Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties.

Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications / Stassi, Stefano; Fantino, Erika; Calmo, Roberta; Chiappone, Annalisa; Gillono, Matteo; Scaiola, Davide; Pirri, Candido; Ricciardi, Carlo; Chiado', Alessandro; Roppolo, Ignazio. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8244. - 9:22(2017), pp. 19193-19201. [10.1021/acsami.7b04030]

Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications

STASSI, STEFANO;FANTINO, ERIKA;CALMO, ROBERTA;CHIAPPONE, ANNALISA;GILLONO, MATTEO;SCAIOLA, DAVIDE;PIRRI, Candido;RICCIARDI, Carlo;CHIADO', ALESSANDRO;ROPPOLO, IGNAZIO
2017

Abstract

In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2675136
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo