Journal of Complex Networks (2017) 0000, 1-20
doi: 10.1093/comnet/cnx016

RDyYN: graph benchmark handling community dynamics

GIuLio RosserTIf

University of Pisa & ISTI-CNR, Italy
TCorresponding author. Email: giulio.rossetti @di.unipi.it

Edited by: Guido Caldarelli

[Received on 6 July 2016; editorial decision on 23 May 2017; accepted on 29 May 2017]

Graph models provide an understanding of the dynamics of network formation and evolution; as a direct
consequence, synthesizing graphs having controlled topology and planted partitions has been often identi-
fied as a strategy to describe benchmarks able to assess the performances of community discovery algorithm.
However, one relevant aspect of real-world networks has been ignored by benchmarks proposed so far:
community dynamics. As time goes by network communities rise, fall and may interact with each other
generating merges and splits. Indeed, during the last decade dynamic community discovery has become
a very active research field: in order to provide a coherent environment to test novel algorithms aimed
at identifying mutable network partitions we introduce RDYN, an approach able to generates dynamic
networks along with time-dependent ground-truth partitions having tunable quality.

Keywords: graph models; dynamic networks; evolving communities.

1. Introduction

Our world is permeated by connected systems that can be naturally represented as networks: social
relationships [2, 5], technology networks [1], chemical networks [24], the World Wide Web [33] are all
examples of complex realities in which entities are related one to another following clear semantics. The
analysis of such complex systems nowadays represents a hot topic studied from multiple perspectives:
computer scientists, physicists, mathematicians, biologists, researchers from countless fields are used to
model their worlds with the tools offered by graph theory in order to impose a structure to otherwise chaotic
data. In this challenging scenario, identifying shared methodologies to define and build effective controlled
environments for testing purposes is mandatory: for this reason, benchmarks have been proposed to
evaluate and compare the performances of algorithmic solutions designed to address countless network
problems. Indeed, real-world networks, as described by heterogeneous datasets, have repeatedly shown to
follow some peculiar characteristics: network generators able to reproduce such traits, producing tunable
network topologies, are the basic bricks on which controlled experiments pose their grounds.
Nowadays, one of the most intriguing topics in complex network analysis is community discovery
(CD) [15], that is the problem of automatically identify meaningful partitions of a given graph by grouping
together entities that are strictly related within each other than with the rest of the network. Indeed,
community discovery is an ill-posed problem since a formal shared definition of communities does
not exist: however, its countless applications made it one of the most active publication themes in this
multidisciplinary community. In order to evaluate the effectiveness of a CD approach, it is usual to
compare the identified partition with a ground truth one. Since real data rarely come with annotated
ground truth partitions in the last decades several graph generators [16, 18, 20, 26, 39] were designed in

© The authors 2017. Published by Oxford University Press. All rights reserved.

2 G. ROSSETTI

order to produce benchmarks having topological characteristics similar to the real world ones as well as
planted ground truth communities.

However, a major assumption was made so far by almost all the proposed generators: the networks
modelled are static and the communities do not change as time goes by. Recently, dynamic CD [9]
(henceforth, DCD) has emerged as an extension of the classical CD problem. As the phenomena they
model, real networks evolve through time: as in a social network a user can interact multiple times with
a friend as well as destroy a friendship tie, in a dynamic graph a node can establish multiple interactions
with the same node or delete a pre-existent edge. Nodes, as well as edges, may appear and disappear and
the perturbations such events cause to the network topology usually reshape the community structures it
embeds. DCD approaches track such changes over time [10, 36]: classic benchmarks that assume both
the network topology and planted community static are arguably, at least in this scenario, the best solution
while designing controlled environment testing.

In this work, we introduce RDYN, a novel benchmark specifically tailored to simulate a completely
dynamic scenario. RDYN generates dynamic graphs respecting well-known real-world network properties,
proposing an approach able to build tunable quality evolving ground truths (i.e. allowing both community
merge and split events). RDYN goal is to provide a benchmark for DCD algorithms: to do so it regulates
both community merge/split events and generates stable community states (i.e. the ground truth) by
continuously checking partition quality as the network topology evolves through time.

The article is organized as follows: in Section 2 are discussed the related works; in Section 3 RDYN is
introduced; in Section 4 is described a novel benchmark that uses RDYN as network generator and a novel
score, NF1[37], as quality function. In Section 5, RDYN is evaluated against state of art CD and DCD
algorithms as well as against LFR [27] one of the most famous benchmarks for static graphs: moreover,
in this section both the RDYN planted communities characteristics and execution times are discussed.
Finally, Section 6 concludes the article.

2. Related works

Identify a reliable way to evaluate partition quality is one of the major issues to address while approaching
CD. Due to the absence of a shared formal definition of what is a community and which characteristics
it needs to possess, each paper follows its own strategy to compare the results obtained by its algorithm
with the ones produced by state of art methods. In this section, we will review some of the most popular
strategies used to define testing environments aimed at evaluating community partitions. In particular,
we will shed some lights on the most famous synthetic network generators used to set up controlled
experiments as well as on classic network models designed to embed community structures. Moreover,
we will also briefly introduce the concept of dynamic community and discuss some general findings on
such subject.

Network models embedding community structures. The general aim of network modelling is to cap-
ture some essential properties lying behind real-world phenomena and replicate them while generating
synthetic data, all imposing only a few simple constraints. In order to do so, several models were defined to
generate networks embedding some of their peculiar characteristics: small-world [41], scale-free degree
distribution [4], high clustering coefficients and community structure [29].

In [44], the authors extend the preferential attachment model by introducing global random attachment
for community selection. The model works in two phases: (i) each new node selects acommunity randomly
from the existing ones in the network then (ii) it connects to other nodes in such community following the
Barabasi—Albert model. This approach is designed to build graphs having power law degree distribution

GRAPH BENCHMARK HANDLING COMMUNITY DYNAMICS 3

that, differently from the original model, embed community structures. Following a similar rationale, in
[43] and [49] node-community assignations are achieved, during the first phase, by applying preferential
attachment, thus biasing the selection towards big communities. This strategy enables the authors to
guarantee power law distributions for both community size and node degree. A similar approach is applied
even in [23] and [35] where the authors were able to generate communities having a hierarchical structure,
internal power law degree distribution, and high clustering coefficient. Conversely, from previous works,
[46] and [47] focus their attentions on other interesting characteristics: randomness and overlap. In [46],
the authors found that introducing randomness in an Erdos—Rény graph it is possible to obtain clustered
networks while losing the scale-free property. In [47] instead are introduced in the generation process
the concept of introversion—extroversion, homophily and tie strength. Such model suggests the existence
of, possibly overlapping, communities having different sizes. Following a completely different approach
in [25] is proposed a model that generates a network with moderate size communities using local scale
rules borrowed from sociology. The approach exploits triadic closure as well as focal closure in order to
assure acquaintances at a local scale and random walks to capture cyclic closure and thus strong ties.

