the matching weight of the j-th atom of Ma on the i-th atom of Mb as W (Ma,i, j).

For the vast majority of atoms, there is a simple one-to-one matching between these atom pairs based on

distance in our alignments. This enables a simplistic comparison of the properties on the associated atoms

without any need for weighting relative contributions from other nearby atoms. However, our scoring function

maintains the capacity to handle the cases where an atom straddles a covalently bonded atom pair in the other

molecule (Figures 2D, 3).

Dmax is randomly selected in each independent MCM trajectory from a user-defined range. In this bench-

mark, each alignment was run with five independent trajectories each of which sampled a Dmax between 0.7

and 1.2 Å. 0.7 Å, the covalent radius of quaternary carbon, was chosen as the lower bound to allow a single

carbon atom to straddle anywhere along a C-C bond, while effectively only matching to the nearer of the two

C-C atoms. The upper cutoff of 1.2 Å was nominally chosen as the smallest covalent diameter of any common

heavy atom type, alkyl-carbon (0.6 Å radius), to prevent smearing caused by neighboring heavy atoms. To

allow comparison between the independent trajectories, the overall best alignments from each trajectory are

re-scored at a maximum atom distance 1.0 Å to determine which trajectory yielded the best alignment.

Next, we compute the weighted property average of property p in molecule Mb at the coordinates of the

i-th atom in Ma, denoted by PN(Mb,p,i):

(6.2)

The property square norm for property p, computed for molecules Ma and Mb is the squared L2 norm between
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Figure 6.3: Rigid alignment of P38 inhibitors from PDB IDs 1OUK and 1OUY illustrate atom pairing at
variable maximum atom distances. The 2D representations of the 1OUK and 1OUY ligands. The 3D rep-
resentations depict the native pose of 1OUK rigidly aligned to the native pose of 1OUY. Spheres illustrate
heavy atoms separated from a heavy atom in the opposite molecule by less than the specified maximum atom
distance Dmax. Sphere radii correspond to half of the indicated maximum atom distance. Red and white
overlapping spheres are considered matched atoms.
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a property of atoms of molecule A and the corresponding matched atoms in B:

(6.3)

where p(M(a,i))
represents the value of property p for the i-th atom of molecule Ma. This norm is asymmetric

with respect to A and B, reflecting the notion that A molecule may very well cover the pharmacophore of

B, while the converse is untrue. For some applications (i.e. clustering), a symmetric measure of dissimi-

larity is desired which is ideally normalized to 0-1. Likewise, we define the normalized property distance,

PNorm(Ma,Mb, p), between molecules Ma and Mb:

(6.4)

where P2
(Ma)

is the sum of property value squares.

The total property distance between molecules Ma and Mb is determined by computing the weighted sum

of the normalized property distances for all specified properties as (eq. 1):

(6.5)

where wp is the weight of property p. Property weights were obtained as previously described by comput-

ing the inverse standard deviation of each property’s occurrence across a sample library of drug-like small

molecules (Gregory et al., 2014; Butkiewicz et al., 2013), so as to nominally give each property equal weight

or influence over the results.

We noted that the size of the core subset of atoms in a molecule responsible for conferring bioactivity

may vary dramatically between targets. However, approximately 80% of the experimentally-determined

pharmacophores available in the AstraZeneca Overlays Validation Test Set have at least 60% heavy atom

overlap in their natively bound poses given a 1.0 Å max atom distance (Giangreco et al., 2013). Consequently,

the final property distance score (PDS) is computed such that alignments with less than 60% of their total

129



heavy atoms matching are penalized:

(6.6)

where penalty as a function of the total fraction of atoms matched, PEN(m), is defined

(6.7)

for a user-specified base mismatch penalty, C, and the ratio of paired-to-unpaired atoms, m. For the purposes

of our benchmark, we nominally took C to be 2.0. The single alignment that minimized eq. 6 was taken to

be the final alignment. The BCL allows customizable implementation of molecule and atom descriptors for

a multitude of tasks (Butkiewicz et al., 2013).

6.2.4 BCL::MolAlign improves recovery of crystallographically-determined ligand binding poses

To evaluate the efficacy of our method in recovering native ligand binding-poses, we used a previously

published benchmark set of small molecule inhibitors for six protein targets: CDK2, HIV, P38, ESR1,

Trypsin, and Rhinovirus (Chan and Labute, 2010; Chen et al., 2006) (Table 6.2). For two of the datasets,

P38 and ESR1, we also evaluated BCL::MolAlign on two previously distinguished pharmacophores (Chan

and Labute, 2010; Chen et al., 2006), which yielded an additional four test cases. For each of the datasets, an

NxN pairwise alignment of every molecule was performed. Rigid alignments were initiated by centering the

native bound conformers of each ligand on one another and reorienting each with a random rotation in space.

Flexible alignments were initiated by centering a random BCL-generated conformer of the target molecule on

the native pose of the scaffold molecule and perturbing the target molecule with a random rotation in space.

An alignment is considered successful if the final pose of the target molecule comes within 2.0 Å real-space

symmetric RMSD of its native binding pose (Chan and Labute, 2010; Chen et al., 2006).

The CDK2 dataset was comprised of 57 unique ligands. Rigid alignment of the CDK2 system by

BCL::MolAlign was comparable to results obtained via MOE (38% and 40% native pose recovery, respec-

tively), and superior to those achieved with either ROCS or FLEXS (30% and 25%, respectively). Flexible

alignments were similar across each method, ranging from 20-22%. After excluding self-aligned molecule

pairs from the NxN alignment matrix, the best scoring alignment of each of the CDK2 ligands was able to

recover 44 of 57 ligands less than 2.0 Å from the native binding pose (Table 6.2).

The HIV dataset contained 28 unique ligands all of which have at least ten rotatable bonds, and 16 of
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Table 6.2: Pairwise alignment of ligands across benchmark datasets in (Labute et al., 2001; Chan and
Labute, 2010) Comparisons between four small molecule alignment methods on rigid and flexible alignment.
Rigid alignment comparisons utilized the crystallographic native binding pose of each ligand as input. Flexi-
ble alignments began with a randomly generated conformer of the target molecule. In all flexible alignments
the target molecule was aligned to a rigid molecule in its crystallographic native binding pose. Bolded values
indicate categories in which one method recovered at least 5% of the total more native binding poses than the
next best method.
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which have 18 or more rotatable bonds, representing a challenging application for molecular alignment.

MOE recovered 85% of the natively bound poses for the HIV ligand set via rigid alignment and 16% via

flexible alignment, a considerable advancement over methods such as ROCS and FLEXS, which recovered

39% and 24% in rigid alignment, and 6% and 8% in flexible alignment, respectively. BCL::MolAlign was

able to recover 55% of native poses in rigid alignment, and 22% in flexible alignment. Despite recovering

fewer native poses than MOE via rigid alignment, BCL::MolAlign recovered more of the native binding poses

during flexible alignment than all other methods (Table 6.2). This may be because BCL::MolAlign is able to

assemble hundreds of possible conformers rapidly from a CSD-derived fragment library using BCL::Conf.

Subsequent selection and refinement of these conformers with discrete bond rotations during alignment may

be a more effective sampling strategy than relying on conformer sampling explicitly during the alignment

stage. The bond align movers are crucial to our recovery of HIV-binding poses. We recovered only 8% of

the natively bound HIV ligand poses during flexible alignment when our moves consisted of only rotation,

translation, conformer swap, and bond angle perturbation. This may be because simple movers such as rotate

and translate require many consecutive poorly-scoring adjustments to be made to achieve a favorable pose.

The 13 P38 kinase ligands can be divided into two pharmacophores. The first, containing the 4 ligands

from PDB IDs 1M7Q, 1OUK, 1OUY, and 1OVE, is characterized by a central aromatic structure extending

a piperidine/piperizine ring directly beneath the P-loop, and by a fluorinated aromatic ring accessing the

back hydrophobic pocket. The second pharmacophore, represented by PDB IDs 1A9U, 1BL6, 1BL7, 1OZ1,

1W7H, 1W84, and 1YQJ, is larger with a more heterogeneous scaffold. With the exception of 1WBO, all P38

kinase ligands contain a hydrogen bond acceptor group oriented toward the backbone amide of the gatekeeper

Met. In all cases with the P38 ligand set, BCL-aligned structures recovered more correct binding poses than

ROCS and FLEXS. For the first pharmacophore, the BCL recovered and equivalent fraction of binding poses

to MOE, with MOE achieving slightly more for the second (Table 6.2). Interestingly, the Dmax values that

give the best recovery for the P38 compounds differ from those that give the best alignments in the CDK2 and

HIV datasets. This indicates that the correct Dmax differs between datasets, and that additional optimization

of Dmax selection could further improve alignments. We also evaluated if we could improve recovery by

sampling Dmax uniformly instead of randomly. On average across the top six datasets presented in Table 6.2,

uniform sampling of Dmax between 0.70 and 1.20 recovered 1.6% fewer native binding poses, though the

difference is not statistically significant.

The 13 ESR1 ligands provide another example of a single binding pocket with two distinct but overlapping

pharmacophores. The first pharmacophore contains six ligands that occupy the estradiol binding-site (PDB

IDs 1A52, 1GWQ, 1L2I, 1X7E, 1X7R, and 3ERD). The second pharmacophore is composed of tamoxifen-

like compounds (1R5K, 1SJ0, 1UOM, 1XP1, 1XP9, 1XQC, and 2BJ4). In each of these pharmacophores,
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BCL flexible alignment recovered an equivalent or higher fraction of native binding poses compared to MOE

(83% and 82% vs. 72% and 65%, respectively). Of all the alignment methods, BCL was able to recover the

highest fraction of native binding poses in the combined ESR1 dataset (Table 6.2).

There are seven ligands in the trypsin dataset, of which five share a near-identical binding mode, and

BCL::MolAlign was able to recover their native binding poses in all of the 5x5 alignments. The remaining

two ligands differ in size and binding mode, respectively. Despite these differences, during flexible alignment

we achieve 61% recovery of the 7x7 matrix, on par with the recovery of MOE flexible alignment.

Finally, the rhinovirus ligand set contains eight nearly symmetric ligands with heterocyclic rings con-

nected on either end by a long alkyl linker. As was previously discussed13, each ligand binds in two positions

each of which is an inversion of the other. In this study, as in previous benchmarks, four ligands crystallized

in each binding mode were used (PDB IDs 2RM2, 2RR1, 2RS1, and 2RS3 in one binding mode, and 2R04,

2R06, 2R07, and 2RS5 in the other). Successful alignment of a ligand in binding mode one to a ligand in

the inverted binding mode would not be evaluated as a correct alignment using the current metric. Therefore,

the maximum score for this dataset is 50%. Each alignment method including BCL::MolAlign was able to

recover 50%.

6.2.5 Native binding pose recovery does not require, and is only weakly assisted by, high substructure

We investigated the extent to which maximum common substructure similarity between the target molecule

and its scaffold influenced recovery of the native binding pose of the target molecule on the AstraZeneca

Overlays Validation Set (1464 molecules from 121 targets). We hypothesized that the best alignments would

be between molecules that shared a high degree of 2D similarity. Across all alignment pairs in the dataset,

there is a weak negative correlation between native binding pose recovery and maximum common 2D sub-

structure similarity between molecule pairs (R2=0.17, slope = -6.34). Considering only the best alignment

pair per target molecule (R2=0.15, slope = -1.89), or only the alignment pairs where the native binding pose

of the target molecule was recovered at 2.0 Å (R2=0.13, slope = -0.67), the correlation becomes slightly

weaker. These results suggest that higher 2D similarity can increase the likelihood of recovering the native

binding pose, but that BCL::MolAlign recovers a large fraction of native binding poses by aligning dissimilar

molecules.

We also investigated whether or BCL::MolAlign converged on energetically unfavorable conformations.

For each pairwise alignment in the AstraZeneca Overlay Set benchmark, we computed the BCL::Conf score

for the target molecule (i.e. the molecule being aligned to the rigid comparator). For each target molecule,

we also generated conformers with BCL::Conf using the same settings that are run in the alignment protocol,

and selected the single highest scoring (worst) BCL::Conf conformer. Overall, there were zero cases in
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which the conformer selected from alignment had a worse BCL::Conf score than pure BCL::Conf conformer

generation. We also evaluated the mean difference between the alignment conformers and either the (1) worst

BCL::Conf conformer, or (2) the native conformer. The resulting mean BCL::Conf score differences are -

0.24 and 0.16, respectively, suggesting that overall BCL::MolAlign conformers converge on marginally more

favorable poses than those generated strictly by BCL::Conf, but that they are not always as favorable as native

conformers. This latter observation is not unexpected, and overall these findings suggest that the alignment

conformers represent reasonable molecule conformations.

6.2.6 BCL::MolAlign outperforms docking and substructure-based alignment in recovery of receptor-

bound poses of congeneric ligands

In the later stages of drug discovery, protein-ligand docking is often employed to inform further derivatization

of lead compounds. Accurate ranking of the small molecules based on their affinity depends on their accurate

placement in the protein binding-pocket. Here, we compared the speed and accuracy of BCL::MolAlign to

RosettaLigand on 20 unique datasets each with 4-8 congeneric ligands bound in the same protein binding

pocket with a similar binding mode47. RosettaLigand is a fully flexible protein-ligand docking program dis-

tributed with the Rosetta software package, which is competitive with other state-of-the-art docking programs

(Fu and Meiler, 2018; DeLuca et al., 2015; Lemmon and Meiler, 2012; Kaufmann and Meiler, 2012; Davis

and Baker, 2009; Davis et al., 2009; Meiler and Baker, 2006). We employed BCL::MolAlign to align each

target ligand to a scaffold ligand from each dataset. We took the geometric centroid of the same scaffold

ligand as the starting position for RosettaLigand docking trials. The scaffold ligands were selected based

on chronology of earliest deposition in the Protein Data Bank (PDB). All alignment and docking trials were

performed starting from randomly generated ligand conformers. In this way, the benchmark emulates a real-

istic drug discovery process, in which the binding mode of the single earliest co-crystalized complex guides

virtual screening.

Across all datasets, the top-scoring RosettaLigand model by protein-ligand interaction score for each

protein-ligand complex was within 2.0 Å of the experimentally determined binding poses in 60% of cases.

In contrast, the top-scoring model by property distance to the scaffold ligand in BCL::MolAlign identified

the correct binding pose in 86% of cases (82% of cases when self-alignments are excluded). To gener-

ate one model with RosettaLigand using the protocol described in the Methods section takes approximately

90 seconds. A typical docking run requires approximately 102 - 103 independent docking trials (Fu and

Meiler, 2018; DeLuca et al., 2015) to produce a native-like binding pose. In this benchmark, we generated

1000 models for each dataset. In comparison, a single alignment with five serial independent trajectories in

BCL::MolAlign takes on average approximately 46 seconds (9.2 seconds per trajectory, single CPU thread)
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on Intel Xeon X5690 processors. On a 12-core workstation, for example, this allows screening of approxi-

mately 45,000 ligands against a single scaffold ligand in 24 hours.

Performance on 3 of the 20 datasets in particular (HCV, TPPHO, and CTAP) was previously found to

be improved by simultaneous docking of the ligands within each binding pocket compared to traditional

docking47. We found that BCL::MolAlign similarly provides an advantage over RosettaLigand docking

in these datasets. This is most clear in the HCV dataset (Figure 6.5, row 1). The binding pocket is large

with multiple favorably scoring binding modes, and in only 2/6 cases did RosettaLigand recover a native-

like binding pose as the top-scoring model. In contrast, BCL::MolAlign was able to recover native-like

poses in 5/6 cases by superimposing to the earliest available scaffold (PDB ID 3BR9). Similarly, failure

of RosettaLigand to properly place the core bi-substituted aromatic ring structure occurred systemically in

the CTAP dataset here and elsewhere (Fu and Meiler, 2018) (Figure 6.5, row 3). The resultant translational

error caused RosettaLigand to only recover native-like binding poses in 3/6 cases, while BCL::MolAlign

accurately recovered 6/6.

Figure 6.4: Visual representations of docked versus aligned poses in challenging docking targets. Compar-
isons show the protein-ligand complexes of the crystallized scaffold (gray) and crystallized target (white)
molecules (A). The crystallized pose of the target molecule (white) is also shown with the RosettaLigand
docked pose (green; B) and the BCL::MOLALIGN flexibly aligned pose (purple; C). Examples correspond
to molecules from the HCV (row one), TPPHO (row two), and CTAP (row three) datasets.

Given the high degree of substructure similarity between the ligands in each congeneric set, an important

question is whether or not BCL::MolAlign provides a benefit over a substructure-based alignment method.

To test this, we generated 100 conformers of each ligand with BCL::Conf and aligned all conformers to their

respective scaffold molecules based on maximum common substructure. Substructure-based alignments were

performed with BCL alignment tool AlignToScaffold (ATS) as described in Methods. First, we compared
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the abilities of BCL::MolAlign and ATS to recover native binding poses when the input target molecule was

the native conformation. Across all 20 datasets, BCL::MolAlign recovered 96% of the native binding poses,

while ATS recovered 89% (Table 6.3).

Table 6.3: Comparison between BCL::MolAlign and maximum common substructure-based alignment
of congeneric ligands.

Next, we utilized multiple scoring metrics to try and optimize recovery of the native pose with ATS. To

evaluate which conformer of the target ligand yielded the best fit to the scaffold, we used an RMSD100-like

metric (Gregory et al., 2014). With this scoring system, we were able to recover 71% of the native binding

poses. Subsequently, we used a property-weighted version of the RMSD100-like metric (previously termed

“ChargeRMSD”) (Gregory et al., 2014), and improved recovery of the ATS alignments to 75%. Finally, we

performed ATS and scored the resultant alignments with the BCL::MolAlign scoring system, with which we

again improved recovery to 78%, but was still below the 86% recovery of BCL::MolAlign (Table 6.3).

6.2.7 Discussion

In summary, we have developed a novel small molecule flexible alignment algorithm called BCL::MolAlign.

BCL::MolAlign utilizes multi-tiered MCM sampling to superimpose and flexibly refine molecular con-

formers according to a customizable property-based metric. It combines established molecular conformer

generator capabilities with on-the-fly dihedral angle optimization for refinement. We have benchmarked

BCL::MolAlign against state-of-the-art commercial and free software. Generally, BCL::MolAlign performs

on par with, or superior to, similar software packages. Alignments generated with BCL::MolAlign can serve

as pharmacophore hypotheses, aid in the selection of ligand conformers and starting poses for protein-ligand

docking, and identify likely 3D conformers based on template compounds. When a starting binding pose is

available for a protein-ligand complex, BCL::MolAlign is capable of identifying native-like binding poses for
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large libraries of small molecules in parallel. We demonstrate how BCL::MolAlign can be used to improve

the efficacy of ensemble docking programs including RosettaLigandEnsemble (Fu and Meiler, 2018). More-

over, we have demonstrated that the BCL::MolAlign alignment score has predictive value and can be used

to distinguish active from inactive compounds. As an extension to this finding, we also anticipate that the

alignment score could make a valuable descriptor in QSAR models. Finally, BCL::MolAlign was designed

to facilitate high-throughput screening of small molecule libraries. It is “embarrassingly parallel” in its im-

plementation, allowing independent alignments to occur simultaneously across multiple threads. As a result,

BCL::MolAlign is fit for medium- to high-throughput application projects in academia and industry.

6.3 Methods

6.3.1 Benchmarking Dataset Preparation

The CDK2, HIV, P38, ESR1, trypsin, and rhinovirus datasets comparisons were assembled from the PDB

IDs in (Chan and Labute, 2010). Protein-ligand co-crystal structures were superimposed by Cα atoms of

the ligand binding pocket in PyMOL (DeLano, 2007). The positions of each ligand in the protein-ligand co-

crystal structure alignment were taken to be native/scaffold poses. The DUD datasets prepared for the virtual

screening comparisons were obtained from the Kihara Lab at http://kiharalab.org/ps ligandset/ . The cognate

ligands provided with each dataset were taken to be the scaffolds. All datasets used in the benchmark are

available in the Supplementary Material. Comparisons with RosettaLigand were completed using 20 protein-

ligand datasets from Fu Meiler (Fu and Meiler, 2018). Target ligands were assigned a random 3D conformer

prior to flexible alignment to scaffolds. Tanimoto largest common substructure comparisons were performed

in the BCL. Substructures were defined by maching atoms by atomic numbers and bonds by bond order (with

aromatic bonds given a distinct bond order), and ring membership.

6.3.2 Chemical Properties

All BCL::MolAlign alignments were performed with the same set of chemical properties. For each atom

type we computed Gasteiger partial charges (Gasteiger and Marsili, 1980), polarizability (Miller, 1990), elec-

tronegativity (Pauling, 1932), hydrophobicity (Labute, 2000), Van der Waals volume (RN2, a), aromaticity

(RN2, b), hydrogen bond donor (OH/NH), and hydrogen bond acceptor (O/N) status. Aromaticity is calcu-

lated as the Marvin General method (RN2, a), which has similarities to the more common Daylight method

(RN2, b). Electronegativity values are determined by element type from standard periodic table values. As in

Chan Labute 2010, those atoms which are at least two bonds away from a hydrogen-bonding atom are desig-

nated as hydrophobic (Chan and Labute, 2010). Property weights were obtained as previously described by

computing the inverse standard deviation of each property’s occurrence across a sample library of drug-like
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small molecules (Gregory et al., 2014; Butkiewicz et al., 2013).

