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Abstract. We give a geometric description of singular pencils of
quadrics of constant rank, relating them to the splitting type of some
naturally associated vector bundles on P1. Then we study their orbits
in the Grassmannian of lines, under the natural action of the general
linear group.
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1. Introduction

A pencil of quadrics in the projective space of dimension N is a two-dimensional
linear subspace L in the space of symmetric matrices of order N + 1, and it is
a widely studied object in algebraic geometry.

A complete classification of pencils of quadrics, based on algebraic consid-
erations, Segre symbols and minimal indices, has been known for a long time:
we refer to the classical book by Gantmacher [9] and the expository article by
Thompson [14].

There is also an extensive literature on geometric descriptions and interpre-
tations of pencils of quadrics; among the many contributions, let us cite some
older works, from [13] to [3], as well as more recent ones, such as [8].

Often, when studying pencils of quadrics in PN , one assumes that they are
regular, that is, that they contain quadrics of maximal rank N+1. As observed
in [8], these pencils form an open subset in the appropriate Grassmannian, that
admits a natural stratification by Segre symbols. The pencils in the comple-
mentary closed subset, called singular pencils, are less studied, even if in [9]
it is shown that their analysis can be traced back to that of regular pencils
and of singular pencils of constant rank. The purpose of this article is to give
a description of the geometry of such pencils of constant rank, to relate it to
the splitting of certain bundles on P1 naturally associated with them, and to
give a description of their orbits under the natural action of the general linear
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group GL(N + 1).
To be more precise, we set up our notations: we work over an algebraically

closed field of characteristic 0, for simplicity over the complex field C. Let V be
a vector space of dimension N + 1 over C. Denote by X the Veronese variety,
that is, the image of the Veronese map P(V ) → P(S2V ). The natural action
of the group GL(N +1) on P(V ) extends to P(S2V ), and the orbits under this
latter action are X and its secant varieties.

Fixing a basis for V , the elements of the vector space S2V can be seen as
symmetric (N + 1) × (N + 1) matrices: then the action of GL(N + 1) is the
congruence, X corresponds to symmetric matrices of rank 1, and its k-secant
variety σk(X) to symmetric matrices of rank at most k.

Working in this projective setting, we interpret a pencil of quadrics as a line
P(L) ⊆ P(S2V ): it is singular when it is entirely contained in the determinantal
hypersurface σN (X). If a singular pencil is entirely contained in a stratum
σk(X) \ σk−1(X), we say that the pencil has constant rank k. All the quadrics
in such a pencil are cones having as vertex a linear space of dimension N − k.

In Section 2 we show that a pencil of constant rank k corresponds to a
matrix of linear forms in two variables, that naturally defines a map of vector
bundles of rank N + 1 over P1; since the rank is constant, the cokernel E
of this map is also a vector bundle over P1, of rank N + 1 − k, and its first
Chern class is k

2 ; in particular the constant rank k is an even number that
we denote by 2r. We prove that the splitting type of E characterizes the
orbits, and for each orbit we give two explicit constructions for the canonical
form of the representative: one is the expression described in [9], the other
one is analogous to the representative given in [7], adapted from the skew-
symmetric case. Indeed, several techniques used in articles on spaces of skew-
symmetric matrices of constant rank, such as [12, 2, 1], can be applied to pencils
of quadrics.

Analyzing these canonical forms, in Section 3 we describe the geometry of
the pencils in the various orbits. If we make the assumption that the bundle E
has no trivial direct summand, which is equivalent to the condition that the
quadrics in the pencil L have no common point in their vertices, the pencil is
called non-degenerate. In this case, if the splitting type of E is r1, . . . , rh, any
two quadrics of L have a generating space S of (maximal) dimension N − r
in common, and are tangent along a rational normal scroll of dimension r and
type r1, . . . , rh contained in S.

In Section 4, we prove our main result Theorem 4.1: we find an explicit
expression for the dimension of every GL(N + 1)-orbit of pencils of constant
rank. We recall that these pencils are all unstable, nevertheless we are able to
find an explicit expression for the matrices in the Lie algebra of the stabilizer
of any pencil L. In particular these Lie algebras all have dimension 5 when the
corank of the pencil is 1, i.e. E is a line bundle with c1 = r. In Proposition 4.6
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we prove that they are of the form sl2⋉C2. We conclude with a table collecting
the results for r ⩽ 6.