Synthetic benchmarks. Complex network modelling studies generated a new field of research: synthetic
network generators. Generators allow scientists to evaluate their algorithms on synthetic data whose
characteristics resemble the ones that can be observed in real-world networks. The main rationale behind
the adoption of network generators as benchmarks while analyzing the performances of a CD algorithms
lies in the ability to produce datasets that allow controlled environment testing. Benchmarks allow to tune
network characteristics, such as the network size and density: this flexibility enables an extensive algorithm
evaluation on networks having different characteristics but generated to follow a similar topology. This
enables, for instance, to check an algorithm against:

* Stability: the performance of a CD approach can be evaluated on a high number of network instances
having similar properties in order to provide an estimate of the algorithmic stability;

* Scalability: synthetic graphs can be used to test the actual scalability of an algorithm while increasing
the network size.

Moreover, benchmarks provide ground-truth partitions explicitly embedded in the generated graph: such
partitions can be used to evaluate the fitness of the one produced by the tested algorithm.

Among the benchmarks, the most used are the ones proposed in [18] and [27]. The Girvan—Newman
benchmark, GN, is built upon the so-called planted I-partition model (described in: [8, 11, 17]): this
generator takes as input a given ground truth partition and two parameters identifying respectively the
probabilities of intra and inter-clusters links. Moreover, the ground truth partitions are generated as equally
sized Erdos—Reny random graphs [14]. The aim of GM benchmark is to assess the degree of adherence the
communities identified by a given algorithm have w.r.t. the planted ground truth. Typically the analysis is
performed varying the intra/inter-cluster probabilities so to characterize the topology of hidden partitions
a specific algorithm is able to identify. Planted I-partition models (also known as ad-hoc models) were
proposed to produce graphs resembling different real-world characteristics: among them we recall ad-hoc
models that generate overlapping community structures [39] as well as weighted [16] and bipartite [20]
graphs. The main drawbacks introduced by the GN benchmark (as highlighted in [27]) are twofold:

» all nodes of the network have essentially the same degree (due to the use of ER graphs);

* the planted communities have fixed and equal sizes (even though a variant of the original approach
handling communities of different sizes was introduced in [13]).

4 G. ROSSETTI

Such peculiarities make the generated benchmark graphs unrealistic proxies for real networks with com-
munity structure. Indeed, real networks are characterized by heterogeneous distributions of node degree,
whose tails often decay as power laws. To cope with the limitation of the GN benchmark, and to fill the
gap among Erdos—Rény graphs and real ones, in [27] was introduced the LFR benchmark'. The networks
generated by this model have both node degrees and community sizes following a power law distribution.
Similar to the planted I-partition model, vertices share a certain fraction of their links with other vertices
in their cluster and the remaining links with random vertices in other parts of the graph. Moreover, LFR
allows the analyst to decide the average cluster density and size of the generated graph. This benchmark
has been generalized to weighted and directed graphs, as well as to generate overlapping clusters, [26].

However, both the GN and the LFR benchmarks are designed to evaluate static graph partitions and
do not natively support the generation/analysis of dynamic graphs. In order to cope with this limitation,
few papers have proposed alternative benchmarks as well as extension. In [30] was proposed a variant
of the GN model to evaluate the FaceNet framework: there, the authors introduce network dynamics by
generating different graphs for each time steps. In particular, in order to interpolate from a snapshot to the
subsequent one, the proposed model (i) randomly selects a fixed number of nodes from each community
(i1) removes them and (iii) allocates them to different communities. Finally, edges are added randomly
with a higher probability for within-community edges and a lower probability for between-community
edges. In [19] is proposed a set of benchmarks based on LFR: at each step, starting from a static synthetic
graph with ground-truth communities, 20% of the node memberships were randomly permuted in order
to mimic node-community migrations. Finally, in [32] a network generation model based on evolution
dynamics is introduced.

Dynamic Communities. DCD is a relatively novel task in complex network analysis [3, 9], its goal being
identify and track trough time clusters of highly connected nodes in a dynamic network. In a preliminary
survey [22], two high-level categories of online DCD algorithms are identified depending on how the
community evolution is handled:

1. Temporal smoothness approaches run the CD process from scratch on each graph evolution step
(network snapshot or interaction);

2. Dynamic updates approaches incrementally update the communities as time goes by looking both
at their previous states and at novel network perturbations.

As in static CD, a formal and shared definition of dynamic communities is missing: each algorithm
approaches the problem by proposing solutions that search for different topological characteristics. Since
there are countless ways to define what a dynamic community should look like most of the literature on the
subject focus on the proposal of approaches able to track communities elementary actions. With this aim,
several works converged on a set of elementary events that regulate community life-cycle [10, 21, 34, 36]:
birth, death, growth, contraction, merge and split. Moreover, a seventh operation, ‘Continue’, is sometimes
added to these ones and in [9], an eighth operation was proposed (Resurgence, e.g. the reappearance of
a previously vanished community). Indeed, not all such operations are necessarily handled by all DCD
algorithms, however, few of them (birth, death, merge and split) are considered ubiquitous and thus
needed to be taken into account while designing a benchmark for such task.

' Code available at: https://sites.google.com/site/santofortunato/inthepress2

https://sites.google.com/site/santofortunato/inthepress2

GRAPH BENCHMARK HANDLING COMMUNITY DYNAMICS 5

TABLE 1 RDYN parameters. Distributions of node degree,
community size and interaction decay are additional param-
eters of the model not reported in the table

Parameter Description

V] Number of nodes

K Community quality threshold

Din Node intra community edge probability
v Renewal after decaying

3. RDyn: dynamic graph generators

Dynamic networks can be used to model a wide range of real-life phenomena, however being able to
access dynamic datasets having ground-truth communities it is not trivial. To overcome this issue we
designed RDYN? a flexible network generator able to simulate not only interaction dynamics but also
community ones. The proposed approach is designed to allow its user to deeply customize the generated
topology and related dynamics: in order to enforce the approach flexibility several controlling variable,
listed in Table 1, are exposed. In the following of the article, when we will refer to a dynamic graph (or,
equivalently, to a dynamic network) we will adopt the following notation:

DEFINITION 3.1 (GRAPH) G = (V, E) is a dynamic graph where V represent the node set and E the edge,
or equivalently interaction, set. An edge (interaction) e € E is univocally identified by a tuple:

e= (u,v,t,1), 3.1

where u,v € V are nodes, ¢ € N is the timestamp of e appearance and T € N is e time to leave, that is the
number of iterations the edge will remain active before vanishing.

We design our approach to generate dynamic graphs respecting to the following characteristics: (i)
power law node degree distribution; (ii) power law community size distribution; (iii) tunable community
quality (i.e. minimum conductance, high modularity, high density...); (iv) edge appearance/vanishing
handling; (v) user defined distribution for interaction decay and (vi) communities merge/split dynamics.

In order to satisfy such desiderata, RDYN (whose pseudocode is reported in Algorithm 1) has been
designed as an iterative process composed by three main components: (i) distribution configuration
(Algorithm 1, lines 1-2), (ii) dynamic network generation and (Algorithm 1, lines 4—7) and (iii) community
dynamic generation (Algorithm 1, lines 8—11).

We define RDYN an iterative process since the topologies it generates are the results of subsequent
choices made by the nodes within it: more specifically, during every iteration the nodes in V are enabled
to perform a specified set of actions (i.e. create/destroy edges—all subject to specific rules). Moreover,
once completed each iteration the status of the resulting communities is evaluated, returned if considered
stable, and community dynamics are planted.