6.3.3 Alignment Parameters

BCL::MolAlign is based on a Monte Carlo – metropolis architecture. Accordingly, random moves are scored

and accepted if they either (1) improve upon the existing score, or (2) fail to improve the existing score but win

a “coin toss” with a probability of winning that is dependent on the change in score and on the temperature

of the simulation38. Higher temperatures increase the likelihood of a move being accepted. We utilize a

temperature-control system which automatically adjusts every 10 iterations such that the initial acceptance

rate at the beginning of the simulation is 50% and the final acceptance rate is 1%. The target ratio adjusts

linearly over the course of a trajectory.

First, all molecules are assigned explicit hydrogen atoms and Gasteiger atom types55. Next, a ran-

dom 3D molecular conformer is generated for each molecule with BCL::Conf (Kothiwale et al., 2015).

BCL::MolAlign alignments were performed with the following parameters: 100 conformers were gener-

ated for each molecule except for those in the CDK2 and HIV datasets for which 500 and 2000 conformers

were generated, respectively; the number of conformer pairs is set equal to the number of conformers for the

purposes of this benchmark; 400 iterations were performed for the MC Optimization Tier 1 but terminated

early if the score failed to improve after 160 consecutive iterations; 600 iterations were performed for the MC

Optimization Tier 2 but terminated early if the score failed to improve after 240 consecutive iterations; 200 it-

erations were performed for the MC Optimization Tier 3 but terminated early if the score failed to improve af-

ter 80 consecutive iterations; 5 independent trajectories with random maximum atom distances between 0.70

and 1.20 Å; re-scoring to normalized maximum atom distances was completed on the top 5 molecules from

each independent trajectory; a mismatch penalty constant of 2.0 was used throughout. Collectively, these val-

ues are specified as the default settings in BCL::MolAlign, with the exception of the number of conformers

and conformer pairs, which have been set to default values of 500 and 100, respectively. These settings are

also implemented as defaults in the BCL::MolAlign webserver. For additional details and command-lines,

see Supplementary Methods. Performance benchmarks comparing RosettaLigand with BCL::MolAlign were

completed on Intel Xeon X5690 processors using a single CPU thread per process.
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CHAPTER 7

General Purpose Structure-Based Drug Discovery Neural Network Score Functions with

Human-Interpretable Pharmacophore Maps

This chapter is taken from Brown, B. P.; Mendenhall, J.; Geanes, A. R.; Meiler, J. J. Chem. Inf. Model.

2021, 61 (2), 603–62017.

7.1 Introduction

Computer-aided drug discovery (CADD) is a broad category of methods that can be employed to increase

the efficiency of the drug discovery process. Broadly, CADD methods can be subdivided into two categories:

ligand-based (LB) and structure-based (SB) (Sliwoski et al., 2014). LB methods predominantly employ

similarity metrics to compare ligands with known biological activity or chemical attributes to a library of

prospective small molecules. Among the most widely used LB methods are quantitative structure-activity re-

lationship (QSAR) models, which relate quantitative chemical descriptors of molecules to known biological

activities (Sliwoski et al., 2014; Leelananda and Lindert, 2016). QSAR models lend themselves to supervised

machine learning methods, such as artificial neural networks (ANN) and Random Forest (RF) (Butkiewicz

et al., 2013; Dahl, 2014; Mendenhall and Meiler, 2016; Hillebrecht and Klebe, 2008; Manchester and Czer-

minski, 2008; Svetnik et al., 2003). Indeed, over the last two decades we have demonstrated the efficacy of

ANNs in LB classification tasks compared to other methods, such as support vector machines, and employed

them to identify multiple G-protein-coupled receptor (GPCR) allosteric modulators (Butkiewicz et al., 2013;

Geanes et al., 2016; Lowe et al., 2010; Mueller et al., 2010; Bleckmann and Meiler, 2003). In that time,

we have contributed to multiple aspects of QSAR method development, including early efforts to expedite

model training with GPU programming (Lowe et al.), chemical descriptor and toolkit development (Sliwoski

et al., 2012, 2015; Mendenhall et al., 2021), improving QSAR ANN architectures with dropout (Mendenhall

and Meiler, 2016), and dataset assembly for community benchmarking (Butkiewicz et al., 2013). We have

accomplished this largely with the development of the BioChemical Library (BCL), a primarily ligand-based

academic open-source cheminformatics toolkit (Brown et al., 2022). LB methods can often rank compounds

many orders of magnitude faster than SB methods. Despite being very rapid and easily deployed on large

databases for virtual high-throughput screening (vHTS), ligand-based methods have inherent limitations.

Most notably, LB methods make predictions in the absence of binding pocket information. As a result,

predictions made from LB methods must be target-specific, and generating LB models for a given target,

especially QSAR models, may require a large amount of model training data. Thus, there is considerable
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interest in developing target agnostic, rapid SB methods for vHTS.

SB methods provide information about small molecule interactions with the binding pocket. Critically,

this should allow SB-methods to be target agnostic and provide chemically meaningful insight with which

to guide hit optimization. Unfortunately, the most accurate SB methods come with a computational cost

prohibitive for vHTS. Accurate prediction of small molecule binding affinities to target proteins is a key

challenge in SB-CADD. Structure-based alchemical free energy approaches, such as free energy perturbation

(FEP) and thermodynamic integration (TI), are widely considered to be the most accurate (Wang et al., 2019a;

?; Zou et al., 2019). Other approaches, such as molecular mechanics Poisson-Boltzmann or Generalized-Born

surface area (MM/PB(GB)SA), or protein-ligand docking semi-empirical scoring functions, can also provide

reliable relative binding free energies, but with overall performance seemingly being more system-dependent

(Tokudome et al., 2020; Wang et al., 2019c; Sun et al., 2018). Faster, but less accurate, docking score

functions are being increasingly scaled to medium- and high-throughput virtual screening (Stein et al., 2020;

DeLuca et al., 2015).

In the last decade, many machine learning approaches have been developed to increase the speed and

accuracy of SB virtual screening approaches. As early as 2010, random forest (RF) rescoring of docked poses

demonstrated that machine learning algorithms could provide rapid and competitive prediction of protein-

ligand binding affinities (RF-Score) (Ballester and Mitchell, 2010). A variation on RF as a modeling tool

for protein-ligand binding affinity prediction is ∆VinaRF, which uses random forest (RF) to predict an error

correction term for the AutoDock Vina docking score function (Wang and Zhang, 2017). More recently, deep

learning with convolutional neural networks (CNN) has been widely investigated to predict binding affinities.

For example, DeepVS is a CNN that attempts to generalize binding mode information by encoding local

atomic neighborhoods around each selected ligand atom using simple descriptors (i.e. atom types, charges,

distances, and interacting amino acid identity) (Pereira et al., 2016). Multiple grid-based CNNs have also

been developed, such as KDEEP and a CNN by which Ragoza et al., which treat protein-ligand complexes

as 3D images colored by specific atom type and pharmacophore properties (Ragoza et al., 2017; Jiménez

et al., 2018). AtomNet is another grid-based CNN that also includes features derived from protein-ligand

interaction fingerprints (Izhar Wallach, 2015).

It is well-known that cheminformatics machine learning algorithms can be strongly limited in their do-

main of applicability by the chosen training set and descriptors (Minovski et al., 2013; Sheridan, 2012; Tetko

et al., 2008; Schroeter et al., 2007; Ruiz and Gómez-Nieto, 2018; Roy et al., 2015; Carrió et al., 2014). There

is concern that some newer CNN techniques demonstrating exceptional performance may suffer from lack of

generalizability owing to dataset and training biases (Ragoza et al., 2017; Sieg et al., 2019). Even in cases

where machine learning models make accurate predictions, the chemical basis of these predictions is not
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easily interpreted without substantial input sensitivity and feature analysis. This infamously gives rise to the

“black box” problem of machine learning algorithms, especially deep neural networks (DNNs).

Finally, a major motivation for the current project is to incorporate a modular and customizable SB score

function into the BCL for use in the ongoing development SB design algorithms. Currently, the BCL is only

able to support LB design algorithms. Ultimately, we anticipate that increasing the capabilities of the BCL

to perform both LB and SB design tasks will make it a valuable companion to other academic molecular

modeling software projects, such as the Rosetta macromolecular modeling and design software suite (Leman

et al., 2020).

To address these issues, we have designed a novel SB protein-ligand binding affinity and pose prediction

model based on distance-dependent signed atom property protein-ligand correlations. Instead of encoding

specific protein and ligand properties, our method encodes the protein-ligand interaction feature space. This

is analogous to the formation of statistical pair potentials, except that here we do not formally provide any

constraints on the function to be approximated. We demonstrate that fully-connected feed-forward neural net-

works trained with our new descriptors are competitive with existing state-of-the-art machine learning meth-

ods and docking methods at protein-ligand binding affinity prediction, pose prediction, and virtual screening

power. Moreover, we explicitly demonstrate that the performance of our models is not dependent on ex-

ploiting dataset bias. Finally, we show how our models can be rapidly decomposed into human interpretable

pharmacophore maps. These pharmacophore maps allow users to visualize the atoms/substructures of their

molecules that drive the activity prediction, as well as map predicted or known relative binding free energy

changes across molecule ensembles to specific substructures. This will be the first SB scoring tool available

in the BCL, and the pharmacophore mapping tool is fully compatible with the LB QSAR methods currently

implemented. Together, we believe these tools improve the utility of the BCL for SB hit identification and

lead optimization in drug discovery.

The new descriptors, models, and pharmacophore mapping application will be available in the upcoming

BCL version 4.1 release, an academic open source software package for cheminformatics written in the C++

programming language. It is our hope that our new method will be used in conjunction with other advance-

ments in machine learning-based QSAR/QSPR to continue to improve the efficiency of drug discovery.

7.2 Results

7.2.1 On the development of a pose-dependent protein-ligand property correlation descriptor

Currently, the top-performing deep learning scoring algorithms that predict binding affinities from protein-

ligand complexes are CNNs that encode neighboring ligand and receptor atoms spatially and/or chemically

(e.g. hydrogen bond donor/acceptor heuristics) (Ragoza et al., 2017; Jiménez et al., 2018). One critique
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of these CNNs is that test-set performance can be attributed to learning ligand-specific features and not the

protein-ligand interface features (Sieg et al., 2019). In other words, the neural network can perform well

on the tests simply by learning the biases in the ligand datasets. To avoid any such potential limitations

here, we developed a pose-dependent protein-ligand interaction descriptor based on sign-aware 3DAs. This

descriptor can be likened to a potential of mean force profile in which the collective variables are the pairwise

interatomic distances between protein and ligand atoms for specific chemical properties/heuristics.

7.2.2 Small molecule chemical property autocorrelations

Consider a property-weighted 3D autocorrelation (3DA) function for a single small molecule. An atom-based

property allows the 3DA to represent the spatial distribution of properties of interest:

(7.1)

where r a and r b are the boundaries of the current distance interval, N is the total number of atoms in the

molecule, r (i,j) is the distance between the two atoms being considered, δ is the Kronecker delta, β is a

smoothing parameter referred to as ‘temperature’ (Sliwoski et al., 2012; Hemmer et al., 1999), and P is the

property computed for each atom. 3DAs computed for signed properties (e.g. partial charge) contain, for

each distance interval, three values corresponding to product sums of each of the three possible sign pairings

(-/-, +/+, -/+) (Sliwoski et al., 2015).

7.2.3 Recasting property space into protein-ligand interaction distance bins

Instead of corresponding to intramolecular atomic distances, the distance bins now correspond to intermolec-

ular protein-ligand interatomic distances. The property correlation is between each atom in the ligand and all

atoms in the receptor within a specified radius (Figure 7.1):

(7.2)

where r a and r b are the boundaries of the current protein-ligand interatomic distance interval, N lig and

N prot are the total number of atoms in the ligand and receptor, respectively, r (l,p) is the distance between

the current protein-ligand atom pair, δ is the Kronecker delta, β is the temperature, and P l and P p are the

properties computed for ligand and receptor atoms l and p, respectively. As with 3DA in (eq. 1), PLC (protein-
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ligand correlation) descriptors distinguishes signed pairs, but can also optionally include an additional bin

(–/++/-+/+-) to account for opposite sign pairings between the protein and the ligand (Figure 7.1A). This can

be useful if the properties between which the correlations are being taken are not identical, or if the model

being built is leveraging pre-existing knowledge about the chemical makeup of the system in study.

For example, consider the descriptor “HBondDonorTernary”. This descriptor returns a 1 if an atom is a

hydrogen bond donor, -1 if it is a hydrogen bond acceptor, and 0 otherwise. One could choose to differentiate

hydrogen bond donor/acceptor pairs between the protein and the ligand (e.g. asymmetric: -+/+-), or to group

all opposite sign pairs together (symmetric -/+). Sign pair discrimination is illustrated in Figure 7.1A for a

property that tracks the protein-ligand directionality of opposite sign pairings. We empirically chose a total

distance of 7.0 Å discretized at 0.50 Å intervals, resulting in either 42 (symmetric) or 56 (asymmetric) values

per property (see subsection on feature parameterization in Methods and Supporting Information).

7.2.4 Representing protein-ligand interactions with property correlation descriptors

PLC descriptors (eq. 2) encode interactions between protein-ligand atomic atoms as represented by a variety

of atomic properties: partial charge, electronegativity, polarizability, hydrophobicity, hydrogen bond donors

and acceptors, aromatic and generic ring membership, heavy and light atoms. These atomic features are a

superset of those we used previously for QSAR (Sliwoski et al., 2015; Mendenhall and Meiler, 2016), and

are identical to those we used previously for superimposition of similar molecules (Brown et al., 2019b).

To mitigate feature redundancy, we summed feature interactions that were nominally equivalent. For

example, consider the PLC descriptor that represents the signed correlation between atomic partial charges in

receptor and ligand atoms: 3DAPairRS050(Atom SigmaCharge). In this descriptor, we summed -/+ (ligand

negative charge, protein positive charge) with +/- (ligand positive charge, protein negative charge) interactions

under the notion that these are equivalently favorable pairings. We took a similar approach for hydrogen bond

donation, hydrophobic interactions, and heavy atom / hydrogen atom discrimination. Some descriptors, such

as polarizability and electronegativity, are strictly positive valued, and therefore do not require binning by

sign pairs.

While each of the previously mentioned descriptors can be considered symmetric in that we are corre-

lating the same property for both the receptor and the ligand (e.g. partial charge), interactions can also be

described by complementary interactions between dissimilar chemical properties. For example, interactions

between aromatic ring systems and polar vs. hydrophobic atoms. To create a property that can describe this

interaction, we need to utilize Atom HydrophobicTernary, which is an atom property that encodes hydropho-

bic atoms as +1, and polar atoms as -1. To better distinguish highly polar from less polar atoms, we multiply

Atom HydrophobicTernary by polarizability. We then encode aromatic-polar, aromatic-hydrophobic interac-
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Figure 7.1: Schematic of pose-dependent protein-ligand descriptor. (A) Schematic representation of pose-
dependent protein-ligand interaction feature space. (B) Surface representation of discoidin domain receptor
1 (DDR1) kinase binding pocket heavy atoms within 7.0 Å of select atoms within dasatinib. The surface
representation is colored by distance to the selected atom. Dasatinib shown in stick configuration colored by
element type with the selected atom indicated by dot sphere.
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tions with the PLC descriptor, “3DAPairRSAsym050(Multiply(Atom HydrophobicTernary, Atom Polarizability),

Atom IsInAromaticRingTernary)”. In this descriptor, each distance bin is further discretized into -/- (ligand

polar atom polarizability with a non-aromatic receptor atom), +/+ (ligand hydrophobic atom polarizability

with an aromatic receptor atom), -/+ (ligand polar atom polarizability with an aromatic receptor atom), and

+/- (ligand hydrophobic atom polarizability with a non-aromatic receptor atom). An inverted version of this

descriptor, in which hydrophobicity is with respect to the receptor and aromaticity to the ligand, is also

employed here.

With these features, we trained two neural networks. BCL-AffinityNet is a “deep” single-task neural net-

work (2 hidden layers, 512 neurons in the first hidden layer and 32 neurons in the second layer) to directly

predict log-scaled protein-ligand binding affinity values. BCL-DockANNScore is a multi-tasking shallow

neural network (1 hidden layer with 32 neurons) that classifies binding poses as less-or-equal to 1.0, 2.0, 3.0,

5.0, or 8.0 Å from the native (co-crystallized) binding mode. Both of these models utilize only PLC descrip-

tors (eq. 2), with BCL-DockANNScore including an additional PLC descriptor that discretizes hydrogen

bond donor/receiver pair angles.

Finally, we note that we did not perform a deep exploration of possible base chemical descriptors and

there are likely many additional features that could be effective (e.g. explicit consideration of π-interactions,

σ -hole interactions, transition metal properties, solvation energies, etc.). Additionally, we did not perform

feature selection to optimize the performance of our model on the benchmark training sets to avoid potentially

over-optimizing the models for the training data. For a detailed evaluation of the importance of each feature

in BCL-AffinityNet and BCL-DockANNScore, please see the top 20 features by model input sensitivity and

a decomposition of each descriptor into the average input sensitivity per sign pair (Figure S1 – S8) in the

Supporting Information.

7.2.5 Scoring power evaluation of BCL-AffinityNet

We trained BCL-AffinityNet on protein-ligand complexes from the PDBbind v.2016 refined set and all gen-

eral set protein-ligand (small molecule) complexes for which binding constants were available. Protein-ligand

pairs comprising the coreset (285 unique test set complexes) were entirely excluded from training. BCL-

AffinityNet was trained with descriptors of the form (eq. 2). See the Supporting Information for a sample

feature code object file and command-lines to generate the model.

We first tested the performance of BCL-AffinityNet on the scoring power task described in the compar-

ative assessment of score functions 2016 update (CASF2016). This task evaluates affinity prediction across

the PDBbind v.2016 coreset comprised of 285 protein-ligand pairs on 57 targets (5 small molecules per tar-

get) by measuring the Pearson correlation coefficient (R) between predicted and experimental values. It has
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previously been noted that binding affinities in this task correlate strongly with both the fraction of buried sol-

vent accessible surface area (∆SAS, R=0.63) (Figure 7.2A)1 and several scalar ligand descriptors, including

molecular weight (MW, R=0.50), topological polar surface area (TPSA, R=0.20), logP (R=0.32), and polariz-

ability (R=0.52). An important measure of success is whether or not the affinity prediction method is capable

of performing better than these simple metrics that are unaware of specific protein-ligand interactions.

Figure 7.2: Scoring power evaluation of BCL-AffinityNet. (A) Comparison of BCL-AffinityNet scoring
power to other methods from the CASF2016 benchmark by Su et al.1. Error bars indicate the 90% confidence
interval (B) Linear regression of experimental vs. predicted pKd values in the CASF2016 coreset.

BCL-AffinityNet is among the best algorithms on the scoring power task (R=0.84) (Figure 7.2A, B).

∆VinaRF¬20, which is a protein-ligand interaction score function that uses a random forest (RF) algorithm to

predict an error correction term on the AutoDock Vina score, performed similarly on the original CASF2016

report (Figure 7.2A)1. However, as reported previously1, the training set for ∆VinaRF includes 140 of the

coreset test complexes. Lu and colleagues re-evaluated the scoring power of ∆VinaRF after retraining it

without any of the coreset complexes and found that is still performed better than ∆SAS but with worse

scoring power than originally reported (R=0.73) (Lu et al., 2019).

BCL-AffinityNet performs competitively with other machine learning models, such as the grid-based

CNN KDEEP (R=0.82) and RF-Score (R=0.80). We note that KDEEP was evaluated on the 290 molecule

version of the PDBbind coreset, not the canonical 285 molecule set. Moreover, in the absence of the under-

lying distributions it is unclear if these results are statistically different; however, the effect sizes are similar.

7.2.6 Explicit assessment of dataset bias on BCL-AffinityNet scoring power performance

It is increasingly well-documented that strong machine learning model performance on QSAR tasks can be

the result of dataset bias (Sieg et al., 2019; Yang et al., 2020; Chen et al., 2019). Indeed, Yang et al. found that

atomic CNNs (ACNNs) trained solely on ligand or receptor pocket features performed just as well as ACNNs

trained on protein-ligand complexes (Yang et al., 2020), suggesting that the model was unable to leverage
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features relating to the protein-ligand interactions in a meaningful way. Therefore, we sought to determine

the extent to which dataset biases may be inflating BCL-AffinityNet performance.

First, we trained a BCL-AffinityNet Y-scramble model, in which the result labels were shuffled between

training examples. The Y-scramble model is a negative control, and as expected we find virtually no correla-

tion between predicted and experimental results on the coreset with this model (Figure S9).

Next, we generated LB and pocket-based QSAR models with the same architecture as BCL-AffinityNet.

These models were trained with the 3DA descriptor equivalent of the PLC features. In an ideal dataset, ligand

and protein pocket controls would have near zero correlation to experimental results; however, consistent with

the findings of Yang et al. (Yang et al., 2020), the LB and pocket-based QSAR models each had correlation

coefficients greater than 0.50 at 0.72 and 0.61, respectively (Figure S9).

To assess the impact of dataset bias on our PLC models performance for out-of-class predictions, we

generated three new leave-class-out test-set splits based on ligand, protein pocket, or combined ligand and

protein pocket similarity to the PDBbind v.2016 coreset. Specifically, we generated a K-means (k=75) appli-

cability domain (AD) model from the 3DAs of the ligands, protein pockets, or combination of ligands and

protein pockets of the PDBbind v.2016 coreset. Using each of these AD models, we removed training sam-

ples that were further from their nearest Kohonen map node than the furthest point of the PDBbind v.2016

coreset was from the AD model. Intuitively, the new test-sets thus include only points that are outside the

nominal descriptor space given by the PDBbind v.2016 coreset for ligands, protein pockets, or combination

ligand-protein pockets. This has the effect of making the training set feature space more representative of

the PDBbind v.2016 coreset feature space, while simultaneously creating new test sets that are outside of

PDBbind v.2016 coreset feature space.

This resulted in the creation of a LB AD test set (n=995), pocket AD test set (n=379), and combined

AD test set (n=1377) (see Methods for additional details). We hypothesized that the LB QSAR model would

perform poorly on the LB AD test set, that the pocket-based QSAR model would perform poorly on the pocket

AD test, and that both models would perform poorly on the combined AD test set. We further hypothesized

that if models trained on PLC descriptors are truly generalizable SB score functions, then their performance

on all three test splits ought not to be significantly worse than their training random-split cross-validation

metrics.

We found that the LB QSAR models performed worse on the LB AD test set (R=0.28) than on the

random-split training cross-validation sets (R=0.67) (Figure S10). Similarly, the pocket-based QSAR model

performed worse on the pocket AD test set (R=0.33) than on the training splits (R=0.63) (Figure S11). We

also note a reduction in performance of the pocket-based QSAR model on the LB AD test set relative to

training (R=0.51 vs. R=0.64, respectively), as well as a reduction in performance of the LB QSAR model
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on the pocket AD test set relative to training (R=0.54 vs. R=0.65, respectively) (Figures S10 – S11). On

the combined AD test set, we observe the worst performance of the LB (R=0.28) and pocket-based (R=0.15)

QSAR models (Figure 7.3).

Figure 7.3: Performance evaluation on the combined AD test set. A total of 1377 training samples were
excluded from the initial training set of 7568 samples (see Methods for details). The remaining 6191 training
samples were used to train BCL-AffinityNet (i.e. a single-task regression DNN with PLC features), a signed
3DA LB QSAR model, or a signed 3DA pocket-based QSAR model. Training was completed with five-
fold random-split cross-validation. Columns and error bars represent the mean and standard deviation of
NMAE (blue) or Pearson correlation coefficient (red) across either the five-fold random-split cross-validations
(training) or five-fold random splits of the combined AD test set (testing).

In contrast, we observe that BCL-AffinityNet, when retrained to exclude each AD test set, consistently

performs well (R=0.72, 0.75, and 0.72 for the LB, pocket-based, and combined AD test sets respectively)

despite the reduced training set size and coverage (Figure 7.3, Figures S10 – S11).

To evaluate whether PLC descriptors are effective with other machine learning model types, we have

utilized WEKA (Witten et al., 2016) to train a random forest version of BCL-AffinityNet (termed AffinityRF

for ease) for evaluation on the PDBbind v.2016 coreset and the combined AD test split. AffinityRF achieves

good correlation (R=0.79 and 0.70, respectively) on both tasks, suggesting PLC descriptors may be suitable in

multiple machine learning paradigms (Figure S12). Altogether, these results suggest that the PLC descriptors

encode generalized representations of protein-ligand interactions.

7.2.7 Performance evaluation on subsets of the CSAR-NRC HiQ test sets

As additional independent tests, we evaluated the performance of our models on the CSAR NRC HiQ test

sets. For the purposes of a head-to-head comparison with two of the leading machine learning methods in the
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field, KDEEP and RF-Score, we first compared our model to the 55 and 49 compounds of the CSAR NRC

HiQ test set 1 and 2, respectively, which were previously evaluated for KDEEP and RF-Score in Jimenez et

al. 32. For this evaluation, we re-trained our models with the PDBbind set as described previously, but we

also excluded any of the 55 or 49 compounds found in the CSAR test set from training.

RF-Score performed the best on set 1 (R=0.78, RMSE=1.99) with KDEEP (R=0.72, RMSE=2.09) and

BCL-AffinityNet (R=0.72, ρ=0.77, RMSE=2.02) performing similarly one another (Table 7.1). In contrast,

BCL-AffinityNet is the top performing model (R=0.85, ρ=0.82, RMSE=1.37) on set 2, followed by RF-Score

(R=0.78, RMSE=1.66) and KDEEP (R=0.65, RMSE=1.92) (Table 7.1).

Table 7.1: Performance evaluation of models trained on PDBbind refined version 2016 dataset on
unique complexes in the CSAR NRC-HiQ test sets. Results reported as Pearson correlation coefficient
(R), Spearman rank correlation coefficient (ρ), and root mean square error (RMSE). Note that the Spearman
rank correlation here is across all targets in the coreset, while the “ranking power” metric is based on within-
target ranking of molecule affinities.

Next, in the interest of obtaining a more complete benchmark and facilitating future comparisons, we

extended our evaluation of the CSAR NRC HiQ test sets to the full molecule lists, which included 176 and

167 molecules in sets 1 and 2, respectively. Again, we re-trained our models on the PDBbind set, excluding

now either the 176 or 167 compounds in test set 1 or 2 in addition to the remaining molecules in the 285

compounds from the coreset. Performance of BCL-AffinityNet on set 1 (R=0.75, ρ=0.75, RMSE=1.32) is

very similar to performance on set 2 (R=0.74, ρ=0.73, RMSE=1.36) (Table 7.2).
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Table 7.2: Performance evaluation of models trained on PDBbind refined version 2016 dataset sans
CSAR NRC-HiQ complexes on all complexes in the CSAR NRC-HiQ test sets. Results reported as
Pearson correlation coefficient (R), Spearman rank correlation coefficient (ρ), and root mean square error
(RMSE). Note that the Spearman rank correlation here is across all targets in the coreset, while the “ranking
power” metric is based on within-target ranking of molecule affinities.

7.2.8 Ranking power performance evaluation

The CASF2016 ranking power evaluation analyzes the ability of score functions to rank ligands targeting

the same receptor. Among the methods originally compared in Su et al. 2019, BCL-AffinityNet (ρ=0.69)

places just after ∆VinaRF¬20 (ρ=0.75) (Figure 7.4). Again taking into consideration Lu et al. 2019 re-

training ∆VinaRF¬20 to exclude the 140 overlapped test set compounds, ∆VinaRF¬20 achieves a ranking

power ρ=0.63 compared to ∆VinaXGB which achieves a ranking power of ρ=0.65 45.

Altogether results on the scoring power and ranking power tests suggest that BCL-AffinityNet is compet-

itive with state-of-the-art SB virtual screening methods for binding affinity prediction and affinity ranking.

7.2.9 Docking power performance evaluation

Despite its success in the scoring and ranking power evaluations, BCL-AffinityNet is not ideally suited for

decoy discrimination. This is because the training set for BCL-AffinityNet is composed entirely of native

protein-ligand complexes. Thus, while BCL-AffinityNet could likely be used with an AD model generated

in the same feature space to exclude clashed structures (by virtue of the lack of occupancy in the shortest

distance bins, Figure 7.1A), it is unlikely to be able to discriminate plausible docking poses.

To address this limitation, we built a shallow multitasking ANN trained with the same PLC descriptors

(eq. 2) as BCL-AffinityNet, with the addition of the hydrogen bond angle descriptor described above (see

Supporting Information for a sample code object file). We reasoned that in differentiating properly docked

poses it would be insufficient to consider only hydrogen bond donor/acceptor distances. In our experience,
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Figure 7.4: Ranking power evaluation of BCL-AffinityNet. Comparison of BCL-AffinityNet ranking power
to other methods from the CASF2016 benchmark by Su et al.1 with (A) Spearman rank correlation coefficient,
(B) Kendall rank correlation coefficient, and (C) predictive index. Error bars indicate the 90% confidence
interval. Green bars indicates BCL-AffinityNet.
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we have also found that separating a categorical prediction task (i.e. is this pose most likely to be 1.0 Å from

the native pose, 2.0 Å, or 5.0 Å) into separate classification tasks for each category generally does not worsen

model performance but may improve it. Thus, we nominally organized the output layer as five correlated

classification tasks: determining whether a pose was less than 1.0 Å, 2.0 Å, 3.0 Å, 5.0 Å, and 8.0 Å from the

native pose.

We trained this ANN on the PDBbind v.2016 refined set excluding all coreset protein-ligand complexes.

For each complex in the training set, 250 additional decoys were generated with RosettaLigand (see Methods

for details). The final model score, which we refer to as BCL-DockANNScore, is the product of the clas-

sification probability of a pose being less than 2.0 Å from the native pose and the BCL-AffinityNet affinity

prediction score for that pose.

BCL-DockANNScore performs reasonably well on the docking power benchmark with success rates of

0.81, 0.91, and 0.95 for native pose recovery at a 2.0 Å threshold for poses within the best scoring 1, 2, and 3

poses, respectively (Figure 7.5). When native poses are excluded, BCL-DockANNScore success rates reduce

by 5̃%, consistent with performance reductions in multiple other methods (Figure S15). Binding funnel

analysis of BCL-DockANNScore demonstrates good Spearman rank correlation coefficients at wide RMSD

ranges, but performs less well in the 0 – 2.0 Å range (Figure S16). This suggests that one possible route to

improve BCL-DockANNScore further is to provide additional training decoys within the 0 – 2.0 Å range or

additional high-resolution descriptors.

7.2.10 Screening power performance evaluation

We evaluated BCL-DockANNScore on the forward and reverse screening tests. The forward screening power

task evaluates the ability of a score function to identify small molecule ligands that bind to a target protein.

The reverse screening power task evaluates the ability of a score function to identify the protein that most

effectively binds a small molecule ligand (i.e. cross-docking)1.

Similar to the docking power evaluation, we find that BCL-DockANNScore performs reasonably well,

but not always among the very best docking scores. On the forward screening task, BCL-DockANNScore

has a success rate of 0.18, 0.33, and 0.58 when identifying the ligand amongst the top 1%, 5%, and 10%

of candidates, respectfully (Figure 7.6A). This is competitive with the best score functions at the 10% level;

however, performance at the 1% level is more mid-tier (ranking alongside several of the MOE score functions,

while the top performers are from GOLD, Glide, and the AutoDock Vina and derived methods). The overall

enhancement factor at the 1% level is 8.5 (Figure 7.6C). In contrast, we find that the performance on the

reverse screening task is competitive even with the top-performers when identifying the top 1%, 5%, and

10% of candidates, with success rates of 0.15, 0.24, and 0.39, respectively (Figure 7.6B).
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Figure 7.5: Docking power evaluation of BCL-DockANNScore. Comparison of BCL-DockANNScore dock-
ing power to other methods from the CASF2016 benchmark by Su et al.1 when recovering the native pose
under 2.0 Å RMSD (A) within the top 3 poses, (B) within the top 2 poses, and (C) within the top 1 poses.
Error bars indicate the 90% confidence interval. Green indicates BCL-DockANNScore.
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Figure 7.6: Screening power evaluation of BCL-DockANNScore. Comparison of BCL-DockANNScore
screening power to other methods from the CASF2016 benchmark by Su et al.1. (A) Forward screening
power evaluation success rates, (B) Reverse screening power evaluation success rates, (C) Forward screening
power evaluation enhancement factor (top 1%). Error bars indicate the 90% confidence interval. Green
indicates BCL-DockANNScore.

7.2.11 Generating absolute pharmacophore maps

Finally, one important consideration in the development of a SB score function for the BCL was model

interpretability. One of the strengths of SB CADD is that predicted changes in activity can be attributed to

specific interactions with the target. Neural networks are, however, often negatively characterized as “black

boxes” because usually the function learned in the model cannot be decomposed into human interpretable

parts. Traditional docking scoring functions, such as RosettaLigand, have the advantage that they can be

decomposed into target per-residue contributions to the overall predicted affinity. This is important in drug

discovery, where predictions need to be actionable. Here, we demonstrate that BCL-AffinityNet predictions

can be decomposed into a map of atom contributions to the predicted bioactivity.

We take two general approaches for constructing a pharmacophore map: (1) Absolute feature contribu-

tions (Figure 7.7) and (2) relative feature contributions (Figure 7.8). The first case generates a map on any

individual molecule by evaluating the contributions of specific atoms to the overall predicted activity. This

can be likened to evaluating model input sensitivity, except in this case the molecule of interest is being

perturbed instead of the weights connecting individual neurons in the model.

To generate an absolute pharmacophore map of a given molecule, we perturb the chemical structure by
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Figure 7.7: Construction of absolute pharmacophore maps. (A) The target molecule, in this case compound 7c
from Zhu et al.54, is first modeled in complex with its target receptor using PLC descriptors and scored with
BCL-AffinityNet. (B) Then we iterate over each atom in the target molecule and sequentially remove it from
the molecule to create a perturbed molecule, X. (C) Perturbed molecules are saturated with hydrogen atoms
to close any open valences resulting from the perturbation, and then they are scored with BCL-AffinityNet.
(D) The differences in predicted binding affinity between the starting molecule and each perturbed molecule
are mapped to the corresponding atoms of the starting structure. Here, predictions are in units of kcal/mol at
300K. The surface representation of atoms that contribute beneficially to BCL-AffinityNet’s binding affinity
prediction are blue, while atoms that worsen the prediction are in red. Atoms that contribute neutrally/negli-
gibly are white.
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sequentially removing individual atoms and closing the newly opened valence(s) with hydrogen atoms. Af-

terward, we compute the predicted affinity for each perturbed molecule with BCL-AffinityNet. The predicted

binding affinity of the perturbed molecules are compared to that of the original molecule. The differences

in predicted activity between the perturbed and original molecules are assigned to the corresponding atoms

(Figure 7.7).

7.2.12 Generating relative pharmacophore maps

Relative pharmacophore maps leverage structural similarity within a congeneric ligand series to attribute

predicted affinity differences to specific substructures. It has been shown that highly accurate binding affinity

estimates can be obtained with alchemical free energy methods when reference structures with experimentally

determined binding affinities within a congeneric ligand series are available (Wang et al., 2019a, 2015; Zou

et al., 2019).

To generate a relative pharmacophore map between two molecules, we first identify a common sub-

structure (MCS) via one of two methods: (1) identify the largest subgraph isomorphism between the two

molecules, or (2) assign spatially mutually matched atoms to be common to one another (the first approach

is more accurate and is the default approach). Component substructures that graphically correspond to the

same common atoms are then iteratively removed, newly opened valences are closed with hydrogen atoms,

and the perturbed molecules are scored with BCL-AffinityNet (Figure 7.8).

Thus, for each non-MCS substructure in the reference and target molecules there is a ∆∆G bind between

the non-perturbed and perturbed molecules. A final ∆∆∆G bind is computed for each non-MCS substruc-

ture as the difference between the reference and target perturbation ∆∆G bind values (Figure 7.8). The

∆∆∆G bindvalues are mapped to the target molecule for visualization.

Consider a series of type II tyrosine kinase inhibitors (TKIs) of DDR1 kinase developed recently by Zhu

et al (Zhu et al., 2019). We generated relative pharmacophore maps of compounds 7c, 7f, and 7j to compound

7i (Zhu et al., 2019) (Figure 7.9 A – D). We also modified the compound 7 scaffold to include NC mutations

in the hinge-binding region analogous to prior substitutions done by Wang et al. (Wang et al., 2016) in a

previous DDR1 TKI series (Figure 7.9 A, E – G).

From the pharmacophore maps, we also compute relative binding affinities of each molecule to compound

7i by summing the ∆∆∆G bind values for each non-MCS component in the target molecule: ∆∆G bind=Sum(∆∆∆G bind).

In all comparisons, the trifluoromethyl group is preferable to the methyl. Relative binding affinity estimates

of compounds 7c and 7f from 7i are within 0.50 kcal/mol of experimental values (-2.62 vs. -2.82 kcal/mol

and -2.32 vs. -2.25 kcal/mol, respectively) (Figure 7.9 A, C – D). The ethyl in 7j is also correctly estimated

to improve binding affinity relative to methyl in 7i; however, BCL-AffinityNet underestimates the extent of
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Figure 7.8: Construction of relative pharmacophore maps. Relative pharmacophore maps are generated from
a target molecule and a reference molecule. (A) Determine the MCS between the reference and target struc-
ture. (B) Identify the MCS atoms that connect to corresponding non-MCS substructures in both the reference
and target molecule. Non-MCS atoms are circled in grey and corresponding substructures between the ref-
erence and target share numerical labels (e.g. the reference molecule methyl circled in grey and the target
molecule trifluoromethyl circled in grey are correspond structurally and are labeled “1”). For both the ref-
erence and target molecule, non-MCS substructures are independently removed. The binding affinities of
the reference, target, and perturbed molecules are estimated with BCL-AffinityNet. The ddGbind between
starting and perturbed molecules is determined for both the reference and target. (C) For each corresponding
non-MCS substructure, compute dddGbind as ddGbind(Target,X)− ddGbind(Re f erence,X), where X indicates the
perturbed target or reference molecule. (D) Map the dddGbind values back to the target molecule non-MCS
substructures. The surface representation of atoms that contribute beneficially to BCL-AffinityNet’s binding
affinity prediction are blue, while atoms that worsen the prediction are in red. Atoms that contribute neutral-
ly/negligibly are white.
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Figure 7.9: Figure 7.9. Relative pharmacophore maps of a congeneric DDR1 inhibitor series. (A) Compound
7i is the reference molecule for creation of the pharmacophore maps. Compounds (B) 7j, (C) 7f, and (D)
7c from Zhu et al.54. Compounds with the NC alteration at (F) the hinge-binding nitrogen atom, (E) the
symmetrically placed hinge-binding nitrogen rotated away from the from the hydrogen bond donor partner,
and (G) both nitrogen atom positions at the hinge-binding ring. Binding affinities in black text are predicted
by BCL-AffinityNet, while green values are from Zhu et al. (Zhu et al., 2019). The surface representation of
atoms that contribute beneficially to BCL-AffinityNet’s binding affinity prediction are blue, while atoms that
worsen the prediction are in red. Atoms that contribute neutrally/negligibly are white.
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the affinity improvement (-0.69 vs. -2.25 kcal/mol) (Figure 7.9 A – B). Conversion of both hinge binding

nitrogen atoms to carbon atoms is strongly unfavorable even in the presence of the trifluoromethyl group,

consistent with prior SAR (Wang et al., 2016) (Figure 7.9 A, G). Thus, the relative pharmacophore maps

provide meaningful QSAR insights that can be readily visualized.

Relative pharmacophore maps can be generated with respect to one or more reference input molecules

(e.g. hit compounds or scaffolds), or in a pairwise fashion across a series of input molecules. If more than

one molecule is used as a reference, the final map for each target molecule indicates the favorability of each

molecule’s substitutions in comparison to the whole ensemble. For an example command-line to generate a

relative pharmacophore map, see the Supporting Information.

7.2.13 A case study on guiding chemical modifications with pharmacophore maps

To illustrate further this approach, consider three congeneric dysiherbaine analogs in complex with ionotropic

glutamate receptor 5 (iGluR5). These molecules differ from one another by small substitutions at carbon

atoms (1) and (2) (Figure 7.10A – C, first row). Each of the analogs was scored with BCL-AffinityNet and

ranked correctly. For each of these three compounds, we generated absolute and relative pharmacophore

maps (see Methods for command-line details).

First, we generated relative pharmacophore maps of the dysiherbaine analogs in the pairwise manner

described above (Figure 7.8).The pharmacophore maps of dysiherbaine and neodysiherbaine suggest that

the methylamine and hydroxyl substitutions, respectively, at position (2) provide a net increase in affinity

relative to the proton in 8, 9-dideoxyneodysiherbaine (Figure 7.10A – C, third row). Furthermore, the phar-

macophore maps predict that the methylamine modification increases binding affinity more than the hydroxyl

substitution, in agreement with experimental observation (Figure 7.10B, C, third row).

Interestingly, the relative pharmacophore map of neodysiherbaine also predicts that the hydroxyl substitu-

tion at position (2) is more important for binding affinity than the hydroxyl substitution at position (1) (Figure

7.10B, third row). Similarly, the methylamine at position (2) of dysiherbaine is predicted to contribute more

to the binding affinity than the hydroxyl at position (1) (Figure 7.10C, third row). Finally, we see from the

absolute pharmacophore maps of all three analogs that the two carboxylic acid groups contribute favorably

to binding. Indeed, we see that their contributions are predicted to be more important than the substitutions

at (1) and (2), supporting the notion that these substituents are an important component of the conserved

scaffold (Figure 7.10A – C, fourth row).

Together with the DDR1 TKI congeneric series, these comparisons illustrate how BCL-AffinityNet can

yield structure-activity insight. To our knowledge, this is the first modern machine learning-based SB score

function that is readily accompanied by an interpretable decomposition scheme. In principle, our pharma-
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Figure 7.10: Pharmacophore maps of dysiherbaine analogs in complex with iGluR5 generated from
BCL-AffinityNet. Pharmacophore maps were generated for iGluR5 complexed with (A) 8, 9-
dideoxyneodysiherbaine (PDB ID 3GBB; pKd = 6.9, ∆G = -9.79 kcal/mol at 310K), (B) neodysiherbaine
(PDB ID 3FV2; pKd = 8.1, ∆G = -11.49 kcal/mol at 310K), and (C) dysiherbaine (PDB ID 3FV1; pKd =
9.3, ∆G = -13.19 kcal/mol at 310K) and mapped onto the native bound pose. Labeled yellow transparent
circles in top panel are used to reference the substituted carbon atoms of interest. Per atom pharmacophore
map scores are output to a PyMol script for visualization as a molecular surface colored on a per atom basis
by spectrum from blue (negative) to white (zero) to red (positive). In this example, negative values indicate
atoms whose removal results in a loss in predicted binding affinity. The second row illustrates each ligand in
complex with iGluR5. The third row illustrates the common substructure pharmacophore map (i.e. pairwise
per-substructure relative binding free energy changes). The fourth row illustrates the raw pharmacophore
map for each ligand upon sequentially removing individual atoms and saturating open valences.
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cophore mapping procedure is compatible with any LB or SB machine learning score function in the BCL.

Thus, these results demonstrate a fast and simple approach to generate interpretable pharmacophore maps

from BCL machine learning model predictions.

7.3 Discussion

Here, we develop a novel machine learning-based score function for vHTS SB scoring. Our approach centers

around the development of novel protein-ligand signed property correlation descriptors. In addition to the

new descriptors, our models avoid the use of ligand-specific features to reduce the risk of training dataset

bias. The new models, BCL-AffinityNet and BCL-DockANNScore, have been evaluated on current best

practices benchmarks and compared to other standard and leading methods.

BCL-AffinityNet generally performs on par with or better than currently available SB virtual screen-

ing scores in affinity prediction and affinity ranking. BCL-DockANNScore, while generally not as good as

GOLD, Glide, or the AutoDock Vina and derived methods at pose recovery or screening, performs compet-

itively with respect to all of the evaluated methods. We therefore suggest that it may be a generally useful

SB scoring algorithm with especially strong affinity prediction. Indeed, some of the best methods for dock-

ing and screening failed to provide estimates for power scoring (e.g. statistics for GlideScore-XP are based

on 258/285 protein-ligand pairs, GlideScore-SP 252/285, GoldScore@GOLD 244/285)1. Thus, when con-

sidering all of the tasks together (scoring power, ranking power, docking power, and screening power), the

new SB scoring models in the BCL demonstrate the utility of our novel signed property protein-ligand cor-

relation descriptors for SB CADD. Moreover, BCL-AffinityNet and BCL-DockANNScore represent the first

instantiation of SB scoring in the BCL.

While a number of algorithms consider multiple ligand-specific descriptors in their feature space along-

side the protein-ligand interaction features (e.g. AutoDock Vina incorporates e.g. the ligand length, number

of hydrophobic atoms, etc.; ∆VinaRF, and ∆VinaXGB both include ligand-specific pharmacophore features;

∆VinaXGB includes an estimate of ligand conformational stability; KDEEP contains ligand-specific vox-

els colored by pharmacophore features) (Su et al., 2019; Wang and Zhang, 2017; Jiménez et al., 2018; Lu

et al., 2019), we made a conscious decision to avoid inclusion of such features in BCL-AffinityNet and BCL-

DockANNScore. This was done to reduce the ligand bias of the models and hopefully yield a more gen-

eralizable score function. Nevertheless, efforts are underway to incorporate other aspects of protein-ligand

binding affinity other than just interaction score terms into the BCL-AffinityNet and BCL-DockANNScore in

an unbiased manner. These include improvements to both the neural network architectures employed here as

well as incorporation of efficient metrics for solvation energy, ligand conformational preference, and entropy

changes.

161



An important limitation of our work is that all models were trained in the absence of explicit water

molecules, metal ions, and/or other cofactors. Others have recently demonstrated that incorporation of ex-

plicit water molecules can improve model performance (Lu et al., 2019), and future improvements to our

model will incorporate these elements. As these updates are introduced, we will also continue to retrain the

models leveraging the increasing availability of high quality protein-ligand co-crystal structures with Ki/Kd

data.

Another limitation is the under-optimized protein-ligand interaction feature space of the current models.

The generalizability of the PLC descriptors used to build BCL-AffinityNet and BCL-DockANNScore should

not be conflated with completeness of the score function. By analogy, RosettaLigand with the Rosetta Ta-

laris2014 score function (O’Meara et al., 2015) does not model halogen σ -hole interactions with aromatic

ring systems and is thus unlikely to accurately determine the protein-ligand binding affinities of systems

with these interactions. In the same way, BCL-AffinityNet and BCL-DockANNScore are incomplete rep-

resentations of protein-ligand interactions. Further score function development will focus on expanding the

availability of training data as well as describing additional salient chemical features.

Ongoing work in the Meiler Lab is focused on the development of both LB and SB small molecule de

novo design and focused library design algorithms. A critical motivator for the present work was the need for

the BCL to have a rapid and flexible SB score function that can be deployed for design tasks where there is

insufficient data to build a reliable LB QSAR model. BCL-AffinityNet and BCL-DockANNScore are fully

integrated into the BCL descriptor framework, allowing them to be called and mathematically combined with

a multitude of other features, including AD scores, ligand descriptors, and more.

Another fundamental hurdle that we wanted to overcome was the so-called “black box” problem. This

problem arises whenever the underlying feature space of the score function cannot be decomposed into

human-interpretable parts, and it presents a major challenge when relying on complex score functions for

rational drug design. In this manuscript, we have demonstrated a simple approach that can be employed with

any score function in the BCL (machine learning or not) to convert predictions into all-atom pharmacophore

maps. These pharmacophore maps can be generated with respect to underlying substructures or spatially

matched atoms between different molecules, or they can be generated for individual molecules without a ref-

erence structure. We demonstrate how this can be accomplished with the BCL-AffinityNet score function for

a series of congeneric DDR1 TKIs and dysiherbaine analogs. The relative pharmacophore maps provide an

interpretable decomposition of affinity with respect to scaffold modifications that can be used to guide further

molecule optimization. The absolute pharmacophore map procedure can tell the user which atoms are most

salient to BCL-AffinityNet’s predictions. In addition to being a useful tool for interpreting machine learning

score functions in the BCL, we anticipate that such pharmacophore maps will be valuable in automated drug
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design tasks.

All of our models and applications for generating new models are freely available with an academic

license for the BCL at http://meilerlab.org/. We hope that our descriptors and models may be integrated with

future machine learning architecture development and descriptor optimization for the continued advancement

of drug discovery.

7.4 Methods

7.4.1 Training dataset preparation

BCL-AffinityNet was trained using the refined set plus protein-ligand complexes from the general set of the

PDBbind v.2016 dataset that satisfied the following criteria: (1) the ligand was a small molecule; (2) the

binding affinity was measured as either Ki or Kd; (3) all atom types had defined Gasteiger atom types. The

PDBbind v.2016 coreset was not included in the training set for any of the models for any of the performance

evaluations. BCL-DockANNScore was trained using the refined set protein-ligand complexes from the PDB-

bind v.2016 dataset excluding the 285 coreset compounds. For each protein-ligand complex in the PDBbind

v.2016 refined set, 250 additional pose decoys were generated with RosettaLigand flexible docking with the

Talaris2014 score function (Fu and Meiler, 2018; Smith and Meiler, 2020; Meiler and Baker, 2006).

7.4.2 Model validation

Metrics for scoring power, ranking power, docking power, screening power, and confidence interval boot-

strapping were performed with the scripts made available with download of PDBbind v.2016.1 All models

were trained with five-fold random-split cross-validation. The final model prediction value is the average

prediction value obtained across all five splits (i.e. as opposed to selecting a single best model from the five

splits). PDBbind v.2016 coreset complexes were always excluded from training. For other external test-set

evaluations, the models were always re-trained excluding all test-set complexes explicitly. Thus, the final

training set sizes for testing on the PDBbind 2016 coreset (n=285), CSAR NRC-HiQ 1 Jimenez et al. subset

(n=55), CSAR NRC-HiQ 2 Jimenez et al. subset (n=49), CSAR NRC-HiQ 1 full set (n=176), and CSAR

NRC-HiQ 2 full set (n=167) were 7568, 7551, 7537, 7442, and 7440 (not every complex in the CSAR sets

is in the PDBbind v.2016 set, hence the differences are not equivalent to 7568 - n). For comparisons to the

CSAR NRC-HiQ benchmarks in Jimenez et al., 201832, complexes present in both the CSAR test sets and

the PDBbind v.2016 refined subset were removed from the CSAR test sets. This resulted in two CSAR test

sets of sizes 55 and 49, respectively, with the exact same PDB IDs as reported in the supplemental material

of Jimenez et al., 2018.

For our baseline assessment of ligand and receptor pocket bias on the PDBbind v.2016 coreset, we trained
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two DNNs identical in architecture to BCL-AffinityNet. For descriptors, we utilized the same chemical

features, distance bins, and sign pairings as in the PLC descriptors, except we instead generated signed 3D

autocorrelations of the ligand and/or receptor itself15. As inputs, we used the structures provided in the

PDBbind v.2016 dataset such that the ligand-based DNNs were trained on the native poses of the ligands and

the pocket-based DNNs were trained on the receptor binding pockets as extracted for inclusion in PDBbind

v.20161, (Liu et al., 2015).

For validation splits that explicitly address ligand and pocket bias of the training datasets, we generated

k-means (k=75) AD models of the PDBbind v.2016 coreset (n=285) based on ligand 3DAs, pocket 3DAs,

or column-combined ligand and pocket 3DAs (using the same descriptors that were used to create ligand-

and pocket-based QSAR models; see Supporting Information). We then scored all 7568 training set samples

with each of these AD models. Previous studies on appropriate cutoffs for distance-based AD models have

suggested that test set samples further away from their closest node than 95 – 100% of the training samples

can reliably be considered outside of the domain of applicability (Minovski et al., 2013; Sahigara et al.,

2012). We therefore made three test-set splits (one for each AD model) containing all training samples that

had AD scores greater than 1.0. The resulting test sets are those samples whose ligands, proteins, or ligands

and proteins can be considered within the same AD as the PDBbind v.2016 coreset. Put another way, this

creates larger PDBbind v.2016 coreset-like leave-class-out test set splits based on the properties of the ligands,

protein pockets, or combined ligands and protein pockets. We refer to these test sets respectively as LBAD

test (n=995), pocket AD test (n=379), and combined AD test (n=1377). For these evaluations, total model

training sample size is 7568 - n. For details on command-line syntax, see Supporting Information.

7.4.3 Training neural networks for affinity prediction and pose discrimination

All neural networks were trained with the BCL. Our binding affinity prediction model, which we call BCL-

AffinityNet, is a single-task, feed-forward regression neural network trained to predict pKi/d. While techni-

cally a “deep” neural network in that we utilize two hidden layers (512 and 32 neurons, respectively) instead

of just one, BCL-AffinityNet is quite small compared to neural networks recently published for similar tasks

(Ragoza et al., 2017; Jiménez et al., 2018; Izhar Wallach, 2015). Our pose prediction model, which we call

BCL-DockANNScore, is a shallow (single hidden layer, 32 neurons) multi-tasking feed-forward classifica-

tion neural network that predicts whether a protein-ligand pose is less than 1.0, 2.0, 3.0, 5.0, and 8.0 Å from

the correct pose. Both networks can thus be formalized as follows:

For a network with L hidden layers indexed lε(1..L), forward propagation for lε(0..L-1) can be described

as
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(7.3)

(7.4)

where yl is the output vector at layer l connected to the input vector z(l+1) at layer l+1 by weights w and

biases b, and f is the transfer function applied to each set of inputs into the l +1 layer. Correspondingly, the

activation of a single neuron i in hidden layer l +1 can be represented as

(7.5)

(7.6)

to yield the output y(l+1)
i from layer l+1. A mean-squared error (MSE) cost function was employed in all

studies. Overtraining is prevented through the use of dropout in the input and hidden layers. During forward

propagation each output value yl
i of each i neuron in the layer l of the ANN is randomly multiplied either by

a value of 0 (corresponding to a “dropped” neuron) or 1.

(7.7)

Here, rl is a vector with the same dimensions as yl whose values are either 0 (at fraction p) or 1 (at

fraction 1 – p). At the end of every training batch, rl is shuffled. At test time the corresponding weights are

scaled down by the factor 1–p.

The BCL-AffinityNet DNN contains two hidden layers with 512 and 32 neurons, respectively. It was

trained with 5% dropout in the input layer, 25% dropout in the first hidden layer, and 5% dropout in the

second hidden layer (Mendenhall and Meiler, 2016). All neurons utilized a leaky rectifier transfer function:

(7.8)

where x is the total input to a neuron. We utilized normalized mean absolute error (NMAE; defined as
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the quotient of mean absolute error and mean absolute deviation) as our objective function during training.

The BCL-DockANNScore ANN contained a single hidden layer with 32 neurons. It was trained with 5%

dropout in the input layer and 25% dropout in the hidden layer 6. All neurons utilized a sigmoid transfer

function:

(7.9)

where x is the total input to a neuron. We utilized area under the curve (AUC) as our objective function during

training.

The AffinityRF random forest model was trained with WEKA v.3.8.4 utilizing default settings.

7.4.4 Feature parameter and neural network hyperparameter tuning

Our adoption of 5% input layer dropout and 25% dropout in the first hidden layer (for both models) as well

as the selection of a 32 neuron hidden layer prior to the output layer is based on extensive prior evaluation

in Mendenhall et al. 2016. For classification models, it has been shown that shallow networks often perform

equivalently and sometimes better than deep networks at a substantially reduced training cost5. This, coupled

with our own experience with QSAR classification tasks, led us to use our previously utilized single hidden

layer architecture for BCL-DockANNScore (Mendenhall and Meiler, 2016).

With respect to BCL-AffinityNet, we nominally selected the nearest power of 2 (29 = 512) to our input

feature size as an upper limit for our first hidden layer size. We investigated two PLC descriptor feature

parameters using five-fold random-split cross-validation with the DNN of this size: (1) the interaction bin

distance, and (2) the smoothing parameter β (eq. 2). We selected an initial smoothing parameter value of 5.0

based on prior 3DA QSAR investigations in which values greater than one were effective (Mendenhall and

Meiler, 2016).

Subsequently, we varied the interaction bin distances at 1.0 Å intervals between 4.0 and 9.0 Å and com-

pared NMAE and Pearson correlation across the cross-validation splits. Our results suggested that distances

greater than 5.0 Å were best (Figure S17). In the interest of keeping our feature set relatively small, we se-

lected 7.0 Å for our final models. Similarly, we varied smoothing parameter between 0.1 and 10.0 at a fixed

bin distance of 7.0 Å. We found that β values between 3.0 and 10.0 produced similar results (Figure S18), so

we retained a value of 5.0 for all additional studies.

With the PLC parameters selected, we then performed additional five-fold random-split cross-validation

studies to determine an appropriate first hidden layer size. We decreased the number of neurons from 512 by

powers of 2 down to the size of the second hidden layer (32 neurons). For completeness, we also evaluated

a shallow ANN ranging in size from 32 – 128 neurons using either a leaky rectifier (eq. 8) or sigmoid (eq.
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9) transfer function. Generally, we observed that shallow and deep networks with smaller (32 – 64 neurons)

first hidden layers performed the worst independent of transfer function. We also noted that two hidden

layers seemed better than one, with little improvement in cross-validation performance between 256 and 512

neurons (Figure S19).

We note that all cross-validation studies for PLC feature parameter and model hyperparameter tuning

were done with the BCL-AffinityNet training set of size 7568 protein-ligand complexes (PDBbind v.2016

refined set excluding the coreset and including select general set complexes; see Methods subsection Model

validation for details). Model performance on the external test sets was not evaluated during feature parameter

or model hyperparameter tuning.

7.4.5 Resolving hydrogen bond angles in feature space

BCL-DockANNScore contains an additional feature type not present in BCL-AffinityNet. Specifically, we

binned hydrogen bonding pairs by both distance and angle. We considered that the strength of hydrogen

bonding interactions is often approximated not only with distances between donor and acceptor atoms but

also with orientation angle. Therefore, we also developed a complementary feature to (eq. 2) to assist with

the description of well-formed hydrogen bonds. While (eq. 2) is generalizable to any atom-based descriptor

(or pair of descriptors if performing an asymmetric correlation) returning a scalar value, this descriptor is ex-

clusively for hydrogen bond donor/acceptor pairs. Essentially, each distance interval specified by the bound-

aries r a and r b in (eq. 2) is equally partitioned into a user-specified number of bins (for this manuscript,

nominally 45 bins of 8° each). Thus, for each distance bin there is also an angular component. See the

Supporting Information for sample BCL code object files containing all properties employed in this study.

7.4.6 Input sensitivity analysis

The predictions for BCL-AffinityNet (and separately, BCL-DockANNScore) are the average predictions of

the five cross-validated models. We can readily calculate feature importance for a single ANN by comput-

ing the magnitude of the input sensitivity across a dataset with respect to a given feature, after appropriate

rescaling of the inputs. For model ensembles, the magnitude cannot be used or meaningfully averaged be-

cause feature input sensitivity may differ in sign for various feature-instance pairings. While we could look

at the raw average of input sensitivity of models across a given instance-feature pairing, and then average

the absolute value of that over the dataset, we suffer an issue with relative scaling of the input sensitivities,

due to the non-linearity of the ANN’s transfer function. Rather than deriving an optimal weighted feature

importance metric for ANN ensembles by some criteria, we chose to simply evaluate how often the models

in the ensemble agreed on the sign of the derivative for each feature, averaged across the dataset.
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This is a form of input sensitivity analysis we refer to as “consistency”. Here, we specifically evaluate

the consistency of feature column perturbations on result labels across cross-validation models. Features for

which models in the ensemble agree on the derivative sign most routinely are interpreted as those that are of

most importance to the ensemble’s performance. Consistency is thus insensitive to the magnitude of feature’s

influence.

To calculate consistency, we iterate across all input feature columns of a training sample, perturb the

feature value by a small amount (e.g. 0.01), propagate the perturbed inputs, and measure the result. For effi-

ciency, we perform a forward propagation pass, followed by a backpropagation pass with a slightly modified

result, which is readily transformed into the forward input sensitivities. This is done for each cross-validation

model (in this manuscript we performed five-fold cross-validation for all models). For each feature column,

we count the number of models that predict that the perturbation will improve the score vs. the number of

models that predict that the perturbation will worsen the score. This number is normalized such that when

half of the models predict a negative change to the result and the other half predicts a positive change to the

result the net consistency is zero. The consistency result is averaged across all examples in the training set

for each individual feature.
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CHAPTER 8

Simultaneous protein interface and small molecule design with BCL-Rosetta

This chapter is a collaborative work of Benjamin P. Brown, Jeffrey Mendenhall, Rocco Moretti, Sergey

Lyskov, Alexander R. Geanes, Darwin Fu, Sandeep Kothiwale, Edward W. Lowe Jr., and Jens Meiler. This

chapter is under review as a Brief Communication.

8.1 Introduction

Computer-aided drug design (CADD) has become a core component of modern drug discovery (Macalino

et al., 2015). Both ligand-based quantitative structure-activity relationship (QSAR) modeling and structure-

based docking virtual high-throughput screening (vHTS) have come-of-age as powerful tools for small

molecule hit discovery (Geanes et al., 2016; Butkiewicz et al., 2013; Stein et al., 2020; DeLuca et al., 2015;

Fu and Meiler, 2018; Meiler and Baker, 2006; Sadybekov et al., 2022). Advances in molecular mechanics

methods such as free energy perturbation (FEP) and thermodynamic integration (TI) have led to unprece-

dented in silico rank-ordering of scaffold derivatives during hit-to-lead optimization (Wang et al., 2015; Zou

et al., 2019). Ongoing investigations in machine learning (ML) and quantum chemistry are poised to increase

the predictive power of our CADD score functions (Lu et al., 2019; Brown et al., 2021; Kirkpatrick et al.,

2021; Gentile et al., 2020).

Despite these advances, there remains substantial attrition in the development of a compound from lead

to FDA-approved therapy (Harrison, 2016; Waring et al., 2015). The time and cost required to develop a new

drug remain substantial. Several algorithms have emerged that leverage the one-shot synthetic accessibility

of made-on-demand libraries to propose efficient routes for molecular design (Sadybekov et al., 2022; Bell-

mann et al., 2022). Other algorithms leverage ML, combinatorial chemistry, and/or reaction-based design

to generate small molecule libraries with favorable predicted properties and activities (Zhavoronkov et al.,

2019; Brown et al., 2022).

All of these approaches represent important fundamental advances; however, they exist largely in isolation

as highly specialized protocols. CADD requires adaptability. The nature and scope of a CADD challenge is

heavily influenced by factors such as the availability of training data, knowledge of the target chemical space,

the presence (or absence) of experimental characterization of the drug target and putative binding pocket(s),

the flexibility (dynamics) of the target, the size of the system under investigation, the expected accuracy of

the score function in the given system, and more. Thus, while specialized tools can be highly valuable in

some circumstances, they may be of limited utility in others.
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Here, we present a new modular, customizable framework for CADD that integrates the BioChemical Li-

brary (BCL) cheminformatics toolkit (Brown et al., 2022) with the Rosetta macromolecular modeling and de-

sign software suite (Leman et al., 2020). In addition to integrating the BCL into the broader Rosetta codebase,

we have developed small molecule drug design “mutates”, or chemical perturbations, with which to design

new molecules. These mutates are capable of performing one-shot made-on-demand style reactions, single-

and multi-component reactions, or reaction-free medicinal chemistry-inspired “alchemical” perturbations.

The mutates are encoded as “Movers” in Rosetta, which means they can be recombined in a protocol-specific

manner. Collectively, the mutates provide an avenue for highly customizable ligand- or structure-based drug

design protocols using the RosettaScripts, PyRosetta, or standard BCL command-line API.

The new drug design tools can be seamlessly combined with the diverse repertoire of modeling tools in

Rosetta. Rosetta has been developed to model and design atypical moieties such as non-canonical amino

acids (Renfrew et al., 2012), post-translational modifications (Labonte et al., 2017), nucleic acids (Alford

et al., 2017), membranes (Leman et al., 2015), and more. Rosetta also contains multiple tools for sampling

small and large protein conformational changes (Leman et al., 2020). In this manuscript, we demonstrate

how the BCL-Rosetta integration can be utilized to build custom protocols for tasks such as induced-fit drug

design, chemogenetics drug design, and selectivity design.

8.2 Results

8.2.1 Customization of atom selections during drug design

The drug design “mutates”, or chemical perturbations, are capable of performing one-shot made-on-demand

style reactions (Figure 8.1A), single- and multi-component reactions (Figure 8.1B), or reaction-free medicinal

chemistry-inspired “alchemical” perturbations (Figure 8.1C).

These mutates are encoded as “Movers” in Rosetta and can be modularly recombined to build protocols.

Each Mover defines a perturbation type, a set of mutable atom specifications, a druglikeness filter from the

BCL descriptor framework10, and potentially several perturbation-specific options. By default, all atoms are

mutable, and an atom is randomly selected for perturbation by its mutate Mover. The subset of mutable atoms

is refined through user-specification.

To illustrate the atom selection ability, we apply a series of three mutates to a 2-amino-8-methyl-6-

phenylpyrido[2,3-d]pyrimidin-7-one scaffold tyrosine kinase inhibitor (TKI) scaffold (Okram et al., 2006)

to create a type II TKI topology. First, we restrict the mutable atom selection to the hydrogen atom bonded

to the carbon at index 13 and apply Alchemy to transform it into a carbon. Second, we restrict our mutable

atoms to the complement of the common subgraph between our original molecule (0) and our new molecule

(1) and allow the AddMedChem mutate to append an ethylamide. Third, we restrict our mutable atoms as
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Figure 8.1: A modular framework for small molecule drug design chemical perturbations. a, One-shot chem-
ical synthesis can be simulated by combining fragments with the AddMedChem mutate. The connection
between the fragments is made through bonds at undefined atom types (“X”; yellow circles in reaction).
b, Single- and multi-component reaction simulations can be performed with the React mutate. The reac-
tion is read from an MDL RXN file where the product atoms are mapped to reagent atoms. c, Medicinal
chemistry-inspired “alchemical” mutates can be performed without specifying chemical reaction pathways.
d, Alchemical mutations allow user-specified restrictions on mutable (green circles) and fixed (purple circles)
atoms.
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previously, but also prevent design on heteroatoms and enable a Fluorinate-specific perturbation requirement

that upon saturation the selected atom must have three attached fluorine atoms (see Online Methods). In

Rosetta structure-based design protocols, by default conformer generation occurs only on the newly designed

substructure. Notably, the mutates preserve coordinate information of the unperturbed substructure when

possible (Figure 8.1D).

8.2.2 Illustration of induced-fit drug design in two receptors

We demonstrate a structure-based induced-fit drug design protocol to build TKIs that adhere to either a type I

or II topology in the Abl kinase domain (KD) ATP binding pocket. Following guided stochastic design, TKIs

are scored on low-resolution grids of 16 unique Abl kinase conformers (Meng et al., 2018). The best scoring

complex is taken for high-resolution refinement and interaction energy evaluation. Using this approach, we

observed an enrichment in activation loop (A-loop) inward (inactive) conformers with type II TKIs and A-

loop outward (active) conformers with type I TKIs (Figure 8.2A).

We also demonstrate an induced-fit drug design simulation targeting a cryptic pocket in mAChR1 (Hollingsworth

et al., 2019) that leverages Monte Carlo Metropolis (MCM) sampling of neighboring sidechains (Figure

8.2B). The open state of the cryptic pocket is enriched among designs that bury in the cryptic pocket, while

the closed cryptic pocket state is enriched in ligands that are distant from the cryptic pocket (Figure 8.2C).

Finally, we show how the BCL-Rosetta integration can simulate “bump-and-hole” drug design for chemo-

genetics (Runcie et al., 2018). The strategy is to create a “hole” by mutating bulky receptor residues into

smaller residues and then fill it by “bumping”, or appending, atoms to a scaffold molecule (Figure 8.2D).

We combine Rosetta protein sequence design with our drug design mutates to simulate experiments done by

Runcie and colleagues to identify a mutant-ligand pair for BRD216. The correlation we obtain between com-

putational and experimental (Runcie et al., 2018) relative binding affinities of BRD2 wild-type and L383V is

consistent with recent RosettaLigand benchmarks (Smith and Meiler, 2020) (Figure 8.2E).

We expand on the conservative pocket redesign in Runcie et al. (Runcie et al., 2018) by enabling more

sequence positions for design in our resfile (Methods). In a representative example of such a simulation, we

obtain a “bump” modification that is a propylene, and a “hole” modification that is a combination of L41V and

Y86V. The simulation also redesigned three additional residues (H91N, N87S, C83S) to increase hydrogen

bonding of the ligand to the receptor (Figure 8.2F). This approach has clear applications for in silico design

of DREADDs (designer receptors exclusively activated by designer drugs), which are a powerful means of

noninvasively modulating cellular activity (Urban and Roth, 2015).
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Figure 8.2: Small molecule design simulations can be performed in the presence of conformational changes
and sequence design. a, Induced-fit design simulations of Type I or Type II tyrosine kinase inhibitors for
Abl kinase captures activation loop conformational preferences. Design simulations were initiated with a
common scaffold (magenta). Chemical perturbations of the scaffold were performed to generate either Type
I (light brown) or Type II (light blue) inhibitors. b, Sample in silico designs that either do (light green) or
do not (light blue) occupy the cryptic pocket of mAChR1. Protein colors match their corresponding ligands.
c, Induced-fit design simulations of positive allosteric modulators (PAMs) targeting a cryptic pocket in mus-
carinic acetylcholine receptor 1 (mAChR1). The distance between the Y2.64 hydroxyl and C45.50 backbone
nitrogen defines the accessibility of the cryptic pocket (Hollingsworth et al. 2019). d, Schematic repre-
sentation of BRD2 bump-and-hole chemogenetic design simulation. BRD2 L41V mutation (light brown) is
superimposed with wild-type (light blue-white). The “bump” corresponds to the ethyl (light brown) and the
“hole” the reduction in size of L41 (light blue-white) to valine (light brown). e, Correlation between exper-
imental (x-axis; Runcie et al. 2018) and computational (y-axis) relative binding affinity estimates between
BRD2 and BRD2-L41V f, Simulating the simultaneous redesign of the BRD2 binding pocket and inhibitor
scaffold.
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8.3 Discussion

Rosetta has been developed to model macromolecule conformational changes and design with many poly-

meric species, such as non-canonical amino acids (Renfrew et al., 2012), post-translational modifications

(Labonte et al., 2017),nucleic acids (Alford et al., 2017), membranes (Leman et al., 2015). Integration with

the BCL extends this toolkit to enable versatile drug design simulations. We anticipate that this will be a

valuable addition to the expanding array of tools available to computational chemists.

8.4 Methods

8.4.1 BCL command line syntax used to append an amide-linked trifluoroethyl group to a scaffold

The 2-amino-8-methyl-6-phenylpyrido[2,3-d]pyrimidin-7-one scaffold was obtained by manually removing

the 3-(trifluoromethyl)benzamide and the core benzene ring methyl-substitution from the crystallized type II

tyrosine kinase inhibitor (TKI) in PDB ID 2HIW12. The resulting scaffold molecule, saved as “LIG.sdf”,

was processed with the BCL molecule:Filter application to add hydrogen atoms, neutralize formal charges,

and verify defined Gasteiger atom types.

bcl.exe molecule:Filter \

-input_filenames LIG.sdf -output_matched LIG.clean.sdf \

-add_h -neutralize -defined_atom_types

We visualized the molecule in PyMOL to identify the 0-indexed integer in “LIG.clean.sdf” corresponding to

the carbon originally bonded to the 3-(trifluoromethyl)benzamide group. This atom (index 13) was selected as

the atom from which to initialize our perturbation. The molecule:Mutate application was used to chemically

perturb the scaffold “LIG.clean.sdf” into a type II TKI with the following command:

b c l . exe m o l e c u l e : Muta te − i n p u t f i l e n a m e s LIG . c l e a n . s d f − o u t p u t LIG .

a m i d e c f 3 . s d f − i m p l e m e n t a t i o n \

” Alchemy ( m u t a b l e a t o m s =13 , a l l o w e d e l e m e n t s =C , r e s t r i c t t o b o n d e d h =1) ” ”

AddMedChem ( m u t a b l e f r a g m e n t s =LIG . c l e a n . sdf ,

c o m p l e m e n t m u t a b l e f r a g m e n t s =1 , m e d c h e m l i b r a r y = / home / ben / workspace /

b c l / r o t a m e r l i b r a r y / medchem fragments / e t h y l a m i d e . s d f . gz ) ” \

” F l u o r i n a t e ( m u t a b l e f r a g m e n t s =LIG . c l e a n . sdf , c o m p l e m e n t m u t a b l e f r a g m e n t s

=1 , f i x e d e l e m e n t s =N O, n m i n f =3 , n m i n h s u b =3) ” − random seed

[breaklines]

If using the BCL mutates in Rosetta, the default conformational ensemble of “LIG.amide cf3.sdf” will

be generated by only sampling the new dihedrals added with the mutates. In the above BCL standalone
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command, the final output is the scaffold with a single random conformer generated for the new atoms. To

generate a conformational ensemble with BCL standalone with or without dihedral angle restrictions, see

previously published protocols (Mendenhall et al., 2021; Brown et al., 2022).

8.4.2 Induced-fit drug design of type I and II TKIs in the Abl kinase domain

Each design was scored in 16 conformations of Abl kinase (taken from (Meng et al., 2018); 7 active and 9

inactive states annotated based on the activation loop being in the outward/active or inward/inactive confor-

mation) using the Rosetta low resolution Transform mover. High resolution refinement was performed on the

best scoring Abl kinase conformer with the designed ligand prior to computation of the interaction energy.

The fraction of final protein-ligand complexes in each of the 16 conformational states was determined for

either Type I (light brown) or Type II (light blue) design simulations. An equal number of simulations were

initialized from each conformation for each inhibitor type.

All design simulations were run with RosettaScripts. The XML file is provided below:

<ROSETTASCRIPTS>

<SCOREFXNS>

<S c o r e F u n c t i o n name=” t 1 4 ” w e i g h t s =” t a l a r i s 2 0 1 4 ”/>

<S c o r e F u n c t i o n name=” t14w ” w e i g h t s =” t a l a r i s 2 0 1 4 ”>

<Reweight s c o r e t y p e =” c o o r d i n a t e c o n s t r a i n t ” we ig h t

=”1.0”/ >

</ S c o r e F u n c t i o n>

</SCOREFXNS>

<LIGAND AREAS>

<LigandArea name=” d o c k i n g s i d e c h a i n ” c h a i n =”X” c u t o f f = ” 6 . 0 ”

a d d n b r r a d i u s =” t r u e ” a l l a t o m m o d e =” t r u e ” m i n i m i z e l i g a n d

=”10”/>

<LigandArea name=” f i n a l s i d e c h a i n ” c h a i n =”X” c u t o f f = ” 6 . 0 ”

a d d n b r r a d i u s =” t r u e ” a l l a t o m m o d e =” t r u e ”/>

<LigandArea name=” f i n a l b a c k b o n e ” c h a i n =”X” c u t o f f = ” 7 . 0 ”

a d d n b r r a d i u s =” f a l s e ” a l l a t o m m o d e =” t r u e ”

C a l p h a r e s t r a i n t s =”0.3”/ >

</LIGAND AREAS>

<INTERFACE BUILDERS>
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< I n t e r f a c e B u i l d e r name=” s i d e c h a i n f o r d o c k i n g ” l i g a n d a r e a s =”

d o c k i n g s i d e c h a i n ”/>

< I n t e r f a c e B u i l d e r name=” s i d e c h a i n f o r f i n a l ” l i g a n d a r e a s =”

f i n a l s i d e c h a i n ”/>

< I n t e r f a c e B u i l d e r name=” backbone ” l i g a n d a r e a s =” f i n a l b a c k b o n e ”

e x t e n s i o n w i n d o w =”3”/>

</INTERFACE BUILDERS>

<MOVEMAP BUILDERS>

<MoveMapBuilder name=” dock ing ” s c i n t e r f a c e =”

s i d e c h a i n f o r d o c k i n g ” m i n i m i z e w a t e r =” t r u e ”/>

<MoveMapBuilder name=” f i n a l ” s c i n t e r f a c e =” s i d e c h a i n f o r f i n a l ”

b b i n t e r f a c e =” backbone ” m i n i m i z e w a t e r =” t r u e ”/>

</MOVEMAP BUILDERS>

<SCORINGGRIDS l i g a n d c h a i n =”X” wid th =”30.0”>

<C l a s s i c G r i d g r i d n a m e =”vdw” we igh t = ” 1 . 0 ” />

</SCORINGGRIDS>

<RESIDUE SELECTORS>

<Chain name=” l i g a n d ” c h a i n s =”X”/>

<Not name=” r e c e p t o r ” s e l e c t o r =” l i g a n d ”/>

<Neighborhood name=” i n t e r f a c e ” s e l e c t o r =” l i g a n d ” d i s t a n c e

=”4.0”/ >

<Not name=” n o t i n t e r f a c e ” s e l e c t o r =” i n t e r f a c e ”/>

</RESIDUE SELECTORS>

<TASKOPERATIONS>

<R e s t r i c t T o R e p a c k i n g name=” r t r p ”/>

<I n i t i a l i z e F r o m C o m m a n d l i n e name=” i f c l ” />

<O p e r a t e O n R e s i d u e S u b s e t name=” r e p a c k o n l y l i g a n d ” s e l e c t o r =”

l i g a n d ” >

<Res t r i c tToRepack ingRLT />
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</ Ope ra t eOnRes idueSubse t>

<O p e r a t e O n R e s i d u e S u b s e t name=” r e p a c k i n t e r f a c e ” s e l e c t o r =”

i n t e r f a c e ” >

<Res t r i c tToRepack ingRLT />

</ Ope ra t eOnRes idueSubse t>

<O p e r a t e O n R e s i d u e S u b s e t name=” f i x n o t i n t e r f a c e ” s e l e c t o r =”

n o t i n t e r f a c e ” >

<PreventRepackingRLT />

</ Ope ra t eOnRes idueSubse t>

</TASKOPERATIONS>

<SIMPLE METRICS>

<T o t a l E n e r g y M e t r i c name=” e ne rg y ” />

</SIMPLE METRICS>

<FILTERS>

<L i g I n t e r f a c e E n e r g y name=” i f s c o r e ” s c o r e f x n =” t 1 4 ”

i n c l u d e c s t E =”0” e n e r g y c u t o f f =”0.0”/ >

<Rmsd name=” r m s d f i l t e r ” s u p e r i m p o s e =”1” t h r e s h o l d = ” 4 . 0 ”

c o n f i d e n c e =”1.0”/ >

</FILTERS>

<SIMPLE METRICS>

< I n t e r a c t i o n E n e r g y M e t r i c name=” l i g i f s c o r e ”

f o r c e r e s c o r e =” t r u e ” r e s i d u e s e l e c t o r =” l i g a n d ”

r e s i d u e s e l e c t o r 2 =” r e c e p t o r ” s c o r e f x n =” t 1 4 ” />

</SIMPLE METRICS>

<MOVERS>

# Compute p r o t e i n − l i g a n d i n t e r a c t i o n en e rg y

<RunSimpleMet r i c s name=” i f x ” m e t r i c s =” l i g i f s c o r e ” p r e f i x =”

l i g a n d ” />

# C o n s t r a i n t s

<A d d C o n s t r a i n t s T o C u r r e n t C o n f o r m a t i o n M o v e r name=” c s t ” c o o r d d e v

= ” 1 . 0 ” CA only =”0” b b o n l y =”1” bound wid th =”2.0”/ >
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<C l e a r C o n s t r a i n t s M o v e r name=” u n c s t ”/>

<AtomCoordina teCstMover name=” r e l a x c s t ” c o o r d d e v = ” 1 . 0 ” bounded

=” f a l s e ” bound wid th =”0”

s i d e c h a i n =” t r u e ” n a t i v e =” f a l s e ” f u n c g r o u p s =” f a l s e ”/>

# Relax

<V i r t u a l R o o t name=” r o o t ” removab le =”1” />

<V i r t u a l R o o t name=” remove ” remove =”1” />

<F a s t R e l a x name=” r e l a x ” s c o r e f x n =” t14w ” r a m p d o w n c o n s t r a i n t s =”

f a l s e ”

r e p e a t s =”1” t a s k o p e r a t i o n s =” r t r p , r e p a c k i n t e r f a c e ,

f i x n o t i n t e r f a c e ”/>

<P a r s e d P r o t o c o l name=” r e l a x c y c l e ”>

<Add mover name =” r o o t ”/>

<Add mover name =” r e l a x c s t ”/>

<Add mover name =” r e l a x ”/>

<Add mover name =” remove ”/>

<Add mover name =” u n c s t ”/>

</ P a r s e d P r o t o c o l >

# Minimize

<MinMover name=”min ” s c o r e f x n =” t14w ” c h i =” t r u e ” bb =” t r u e ”

c a r t e s i a n =” f a l s e ” t y p e =” l b f g s a r m i j o n o n m o n o t o n e ”/>

<P a r s e d P r o t o c o l name=” m i n c y c l e ”>

<Add mover name =” c s t ”/>

<Add mover name =”min”/>

<Add mover name =” u n c s t ”/>

</ P a r s e d P r o t o c o l >

#### S t a r t BCL Drug Design Movers ####

# Common Type I and I I TKI d e s i g n moves
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# Type I TKI d e s i g n moves

<BCLFragmentMutateMover name=” t 1 e w l ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Ex tendWi thL inke r (

o v r e v e r s e =True , o v s h u f f l e h = F a l s e ,

r i n g l i b r a r y=%%r o t a m e r l i b r a r y %%/ r i n g l i b r a r i e s /

d r u g r i n g d a t a b a s e . s i m p l e . a r o . s m a l l . s d f . gz ,

e x t e n d w i t h i n p r o b = 0 . 0 , d i r e c t l i n k p r o b =100000 ,

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

m u t a b l e a t o m s =18) ”

/>

<BCLFragmentMutateMover name=” t 1 e w l i n t e r n a l ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Ex tendWi thL inke r (

r i n g l i b r a r y=%%r o t a m e r l i b r a r y %%/ r i n g l i b r a r i e s /

d r u g r i n g d a t a b a s e . s i m p l e . a r o . s m a l l . s d f . gz ,

e x t e n d w i t h i n p r o b = 1 . 0 , s i n g l e e l e m e n t l i n k p r o b =100000 ,

N prob =1000 , O prob =1000 ,

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

m u t a b l e a t o m s =8 10) ”

/>

<BCLFragmentMutateMover name=” t1 am ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =”AddMedChem (

m e d c h e m l i b r a r y=%%medchem fragments%%/c h a i n s . s d f . gz ,

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

m u t a b l e f r a g m e n t s=%%m u t f r a g%%,

c o m p l e m e n t m u t a b l e f r a g m e n t s =1 ,

f i x e d e l e m e n t s =H N O) ”
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/>

<BCLFragmentMutateMover name=” t 1 h c ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” H a l o g e n a t e (

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

m u t a b l e a t o m s =11 12 13 14 15 ,

r e v e r s i b l e =1 ,

a l l o w e d h a l o g e n s =F Cl ) ”

/>

<BCLFragmentMutateMover name=” t 1 a c ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Alchemy (

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

m u t a b l e a t o m s =11 12 13 14 15 ,

a l l o w e d e l e m e n t s =C ,

r e s t r i c t t o b o n d e d h =1) ”

/>

<BCLFragmentMutateMover name=” t 1 r s ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” RingSwap (

r i n g l i b r a r y=%%r o t a m e r l i b r a r y %%/ r i n g l i b r a r i e s /

d r u g r i n g d a t a b a s e . s i m p l e . a r o . s d f . gz ,

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e , c o n s e r v a t i v e = F a l s e ,

r e s t r i c t e d =True ,

s c a f f o l d m o l=%%m u t f r a g%%,

a tom compar i son =ElementType ,

bond compar i son = BondOrderOrAromat icWithRingness ,

m u t a b l e a t o m s =11 , f i x g e o m e t r y =True , r e f i n e a l i g n m e n t = F a l s e ,

r i n g i n i t i a t i o n p r o b a b i l i t y = 0 . 0 ) ”
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/>

# Alchemy can be used as a dummy mu ta t e when do ing random

c o m b i n a t i o n s

<BCLFragmentMutateMover name=” t 1 a c o n t r o l ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Alchemy (

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

m u t a b l e e l e m e n t s =H,

a l l o w e d e l e m e n t s =H

) ”

/>

<BCLFragmentMutateMover name=” t 1 a ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Alchemy (

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

m u t a b l e a t o m s =18 ,

a l l o w e d e l e m e n t s =N O) ”

/>

<RandomMover name=” d e c o r a t e c o r e ” movers =” t 1 h c , t 1 a c ” w e i g h t s

= ” 0 . 5 , 0 . 5 ” r e p e a t s =”2”/>

<RandomMover name=” d e c o r a t e n e w ” movers =” t1 am , t 1 a c o n t r o l ”

w e i g h t s = ” 0 . 2 5 , 0 . 7 5 ” r e p e a t s =”1”/>

<RandomMover name=” p e r t u r b s c a f f o l d ” movers =” t 1 e w l i n t e r n a l ,

t 1 r s , t 1 a c o n t r o l ” w e i g h t s = ” 0 . 0 5 , 0 . 2 5 , 0 . 7 ” r e p e a t s =”1”/>

<RandomMover name=” core mod ” movers =” p e r t u r b s c a f f o l d ,

d e c o r a t e c o r e ” w e i g h t s = ” 0 . 2 5 , 0 . 7 5 ” r e p e a t s =”1”/>

<P a r s e d P r o t o c o l name=” d e s i g n t 1 ” mode=” s e q u e n c e”>

<Add mover name =” t 1 e w l ”/>
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<Add mover name =” d e c o r a t e n e w ”/>

<Add mover name =” core mod ”/>

</ P a r s e d P r o t o c o l >

# Type I I TKI d e s i g n moves

<BCLFragmentMutateMover name=” t 2 e w l ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Ex tendWi thL inke r (

r i n g l i b r a r y=%%r o t a m e r l i b r a r y %%/ r i n g l i b r a r i e s / i n d i v i d u a l r i n g s

/ 0 0 0 . s d f . gz ,

e x t e n d w i t h i n p r o b = 0 . 0 , a m i d e l i n k p r o b =100000 ,

a m i d e n a t t a c h p r o b = 0 . 5 ,

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

m u t a b l e a t o m s =14) ”

/>

<BCLFragmentMutateMover name=” t2 am ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =”AddMedChem (

m e d c h e m l i b r a r y=%%medchem fragments%%/

h y d r o p h o b i c p o c k e t f r a g m e n t s . s d f . gz ,

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

m u t a b l e f r a g m e n t s=%%m u t f r a g%%,

c o m p l e m e n t m u t a b l e f r a g m e n t s =1 ,

f i x e d e l e m e n t s =H N O) ”

/>

<BCLFragmentMutateMover name=” t 2 a ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Alchemy (

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,
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m u t a b l e a t o m s =18 ,

a l l o w e d e l e m e n t s =N O) ”

/>

<BCLFragmentMutateMover name=” ad d c ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Alchemy (

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

a l l o w e d e l e m e n t s =C , r e s t r i c t t o b o n d e d h = t r u e ,

m u t a b l e a t o m s =14) ”

/>

<BCLFragmentMutateMover name=” t 2 e w l w i t h c ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Ex tendWi thL inke r (

r i n g l i b r a r y=%%r o t a m e r l i b r a r y %%/ r i n g l i b r a r i e s / i n d i v i d u a l r i n g s

/ 0 0 0 . s d f . gz ,

e x t e n d w i t h i n p r o b = 0 . 0 , a m i d e l i n k p r o b =100000 ,

a m i d e n a t t a c h p r o b = 0 . 5 ,

d r u g l i k e n e s s t y p e = I s C o n s t i t u t i o n D r u g l i k e ,

m u t a b l e f r a g m e n t s=%%m u t f r a g%%,

c o m p l e m e n t m u t a b l e f r a g m e n t s =1 ,

f i x e d e l e m e n t s =H N O) ”

/>

<P a r s e d P r o t o c o l name=” t 2 e w l e x t e n d e d ” mode=” s e q u e n c e”>

<Add mover name =” add c ”/>

<Add mover name =” t 2 e w l w i t h c ”/>

</ P a r s e d P r o t o c o l >

<RandomMover name=” t 2 e w l r a n d ” movers =” t 2 e w l , t 2 e w l e x t e n d e d ”

w e i g h t s = ” 0 . 9 , 0 . 1 ” / >
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<P a r s e d P r o t o c o l name=” d e s i g n t 2 ” mode=” s e q u e n c e”>

<Add mover name =” t 2 e w l r a n d ”/>

<Add mover name =” t2 am ”/>

<Add mover name =” d e c o r a t e c o r e ”/>

<Add mover name =” t 2 a ”/>

</ P a r s e d P r o t o c o l >

# S e l e c t a d e s i g n s e q u e n c e

<RandomMover name=” d e s i g n t 1 −2” movers =” d e s i g n t 2 , d e s i g n t 1 ”

w e i g h t s = ” 0 . 5 , 0 . 5 ” / >

# BCL mut a t e MCM o p t i m i z a t i o n

<Gener i cMonteCar lo name=” bcl gmc ” mover name =” d e s i g n t 1 −2”

s c o r e f x n n a m e =” t14w ”

t r i a l s =”20” s a m p l e t y p e =” low ”

t e m p e r a t u r e = ” 1 . 0 ” d r i f t =”0” r e c o v e r l o w =”1” r e s e t b a s e l i n e s =”0”

a d a p t i v e m o v e r s =”0” p r e a p p l y =”0” />

#### End BCL Drug Design Movers ####

# Low r e s o l u t e o n dock ing

<Trans fo rm name=” t r a n s f o r m ” c h a i n =”X” b o x s i z e = ” 6 . 0 ”

m o v e d i s t a n c e = ” 0 . 2 ” a n g l e = ” 2 . 0 ” c y c l e s =”500” r e p e a t s =”1”

t e m p e r a t u r e=”%%temp%%” i n i t i a l p e r t u r b = ” 0 . 0 ”

i n i t i a l a n g l e p e r t u r b = ” 0 . 0 ” e n s e m b l e p r o t e i n s=”%% c o n f s l i s t

%%” use ma in mode l =” f a l s e ” />

# High r e s o l u t i o n dock ing

<HighResDocker name=” h i g h r e s d o c k e r ” c y c l e s =”12”

r e p a c k e v e r y N t h =”3” s c o r e f x n =” t 1 4 ” movemap bui lde r =” dock ing

”/>
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# S c o r i n g

< I n t e r f a c e S c o r e C a l c u l a t o r name=” a d d s c o r e s ” c h a i n s =”X” s c o r e f x n

=” t 1 4 ” c o m p u t e g r i d s c o r e s =”0”/>

<P a r s e d P r o t o c o l name=” l o w r e s d o c k ”>

<Add mover name =” t r a n s f o r m ”/>

</ P a r s e d P r o t o c o l >

<P a r s e d P r o t o c o l name=” h i g h r e s d o c k ”>

<Add mover name =” r e l a x c y c l e ”/>

<Add mover name =” h i g h r e s d o c k e r ”/>

<Add mover name =” m i n c y c l e ”/>

</ P a r s e d P r o t o c o l >

</MOVERS>

<PROTOCOLS>

<Add mover name =” m i n c y c l e ”/>

<Add mover name =” d e s i g n t%%t k i t y p e %%”/>

<Add mover name =” l o w r e s d o c k ”/>

<Add mover name =” h i g h r e s d o c k ”/>

<Add mover name =” i f x ”/>

<Add mover name =” a d d s c o r e s ”/>

</PROTOCOLS>

</ROSETTASCRIPTS>

The above XML script can be run with the rosetta scripts application compiled with ‘extras=bcl’. Below

is a sample Bash script:

#!/bin/bash

# Global variables

ROSETTA=Rosetta/main/source/bin/rosetta_scripts.bcl.linuxgccrelease

ROTAMER_LIBRARY=bcl/rotamer_library

MUTABLE_FRAGMENTS=induced_fit_drug_design/lowres/inputs/ligands/LIG.clean.sdf
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MEDCHEM_FRAGMENTS=induced_fit_drug_design/lowres/inputs/medchem_fragments

# Input variables

XML=‘readlink -e $1‘

PROTEIN=‘readlink -e $2‘

LIGAND=‘readlink -e $3‘

PARAMS=$4

TEMP=$5

TYPE=$6

PREFIX=$7

# Derived variables

protein=‘basename $PROTEIN .pdb‘

ligand=‘basename $LIGAND .pdb‘

# Run

$ROSETTA \

-parser:protocol $XML \

-in:file:s "$PROTEIN $LIGAND" \

-extra_res_fa "$PARAMS".fa.params \

-extra_res_cen "$PARAMS".cen.params \

-parser:script_vars rotamer_library="${ROTAMER_LIBRARY}" \

-parser:script_vars mutfrag="${MUTABLE_FRAGMENTS}" \

-parser:script_vars medchem_fragments="${MEDCHEM_FRAGMENTS}" \

-parser:script_vars temp="${TEMP}" \

-parser:script_vars tki_type="${TYPE}" \

-parser:script_vars confs_list="${CONFS_LIST}" \

-out:prefix $PREFIX \

-out:pdb_gz true \

-nstruct 100 \

-in:file:fullatom \

-restore_talaris_behavior \

-ignore_zero_occupancy false \
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-linmem_ig 10 \

-mute protocols.qsar.scoring_grid.GridManager \

-constant_seed false > ${PREFIX}.log

8.4.3 Induced-fit drug design of PAMs in a mAChR1 cryptic pocket

Design simulations were initiated with the 3-[(1S,2S)-2-hydroxycyclohexyl]-3H,4H-benzo[h]quinazolin-4-

one core of BQZ12 excised from the nonplanar “arm” region extending in the cryptic pocket. Chemical

perturbations were performed to produce a range of planar (analogous to LY2119620) or nonplanar (analo-

gous to BQZ12) extensions from the core. Following chemical perturbation (design) on the scaffold, Monte

Carlo – Metropolis sampling of Y2.64 and C45.50 sidechain rotamers was performed followed by a final

minimization of the whole complex.

Once again, we utilized the RosettaScripts framework for the protocol. The following XML file was run

with the rosetta scripts.bcl.linuxgccrelease application.

<ROSETTASCRIPTS>

<SCOREFXNS>

<S c o r e F u n c t i o n name=” l i g a n d s o f t r e p ” w e i g h t s =” l i g a n d s o f t r e p ”>

<Reweight s c o r e t y p e =” f a e l e c ” we ig h t =”0.42”/ >

<Reweight s c o r e t y p e =” h b o n d b b s c ” w e i gh t =”1.3”/ >

<Reweight s c o r e t y p e =” hbond sc ” w e i gh t =”1.3”/ >

<Reweight s c o r e t y p e =” rama ” w e i gh t =”0.2”/ >

</ S c o r e F u n c t i o n>

<S c o r e F u n c t i o n name=” h a r d r e p ” w e i g h t s =” l i g a n d ”>

<Reweight s c o r e t y p e =” f a i n t r a r e p ” we ig h t =”0.004”/ >

<Reweight s c o r e t y p e =” f a e l e c ” we ig h t =”0.42”/ >

<Reweight s c o r e t y p e =” h b o n d b b s c ” w e i gh t =”1.3”/ >

<Reweight s c o r e t y p e =” hbond sc ” w e i gh t =”1.3”/ >

<Reweight s c o r e t y p e =” rama ” w e i gh t =”0.2”/ >

</ S c o r e F u n c t i o n>

</SCOREFXNS>

<LIGAND AREAS>

<LigandArea name=” d o c k i n g s i d e c h a i n ” c h a i n =”X” c u t o f f = ” 6 . 0 ”

a d d n b r r a d i u s =” t r u e ” a l l a t o m m o d e =” t r u e ” m i n i m i z e l i g a n d

187



=”10”/>

<LigandArea name=” f i n a l s i d e c h a i n ” c h a i n =”X” c u t o f f = ” 6 . 0 ”

a d d n b r r a d i u s =” t r u e ” a l l a t o m m o d e =” t r u e ”/>

<LigandArea name=” f i n a l b a c k b o n e ” c h a i n =”X” c u t o f f = ” 7 . 0 ”

a d d n b r r a d i u s =” f a l s e ” a l l a t o m m o d e =” t r u e ”

C a l p h a r e s t r a i n t s =”0.3”/ >

</LIGAND AREAS>

<INTERFACE BUILDERS>

< I n t e r f a c e B u i l d e r name=” s i d e c h a i n f o r d o c k i n g ” l i g a n d a r e a s =”

d o c k i n g s i d e c h a i n ”/>

< I n t e r f a c e B u i l d e r name=” s i d e c h a i n f o r f i n a l ” l i g a n d a r e a s =”

f i n a l s i d e c h a i n ”/>

< I n t e r f a c e B u i l d e r name=” backbone ” l i g a n d a r e a s =” f i n a l b a c k b o n e ”

e x t e n s i o n w i n d o w =”3”/>

</INTERFACE BUILDERS>

<MOVEMAP BUILDERS>

<MoveMapBuilder name=” dock ing ” s c i n t e r f a c e =”

s i d e c h a i n f o r d o c k i n g ” m i n i m i z e w a t e r =” t r u e ”/>

<MoveMapBuilder name=” f i n a l ” s c i n t e r f a c e =” s i d e c h a i n f o r f i n a l ”

b b i n t e r f a c e =” backbone ” m i n i m i z e w a t e r =” t r u e ”/>

</MOVEMAP BUILDERS>

<RESIDUE SELECTORS>

<Chain name=” l i g a n d ” c h a i n s =”X”/>

<Not name=” r e c e p t o r ” s e l e c t o r =” l i g a n d ”/>

<Index name=” g a t e s ” resnums =”64 ,244 ,156” />

<Neighborhood name=” i n t e r f a c e ” s e l e c t o r =” l i g a n d ” d i s t a n c e =”4”/>

<Not name=” n o t i n t e r f a c e ” s e l e c t o r =” i n t e r f a c e ”/>

<Not name=” n o t g a t e s ” s e l e c t o r =” g a t e s ”/>

</RESIDUE SELECTORS>
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<TASKOPERATIONS>

<R e s t r i c t T o R e p a c k i n g name=” r t r p ”/>

<O p e r a t e O n R e s i d u e S u b s e t name=” r e p a c k l i g a n d ” s e l e c t o r =” l i g a n d ” >

<Res t r i c tToRepack ingRLT />

</ Ope ra t eOnRes idueSubse t>

<O p e r a t e O n R e s i d u e S u b s e t name=” f i x r e c e p t o r ” s e l e c t o r =” r e c e p t o r ”

>

<PreventRepackingRLT />

</ Ope ra t eOnRes idueSubse t>

<O p e r a t e O n R e s i d u e S u b s e t name=” r e p a c k i n t e r f a c e ” s e l e c t o r =”

i n t e r f a c e ” >

<Res t r i c tToRepack ingRLT />

</ Ope ra t eOnRes idueSubse t>

<O p e r a t e O n R e s i d u e S u b s e t name=” f i x n o t i n t e r f a c e ” s e l e c t o r =”

n o t i n t e r f a c e ” >

<PreventRepackingRLT />

</ Ope ra t eOnRes idueSubse t>

<O p e r a t e O n R e s i d u e S u b s e t name=” r e p a c k g a t e s ” s e l e c t o r =” g a t e s ” >

<Res t r i c tToRepack ingRLT />

</ Ope ra t eOnRes idueSubse t>

<O p e r a t e O n R e s i d u e S u b s e t name=” f i x n o t g a t e s ” s e l e c t o r =” n o t g a t e s ”

>

<PreventRepackingRLT />

</ Ope ra t eOnRes idueSubse t>

</TASKOPERATIONS>

<FILTERS>

<L i g I n t e r f a c e E n e r g y name=” i f s c o r e ” s c o r e f x n =” s o f t r e p ”

i n c l u d e c s t E =”0” e n e r g y c u t o f f =”0.0”/ >

<ScoreType name=” s c o r e f i l t e r ” s c o r e t y p e =” t o t a l s c o r e ”

t h r e s h o l d = ” 0 . 0 ” s c o r e f x n =” h a r d r e p ” c o n f i d e n c e =”1.0”/ >
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</FILTERS>

<SIMPLE METRICS>

# Score p o s e s

< I n t e r a c t i o n E n e r g y M e t r i c name=” l i g i f s c o r e ” f o r c e r e s c o r e =”1”

r e s i d u e s e l e c t o r =” l i g a n d ” r e s i d u e s e l e c t o r 2 =” r e c e p t o r ”

s c o r e f x n =” h a r d r e p ” />

</SIMPLE METRICS>

<MOVERS>

# C o n s t r a i n t movers

<A d d C o n s t r a i n t s T o C u r r e n t C o n f o r m a t i o n M o v e r name=” c s t ” c o o r d d e v

= ” 1 . 0 ” CA only =”0” b b o n l y =”1”/>

<AtomCoordina teCstMover name=” r e l a x c s t ” c o o r d d e v = ” 1 . 0 ” bounded

=” f a l s e ” bound wid th =”0” s i d e c h a i n =” t r u e ” n a t i v e =” f a l s e ”

f u n c g r o u p s =” f a l s e ”/>

<C l e a r C o n s t r a i n t s M o v e r name=” u n c s t ”/>

# M i n i m i z a t i o n movers

<MinMover name=” m i n s o f t ” s c o r e f x n =” l i g a n d s o f t r e p ” c h i =” t r u e ”

bb =” t r u e ” c a r t e s i a n =” f a l s e ” t y p e =” l b f g s a r m i j o n o n m o n o t o n e

”/>

<MinMover name=” min ha rd ” s c o r e f x n =” h a r d r e p ” c h i =” t r u e ” bb =”

t r u e ” c a r t e s i a n =” f a l s e ” t y p e =” l b f g s a r m i j o n o n m o n o t o n e ”/>

<P a r s e d P r o t o c o l name=” m i n c y c l e s o f t ”>

<Add mover name =” c s t ”/>

<Add mover name =” m i n s o f t ”/>

<Add mover name =” u n c s t ”/>

</ P a r s e d P r o t o c o l >

<P a r s e d P r o t o c o l name=” m i n c y c l e h a r d ”>

<Add mover name =” c s t ”/>

<Add mover name =” min ha rd ”/>

<Add mover name =” u n c s t ”/>

</ P a r s e d P r o t o c o l >
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# Relax

<V i r t u a l R o o t name=” r o o t ” removab le =”1” />

<V i r t u a l R o o t name=” remove ” remove =”1” />

<F a s t R e l a x name=” r e l a x ” s c o r e f x n =” h a r d r e p ”

r a m p d o w n c o n s t r a i n t s =” f a l s e ” r e p e a t s =”2” t a s k o p e r a t i o n s =”

r t r p , r e p a c k i n t e r f a c e , f i x n o t i n t e r f a c e ”/>

<P a r s e d P r o t o c o l name=” r e l a x c y c l e ”>

<Add mover name =” r o o t ”/>

<Add mover name =” r e l a x c s t ”/>

<Add mover name =” r e l a x ”/>

<Add mover name =” remove ”/>

<Add mover name =” u n c s t ”/>

</ P a r s e d P r o t o c o l >

# Pack ing

<PackRotamersMover name=” pack ” s c o r e f x n =” h a r d r e p ” n loop =”50”

t a s k o p e r a t i o n s =” r t r p , r e p a c k l i g a n d , f i x r e c e p t o r ”/>

# Backbone s a m p l i n g ( c o u p l e d wi th s i d e c h a i n s )

<Backrub name=” back rub ”/>

<Shea r name=” s h e a r ” r e s i d u e s e l e c t o r =” i n t e r f a c e ” s c o r e f x n =”

s o f t r e p ” t e m p e r a t u r e =”0 .593” p r e s e r v e d e t a i l e d b a l a n c e

=”1”/>

S i d e c h a i n name=” s i d e c h a i n ” p r e s e r v e d e t a i l e d b a l a n c e =”1”

t a s k o p e r a t i o n s =” r t r p , r e p a c k i n t e r f a c e , f i x n o t i n t e r f a c e ”

p r o b w i t h i n r o t =”0.5”/ >

<S i d e c h a i n name=” s i d e c h a i n ” p r e s e r v e d e t a i l e d b a l a n c e =”1”

t a s k o p e r a t i o n s =” r t r p , r e p a c k g a t e s , f i x n o t g a t e s ”

p r o b w i t h i n r o t =”0.5”/ >

<P a r s e d P r o t o c o l name=” p s e u d o c o u p l e d m o v e s”>

Add mover name =” back rub ”/>
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Add mover name =” s h e a r ”/>

<Add mover name =” s i d e c h a i n ”/>

</ P a r s e d P r o t o c o l >

<Gener i cMonteCar lo name=” run pcm ” mover name =”

p s e u d o c o u p l e d m o v e s ”

t r i a l s =”1000” s a m p l e t y p e =” low ” f i l t e r n a m e =” s c o r e f i l t e r ”

t e m p e r a t u r e =”0 .593” d r i f t =”1” r e c o v e r l o w =”1” r e s e t b a s e l i n e s

=”0”

a d a p t i v e m o v e r s =”0” p r e a p p l y =”0” />

# High r e s o l u t i o n p e r t u r b a t i o n ; d e f a u l t v a l u e s : c y c l e s =6 ,

r e p a c k e v e r y N t h =3

<HighResDocker name=” h i g h r e s d o c k e r ” c y c l e s =”6”

r e p a c k e v e r y N t h =”3” s c o r e f x n =” l i g a n d s o f t r e p ”

movemap bui lde r =” dock ing ”/>

<F i n a l M i n i m i z e r name=” f i n a l ” s c o r e f x n =” h a r d r e p ” movemap bui lde r

=” f i n a l ”/>

# S c o r i n g

< I n t e r f a c e S c o r e C a l c u l a t o r name=” i n t e r a c t i o n e n e r g y ” c h a i n s =”X”

s c o r e f x n =” h a r d r e p ” c o m p u t e g r i d s c o r e s =”0”/>

# S i n g l e d e s i g n moves

<BCLFragmentMutateMover name=” empty ” l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Alchemy ( a l l o w e d e l e m e n t s =H,

r e s t r i c t t o b o n d e d h = t r u e ) ” />

<BCLFragmentMutateMover name=” ad d c ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Alchemy (

d r u g l i k e n e s s t y p e =None ,

a l l o w e d e l e m e n t s =C , r e s t r i c t t o b o n d e d h = t r u e ,
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m u t a b l e a t o m s =9) ”

/>

<BCLFragmentMutateMover name=” a m i d e l i n k a r o r i n g ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Ex tendWi thL inke r (

r i n g l i b r a r y=%%r i n g s %%,

e x t e n d w i t h i n p r o b = 0 . 0 , a m i d e l i n k p r o b =100000 ,

a m i d e n a t t a c h p r o b = 0 . 5 ,

d r u g l i k e n e s s t y p e =None ,

m u t a b l e a t o m s =9) ”