2. Classification’s details and first results

Recall from the Introduction that, given an (N+1)-dimensional vector space V ,
one has the natural Veronese map P(V ) → P(S2V ) sending [v] 7→ [v2], whose
image is the Veronese variety X. Once we fix a basis of V , the elements of
S2V are identified with symmetric (N +1)× (N +1) matrices, X corresponds
to symmetric matrices of rank 1, and its k-secant variety σk(X) to symmetric
matrices of rank at most k. The group GL(N + 1) acts by congruence on
P(S2V ), and the orbits are exactly X and its secant varieties.

Now let P(L) ⊆ σk(X)\σk−1(X) be a singular pencil of quadrics of constant
rank k. Notice that P(L) can be seen as a symmetric matrix whose entries are
linear forms in two variables, that is, a vector bundle map on P1 = P(L) of the
form V ∗ ⊗OP1(−1) → V ⊗OP1 , inducing a long exact sequence:

0 → E∗(−1) → V ∗ ⊗OP1(−1) → V ⊗OP1 → E → 0. (1)

The cokernel is a vector bundle of rank N +1−k on P1, hence it splits as a
direct sum of line bundles; we denote it by E. The symmetry implies that the
kernel is E∗(−1).

From a direct computation of invariants (see [10] for details), one finds that
the rank k = 2r is even, the bundle E is generated by its global sections, and
moreover its first Chern class is c1(E) = r.

We start our description of L generalizing to the symmetric case some results
from [7] that refer to the skew-symmetric case. We are of course interested
in non-trivial cases: for this, recall that a space of matrices is called non-
degenerate if the kernels of its elements intersect in the zero subspace and the
images of its elements generate the entire vector space V . This is equivalent to
saying that the space is not GL(N + 1)-equivalent to a space of matrices with
a row or a column of zeroes. Therefore the classification of degenerate spaces
of matrices can be traced back to that of non-degenerate spaces of matrices
of smaller size. From now on, we will only consider non-degenerate spaces of
constant rank 2r.

Non-degeneracy also implies that as the quadrics vary in the pencil L, their
vertices are pairwise disjoint.

An immediate remark is that not all values of N allow a non-degenerate
pencil of symmetric matrices of size N + 1 and fixed constant rank 2r.

Proposition 2.1. Let L ⊂ P(S2V ) be a non-degenerate pencil of singular
quadrics of constant rank 2r. Then 2r ⩽ N ⩽ 3r − 1.
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Proof. The proof of [7, Proposition 3.6] goes through step by step. Since the
cokernel bundle E from (1) is a vector bundle on P1, it is of the form

E = Om0

P1 ⊕OP1(1)m1 ⊕ · · · ⊕ OP1(k)mk ,

where m0, . . . ,mk are non-negative integers such that m1+2m2+ . . .+kmk =
c1(E) = r, and m0 +m1 + . . .+mk = rk(E) = N + 1− 2r.

The assumption that L is non-degenerate implies m0 = 0.
Obviously 2r ⩽ N . For the other inequality, notice that

r = m1+2m2+. . .+kmk = (m1+m2+. . .+mk)+(m2+2m3+. . .+(k−1)mk);

since m0 = 0, m1+m2+ . . .+mk = N +1−2r, while since k ⩾ 1, m2+2m3+
. . .+(k−1)mk) ⩾ 0. This means that r ⩾ N+1−2r, and thus 3r−1 ⩾ N .

The group GL(N +1) acts by congruence on P(S2V ), the space of quadrics
in P(V ), and thus it acts on pencils of quadrics, that correspond to lines in
P(S2V ): this induces an action on the Grassmannian G(1,P(S2V )). Given
a non-degenerate pencil of quadrics in P(V ), the splitting type of the vector
bundle E determines a partition of the integer r in h parts, where the number
of parts h = N + 1− 2r is exactly the rank of the bundle E. For every choice
of constant rank 2r there are exactly r possible sizes N + 1 for these pencils,
namely N can vary from 2r to 3r − 1. On the other hand, if the rank and the
order of the matrix are fixed, the number of parts h of the partition of r is
determined.

Our main result in this Section states that, for a fixed r, all possible values
of N are attained, and that the partitions of r consisting of h = N + 1 − 2r
parts completely characterize the orbits of pencils of quadrics of constant rank.

In our proof we will use the classification of the GL(N + 1)-orbits given in
terms of minimal indices, see [9, Chapter XII, §6].

In fact, even if GL(N + 1) acts on a pencil L ⊂ P(S2V ) by congruence,
one can also consider a different natural action of the general linear group
on L, namely two pencils of matrices aA+ bB and λL+ µM are called strictly
equivalent if there exist two non-singular matrices P ′ and P ′′ with the property
that P ′(aA + bB)P ′′ = λL + µM . The latter action implies the former if the
matrices are symmetric or skew-symmetric [9, Theorem 6, Chapter XII]: in
particular, two pencils of quadrics are strictly equivalent if and only if they are
congruent.

Following the same notations as [9] (so slightly different than [7]), our con-
struction is based on the following “building blocks”.

Definition 2.2. Let r ⩾ 1 be an integer, and (r1, . . . , rh) a partition of r,
with r1 ⩽ . . . ⩽ rh. Set N = 2r + h − 1. Denote by L(r1,...,rh) the pencil
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of (N + 1) × (N + 1) symmetric matrices of constant rank 2r constructed as
follows.

First, define the ri × (ri + 1) matrix

Mri :=


a b 0 0 · · · 0
0 a b 0 · · · 0
...

. . .
. . .

...
0 · · · 0 a b

 , (2)

and the (2ri + 1)× (2ri + 1) symmetric block matrix

Lri :=

(
0ri,ri Mri

tMri 0ri+1,ri+1

)
. (3)

The pencil of quadrics L(r1,...,rh) is the direct sum of the blocks Lri , so

L(r1,...,rh) :=


Lr1

Lr2

. . .

Lrh

 , (4)

where all off-diagonal blank spaces are blocks of zeros.

By combining the construction of the pencils L(r1,...,rh) and the classification
contained in Theorem 7 and the subsequent remarks in [9, Chapter XII, §6],
we obtain the following Theorem, that achieves a complete description of the
GL(N +1)-orbits of singular pencils of quadrics L ⊂ P(S2V ) of constant rank.

Theorem 2.3. Let V be a complex vector space of dimension N + 1, and let
L ⊆ P(S2V ) be a singular pencil of quadrics of constant rank 2r. If L is non-
degenerate, it is GL(N + 1)-equivalent by congruence and strict equivalence to
a pencil of type L(r1,...,rh) defined in (4) for some partition (r1, . . . , rh) of r,
with r1 ⩽ . . . ⩽ rh, h = N + 1− 2r, and whose associated vector bundle E has
splitting type precisely (r1, . . . , rh).

Viceversa, for every integer r ⩾ 1 and every partition (r1, . . . , rh) of r,
with r1 ⩽ . . . ⩽ rh, there exists a non-degenerate singular pencil of quadrics of
constant rank 2r and size N + 1, for all 2r ⩽ N ⩽ 3r − 1.

Remark 2.4. An alternative proof of Theorem 2.3 could be obtained by adapt-
ing to the symmetric case the proof of [7, Theorem 3.12], which is based on
compression spaces and 1-generic matrices.
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Remark 2.5. If one wanted to take into consideration degenerate pencils, it
would be enough to consider partitions of r that admit 0 as a summand, with
multiplicity corresponding to the number of copies of OP1 appearing in the
splitting of the vector bundle E in (1).

To conclude this Section, we underline the fact that the content of Theo-
rem 2.3 was already known, even though the relation between the classification
of the orbits of singular pencils of quadrics of constant rank and the splitting
type of the vector bundle has never been explicitly written down. In [3] the
Author provides a geometric classification of the orbits, but the relation with
the vector bundles is not clarified; on the other hand, in the recent work [6]
there is an explicit description of the splitting type of the bundles, but the
Authors are interested in different properties than the orbits of pencils in the
Grassmannian.