2 Python code available at: https://github.com/GiulioRossetti/RDyn

https://github.com/GiulioRossetti/RDyn

6 G. ROSSETTI

In the following, we will discuss each RDYN component in order to highlight how they concur to the
definition of the whole model.

3.1 Planted distributions

As a first step RDYN assigns each node in # € V to an initial community. To do so three constraints need
to be satisfied: (i) community size distribution, (ii) node degree distribution and (iii) expected ratio of
intra/inter-community edge of community nodes. In our model, we assume community size distribution—
as well as degree distribution—to follow (potentially truncated) power laws, for example to comply with
the equation f(x) = x~%, having user-defined exponents and means.The minimum node degree as well
as community size, given a specific « value can be computed as:

X

1
20{*1

(3.2)

Xmin =

Such value, x,,;,, is needed in order to guarantee a finite area under the distribution curve: indeed, without
such constraint the area approaches to +oo while x approaches 0. Moreover, we impose a maximum node
degree of |V| — 1 and that the sum of community sizes equal to |V|.

Once fixed the exponent of node degree and community size distributions, both of them are generated:
subsequently, RDYN walks through the nodes in V by decreasing degree and associates each one of them
to a community C iff the following constraints are satisfied:

(1) C has at least an unassigned node slot and

(i1) C has a size s able to ensure that at least p;, of the degree of the current node u can be used to
generate intra-community interactions

where p;, is a user-defined threshold introduced to impose an upper bound to the ratio of inter and intra
community edges for each node. It ranges in [0, 1]; for p;, = 1 the resulting network will be composed of
several disconnected components since each node will be connected exclusively with peers belonging to
the same community; conversely for p;, — 0 the resulting topology will interpolate toward a complete
mixing scenario in which the planted communities are as dense as random connected nodes partitions. If a
given node u is not directly assigned to any community (due to constraint (ii)), a community C which still
has available slots and that reduces the over quota percentage of u expected inter-community interactions
is selected. This greedy solution ensures that the initial distributions remain as stable as possible and that
the average community cut ratio approaches p;,.

3.2 Network dynamics

Once produced an initial stable assignment of nodes to communities RDYN can start generating the edge
stream that describes the desired dynamic network (Algorithm 1, lines 4—7). To support the edge streaming
creation two sub-problems needs to be tackled: (i) how to handle intra/inter-community interaction
generation and (ii) how to model interaction decay.

3.2.1 Intra/inter-community edges. This first issue can be easily broken into two subtasks, one address-
ing intra-community edges, the other inter-community ones. Both the subtasks concur to the same
purposes: (i) guarantee that the real degree distribution approaches the planted one and (ii) assure that at

GRAPH BENCHMARK HANDLING COMMUNITY DYNAMICS 7

Algorithm 1 RDyN

Require: Parameters as defined in Table 1
1. Instantiate distributions
2. Assign nodes to communities
3. for each iteration do

4. for each node u € shuffle(V) do
5. remove expired interactions involving u > subject to v
6. generate a new interaction for u > subject to p;,
7. end for
8. if stable community status then > subject to «
9. output communities

10. generate mergel/split actions

11. end if

12. end for

any moment, and for any node, the real intra-community edge ratio p;, is as close as possible to the user
defined p;,. We designed RDYN as an iterative process and model nodes as agents that perform (at least)
an action during each iteration.

In particular, during each iteration each node u € V will establish an interaction (iff it has not still
reached its expected degree) towards a node of the same community - with probability p;,—or towards
a node external to the community—with probability 1-p;,.

Intra-community interactions. If a node u € V is selected to generate a new interaction within its
community C two scenarios may arise:

* First intra-community interaction: the endpoint of interaction, v, is extracted among the nodes in C
having not yet reached their expected degree using a preferential attachment strategy (e.g. giving
priority to the ones having higher expected degree);

* yalready connected to other nodes in C: the endpoint v is chosen among the two-hop neighbourhoods
of v (i.e. the nodes directly connected to u’s neighbours) using a preferential attachment. If all the
nodes in such set have reached their expected degree v is chosen among the other community nodes
that have not saturated their degree capability (still sampling trough preferential attachment).

The former scenario handles the creation of the first intra-community interactions, the latter enforces the
triadic closure—whenever possible—while still giving priority to preferential attachment to facilitate the
rising of power-law degree distribution.

Inter-community interactions. Coherently with the intra-community connection strategy, inter-community
bridges are established employing a preferential attachment sampling. In particular the procedure follows
two steps: (i) a community C is selected as target community among the ones whose nodes have still not
reached their maximum inter-community degree applying a preferential attachment sampling weighted
on the community sizes and (ii) a node v among the candidate nodes of C is chosen via a preferential
attachment. This approach guarantees a coherent node degree distribution and uses the size as a weight
for the attraction power of a community: the bigger the community the more likely nodes are driven to
connect with it.

8 G. ROSSETTI

3.2.2 Interactions decay. As described so far RDyN handle only network growth: in order to produce
more realistic network dynamics, it is thus necessarily to embed in it an interaction decay strategy. To
simulate interaction vanishing, every time a new edge (u, v) is generated its time-to-live (from now on 7)
is extracted from a decay distribution then, as the first step of every new iteration, nodes are checked for
expired interactions and, if found they are removed. Moreover, in order to assure topology stability each
vanishing edge is renewed with probability v if intra-community, 1 — v if inter-community. From every
dynamic phenomenon it is possible to extract a specific interaction decay signature: indeed, several works
analyzing real data identified particular decay distributions ranging from exponential [40] to long-tailed
[48] ones. We designed our model to be as general as possible: to do so RDYN let the user define the desired
decay function (as in [42] where PED a user-defined probabilistic edge decay model is introduced). In
the experimental section we instantiate RDYN to simulate an exponential interaction decay (which has
been chosen as default setting), f (x) = e, assuming A = 1.

3.3 Community dynamics

Once described the rules that regulate network dynamics it is mandatory to address the main goal of
the introduced benchmark: propose a way to provide time-aware ground-truth communities allowed to
appear, disappear, merge and split according to the arrival and departure of edges. In order to guarantee
the embedding of meaningful communities in the generated graph, we decided to check their significance
at each iteration through the adoption of a quality measure. With this aim, we adopted conductance as a
way to continuously assess partition stability and identify community shifts.

DEFINITION 3.2 (CONDUCTANCE) In graph theory the conductance score [7] is used to measure how ‘well-
knit’ a graph is: it controls how fast a random walk on a graph G converges to a uniform distribution.
In CD, this measure is often used to provide a proxy to assess a partition quality [45]. Given a set of
communities €={C,, ..., C;,...,C,} conductance is defined as:

ZueCi,vea- Auy

K(C) = =
min(a(Cy),a(C;)

(3.3)

where C; identifies the nodes outside C; and a,,, are the entries of the adjacency matrix for G, so that:

alC) =Y au (3.4)

ueCi yeC;

is the total number (or weight) of the edges incident with C;.
The conductance of the whole graph, «, is the minimum conductance over all its partition:

x = min K(C)). 3.5)

Cie®
The lower the value of « the higher the partition quality.