/>

<BCLFragmentMutateMover name=” s i n g l e e l e l i n k a r o r i n g ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Ex tendWi thL inke r (

r i n g l i b r a r y=%%r i n g s %%,

e x t e n d w i t h i n p r o b = 0 . 0 ,

s i n g l e e l e m e n t l i n k p r o b =100000 ,

O prob =10000 , S prob =10000 , N prob =10000 ,

d r u g l i k e n e s s t y p e =None ,

m u t a b l e a t o m s =9) ”

/>

<BCLFragmentMutateMover name=” d i r e c t l i n k a r o r i n g ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Ex tendWi thL inke r (

r i n g l i b r a r y=%%r i n g s %%,

e x t e n d w i t h i n p r o b = 0 . 0 ,

d i r e c t l i n k p r o b =100000 ,

d r u g l i k e n e s s t y p e =None ,

m u t a b l e a t o m s =9) ”
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/>

<BCLFragmentMutateMover name=” add medchem ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =”AddMedChem (

m e d c h e m l i b r a r y=%%f r a g m e n t s%%,

d r u g l i k e n e s s t y p e =None ,

m u t a b l e a t o m s =9) ”

/>

<BCLFragmentMutateMover name=” a m i d e l i n k a r o r i n g b a s e f r a g ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Ex tendWi thL inke r (

r i n g l i b r a r y=%%r i n g s %%,

e x t e n d w i t h i n p r o b = 0 . 0 , a m i d e l i n k p r o b =100000 ,

a m i d e n a t t a c h p r o b = 0 . 5 ,

d r u g l i k e n e s s t y p e =None ,

m u t a b l e f r a g m e n t s=%%m u t f r a g%%,

c o m p l e m e n t m u t a b l e f r a g m e n t s =1 ,

f i x e d e l e m e n t s =H C) ”

/>

<BCLFragmentMutateMover name=” d i r e c t l i n k a r o r i n g b a s e f r a g ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Ex tendWi thL inke r (

r i n g l i b r a r y=%%r i n g s %%,

e x t e n d w i t h i n p r o b = 0 . 0 , d i r e c t l i n k p r o b =100000 ,

d r u g l i k e n e s s t y p e =None ,

m u t a b l e f r a g m e n t s=%%m u t f r a g%%,

c o m p l e m e n t m u t a b l e f r a g m e n t s =1 ,

f i x e d e l e m e n t s =H N O) ”

/>
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<BCLFragmentMutateMover name=” add medchem base f r ag ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =”AddMedChem (

m e d c h e m l i b r a r y=%%f r a g m e n t s%%,

d r u g l i k e n e s s t y p e =None ,

m u t a b l e f r a g m e n t s=%%m u t f r a g%%,

c o m p l e m e n t m u t a b l e f r a g m e n t s =1 ,

f i x e d e l e m e n t s =H N O) ”

/>

<BCLFragmentMutateMover name=” h a l o g e n a t e b a s e f r a g ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” H a l o g e n a t e (

d r u g l i k e n e s s t y p e =None ,

a l l o w e d h a l o g e n s =F Cl ,

m u t a b l e f r a g m e n t s=%%m u t f r a g%%,

c o m p l e m e n t m u t a b l e f r a g m e n t s =1) ”

/>

<BCLFragmentMutateMover name=” a l c h e m y b a s e f r a g ”

l i g a n d c h a i n =”X”

o b j e c t d a t a l a b e l =” Alchemy (

d r u g l i k e n e s s t y p e =None ,

a l l o w e d e l e m e n t s =C ,

r e s t r i c t t o b o n d e d h =1 ,

m u t a b l e f r a g m e n t s=%%m u t f r a g%%,

c o m p l e m e n t m u t a b l e f r a g m e n t s =1 ,

f i x e d e l e m e n t s =H O S ) ”

/>

# Combo d e s i g n moves
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<RandomMover name=” p l a n a r l i n k ”

movers =” d i r e c t l i n k a r o r i n g , a m i d e l i n k a r o r i n g ”

w e i g h t s = ” 0 . 5 , 0 . 5 ”

/>

<RandomMover name=” p l a n a r l i n k b a s e f r a g ”

movers =” d i r e c t l i n k a r o r i n g b a s e f r a g ,

a m i d e l i n k a r o r i n g b a s e f r a g ”

w e i g h t s = ” 0 . 5 , 0 . 5 ”

/>

<P a r s e d P r o t o c o l name=” c l i n k a r o r i n g ” mode=” s e q u e n c e”>

<Add mover name =” add c ”/>

<Add mover name =” p l a n a r l i n k b a s e f r a g ”/>

</ P a r s e d P r o t o c o l >

<RandomMover name=” n o n p l a n a r l i n k ”

movers =” s i n g l e e l e l i n k a r o r i n g , c l i n k a r o r i n g ”

w e i g h t s = ” 0 . 5 , 0 . 5 ”

/>

<RandomMover name=” d e c o r a t e b i g ”

movers =” d i r e c t l i n k a r o r i n g b a s e f r a g , add medchem base f rag , empty

”

w e i g h t s = ” 0 . 3 3 , 0 . 3 3 , 0 . 3 4 ”

/>

<RandomMover name=” d e c o r a t e s m a l l ”

movers =” h a l o g e n a t e b a s e f r a g , a l c h e m y b a s e f r a g , empty ”

w e i g h t s = ” 0 . 3 3 , 0 . 3 3 , 0 . 3 4 ”

/>
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<RandomMover name=” d e c o r a t e ”

movers =” h a l o g e n a t e b a s e f r a g , add medchem base f rag , empty ”

w e i g h t s = ” 0 . 3 3 , 0 . 3 3 , 0 . 3 4 ”

/>

<RandomMover name=” d e c o r a t e h a l o g e n s ”

movers =” h a l o g e n a t e b a s e f r a g , empty ”

w e i g h t s = ” 0 . 5 , 0 . 5 ”

/>

<P a r s e d P r o t o c o l name=” r u n a ” mode=” s e q u e n c e”>

<Add mover name =” p l a n a r l i n k ”/>

<Add mover name =” d e c o r a t e b i g ”/>

<Add mover name =” d e c o r a t e s m a l l ”/>

</ P a r s e d P r o t o c o l >

<P a r s e d P r o t o c o l name=” r u n b ” mode=” s e q u e n c e”>

<Add mover name =” n o n p l a n a r l i n k ”/>

<Add mover name =” d e c o r a t e b i g ”/>

<Add mover name =” d e c o r a t e s m a l l ”/>

</ P a r s e d P r o t o c o l >

<P a r s e d P r o t o c o l name=” r u n c ” mode=” s e q u e n c e”>

<Add mover name =” n o n p l a n a r l i n k ”/>

<Add mover name =” d i r e c t l i n k a r o r i n g b a s e f r a g ”/>

<Add mover name =” d e c o r a t e ”/>

</ P a r s e d P r o t o c o l >

<P a r s e d P r o t o c o l name=” r u n d ” mode=” s e q u e n c e”>

<Add mover name =” s i n g l e e l e l i n k a r o r i n g ”/>

<Add mover name =” d i r e c t l i n k a r o r i n g b a s e f r a g ”/>

<Add mover name =” d e c o r a t e h a l o g e n s ”/>
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</ P a r s e d P r o t o c o l >

<RandomMover name=” run ” movers =” run a , r u n d ” w e i g h t s = ” 0 . 2 , 0 . 8 ” / >

</MOVERS>

<PROTOCOLS>

<Add mover name =” run ”/>

<Add mover name =” pack ”/>

<Add mover name =” m i n c y c l e s o f t ”/>

<Add mover name =” run pcm ”/>

<Add mover name =” f i n a l ”/>

<Add mover name =” i n t e r a c t i o n e n e r g y ”/>

<Add m e t r i c s =” l i g i f s c o r e ”/>

</PROTOCOLS>

</ROSETTASCRIPTS>

We used the following Bash script to run the RosettaScripts application:

# ! / b i n / bash

# G lo ba l v a r i a b l e s

ROSETTA= R o s e t t a / main / s o u r c e / b i n / r o s e t t a s c r i p t s . b c l . l i n u x g c c r e l e a s e

# I n p u t v a r i a b l e s

XML= ‘ r e a d l i n k −e $1 ‘

PROTEIN= ‘ r e a d l i n k −e $2 ‘

LIGAND= ‘ r e a d l i n k −e $3 ‘

PARAMS= ‘ r e a d l i n k −e $4 ‘

PREFIX=$5

RINGS= b c l / r o t a m e r l i b r a r y / r i n g l i b r a r i e s / d r u g r i n g d a t a b a s e . s i m p l e . a r o .

s m a l l . s d f . gz

FRAGMENTS= b c l / r o t a m e r l i b r a r y / medchem fragments / b c l b u i l d f r a g 0 . s d f . gz

MUTFRAG=BQ0 . c l e a n . s d f

# Run
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$ROSETTA \

− p a r s e r : p r o t o c o l $XML \

− i n : f i l e : s ”$PROTEIN $LIGAND” \

− p a r s e r : s c r i p t v a r s p r e f i x =”${PREFIX}” \

− p a r s e r : s c r i p t v a r s r i n g s =${RINGS} \

− p a r s e r : s c r i p t v a r s f r a g m e n t s =${FRAGMENTS} \

− p a r s e r : s c r i p t v a r s m u t f r a g =${MUTFRAG} \

− p a r s e r : s c r i p t v a r s p r o g r e s s f i l e =”${PREFIX } . gmc . l o g ” \

− e x t r a r e s f a ${PARAMS} \

− o u t : p r e f i x $PREFIX \

− o u t : pdb gz t r u e \

− p a c k i n g : ex1 t r u e \

− p a c k i n g : ex2 t r u e \

− n s t r u c t 100 \

− i n : f i l e : f u l l a t o m \

− r e s t o r e p r e t a l a r i s 2 0 1 3 b e h a v i o r \

− s c o r e : w e i g h t s l i g a n d \

− i g n o r e z e r o o c c u p a n c y f a l s e \

−mute p r o t o c o l s . r o s e t t a s c r i p t s . P a r s e d P r o t o c o l p r o t o c o l s . m o n t e c a r l o .

Gener icMonteCar loMover \

− o v e r w r i t e \

− l inmem ig 10 #> ${PREFIX } . l o g
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CHAPTER 9

Conclusions and future directions

9.1 Summary and Implications

Cheminformatics and computer-aided drug design (CADD) have matured substantially in the last decade.

CADD is no longer the niche approach of a subset of specialists, but rather an integral component of the drug

discovery process in both academia and industry (Macalino et al., 2015). As adoption of CADD continues to

spread, so too will the demand for increasingly robust methods that leave no target undruggable. Today, we

strive for precision in drug design, such that our molecules bind to specific conformations of flexible proteins

and are selective against homologous receptors and/or mutants.

The need for such precision in drug design is apparent when we consider epidermal growth factor re-

ceptor (EGFR)-mutant non-small cell lung cancer (NSCLC). Proteins can be conformationally dynamic

biomolecules. These dynamics give rise to function, and aberrant dynamics can lead to disease. Changes

in protein dynamics of EGFR caused by amino acid mutations drive oncogenic behavior in NSCLC (Brown

et al., 2019a; Du et al., 2021; Hanker et al., 2021; Shan et al., 2013, 2012). In Chapters 2-5, we characterized

the mechanisms of oncogenesis and tyrosine kinase inhibitor (TKI) resistance in several new EGFR, HER2,

and HER3 variants, as well as identified structure-function relations that may be responsible for variable

outcomes in NSCLC patients with different EGFR exon 19 deletion variants (Brown et al., 2019a; Du et al.,

2021; Hanker et al., 2021).

It is crucial that CADD methods continue to improve to enable precision targeting of EGFR and other

receptors. In Chapters 6-8, we describe new cheminformatics tools that collectively enable a customizable

framework for small molecule drug design (Brown et al., 2019b, 2021, 2022). This framework leverages the

combined abilities of the BioChemical Library (BCL) and Rosetta to offer unique advantages.

The BCL code is utilized to enable multiple routes for chemical perturbation during design. This means

that users can create new molecules using explicitly defined chemical reactions, or they can employ medicinal

chemistry-inspired alchemical transformations. These perturbations use internal graph- and property-based

molecular alignment schemes to minimize real space perturbation of non-mutable components of the molec-

ular scaffolds. The BCL descriptor framework can be used to constrain the drug design space to druglike

chemical space. The same descriptor framework gives access to machine learning (ML) score functions, such

as the decomposable BCL-AffinityNet score described in Chapter 7.

The Rosetta code enables conformational sampling of the target receptor during design. This allows
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induced-fit and conformational selection to be directly accounted for during design using any combination of

kinematic functions available in Rosetta. Rosetta also maintains an arsenal of tools for protein design. Some

drug design simulations, such as for designer receptors exclusively activated by designer drugs (DREADDs)

and other chemogenetics tasks, were previously beyond the scope of CADD.

The new capabilities for drug design made available through the work presented in Chapters 6-8 are

poised to accelerate drug discovery for challenges identified in Chapters 2-5.

9.2 Limitations and Future Directions

9.2.1 On the use of biased sampling approaches to model hyperstable kinase variants

A recurring theme in chapters 2 - 5 was the use of molecular dynamics (MD) simulations to map changes

to the conformational free energy landscape (FEL) of oncogenic kinase mutants. The FEL in these studies

is a conformational pathway between two or more states that have biological significance. Here, we are

frequently interested in mapping the energetic differences in the the active and inactive states of the kinase

domain because oncogenic variants are frequently pathogenic by virtue of their excess signalling.

Defining the boundaries between the active and inactive states is typically readily achievable; extensive

crystallographic studies over the last two decades have provided a wealth of information on the activation

states of kinases. The challenge is in connecting them via a biologically relevant conformational pathway.

Frequently, we are unable to naively sample state transitions, such as in Chapter 3 with the oncogenic ex19del

variants.

In our studies, we combined steered MD (SMD) and umbrella sampling (US) simulations to first generate

a low dimensional transition path and then sample distributions along along discrete intervals of the path,

respectively. The benefit of this approach is that the relative probabilities of each discrete interval along the

chosen low dimensional collective variable(s) can be estimated, which enables the construction of a relative

free energy surface in that space. Using this approach, one can obtain differences in the thermodynamic

stability of different states, identify energetic minima and maxima, and estimate transition rates between

states. A limitation of the SMD+US approach is that the generated pathway may not be biologically relevant,

even if the end-states are experimentally validated. Thus, even if we determine the correct free energy dif-

ference between end-states, alternately identified minima and maxima as well as kinetic information can be

inaccurate.

An alternative strategy would be to use MD simulations to equilibrate ensembles of the distinct func-

tionally relevant states and then perform ∆∆G calculations on samples from each state using Rosetta. The

Rosetta energy function contains a mix of potential energy terms and statistically-derived terms, such that

the Rosetta energy in principle can be likened to a folding free energy. Thus, taking the average Rosetta
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energy across an ensemble of MD simulations conformers belonging to a single state (e.g., the active state)

provides an estimate of the ∆G f old of that state in Rosetta energy units (REU). The difference in ∆Gactive, f old

and ∆Ginactive, f old estimates of the relative stability of the active and inactive states. However, there are at

least two primary limitations to this approach. First, the physical meaning of REUs and their differences are

less clear than standard units such as kcal/mol, which make it difficult to interpret results in the absence of a

high-quality calibration curve. Second, such an approach explicitly neglects a transition path, and thus pro-

vides no information on kinetic barriers of biological significance. Despite these limitations, this approach

requires fewer computational resources and warrants additional investigation.

9.2.2 Toward novel therapeutic modalities in precision oncology

On the one hand, our studies suggest that the conformational propensities of oncogenic variants can poten-

tially be leveraged to develop mutant-selective small molecule inhibitors. In our work, this is perhaps most

evident through EGFR E746 S752>V/G724S. This mutant escapes inhibition by the current first-line ther-

apy osimertinib, a third-generation covalent TKI, by stabilizing a rare conformation in which the glycine-rich

loop F723 is unable to form a favorable stacking interaction with the indole ring of osimertinib (Chapter

2). One can imagine that this unique conformational state can be directly targeted with structure-based drug

design to create a derivative of an existing FDA-approved TKI.

But on the other hand, we may be reaching a plateau in efficacy of single-agent TKIs as therapeutic

agents in cancer. This plateau is not driven by certain mutants being undruggable. Quite the opposite - a

major barrier to TKI efficacy in clinical practice is toxicity and side effect tolerability from off-target (e.g.,

wild-type) inhibition (Lin et al., 2019). We show that the sensitivity of common oncogenic EGFR variants

to ATP-competitive TKIs relative to wild-type EGFR is the result of reduced ATP binding affinity. Not only

can resistance mutations revert this loss of ATP binding affinity to reduce TKI efficacy, we demonstrate that

oncogenic variants themselves may be less amenable to targeting because of higher ATP binding affinities.

This results in the need to make higher affinity TKIs, which have a higher likelihood of also inhibiting wild-

type EGFR and leading to intolerable side effects.

Perhaps ongoing improvement in the accuracy and efficiency of binding energy calculations in CADD

software packages will alleviate this concern; however, energy function improvement is not sufficient. We

will need to explicitly model multiple equilibria during the drug design process to optimize selectivity for

mutant, selectivity for conformation, and avidity against native substrates.

An alternative approach would be to preemptively determine the residues that are capable of mutating

into resistance mutations prior to designing a drug. This would potentially allow drug developers to optimize

interactions with functionally conserved residues less prone to on-target resistance.
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Still another approach would be to move beyond single-agent TKIs altogether. There are a variety of

emerging therapeutics, such as antibody-drug conjugates (ADCs) and proteolysis targeting chimeras (PRO-

TACs), that strategically combine small molecules and proteins to achieve the desired therapeutic effect. We

anticipate that the BCL-Rosetta integration tools for drug design described in Chapter 8 will be valuable as

we seek to expand CADD methods in the direction of these new modalities.

9.2.3 Next steps in the development of BCL drug design chemical space perturbations

We developed a series of drug design chemical perturbations, or ”mutates”, that are capable of performing

one-shot made-on-demand style reactions, single- and multi-component reactions, or reaction-free medicinal

chemistry-inspired “alchemical” perturbations in the BCL software package. These mutates enable a wide

variety of chemical alterations to be made to chemical scaffolds; however, one can imagine many more

complex design operations that are inaccessible with the current implementations.

Macrocyclic closure of a single fragment to reduce flexibility, for example, cannot currently be performed.

Macrocycle formation is an attractive strategy to reduce conformational degrees of freedom, and thus entropic

cost of binding, to otherwise promising molecules. We also currently can only perform 2-component using

the convenient made-on-demand style reaction format; 3- and 4-component reactions require use of the MDL

RXN file format. Another common design operation that we currently cannot perform with the BCL drug

design framework is fragment linking. Currently there is no mutate to generate linkers between two distinct

chemical fragments. This is a critical design task in fragment-based drug discovery and PROTAC design.

Fortunately, the drug design framework is extensible and can readily accommodate additional algorithms.

For example, one potential approach to add a linker design algorithm would be to create a class that derives

from the FragmentMutateInterface base class and utilizes the ExtendWithLinker perturbation to build linkers

with customizable compositions. Given two disconnected fragments and an attachment-site atom on each

fragment, extend one-half of the full linker from each attachment site. Rapidly generate conformational

ensembles of just the half-linker regions of the two fragments without perturbing the starting fragment and

filter for compatible pairs by the pairwise distance between the terminal atoms of the half-linkers (discarding

pairs that are unlikely to result in successful linker closures). For all compatible pairs, join the half-linkers to

yield the fully-connected linker. Perform local conformational sampling of the linker and select the final 3D

conformer as the one with the best BCL ConfScore that has an RMSD to the starting fragment within some

tolerance.

One limitation of the above-described algorithm is the dependence on sampling conformers in torsion-

space to refine 3D structures. The conformational ensembles of the half-linkers would not result in any

perturbation to the starting fragments, but the local ensembles of the linker in the fully-connected molecule
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can cause lever-arm effects that alter the starting fragment Cartesian-space positions. Moreover, it adds a sam-

pling overhead to perform a simple refinement, which reduces the efficiency of the algorithm. It would be

more efficient, and likely more effective, to perform gradient-based minimization of the linker with restraints

on the positions of the starting fragments atoms for the final refinement step. Thus, another important en-

hancement to the BCL drug design framework will be the addition of a small molecule molecular mechanics

force field for such calculations.

9.2.4 Incorporating optimization tools into the BCL drug design framework

The current philosophy in the BCL drug design framework is to enable user control over the design process

as much as possible - from the selection of fixed and mutable atom indices, elements, and fragments, to the

selection of the nature of the chemical perturbations and composition of external chemical libraries used in

design. If the user provides very specific instructions on how a mutate or series of mutates are intended to

proceed, the outcome of the design process can be completely determined at runtime. If the user input is less

explicit, however, there are several stochastic components that can lead to different outcomes.

Indeed, the default behavior of the alchemical framework in the absence of user restrictions is to apply

the selected mutate to a randomly chosen atom. Many of the mutates, such as Alchemy, ExtendWithLinker,

RingSwap, etc., are also stochastic with respect to the chemical perturbation they apply. The default behav-

ior of one-shot reaction-based design approach is to randomly combine complementary fragments from an

external library at the prescribed attachment sites. Finally, the default behavior of the MDL RXN reaction de-

sign framework is to randomly identify a reaction into which the starting fragment can be a reagent, identify

suitable co-reagents, and apply the random reaction.