3. Geometry of pencils of quadrics and their orbits

We now want to study more in detail the geometry of pencils of quadrics of
constant rank and their orbits. To this end, in this Section we use a different
canonical form from the one given in Definition 2.2 for the pencils with h ⩾ 2. It
is analogous to the canonical form described in [7] in the skew-symmetric case,
and is more convenient to understand the geometry of our pencils because it
highlights that they are compression spaces. Recall that a subspace L contained
in V ⊗V is called a compression space if there exists a subspace U ⊆ V that is
“compressed” by the elements of L, that is, dim(L(U)) < dim(U) for all L ∈ L.
Such a space is GL(N +1)-equivalent to a space of matrices having a common
block of zeros.

We start by describing some examples, namely the first cases where r = 1, 2
and 3.

Example 3.1. The first (and easiest) example is r = 1: then the only possible
value for N is 2, and the only partition of r is (1), so there is a unique orbit,
whose representative is the compression space

L(1) =

 0 a b

a
b

02,2

 . (5)

The cokernel bundle from the exact sequence (1) is E = OP1(1). This is a
pencil of conics in P2, generated by A = {x0x1 = 0} and B = {x0x2 = 0}, that
split into a common line S = {x0 = 0} and a second line that goes through the
point P = [1 : 0 : 0]. The base locus of the pencil is exactly the union of the
line S, and the isolated point P . Notice that S is swept by the singular points
of the conics of the pencil.
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The pencils belonging to the orbit of L(1) in the Grassmannian G(1,P5) are

determined by their base locus, that varies in the open subset of P2 × P2∗ of
disjoint pairs point-line. Therefore the orbit in G(1,P5) has dimension 4.

Example 3.2. When r = 2, the possible values of N are 4 and 5, corresponding
to the two partitions (2) and (1, 1).

The first case gives a 5× 5 symmetric matrix of constant rank 4:

L(2) =


02,2

a b 0
0 a b

a 0
b a
0 b

03,3

 ,

with associated line bundle OP1(2). The pencil is generated by the quadrics
A = {x0x2 + x1x3 = 0} and B = {x0x3 + x1x4 = 0}; its elements are cones
over quadrics in P3, having a single point as vertex. As the cones vary, their
vertices describe a conic Γ in the plane S = {x0 = x1 = 0}. The base locus
is the union of the plane S and the rational normal scroll of degree 3 in P4

defined by the 2× 2 minors of the matrix(
x0 x3 x4

−x1 x2 x3

)
.

The singular locus of the base locus is the conic Γ, which coincides with the
improper intersection of the 2 irreducible components.

A pencil in this orbit is completely determined by its base locus, that is the
union of a rational normal scroll and a plane generated by a unisecant conic.
From [5] we learn that the Hilbert scheme of these rational normal scrolls has
dimension 12; moreover the linear system of unisecant conics on such a surface
has dimension 2; it follows that the orbit has dimension 14.

The partition (1, 1) of r = 2 gives a 6 × 6 symmetric matrix of constant
rank 4, whose associated bundle is E = OP1(1)⊕OP1(1). As we mentioned at
the beginning of the Section, we consider the following canonical form (here
and in the next examples the blank spaces all represent zeros):

L̃(1,1) =


a b 0 0
0 0 a b

a 0
b 0
0 a
0 b

 .

Of course, L̃(1,1) is strictly equivalent to the block construction from Defini-
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tion 2.2, namely:

L(1,1) =

(
L1

L1

)
.

Since the co-rank is 2, the cones of this pencil have a line as vertex. The
generators are A = {x0x2 + x1x4 = 0} and B = {x0x3 + x1x5 = 0}, the
base locus is reducible, and its components are the 3-dimensional linear space
S = {x0 = x1 = 0} and a rational normal 3-fold scroll of degree 3 in P5, defined
by the 2× 2 minors of (

x0 x4 x5

−x1 x2 x3

)
.

The locus swept by vertices is a smooth quadric surface in S. By a count of
parameters similar to previous case, the dimension of the orbit is 26: indeed,
the dimension of the Hilbert scheme of rational normal cubic scrolls in P5 is 24
and the linear system of unisecant quadrics has dimension 2.

One of the advantages of using the form L̃(1,1) lies precisely in the fact that
the codimension 2 linear space S contained in the base locus is now apparent,
since we are dealing with a compression space. This phenomenon will generalize
in the next cases.