Indeed, the algorithmic schema implemented by RDYN (see Algorithm 1, lines 8—11) can be easily
generalized in order to apply arbitrary partition quality functions, thus changing the rationale behind the
planted communities and their evolution (i.e. optimizing partition density instead of conductance: we
will compare this two choices in Section 4).

GRAPH BENCHMARK HANDLING COMMUNITY DYNAMICS 9

3.3.1 Detecting merge and split. At the end of each iteration, RDYN computes the current partition
quality, &, on the network partition imposed by the nodes communities allocation in order to decide
whether the communities are stable enough to be returned as a valuable ground-truth or not.

DEFINITION 3.3 (STABLE PARTITION/ITERATION) Given a partition P; observed at the end of an iteration
i, a partition quality threshold « and the partition quality ¥ computed on P; we call i stable iff k < k.
Symmetrically, we call stable an iteration i associated to a stable partition P;.

Once defined when a partition is considered a valid output for RDYN, we need an algorithmic schema
that introduces community dynamics and takes care of interpolating from the current stable state to the
following one (Algorithm 1, lines 8—11). Reached a stable state, one or more split and/or merge actions
can be planted: we regulate them by applying the following patterns.

Merge action:

1) two communities that will be involved in the merge event are chosen through a sample biased by
the reciprocal of community sizes, giving priority to the merging of small communities;

ii) all the nodes belonging to the selected communities are marked as belonging to the same set: bridges
among them are then labelled as internal edges.

Split action:

i) a community is chosen through a sample biased on community sizes, giving priority to the splitting
of bigger communities.

ii) two disjoint sets of nodes are extracted from the selected community and labelled accordingly:
interactions connecting nodes belonging to different communities are labelled as bridges.

The policies described to identify the communities involved in updates (both in the split and merge
scenarios) are devised so to capture the intuition that it is more likely that bigger communities can fall
apart w.r.t. small ones and that, symmetrically, small communities are more likely to merge than bigger
ones. Indeed this choice, in the long run, tends to uniform the community size distribution. Once updated
the assignment of nodes to communities, subsequent iterations of RDyN will automatically converge to a
novel partition of sufficiently high quality to being returned as stable ground-truth. Convergence is due to
the defined linking strategies: indeed, intra-community links are stable than inter-community ones (higher
renewing probability, v): this causes the rapid vanishing of bridges that connects logically separated node
sets that once belongs to the same community (split) as well as the rising of intra-community edges
among once disconnected communities.

Indeed, in order to avoid instability, merges and splits can be logically planned only when the network
has reached a stable community state (i.e. previous community actions have been completed). Moreover,
multiple splits and merge can be planned at the same time under the constraint that there is no overlap
among the communities they target. Ideally, RDYN execution will follow a pattern similar to the one
exemplified in Fig. 1: unstable iterations that fill the gap between stable ones represent the time window
needed to complete the planned merge and split actions and are characterized by expand and contract
actions of the communities selected to be merged or split.

10 G. ROSSETTI

O Iteration

. Stable Iteration

SO S2 S4
Interactions Dynamics

FIiG. 1. RDYN execution timeline: ground-truth communities are generated only during stable iterations (black circles). Interactions
between two consecutive stable iterations compose a snapshot (here identified with {S0,...,S5}). Interaction dynamics (as well as
community ones) happens between consecutive iteration. Due to their definitions stable iterations are not bounded to appear with
fixed displacement.

4. Benchmark: RDyn and NF1

When designing ground truth testing environments it is mandatory in order to assess the effectiveness of
an algorithm to measure the degree of resemblance its output are able to provide w.r.t. a golden standard.
In Section 3, we introduced our dynamic network generator RDYN: in order to propose a complete
benchmark for the evaluation of CD algorithms, both for static and dynamic networks, here we discuss
a novel metric, NF1 an extension of a quality function proposed in [37].

Given a community set X produced by a CD algorithm and a ground truth community set Y, for
each community x € X we label its nodes with the ground truth community y € Y they belong to. Each
community x is then matched with the ground truth community with the highest number of labels in
the algorithm community. This procedure generates (x,y) pairs having the highest homophily between
the node labels in x and all the ground truth communities. In [37], the authors measure the quality of the
mappings by the two following measures:

* Precision: the percentage of nodes in x labelled as y, computed as

N
P lx Nyl

e [0, 1]. 4.1

x|
* Recall: the percentage of nodes in y covered by x, computed as

xN
R— lx Nyl
[yl

€ [0,1]. “4.2)

Given a pair (x, y) the two measures describe the overlap of their members: a perfect match is obtained
when both precision and recall are 1. The identified pairs set describe a many-to-one mapping: multiple
communities in X can be connected to a single ground truth community in Y. This policy enables the
adoption of the proposed methodology both in the case of algorithms producing crisp partitions or
algorithm producing overlapping communities. Moreover, analyzing the precision and recall of each pair
it is possible to detect both underestimations and overestimations made by the adopted algorithm.

GRAPH BENCHMARK HANDLING COMMUNITY DYNAMICS 11

In order to provide a complete quality indicators, in [37] precision and recall are combined into their
harmonic mean obtaining the F'1-measure, a concise quality score for the individual pairing:

precision * recall

Fl1=2 4.3)

precision + recall’

Given a network, the F'1 score is then averaged among all the identified pairs in order to summarize the
overall correspondence between the algorithm community set and ground truth community set.

Here we propose an extension of the average F'1 score: in order to mitigate the issues related to coverage
and redundancy of communities while assessing the final matching quality, we define a normalized
version of such metric, namely NF1.> In particular, defined Y;; the subset of community in ¥ matched
by community in X, we can define Coverage as:

Y;
Coverage = % e [0,1]. 4.4

Coverage identifies the percentage of communities in Y that are matched by at least an object in X.
Redundancy instead can be defined as:

X
Redundancy = % € [1,400). “.5)

id

Redundancy is minimized when no conflicting matches exist among the communities in X and the ones
in Y. Finally NF1 can be defined as:

F1 % Coverage
NFl=— € (0,1] (4.6)
Redundancy

NF1 is maximized when: (i) the average F1 is maximal (perfect match), (ii) the community in X provide
a complete coverage for the ones in Y and (iii) the redundancy is minimized (i.e. each community in X
is matched with a distinct community in Y).

As shown in [37], it is possible to compute F1 (and thus NF1) paying a linear complexity in the
size of the community set X. The reduced complexity makes NF1 a suitable alternative to NMI [27]
(whose complexity has shown to be ¢(|1X|?)). Moreover, as discussed in [28, 31], NMI is not stable while
comparing overlapping partitions with non-overlapping ones while NF1 does not suffer such limitation.

5. Experiments

In this section, we analyze the dynamic network structures generated by RDYN. In particular, in Section
5.1 we compare several CD algorithms (for both static and dynamic graphs) on networks generated by
RDyN and LFR so to highlight the major differences among the two benchmarks. Later on, in 5.2, we

3 Code available at: https://github.com/GiulioRossetti/f1-communities

https://github.com/GiulioRossetti/f1-communities

12 G. ROSSETTI

discuss scalability of the proposed generative model and provide a characterization of the communities
and networks it builds.