Clearly, there is a lot of stochasticity. This is because the current drug design framework is setup to

enable sampling control at the user level. When the framework was originally designed, it was intended that

optimization routines would run external to the design framework, such that the distribution from which the

optimizer samples is a random distribution (limited by any user restrictions). Examples of such optimization

routines include Monte Carlo - Metropolis sampling and evolutionary algorithms.

However, an additional approach would be to enable some level of optimization within the drug design

framework to increase the efficiency of external optimizers. This could allow mutate-specific parameter

tuning to occur prior to generation of the final ensemble of candidate molecules. Consider the alchemical

drug design framework. A simple example of this would be in the selection of mutable atom indices for

each in a set of mutates. Another example would be the sequence in which the mutates are applied to the

starting scaffold. Alternatively, consider either the one-shot or MDL RXN reaction design approaches. The

parameters dictating the probabilities of choosing specific reactions and/or reagents can be pre-tuned prior to
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the end-stage design simulation. There is substantial room to expand the capabilities of the BCL drug design

framework.

9.2.5 Expanding the BCL-Rosetta integration to enable polymeric design with exotic chemical modi-

fications

The BCL-Rosetta integration enables on-the-fly structure-based all-atom design of small molecules in a flex-

ible binding pocket. Currently, this functionality does not include atom-based design of polymers, such as

peptides, proteins, and nucleic acids. Polymer design in Rosetta still occurs at the residue-level using pre-

generated parameters files for non-standard residue types.

The next step in the BCL-Rosetta integration is enable polymer design at the atom level as an alternative

strategy to residue-based design. In addition to expanding the types of algorithms that can be developed to

optimize polymer sequences, atom-based approaches require potentially substantially less user preparation

- you may generate e.g., 10,000 unique phenylalanine derivatives without have to design structure files and

parameters for the derivatives prior to running the simulation.

9.2.6 On constructing modular interfaces in Rosetta to maximize out-of-the-box integration with the

BCL

We integrated BCL into the Rosetta codebase as an external submodule enabled at compile-time. This means

that all BCL data structures are available at the C++ level in Rosetta for any developer to access. It also

means that the BCL can be developed actively in tandem with Rosetta, requiring only that the submodule

being referenced by Rosetta at compile-time is updated to the BCL developer code.

At the user level, however, currently the BCL-Rosetta integration is only relevant if the user is performing

drug design with the new BCLFragmentMutateMover in Rosetta. An ongoing goal is to identify BCL code

of broad interest to the Rosetta community and create interfaces for them in higher level Rosetta API, such

as RosettaScripts XML and PyRosetta. For example, exposing the BCL descriptor framework to Rosetta

SimpleMetrics or Filters would be broadly applicable to small molecule, peptide, and potentially protein

design projects, especially those involving non-canonical amino acids and other exotic residues.

9.2.7 Interoperability of functionally orthogonal software packages for drug discovery and design

Beyond the BCL-Rosetta integration, there are a number of exceptional software packages for drug discov-

ery that have unique strengths. Indeed, there is RosettaCommons community support behind developing

protocols to incorporate deep learning models and packages into Rosetta to facilitate complex protocol de-

velopment for structure prediction and design. Similarly, creating cross-talk between Rosetta and molecular
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mechanics packages would enable more seamless protocol development. For example, creating classes and

utilities to more easily interconvert Rosetta, BCL, OpenMM, and Parmed data structures would facilitate

protocol development that combines chemogenetics drug design (BCL-Rosetta) with free energy perturba-

tion for binding affinity prediction (OpenMM-Parmed). There is currently an unprecedented opportunity for

cooperation and synergism in CADD, and I believe that by building on these opportunities we will be able to

provide effective therapeutics for previously untreatable diseases.

206



References

Paul Labute, Chris Williams, Miklos Feher, Elizabeth Sourial, and Jonathan M. Schmidt. Flexible align-
ment of small molecules. Journal of Medicinal Chemistry, 44(10):1483–1490, 2001. ISSN 0022-2623.
doi: 10.1021/jm0002634. URL http://dx.doi.org/10.1021/jm0002634http://pubs.acs.org/doi/full/10.1021/
jm0002634.

Shek Ling Chan and Paul Labute. Training a scoring function for the alignment of small molecules. Journal of
Chemical Information and Modeling, 50(9):1724–1735, 2010. ISSN 1549-9596. doi: 10.1021/ci100227h.
URL http://dx.doi.org/10.1021/ci100227hhttp://pubs.acs.org/doi/full/10.1021/ci100227h.

Dongsheng Zhu, Huocong Huang, Daniel M. Pinkas, Jinfeng Luo, Debolina Ganguly, Alice E. Fox, Emily
Arner, Qiuping Xiang, Zheng-Chao Tu, Alex N. Bullock, Rolf A. Brekken, Ke Ding, and Xiaoyun Lu.
2-amino-2,3-dihydro-1h-indene-5-carboxamide-based discoidin domain receptor 1 (ddr1) inhibitors: De-
sign, synthesis, and in vivo antipancreatic cancer efficacy. Journal of Medicinal Chemistry, 62(16):7431–
7444, 2019. ISSN 0022-2623. doi: 10.1021/acs.jmedchem.9b00365. URL https://doi.org/10.1021/acs.
jmedchem.9b00365.

Stephani Joy Y. Macalino, Vijayakumar Gosu, Sunhye Hong, and Sun Choi. Role of computer-aided drug
design in modern drug discovery. Archives of Pharmacal Research, 38(9):1686–1701, 2015. ISSN 1976-
3786. doi: 10.1007/s12272-015-0640-5. URL https://doi.org/10.1007/s12272-015-0640-5.

G. Sliwoski, S. Kothiwale, J. Meiler, and Jr. Lowe, E. W. Computational methods in drug discov-
ery. Pharmacol Rev, 66(1):334–95, 2014. ISSN 1521-0081 (Electronic) 0031-6997 (Linking). doi:
10.1124/pr.112.007336. URL http://www.ncbi.nlm.nih.gov/pubmed/24381236http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC3880464/pdf/pr.112.007336.pdf.

Xin Yang, Yifei Wang, Ryan Byrne, Gisbert Schneider, and Shengyong Yang. Concepts of artificial in-
telligence for computer-assisted drug discovery. Chemical Reviews, 119(18):10520–10594, 2019. ISSN
0009-2665. doi: 10.1021/acs.chemrev.8b00728. URL https://doi.org/10.1021/acs.chemrev.8b00728. doi:
10.1021/acs.chemrev.8b00728.

Sumudu P. Leelananda and Steffen Lindert. Computational methods in drug discovery. Beilstein Journal
of Organic Chemistry, 12:2694–2718, 2016. ISSN 1860-5397. doi: 10.3762/bjoc.12.267. URL http:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC5238551/.

A. R. Geanes, H. P. Cho, K. D. Nance, K. M. McGowan, P. J. Conn, C. K. Jones, J. Meiler, and
C. W. Lindsley. Ligand-based virtual screen for the discovery of novel m5 inhibitor chemo-
types. Bioorg Med Chem Lett, 26(18):4487–91, 2016. ISSN 1464-3405 (Electronic) 0960-
894X (Linking). doi: 10.1016/j.bmcl.2016.07.071. URL https://www.ncbi.nlm.nih.gov/pubmed/
27503678http://ac.els-cdn.com/S0960894X16307995/1-s2.0-S0960894X16307995-main.pdf? tid=
3d36eaa8-a8ef-11e6-9c5a-00000aab0f01&acdnat=1478965796 25051127273012ff706fade68825f619.

M. Butkiewicz, Jr. Lowe, E. W., R. Mueller, J. L. Mendenhall, P. L. Teixeira, C. D. Weaver, and J. Meiler.
Benchmarking ligand-based virtual high-throughput screening with the pubchem database. Molecules, 18
(1):735–56, 2013. ISSN 1420-3049 (Electronic) 1420-3049 (Linking). doi: 10.3390/molecules18010735.
URL http://www.ncbi.nlm.nih.gov/pubmed/23299552.

Reed M. Stein, Hye Jin Kang, John D. McCorvy, Grant C. Glatfelter, Anthony J. Jones, Tao Che, Samuel
Slocum, Xi-Ping Huang, Olena Savych, Yurii S. Moroz, Benjamin Stauch, Linda C. Johansson, Vadim
Cherezov, Terry Kenakin, John J. Irwin, Brian K. Shoichet, Bryan L. Roth, and Margarita L. Dubo-
covich. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature, 579
(7800):609–614, 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2027-0. URL https://doi.org/10.1038/
s41586-020-2027-0.

207

http://dx.doi.org/10.1021/jm0002634 http://pubs.acs.org/doi/full/10.1021/jm0002634
http://dx.doi.org/10.1021/jm0002634 http://pubs.acs.org/doi/full/10.1021/jm0002634
http://dx.doi.org/10.1021/ci100227h http://pubs.acs.org/doi/full/10.1021/ci100227h
https://doi.org/10.1021/acs.jmedchem.9b00365
https://doi.org/10.1021/acs.jmedchem.9b00365
https://doi.org/10.1007/s12272-015-0640-5
http://www.ncbi.nlm.nih.gov/pubmed/24381236 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880464/pdf/pr.112.007336.pdf
http://www.ncbi.nlm.nih.gov/pubmed/24381236 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880464/pdf/pr.112.007336.pdf
https://doi.org/10.1021/acs.chemrev.8b00728
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238551/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238551/
https://www.ncbi.nlm.nih.gov/pubmed/27503678 http://ac.els-cdn.com/S0960894X16307995/1-s2.0-S0960894X16307995-main.pdf?_tid=3d36eaa8-a8ef-11e6-9c5a-00000aab0f01&acdnat=1478965796_25051127273012ff706fade68825f619
https://www.ncbi.nlm.nih.gov/pubmed/27503678 http://ac.els-cdn.com/S0960894X16307995/1-s2.0-S0960894X16307995-main.pdf?_tid=3d36eaa8-a8ef-11e6-9c5a-00000aab0f01&acdnat=1478965796_25051127273012ff706fade68825f619
https://www.ncbi.nlm.nih.gov/pubmed/27503678 http://ac.els-cdn.com/S0960894X16307995/1-s2.0-S0960894X16307995-main.pdf?_tid=3d36eaa8-a8ef-11e6-9c5a-00000aab0f01&acdnat=1478965796_25051127273012ff706fade68825f619
http://www.ncbi.nlm.nih.gov/pubmed/23299552
https://doi.org/10.1038/s41586-020-2027-0
https://doi.org/10.1038/s41586-020-2027-0


Lingle Wang, Jennifer Chambers, and Robert Abel. Protein–Ligand Binding Free Energy Calculations with
FEP+, pages 201–232. Springer New York, New York, NY, 2019a. ISBN 978-1-4939-9608-7. doi:
10.1007/978-1-4939-9608-7 9. URL https://doi.org/10.1007/978-1-4939-9608-7 9.

Lingle Wang, Yujie Wu, Yuqing Deng, Byungchan Kim, Levi Pierce, Goran Krilov, Dmitry Lupyan, Shaugh-
nessy Robinson, Markus K. Dahlgren, Jeremy Greenwood, Donna L. Romero, Craig Masse, Jennifer L.
Knight, Thomas Steinbrecher, Thijs Beuming, Wolfgang Damm, Ed Harder, Woody Sherman, Mark
Brewer, Ron Wester, Mark Murcko, Leah Frye, Ramy Farid, Teng Lin, David L. Mobley, William L.
Jorgensen, Bruce J. Berne, Richard A. Friesner, and Robert Abel. Accurate and reliable prediction of
relative ligand binding potency in prospective drug discovery by way of a modern free-energy calcula-
tion protocol and force field. Journal of the American Chemical Society, 137(7):2695–2703, 2015. ISSN
0002-7863. doi: 10.1021/ja512751q. URL https://doi.org/10.1021/ja512751q.

Junjie Zou, Chuan Tian, and Carlos Simmerling. Blinded prediction of protein-ligand binding affinity
using amber thermodynamic integration for the 2018 d3r grand challenge 4. Journal of computer-
aided molecular design, 33(12):1021–1029, 2019. ISSN 1573-4951 0920-654X. doi: 10.1007/
s10822-019-00223-x. URL https://pubmed.ncbi.nlm.nih.gov/31555923https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC6899192/. 31555923[pmid] PMC6899192[pmcid] 10.1007/s10822-019-00223-x[PII].

William L. Jorgensen and Laura L. Thomas. Perspective on free-energy perturbation calculations for chemical
equilibria. Journal of Chemical Theory and Computation, 4(6):869–876, 2008. ISSN 1549-9618. doi:
10.1021/ct800011m. URL https://doi.org/10.1021/ct800011m. doi: 10.1021/ct800011m.

Jianing Lu, Xuben Hou, Cheng Wang, and Yingkai Zhang. Incorporating explicit water molecules and
ligand conformation stability in machine-learning scoring functions. Journal of Chemical Information
and Modeling, 59(11):4540–4549, 2019. ISSN 1549-9596. doi: 10.1021/acs.jcim.9b00645. URL https:
//doi.org/10.1021/acs.jcim.9b00645.

Benjamin P. Brown, Jeffrey Mendenhall, Alexander R. Geanes, and Jens Meiler. General purpose structure-
based drug discovery neural network score functions with human-interpretable pharmacophore maps. Jour-
nal of Chemical Information and Modeling, 61(2):603–620, 2021. ISSN 1549-9596. doi: 10.1021/acs.
jcim.0c01001. URL https://doi.org/10.1021/acs.jcim.0c01001. doi: 10.1021/acs.jcim.0c01001.

James Kirkpatrick, Brendan McMorrow, H. P. Turban David, L. Gaunt Alexander, S. Spencer James, G. D. G.
Matthews Alexander, Annette Obika, Louis Thiry, Meire Fortunato, David Pfau, Román Castellanos Lara,
Stig Petersen, W. R. Nelson Alexander, Pushmeet Kohli, Paula Mori-Sánchez, Demis Hassabis, and J. Co-
hen Aron. Pushing the frontiers of density functionals by solving the fractional electron problem. Sci-
ence, 374(6573):1385–1389, 2021. doi: 10.1126/science.abj6511. URL https://doi.org/10.1126/science.
abj6511. doi: 10.1126/science.abj6511.

Francesco Gentile, Jean Charle Yaacoub, James Gleave, Michael Fernandez, Anh-Tien Ton, Fuqiang Ban,
Abraham Stern, and Artem Cherkasov. Artificial intelligence–enabled virtual screening of ultra-large
chemical libraries with deep docking. Nature Protocols, 17(3):672–697, 2022. ISSN 1750-2799. doi:
10.1038/s41596-021-00659-2. URL https://doi.org/10.1038/s41596-021-00659-2.

Francesco Gentile, Vibudh Agrawal, Michael Hsing, Anh-Tien Ton, Fuqiang Ban, Ulf Norinder, Martin E.
Gleave, and Artem Cherkasov. Deep docking: A deep learning platform for augmentation of structure
based drug discovery. ACS Central Science, 6(6):939–949, 2020. ISSN 2374-7943. doi: 10.1021/
acscentsci.0c00229. URL https://doi.org/10.1021/acscentsci.0c00229. doi: 10.1021/acscentsci.0c00229.

Louis Bellmann, Patrick Penner, Marcus Gastreich, and Matthias Rarey. Comparison of combinatorial frag-
ment spaces and its application to ultralarge make-on-demand compound catalogs. Journal of Chemical
Information and Modeling, 62(3):553–566, 2022. ISSN 1549-9596. doi: 10.1021/acs.jcim.1c01378. URL
https://doi.org/10.1021/acs.jcim.1c01378. doi: 10.1021/acs.jcim.1c01378.

Robert Schmidt, Raphael Klein, and Matthias Rarey. Maximum common substructure searching in com-
binatorial make-on-demand compound spaces. Journal of Chemical Information and Modeling, 2021.
ISSN 1549-9596. doi: 10.1021/acs.jcim.1c00640. URL https://doi.org/10.1021/acs.jcim.1c00640. doi:
10.1021/acs.jcim.1c00640.

208

https://doi.org/10.1007/978-1-4939-9608-7_9
https://doi.org/10.1021/ja512751q
https://pubmed.ncbi.nlm.nih.gov/31555923 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899192/
https://pubmed.ncbi.nlm.nih.gov/31555923 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899192/
https://doi.org/10.1021/ct800011m
https://doi.org/10.1021/acs.jcim.9b00645
https://doi.org/10.1021/acs.jcim.9b00645
https://doi.org/10.1021/acs.jcim.0c01001
https://doi.org/10.1126/science.abj6511
https://doi.org/10.1126/science.abj6511
https://doi.org/10.1038/s41596-021-00659-2
https://doi.org/10.1021/acscentsci.0c00229
https://doi.org/10.1021/acs.jcim.1c01378
https://doi.org/10.1021/acs.jcim.1c00640


Arman A. Sadybekov, Anastasiia V. Sadybekov, Yongfeng Liu, Christos Iliopoulos-Tsoutsouvas, Xi-Ping
Huang, Julie Pickett, Blake Houser, Nilkanth Patel, Ngan K. Tran, Fei Tong, Nikolai Zvonok, Man-
ish K. Jain, Olena Savych, Dmytro S. Radchenko, Spyros P. Nikas, Nicos A. Petasis, Yurii S. Moroz,
Bryan L. Roth, Alexandros Makriyannis, and Vsevolod Katritch. Synthon-based ligand discovery in vir-
tual libraries of over 11 billion compounds. Nature, 601(7893):452–459, 2022. ISSN 1476-4687. doi:
10.1038/s41586-021-04220-9. URL https://doi.org/10.1038/s41586-021-04220-9.

Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de novo drug
design. Science Advances, 4(7):eaap7885. doi: 10.1126/sciadv.aap7885. URL https://doi.org/10.1126/
sciadv.aap7885. doi: 10.1126/sciadv.aap7885.

Alex Zhavoronkov, Yan A. Ivanenkov, Alex Aliper, Mark S. Veselov, Vladimir A. Aladinskiy, Anastasiya V.
Aladinskaya, Victor A. Terentiev, Daniil A. Polykovskiy, Maksim D. Kuznetsov, Arip Asadulaev, Yury
Volkov, Artem Zholus, Rim R. Shayakhmetov, Alexander Zhebrak, Lidiya I. Minaeva, Bogdan A. Za-
gribelnyy, Lennart H. Lee, Richard Soll, David Madge, Li Xing, Tao Guo, and Alán Aspuru-Guzik.
Deep learning enables rapid identification of potent ddr1 kinase inhibitors. Nature Biotechnology, 37
(9):1038–1040, 2019. ISSN 1546-1696. doi: 10.1038/s41587-019-0224-x. URL https://doi.org/10.1038/
s41587-019-0224-x.

Benjamin P. Brown, Oanh Vu, Alexander R. Geanes, Sandeepkumar Kothiwale, Mariusz Butkiewicz,
Jr. Lowe, Edward W., Ralf Mueller, Richard Pape, Jeffrey Mendenhall, and Jens Meiler. Introduc-
tion to the biochemical library (bcl): An application-based open-source toolkit for integrated chem-
informatics and machine learning in computer-aided drug discovery. Frontiers in pharmacology, 13:
833099–833099, 2022. ISSN 1663-9812. doi: 10.3389/fphar.2022.833099. URL https://pubmed.
ncbi.nlm.nih.gov/35264967https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899505/. 35264967[pmid]
PMC8899505[pmcid] 833099[PII].

Samuel Boobier, David R. J. Hose, A. John Blacker, and Bao N. Nguyen. Machine learning with physic-
ochemical relationships: solubility prediction in organic solvents and water. Nature Communications,
11(1):5753, 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-19594-z. URL https://doi.org/10.1038/
s41467-020-19594-z.

Lucas Moreno and Andrew D. J. Pearson. How can attrition rates be reduced in cancer drug discovery? Expert
Opinion on Drug Discovery, 8(4):363–368, 2013. ISSN 1746-0441. doi: 10.1517/17460441.2013.768984.
URL https://doi.org/10.1517/17460441.2013.768984. doi: 10.1517/17460441.2013.768984.

Michael J. Waring, John Arrowsmith, Andrew R. Leach, Paul D. Leeson, Sam Mandrell, Robert M. Owen,
Garry Pairaudeau, William D. Pennie, Stephen D. Pickett, Jibo Wang, Owen Wallace, and Alex Weir. An
analysis of the attrition of drug candidates from four major pharmaceutical companies. Nature Reviews
Drug Discovery, 14(7):475–486, 2015. ISSN 1474-1784. doi: 10.1038/nrd4609. URL https://doi.org/10.
1038/nrd4609.

Richard K. Harrison. Phase ii and phase iii failures: 2013–2015. Nature Reviews Drug Discovery, 15(12):
817–818, 2016. ISSN 1474-1784. doi: 10.1038/nrd.2016.184. URL https://doi.org/10.1038/nrd.2016.184.

Susan Klaeger, Stephanie Heinzlmeir, Mathias Wilhelm, Harald Polzer, Binje Vick, Paul-Albert Koenig,
Maria Reinecke, Benjamin Ruprecht, Svenja Petzoldt, Chen Meng, Jana Zecha, Katrin Reiter, Huichao
Qiao, Dominic Helm, Heiner Koch, Melanie Schoof, Giulia Canevari, Elena Casale, Stefania Re De-
paolini, Annette Feuchtinger, Zhixiang Wu, Tobias Schmidt, Lars Rueckert, Wilhelm Becker, Jan Huenges,
Anne-Kathrin Garz, Bjoern-Oliver Gohlke, Daniel Paul Zolg, Gian Kayser, Tonu Vooder, Robert Preiss-
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