Example 3.3. As a last series of examples, aiming to illustrate the general
case, we now consider the possible partitions of r = 3. One has three possible
values 6 ⩽ N ⩽ 8, corresponding to the three partitions (3), (1, 2) and (1, 1, 1).
By now we know that the representatives of their orbits are, respectively,

L(3) =


03,3

a b 0 0
0 a b 0
0 0 a b

a 0 0
b a 0
0 b a
0 0 b

04,4


, L(1,2), and L(1,1,1).

The base locus of the pencil L(3) in P6 is an irreducible quartic, complete
intersection of the two quadrics A = {x0x3 + x1x4 + x2x5 = 0} and B =
{x0x4 + x1x5 + x2x6 = 0}; it is singular along a twisted cubic C swept by the
vertices and it contains the 3-dimensional linear space S = {x0 = x1 = x2 = 0}
spanned by C.

To analyze the other two cases, we will again look at representatives that
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are strictly equivalent to L(1,2) and L(1,1,1), namely:

L̃(1,2) =



a b 0 0 0
0 0 a b 0
0 0 0 a b

a 0 0
b 0 0
0 a 0
0 b a
0 0 b



and

L̃(1,1,1) =



a b 0 0 0 0
0 0 a b 0 0
0 0 0 0 a b

a 0 0
b 0 0
0 a 0
0 b 0
0 0 a
0 0 b


.

Considering the kernels of these matrices, we see that in both cases the Jacobian
locus of the pencil is contained in the linear space S = {x0 = x1 = x2 = 0}
of codimension 3 (so of dimension 4 and 5 respectively). The base locus is
irreducible in both cases and it is singular along the Jacobian locus, that is a
rational normal scroll in S, P(OP1(1)⊕OP1(2)) and P(OP1(1)⊕OP1(1)⊕OP1(1))
respectively.

We now describe the general case of a pencil L = L(r1,...,rh) of constant
rank 2r in PN , corresponding to the partition (r1, · · · , rh) of r, h = N +1−2r.
Recall that we can write our L as {aA + bB | [a : b] ∈ P1}. We denote by
B(L) = A ∩ B the base locus of L. It is a known fact that its singular locus
is contained in the Jacobian locus J(L) of L, the union of the vertices of the
quadrics in the pencil, and such vertices are linear spaces of dimension N − 2r.

As we did in the previous examples, we use a canonical form for the pencils
that is slightly different from (4), and instead agrees with the notations used
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in [7]: given the ri × (ri + 1) block Mri defined in (2), we set

L̃(r1,...,rh) :=



Mr1

Mr2

. . .

Mrh
tMr1

tMr2

. . .
tMrh


, (6)

where again the blank spaces have blocks of zeros.

From this canonical form, it is immediate to see that all these pencils cor-
respond to compression spaces, because the associated matrices have a block
of zeros of dimension N + 1 − r; a direct consequence is that the Jacobian
locus J(L) is contained in the linear space S of dimension N − r defined by the
equations x0 = x1 = · · · = xr−1 = 0.

Moreover, one easily computes that the Jacobian locus coincides with the
singular locus of B(L), which is irreducible, and it is exactly a rational normal
scroll P(OP1(r1) ⊕ . . . ⊕ OP1(rh)). Any element of the pencil is a cone over a
smooth quadric of dimension 2r − 2, so it admits two families of linear spaces
of dimension (r− 1) + (N − 2r) + 1 = N − r. Two quadrics of the pencil share
a maximal linear subspace S of dimension N − r belonging to one of the two
families, and are tangent along a rational normal scroll of type r1, . . . , rh in S.

As a last remark ending this Section, we quote the article [13], a continuation
and completion of the thesis of Corrado Segre, where he studied the geometry
of singular pencils of quadrics in PN of rank at most k, that he calls “coni
quadrici di specie N − k”, relating them to rational normal scrolls contained
in their Jacobian locus.