5.1 RDy~Nvs. LFR

As we have discussed in Section 2, whenever a new community algorithm needs to be tested against a
synthetic benchmark the preferential choice within the state of art lies on LFR. We highlighted that RDyN,
differently from LFR, is specifically tailored to the generation of dynamic graphs enriched with evolving
ground truth communities: however, our approach can also be used to evaluate, on a single snapshot,
classical static CD algorithms.

In order to compare the two benchmarks, we decided to evaluate three dynamic and three static CD
algorithms on them, namely:

Static approaches:

¢ Demon [12]: is an incremental algorithm based on the analysis of ego networks from which micro
communities are identified and merged. The communities are extracted by using a bottom-up
procedure: each node gives the perspective of the communities surrounding it and then all the
different perspectives are merged together in an overlapping structure.

¢ Infohiermap [38]: is one of best performing hierarchical non-overlapping clustering algorithms for
community detection studied to optimize community conductance. The graph structure is explored
with a number of random walks of a given length and with a given probability of jumping into a
random node. The underlying intuition is that random walkers are trapped in a community and
exit from it very rarely.

e Louvain [6]: is an heuristic method based on modularity optimization and it is proven to be fast
and scalable on large-scale networks. The modularity optimization is performed in two steps.
First, the method searches for ‘small’ communities by optimizing modularity locally. Second,
it aggregates nodes belonging to the same community and builds a new network whose nodes
are communities. These steps are repeated iteratively until a maximum modularity is obtained,
producing a complete non-overlapping partitioning of the graph.

Dynamic approaches:

e D-GT [21]: is a game-theoretic approach for community detection in dynamic social networks:
each node is treated as a rational agent who periodically chooses from a set of predefined actions
in order to maximize its utility function. The community structure of a snapshot emerges after the
game reaches Nash equilibrium; the partitions and agent information are then transferred to the
next snapshot. D-GT attempts to simulate the decision-making process of the individuals creating
communities, rather than focusing on statistical correlations between labels of neighbouring nodes.

e 1Lcp [10]: is an algorithm for the detection of overlapping communities in dynamic networks.
It is not based on the modularity, but, on the contrary, on the idea that communities are defined
locally (intrinsic communities).

e TiLEs [36]: is an online algorithm that dynamically tracks overlapping communities in an edge
stream graph following local topology perturbations. It applies constrained label propagation.

In order to evaluate the selected methods on the two benchmarks, we generated several networks
having different configurations of the required parameters and analyze how the average quality of the
identified communities vary with them. In particular, we define the following experimental setup:

GRAPH BENCHMARK HANDLING COMMUNITY DYNAMICS 13

TABLE 2 Experimental parameters settings. The k value
refers to the minimum conductance/density required to
identify a partition as stable

Parameter Values

v [0.5, 0.6, 0.7]

Din [0.6,0.7, 0.8, 0.9]

k (density) [0.1, 0.15, 0.2, 0.25, 0.3]

« (conductance) [0.3, 0.35, 0.4, 0.45, 0.5, 0.55]

LFR:
* we generated 90 networks of 1000 nodes each varying u, the mixing coefficient, and d, the
network density, respectively in the range [0, .9] and [0, 1] (steps of .1);

e for each algorithm we computed the average quality score for each value of p, varying the density
value.

RDyN:
* wegenerated 1000 RDyN iterations for a set of networks of 1000 nodes each varying the parameters
as shown in Table 2*;

» for each algorithm we computed the average quality score for each value of k (the community
quality threshold), varying the remaining parameters. We decided to fix the number iteration to
1000 for each of the RDYN instantiation. Moreover, in order to better characterize the obtained
results, we repeated the procedure twice employing respectively conductance and density as
quality functions during the network generation phase.

Moreover, for both models we fix the exponent of power-law distributions for node degree and community
size to 2.5 (as done in the [26]). Figure 4(a—f) shows the trends of the NF1score for the six algorithms on
the two benchmarks: in order to better discuss the obtained results we separated the plots by benchmark:
RDYN (conductance Fig. 2(a and d) , density Fig. 2(b and e) and LFR Fig. 2(c and e)), as well as for
algorithm type (static/dynamic).

Two different peculiarities emerge from the plots: (i) RDYN and LFR propose different rankings
among the tested algorithms, and (ii) RDYN benchmark appears to be, on average, more challenging
than LFR (even for high community quality, i.e. low conductance/high density). Obviously, even though
LFR and RDyYN guarantee almost the same graph characteristics (i.e. power law degree and community
size distribution) the local topologies they generate can highly differ due to the rationale behind their
construction. In order to prove that the communities generated by RDYN are easily identifiable by methods
that optimize the same quality function it employs we introduce in our experimental settings two static
algorithms that search for, respectively, low conductance cuts (e.g. INFOHIERMAP) and dense communities
(e.g., DEMON). As shown in Fig. 2(d—e), INFOHIERMAP is able to reach, and steadily maintain, a high NF1 on
RDYN when conductance is used as quality function while generating communities, conversely it ranked

4 When conductance is used as quality function, the generated networks are 360: 300 when considering density. For each
parameter configuration, multiple RDYN instantiations were performed.

14 G. ROSSETTI
(a) (b) (c)
0.45 0.60 103
- ILCD -~ ILCD ; 3 - iLcD
oto - TILES 055 - TILES ,_{ L S R":_f
DG-T D-GT __,% =" 0.8 3
0.50 ,,}—— = By, N
- - " - i 18 \;
g oss Eoas +//,+ (| Bos e
" N A : 4 . %
o 8 Do.40 o gl e, Ry
Z030 od]| R I Z 04 &Y
T N 0.35[¢ 9‘1‘.\&
025 “gmmmmmnd . s °l o2 R
0.30| o ° h B |
¢ b4 1
0.20 0.25 - 0.0
30 035 040 045 050 055 0.10 0.15 0.20 0.25 0.30 0.0 02 04 06 03
Conductance Density M
d RDYN-Conductance RDYN-Density f LFR
(d) (e))
10 1.05 10f T3 —
+"'----*}-‘m»-.--.._.,._._ e -+ Louvain ix"}- ++ "‘*L"*
0.9 [T — 1.00}| "~ Infohiermap o Ty
S T DEMON { 08 ¢ ¥ W
08 R TN + s W
; 095 - 5 I\
L 07 ~ Louvain i 7 Los A
Hi 4 \
& - Infohiermap o..l).eo e 1 - L3 ‘\\f
Sos DEMON || £ | * } Zoa R
0.85 °)
05 5
¢ $ ¢ 5 4 0.2{{ -~ Louvain EN
0.4 3 1 0.80} ¢ S P S At J Infohiermap ‘\}-._‘
" " Demon }---4
0.3 o ad 0.75 0.0
030 035 040 045 050 055 0.10 0.15 0.20 0.25 0.30 0.0 0.2 0.4 06 0.8
Conductance Density I
RDYN-Conductance RDYN-Density LFR

FI1G. 2. Comparison of the NF1 of the CD and DCD algorithms on RDYN and LFR. In the first row are reported the NF1 trend line
for the chosen DCD algorithm while varying the community quality, in the second the same visualization is shown for the tested
CD approaches. Error bars highlight standard deviations.

third across the static methods when density is the community generation criterion. On the other hand,
DEMON is not able to reach the best performances in its category for neither density nor conductance. This
result, along with the ones of TiLES and ILCD, is primarily due to the type of topologies the algorithm
search for: indeed, RDYN generates non-overlapping, crisp, partitions thus penalizing approaches that
allow a node to belong to different communities.

While analysing dynamic approaches we observe how D-GT is able to guarantee the highest perfor-
mances on LFR but not in RDyN. This result is due to the nature of the algorithm itself: contrarily from
its direct competitors, D-GT works on snapshot graphs, identifying a community set for each temporal
observation, thus reducing the dynamic analysis to a sequence of static ones. The fact that both TiLES and
ILCD are able to reach higher NF1 than D-GT on RDYN is expected since they are fully exploiting the
dynamics of network formation expressed by the model. Conversely, while applied on static graphs — as
the ones generated by LFR—the two approaches suffer the lack of an explicit edge ordering thus reducing
their effectiveness in retrieving the hidden ground truth w.r.t. to more classical approaches as D-GT or
the static ones.

5.2 RDYN: network and community characterization

In Section 3, we described the rationale that regulates network and communities evolution in RDYN.
Since the aim of RDYN is to provide support for dynamic community analysis in this section we highlight
the most relevant properties of the partitions as well as of the dynamic networks it produces. To do

GRAPH BENCHMARK HANDLING COMMUNITY DYNAMICS 15

(@) (b) (c)
0.0062 032 7
i 031 .
= £ 030 £
0.0058 |
B O 029 £s
o e
& 0.0056| o028 2
i £ o027 g*
¥
.0054 .
g o G oz6 & 3
2 0.0052 & g
Z0%5 <)
29039 0.24
o o 02 i L L 1 _ _ L
20 w60 80 00 20 40 60 80 100 20 40 60 80 100
Iteration Iteration Iteration
Network Density trend Global Clustering Coefficient Average Shortest Path

FIG. 3. Evolution of RDYN synthetic networks characteristics. The trend lines capture the values, averaged across all RDYN instan-
tiations, of network density, average clustering coefficient and path length along with their interquartile ranges. Only the first 100
iterations are reported since after that the trends reach, and constantly maintain, a stable state.

so we exploit the synthetic dynamic networks generated using conductance as quality function (RDYN
parameters in Table 2).

Figure 3 shows the average trend of networks density, shortest path length and global clustering
coefficient for all RDYN executions (along with the interquartile range). We can observe that all the
trends appear to slowly reach an asymptotic value after a first growing phase: in the plots, we report only
the first 100 iterations since after that all the trend lines stabilizes. Indeed, network density can reach
at most W: since we implicitly fix the maximum number of edges per node adopting a planted
degree distribution, once network density come close to such upper bound it can only experience to
small fluctuations. Moreover, the policy used to preferentially rewire edges within/across communities—
regulated by p;,—as well as the enforcing of triadic closures make the trends of clustering coefficient and
average shortest path behave alike.

Moving to the analysis of the generated communities, we firstly focus on the impact of «, the quality
threshold, on the obtained partitions. Figure 4(a) highlights that a raise in « value causes an increase in
the average number of generated community actions during the 1000 iterations analyzed. Indeed, this
phenomenon is easily explainable: increasing the conductance threshold lowers the minimum partition
quality requested in order to identify a stable state and thus plan future community actions. A related pat-
tern emerges while comparing how the average partition modularity relates to the conductance threshold,
Fig. 4(b). Even in this case, we observe a reasonable effect: lowering the required partition quality lowers
the average modularity score. Conversely, in Fig. 4(c) we can observe how « does not particularly affect
the average density of the identified communities.

In order to better understand how the graph evolution changes when RDYN is configured with different
parameters values in Fig. 4(d and e) we extrapolated the trend of, respectively, average number of stable
iterations and average modularity while varying both « and p;,. We observe that the number of stable
iterations is tied not only to the imposed quality threshold but also to the p;, value: the higher the ratio
among intra/inter edges required for each node the better separated and well defined the communities
generated. This correlation implies a higher chance for unstable iteration to rapidly converge to stable
states after merge/split actions. Moreover, p;, affect the speed in modularity drop for increasing value of
k: increasing the intra-community edge probability we get a more pronounced the modularity drop.

Figure 4(f) shows the execution time of RDYN while varying the number of nodes within the graph
(the number of iterations is always kept equals to the number of nodes). It is straightforward to notice

16 G. ROSSETTI

(a) (b) (c)
Lo 0.7— —
0 T T T T T T T T T T I
' ‘ ' 1 ' ! '
” - 0.95 ; i : : oo : ' : : :
€ 400 _] i ! ' ; : !
o B ! 0.51 i i
] | : 2 | | T -
& 300 = Pl ET : : i g
= —] ' ' = — ' } ' H 0.4
o I : | Boss - : ' - ' ,
- H : i I = ! :]
200 : ; : ‘ b - : ' 03f ! : : ‘ : :
0 H H ' ' 1 ! ' ! ' i ! '
2 i : ; ' : : : : ! : ;
toor i 080 R 02t L 1 : ; i
L - 4 1 N
o —— L S 0.75 o . | 0.1 ._ = —
3 35 4 45 5 55 3 35 A 45 5 55 3 35 4 45 5 55
Max Conductance Max Conductance Max Conductance
Stable Iterations Vs. Conductance Modularity Vs. Conductance Community Density Vs. Conductance
(e)
100 1.00 50k
— Pin=0.6 Pin=0.8 % § 3 — pin=0.6 —
" Pin=0.7 o = == Pin=0.7
5 80 = " i 0.95/ ¢ Pin=0.8 a0k
g 3 - G P =0.9
2 e e S o.90f ° @ 304
= ¥ Jomnmns] Elga °
L} b4 i H
Iy g 2 8
g 40 5085 . 3 3] & 20k
g z
< 2 . 10k|
=l 0.80 .
0 0.75 —— 5 . |
030 035 040 045 050 055 030 035 040 045 050 055 Tk S5k 10k 15k 20k 25k 30k 35k
Conductance Conductance #Nodes (and Iterations per node)
Avg. Stable Iterations Vs. p;, Avg. Modularity Vs. p;, Scalability

FIG. 4. RDYN ground truth planted community quality and execution time. In the first row is shown how, varying the quality threshold
(conductance) the distribution of the number of stable iteration (a), modularity (b) community density and (c) change. In the second
row are reported the trend for the number of average stable iteration (d) and modularity (e) while varying the quality threshold
(conductance) and the intra-community edge probability. Finally, in (f) it is shown the relations between the RDYN execution time
and size of the simulation (i.e. graph size and iterations number). In (d—f), error bars identify interquartile ranges.

that the size of the network (and, consequently the number of performed iterations) deeply affect the
generation time: however, it should be noted that the actual result of a single RDYN instantiation is
composed by: (i) an ordered sequence of edge insertion/removal, (ii) a set of stable network snapshots
and (iii) a set of stable community ground truths. Indeed, this detailed output affects the execution time
but enables the adoption of RDYN to test both static CD (as well as snapshot based DCD) algorithms and
DCD approaches using ordered interaction graph representation. Since the outputs provided by LFR and
RDYN are not the same (the former does not handle network dynamics and generates a single snapshot
graph with its ground truth partition) we omit a scalability comparison.

