Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

This work investigates the optimization of carbon-based electrodes employed in bio-electrochemical systems (BES) through the deposition of nanostructured layers of poly(3,4-ethylene-dioxy-thiophene) poly(styrene-sulfonate) (PEDOT:PSS) on commercial carbon paper electrodes via ultrasonic spray coating (USC). This innovative application of USC demonstrated that uniform and controlled depositions of PEDOT:PSS can be successfully performed on carbon-based electrodes. To this end, the morphology and spatial uniformity of depositions were verified via scanning electron microscopy and Raman spectroscopy. Electrochemical characterizations of fabricated electrodes demonstrated a more than two-fold increase in the electrochemical active surface area with respect to bare carbon paper. A lab-scale experiment on BES was performed, selecting microbial fuel cells (MFCs) as the reference devices. Devices featuring USC-deposited PEDOT:PSS electrodes showed a three-fold-higher energy recovery with respect to control cells, reaching a maximum value of (13 ± 2) J·m−3. Furthermore, the amount of PEDOT:PSS required to optimize MFCs’ performance is in line with values reported in the literature for other deposition methods. In conclusion, this work demonstrates that USC is a promising technique for application in BES.

Ultrasonic Spray Coating to Optimize Performance of Bio-Electrochemical Systems / Spisni, Giacomo; Massaglia, Giulia; Pirri, Fabrizio C.; Bianco, Stefano; Quaglio, Marzia. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 13:22(2023), pp. 1-16. [10.3390/nano13222926]

Ultrasonic Spray Coating to Optimize Performance of Bio-Electrochemical Systems

Giacomo Spisni;GIULIA MASSAGLIA;Fabrizio C. Pirri;Stefano Bianco;Marzia Quaglio
2023

Abstract

This work investigates the optimization of carbon-based electrodes employed in bio-electrochemical systems (BES) through the deposition of nanostructured layers of poly(3,4-ethylene-dioxy-thiophene) poly(styrene-sulfonate) (PEDOT:PSS) on commercial carbon paper electrodes via ultrasonic spray coating (USC). This innovative application of USC demonstrated that uniform and controlled depositions of PEDOT:PSS can be successfully performed on carbon-based electrodes. To this end, the morphology and spatial uniformity of depositions were verified via scanning electron microscopy and Raman spectroscopy. Electrochemical characterizations of fabricated electrodes demonstrated a more than two-fold increase in the electrochemical active surface area with respect to bare carbon paper. A lab-scale experiment on BES was performed, selecting microbial fuel cells (MFCs) as the reference devices. Devices featuring USC-deposited PEDOT:PSS electrodes showed a three-fold-higher energy recovery with respect to control cells, reaching a maximum value of (13 ± 2) J·m−3. Furthermore, the amount of PEDOT:PSS required to optimize MFCs’ performance is in line with values reported in the literature for other deposition methods. In conclusion, this work demonstrates that USC is a promising technique for application in BES.
2023
File in questo prodotto:
File Dimensione Formato  
nanomaterials-13-02926.pdf

accesso aperto

Descrizione: Versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 6.89 MB
Formato Adobe PDF
6.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2983745