4. Orbits’ dimension

We recalled in Section 2 that the natural action of the group GL(N + 1) on
V = CN+1 extends to the congruence action on P(S2V ), and hence on the lines
contained in P(S2V ). Looking at pencils of quadrics as points in the Grass-
mannian G(1,P(S2V )), we get an action of GL(N + 1) on the Grassmannian.
We are interested in the orbits of singular pencils of quadrics L ⊆ P(S2V ) of
constant rank 2r under this latter action. As we saw in Theorem 2.3 non-
degenerate pencils of quadrics in PN of constant rank 2r exist if and only if
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2r ⩽ N ⩽ 3r − 1 and the orbits of these pencils correspond bijectively to the
partitions (r1, . . . , rh) of r, with 1 ⩽ r1 ⩽ r2 ⩽ . . . rh, where h = N + 1− 2r.

This last Section contains our main result Theorem 4.1, namely we compute
the dimension of all the orbits of pencils of singular quadrics of constant rank.
More precisely, for every partition (r1, . . . , rh) we describe explicitly the Lie
algebra of the stabilizer of the pencil L(r1,...,rh).

Theorem 4.1. Let r ⩾ 1 be an integer, and (r1, . . . , rh) a partition of r, with
r1 ⩽ . . . ⩽ rh. Set N = 2r + h − 1. Under the natural action of GL(N + 1),
the dimension of the stabilizer of the singular pencil L(r1,...,rh) of symmetric
matrices of size N + 1 and constant rank 2r is

δ(r1, . . . , rh) := h+ 4 +
∑
i<j

(2rj + 1) + #{(i, j) | ri = rj}. (7)

Corollary 4.2. The GL(N + 1)-orbits of singular pencils L(r1,...,rh) of sym-
metric matrices of size N + 1 and constant rank 2r have (affine) dimension
(N + 1)2 − δ(r1, . . . , rh).

The plan of the proof of Theorem 4.1 is the following: we first analyze, in
Propositions 4.5 and 4.6 the case of partitions with only one part, i.e. pencils of
symmetric matrices of constant corank 1; then, in Proposition 4.7, we consider
the case of partitions with two parts, i.e. pencils of constant corank 2. We
obtain a complete description of the Lie algebra of the stabilizer in both cases.
The key remark is then that, in the general case, due to the particular canonical
form of the representatives of the orbits under consideration, a matrix X in
the Lie algebra of the stabilizer can be interpreted as a block matrix of the
form (16), where the blocks involved already appear and are described in the
first two cases.

The next Lemma is probably well known. We report it here for completeness
and because it is a fundamental ingredient for computing the Lie algebras of
the stabilizers in the two cases h = 1, 2.

Lemma 4.3. Let L be the pencil generated by the symmetric matrices A and
B, let X be a (N + 1) × (N + 1) matrix with entries in C. Then X belongs
to the Lie algebra of the stabilizer of L for the action of GL(N + 1) on the
Grassmannian if and only if the following relations hold:

(tXA+AX) ∧A ∧B = (tXB +BX) ∧A ∧B = 0. (8)

Proof. The point in the Grassmannian G(1,P(S2V )) corresponding to the pen-
cil L via the Plücker map is [A ∧ B]. Its GL(N + 1)-orbit is the image of the
map GL(N + 1) → G(1,P(S2V )) given by X 7→ (tXAX) ∧ (tXBX). So the
condition for X to belong to the stabilizer of L is [A∧B] = [(tXAX)∧(tXBX)].
This is equivalent to the equations (tXAX) ∧ A ∧ B = (tXBX) ∧ A ∧ B = 0.
Differentiating these equations at the origin we get the thesis.
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Remark 4.4. In the article [4], the Authors are interested in the same problem
of computing the dimensions of orbits of pencils of symmetric matrices. But
instead of interpreting them as points in the appropriate Grassmannian, they
work with pairs of matrices generating the pencil, thus obtaining a different
result from ours.

We start with the partition having only h = 1 part. We have a pencil of
symmetric matrices of size N + 1 = 2r + 1 and rank 2r, whose cokernel is the
line bundle E = OP1(r); the orbit representative is L(r), that we write in the
following form, suitable to apply Lemma 4.3:

L(r) = aA+ bB =



0r,r

a b
a b

. . .
. . .

a b
a
b a

b
. . .