From our experiments emerges that RDYN parameters succeeded in modelling three different aspects
of dynamic networks and communities:

¢ Community density and separation: increasing the p;, value the generated mesoscale structures tend
to be connected by fewer bridges as well as to increase the number of edges within them;

* Interaction/communities stability: high v values give rise to interactions that are more likely to be
renewed, thus describing more stable topologies;

e Community quality and the number of stable iterations: tuning the x threshold RDYN defines the
overall quality of the communities generated during stable iterations. Moreover, the higher the quality
required the lower the number of stable iterations.

GRAPH BENCHMARK HANDLING COMMUNITY DYNAMICS 17

Indeed, by tuning such parameters it is possible to describe benchmarks having different characteristics
and complexity.

6. Discussion and conclusion

In this work, we proposed RDYN a dynamic network generator able to handle community dynamics.
RDyN is designed to guarantee power law degree distributions of both node degree and community sizes
and can be instantiated so to obtain planted communities that optimize different quality measures.

The proposed method firstly generates both the community size and degree distribution and use them to
associate each node to a partition, then it introduces network dynamics by iteratively adding and removing
edges. Once RDYN identifies a stable state, that is a state in which the quality of the planted partition is
sufficiently high (w.r.t. a user-defined threshold) it outputs it as ground truth and generates community
perturbations (split/merge events) by changing node-community associations of selected communities.
Changing node-community associations has the effect of update the pre-existing planted partition thus
describing a novel status toward which the network will converge due to the policies used to add/remove
edges.

RDyYN exposes four parameters (i.e. desired number of nodes, minimum partition quality, inter-intra
community edge ratio, probability of interaction renewal) in order to allow the final user for a fine-grained
definition of the desired network topology and dynamics. Indeed, the distributions used to model network
topology can be assigned using results coming from previous researchers on real network topological
characteristics (i.e. the power law degree exponents of both degree and community sizes as well as the
interaction decay one): however, we design our model to be as general as possible leaving to the analyst
the possibility to specify distribution that diverges from the ones implemented as default.The proposed
model not only makes assumptions on the properties of the generated graph but also on its dynamics:
this second dimension — which indeed increases RDYN complexity—makes our approach different from
previous ones and explicitly tailored to benchmark a specific class of CD algorithms.

As we have discussed, dynamic CD, that is the task of identifying community evolutive patterns in
dynamic networks, is a rising theme in complex network analysis. RDYN offers evolving and tunable-
quality planted partitions that can be fruitfully used to benchmark approaches that search for communities
in a dynamic network scenario. We analyzed the networks and communities generated by the RDYN vary-
ing its parameters, moreover we proposed a community matching quality score, namely NF1 (extended
from [37]) thus describing a complete testing environment able to assess the effectiveness of dynamic CD
algorithms w.r.t. synthetic evolving networks. Our experiments show that RDYN represents a more com-
plex benchmark than LFR for both static and dynamic community detection algorithms. Moreover, we
observed that p;, (the intra-community edge probability) plays a crucial role in defining both the number
of stable states and modularity scores for the communities generated by RDyN (while maintaining fixed
the number of total iterations and quality threshold): the higher the intra-community edge probability the
higher the number of stable states, the lower the average modularity of the identified communities.

Aninteresting line of research that we propose to carry on involves the comparison of RDYN’s synthetic
graphs with real-world dynamic network datasets (as the ones available on the SocioPatterns platform®).
This analysis will allow us to identify reliable parameter configurations so to better approximate the
dynamics of specific categories of real world phenomena. Indeed, RDYN can be easily extended to
simulate more fine-grained network dynamics (e.g. node appearance and vanishing) as well as to model

5 http://sociopatterns.org/datasets/

http://sociopatterns.org/datasets/

18 G. ROSSETTI

more general scenarios (e.g. dynamic systems in which not all the nodes are involved in interactions during
each iteration). Such extensions are not discussed in this work but represent a line of research we are
currently developing with the aim of building a completely general purpose dynamic network benchmark.
Moreover, we propose to extend RDYN in order to handle overlapping and hierarchical communities.

Funding

This work is funded by the European Community’s H2020 Program under the funding scheme
‘FETPROACT-1-2014: Global Systems Science (GSS)’, grant agreement (# 641191) CIMPLEX
‘Bringing Cltizens, Models and Data together in Participatory, Interactive Social. EXploratories’
(https://www.cimplex-project.eu). This work is supported by the European Community’s H2020 Pro-
gram under the scheme ‘INFRAIA-1-2014-2015: Research Infrastructures’, grant agreement (#654024)
SoBigData: Social Mining & Big Data Ecosystem (http://www.sobigdata.eu).

REFERENCES

1. Apamic, L. A., LUKOSE, R. M., Puniyany, A. R. & HUBERMAN, B. A. (2001) Search in power-law networks.
Phys. Rev. E., 64, 046135.

2. AIELLO, W., CHUNG, F. & Lu, L. (2000) A random graph model for massive graphs. Proceedings of the thirty-
second annual ACM symposium on Theory of computing. New York, NY, USA: ACM, pp. 171-180.

3. AyNAUD, T., FLEURY, E., GUILLAUME, J-L. & WANG, Q. (2013) Communities in evolving networks: definitions,
detection, and analysis techniques. Dynamics on and of Complex Networks, vol 2. doi:10.1007/978-1-4614-
6729-8.

4. BARABASI A. L. & ALBERT, R. (1999) Emergence of scaling in random networks. Science., 286.5439, 509-512.

5. BERLINGERIO, M., Coscia, M. & GIANNOTTI, F. (2009) Mining the temporal dimension of the information
propagation. International Symposium on Intelligent Data Analysis. Heidelberg, Berlin: Springer, pp. 237-248.

6. BLONDEL, V. D., GUILLAUME, J-L., LAMBIOTTE, R. & LEFEBVRE, E. (2008) Fast unfolding of communities in
large networks. J. Stat. Mech. Theory E., 2008.10, P10008.

7. BoLLOBAS, B. (2013) Modern Graph Theory, vol. 184. New York: Springer Science & Business Media.

8. BRANDES, U., GAERTLER, M. & WAGNER, D. (2003) Experiments on Graph Clustering Algorithms. Heidelberg,
Berlin: Springer.

9. CAZABET, R. & AMBLARD, F. (2014) Dynamic community detection. Encyclopedia of Social Network Analysis
and Mining. New York: Springer, pp. 404—414.

10. CazABET, R., AMBLARD, F. & HaNAcHI, C. (2010) Detection of overlapping communities in dynamical social
networks. Second International Conference on Social Computing (SocialCom). IEEE, pp. 309-314.

11. ConNDON, A. & KARP, R. M. (2001) Algorithms for graph partitioning on the planted partition model. Random
Structures and Algorithms., 18.2, 116-140.

12. Coscia, M., RosserTl, G., GIANNOTTI, F. & PEDRESCHI, D. (2014) Uncovering hierarchical and overlapping
communities with a local-first approach. ACM Transactions on Knowledge Discovery from Data (TKDD)., 9,
6.

13. DANON, L., Diaz-GUILERA, A. & ARENAS, ALEX, A. (2006) The effect of size heterogeneity on community
identification in complex networks. J. Stat. Mech. Theory E., 2006.11, P11010.

14. ErDOS, P. & RENYIL, A. (1959) On random graphs. Publ. Math. Debrecen., 6, 290-297.

15. FORTUNATO, S. (2010) Community detection in graphs. Phys. Rep., 486, 75-174.

16. FaN,Y., L1, M., ZHANG, P.,, Wu, J. & D1, Z. (2007) Accuracy and precision of methods for community identification
in weighted networks. Physica A., 377.1, 363-372.

17. GAERTLER, M., GORKE, R. & WAGNER, D. (2007) Significance-driven graph clustering. Algorithmic Aspects in
Information and Management. Heidelberg, Berlin: Springer-Verlag, pp. 11-26.

https://www.cimplex-project.eu
http://www.sobigdata.eu

18.

19.

20.

21.

22,

23.
24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

GRAPH BENCHMARK HANDLING COMMUNITY DYNAMICS 19

GIRVAN, M. & NEwMAN, M. E. J. (2002) Community structure in social and biological networks. Proceedings
of the national academy of sciences., 99.12, 7821-7826.

GREENE, D., DOYLE, D. & CUNNINGHAM, P. (2010) Tracking the evolution of communities in dynamic social
networks. International Conference on Advances in Social Networks Analysis and Mining (ASONAM). 1EEE,
pp. 176-183.

GUIMERA, R., SALES-PARDO, M. & AMARAL, L. A. N. (2007) Module identification in bipartite and directed
networks. Phys. Rev. E., 3., 036102

ALVARI, H., HANBAGHERI, A. & SUKTHANKAR, G. (2014) Community detection in dynamic social networks:
A game-theoretic approach. International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), IEEE/ACM, pp. 101-107.

HARTMANN, T., KAPPES, A. & WAGNER, D. (2016) Clustering evolving networks. Algorithm Engineering. Springer
International Publishing. pp. 280-329.

HoLME, P. & Kim, B. J. (2002) Growing scale-free networks with tunable clustering. Phys. Rev. E., 65.2,026107.
JEONG, H., MASON, S. P, BARABASL A. L. & OLTvAL Z. N. (2001) Lethality and centrality in protein networks.
Nature, 411, 41-42.

KumpuLA, J. M., ONNELA, J. P., SARAMAKI, J., Kaskl, K. & KERTESZ, J. (2007) Emergence of communities in
weighted networks. Phys. Rev. Lett., 99.22, 228701.

LANCICHINETTL A. & FORTUNATO, S. (2009) Benchmarks for testing community detection algorithms on directed
and weighted graphs with overlapping communities. Phys. Rev. E., 1, 016118.

LANCICHINETTI, A., FORTUNATO, S. & RapIccHI, F. (2008) Benchmark graphs for testing community detection
algorithms. Phys. Rev. E., 046110.

LANCICHINETTI, A., FORTUNATO, S. & KERTESZ, J. (2009) Detecting the overlapping and hierarchical community
structure in complex networks. New J. Phys., 11.3, 033015.

LESKOVEC, J., KLEINBERG, J. M. & FaLoutsos, C. (2005) Graphs over time: densification laws, shrinking
diameters and possible explanations. Proceedings of the 11th ACM SIGKDD International Conference on
Knowledge Discovery and Data mining. New York, NY, USA: ACM, pp. 177-187.

LN, Y. R., CHL, Y., ZHU, S., SUNDARAM, H., & TSENG, B. L. (2008) Facetnet: a framework for analyzing
communities and their evolutions in dynamic networks. Proceedings of the 17th international conference on
World Wide Web. ACM, pp. 685-694.

McDAID, A. F., GREENE, D. & HURLEY, N. J. (2011) Normalized mutual information to evaluate overlapping
community finding algorithms. arXiv preprint arXiv:1110.2515

Pasta, M. Q. & FArRAz, Z. (2016) Network generation model based on evolution dynamics to generate benchmark
graphs. arXiv https://arxiv.org/abs/1606.01169.

MusiAL, K. & Kazienko, P. (2012) Social networks on the internet. World Wide Web J., doi:10.1007/s11280-
011-0155-z

PaLLa, G., BAraBAsL, A-L. & Vicsek, T. (2007) Quantifying social group evolution. Nature.
doi:/10.1038/nature05670.

Pasta, M. Q., JAN, Z., SALLABERRY, A. & ZAIDI, F. (2013) Tunable and growing network generation model
with community structures. Third International Conference on Cloud and Green Computing (CGC). IEEE, pp.
233-240.

ROSSETTI, G., PAPPALARDO, L., PEDRESCHI, D. & GIANNOTTI, F. (2016) Tiles: an online algorithm for community
discovery in dynamic social networks. Mach. Learn., 1-29. doi:10.1007/s10994-016-5582-8.

ROSSETTI, G., PAPPALARDO, L. & RiNzIVILLO, S. (2016) A novel approach to evaluate community detection
algorithms on ground truth. Complex Networks VII. Switzerland: Springer International Publishing, pp. 133-144.
RosvaLL, M. & BErRGSTROM, C. T. (2011) Multilevel compression of random walks on networks reveals
hierarchical organization in large integrated systems. PloS one., 6.4, ¢18209.

SAWARDECKER, E. N., SALES-PARDO, M. & AMARAL, L. A. N. (2009) Detection of node group membership in
networks with group overlap. Eur. Phys. J. B., 67.3, 277-284.

STEHLE, J., BARRAT, A. & BIANCONI, G. (2010) Dynamical and bursty interactions in social networks. Phys. Rev.
E., 81,035101.

20

41.

42,

43.

4.

45.

46.

47.

48.

49.

G. ROSSETTI

Wwartts, D. J. & STrROGATZ, S. H. (1998) Collective dynamics of small-world networks. Nature, 393,
440-442.

XIE, W., TIAN, Y., SISMANIS, Y., BALMIN, A. & HaAs, P. J. (2015) Dynamic interaction graphs with probabilistic
edge decay. 31st International Conference on Data Engineering (ICDE), IEEE, pp. 1143-1154.

XIE, Z., L1, X. & WaNG, X. (2007) A new community-based evolving network model. Physica A., 384.2,
725-732.

Xu, X-J., ZHANG, X. & MENDES, J. F. F. (2009) Growing community networks with local events. Physica A.,
388.7, 1273-1278.

YANG, J. & LESKOVEC, J. (2015) Defining and evaluating network communities based on ground-truth. Knowl.
Inform. Syst., 42, 181-213.

Zal, F. (2013) Small world networks and clustered small world networks with random connectivity. Soc.
Network Anal. Min., 3.1, 51-63.

ZADL, F., PASTA, M. Q., SALLABERRY, A. & MELANCON, G. (2015) Social ties, homophily and extraversion—
introversion to generate complex networks. Soc. Network Anal. Min., 5.1, 1-12.

ZHAO, K., STEHL, J., BIANCONI, G. & BARRAT, A. (2011) Social network dynamics of face-to-face interactions.
Phys. Rev. E., 83, 056109.

ZHou, X., XIANG, L. & WaNG, X. (2008) Weighted evolving networks with self-organized communities.
Commun. Theor. Phys., 50.1, 261.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [535.500 697.000]
>> setpagedevice