. . . a
b

0r+1,r+1


. (9)

Proposition 4.5. Let r ⩾ 1 be an integer. The GL(2r + 1)-orbit of pencils
of singular quadrics of constant rank 2r and order 2r + 1 has a stabilizer of
dimension 5. The Lie algebra of the stabilizer is the vector space of matrices
X of the form:

X =

(
X1 0r,r+1

0r+1,r X2

)
, (10)

where, for r ⩾ 2:

1. X1 and X2 are square matrices of order r and r + 1 respectively;

2. both X1 and X2 are tridiagonal, i.e. all the elements out of the main
diagonal, the sub-diagonal (the first diagonal below this), and the supra-
diagonal (the first diagonal above the main diagonal) are zero;

3. the sub-diagonal, main diagonal, and supradiagonal of X1 are respectively:

y(r−1, r−2, . . . , 1), x00(1, 0,−1,−2, . . . ,−(r−2))+x11(0, 1, 2, . . . , r−1),

z(1, 2, . . . , r − 1);

4. the sub-diagonal, main diagonal, and supradiagonal of X2 are respectively:

−z(1, 2, . . . , r), (x00−x11)(0, 1, . . . , r)+x33(1, 1, . . . , 1), −y(r, r−1, . . . , 1),
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where x00, x11, x33, y, z are independent parameters.

For instance, if r = 3, X is as follows:



x00 z 0
2y x11 2z
0 y 2x11−x00

x33 −3y 0 0
−z x00−x11+x33 −2y 0
0 −2z 2x00−2x11+x33 −y
0 0 −3z 3x00−3x11+x33


.

Proof. Let X = (xij)i,j=0,...,N be a matrix of unknowns. If A,B are the matri-
ces introduced in (9), the elements of indices i ⩽ j in the symmetric matrices
tXA+AX and tXB +BX are as described below:

(tXA+AX)ij =



xj+r,i + xi+r,j if 0 ⩽ i ⩽ j ⩽ r − 1
xj−r,i + xi+r,j 0 ⩽ i ⩽ r − 1, r ⩽ j ⩽ 2r − 1
xi+r,2r 0 ⩽ i ⩽ r − 1, j = 2r
xj−r,i + xi−r,j r ⩽ i ⩽ j ⩽ 2r − 1
xi−r,2r r ⩽ i ⩽ 2r − 1, j = 2r
0 i = j = 2r

(11)

(tXB +BX)ij=



xj+r+1,i + xi+r+1,j if 0 ⩽ i ⩽ j ⩽ r − 1
xi+r+1,r 0 ⩽ i ⩽ r − 1, j = r
xj−r−1,i + xi+r+1,j 0 ⩽ i ⩽ r−1, r+1⩽j⩽2r
0 i = r = j
xj−r−1,i + xi−r−1,j r + 1 ⩽ i ⩽ j ⩽ 2r
xj−r−1,r i = r, r + 1 ⩽ j ⩽ 2r

(12)

In view of Lemma 4.3, X belongs to the Lie algebra of the stabilizer of the
orbit of L(r) if and only if it satisfies the equations (8), that are equivalent to
a series of equations in the entries of each of the two matrices tXA+ AX and
tXB +BX, and precisely:

(i) vanishing of the elements with equal indices;

(ii) vanishing of the elements with indices 0 ⩽ i < j ⩽ r − 1, r ⩽ i < j ⩽ 2r,
(i, i+ r+2), . . . , (i, 2r) for i = 0, . . . , r− 2, and (i, r), . . . , (i, i+ r− 1) for
i = 1, . . . , r − 1;

(iii) elements with indices (0, r), (1, r + 1), . . . , (r − 1, 2r − 1) must be two by
two equal;

(iv) elements with indices (0, r + 1), (1, r + 2), . . . , (r − 1, 2r) must be two by
two equal.
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Now, using (11) and (12) together with (i) we get x0,r = x1,r+1 = · · · =
xr−1,2r−1 = xr,0 = · · · = x2r−1,r−1 = 0, and also x0,r+1 = x1,r+2 = · · · =
xr−2,2r−1 = xr+1,0 = · · · = x2r,r−1 = 0; note that in all these cases the
difference of the indices is either r or r + 1.

From the vanishings just obtained and those in (ii) whose indices differ
by 1, we get x0,r−1 = x1,r = · · · = xr−1,2r−2 = xr−1,0 = · · · = x2r−2,r−1 = 0,
x0,r+2 = x1,r+3 = · · · = xr−2,2r = xr+2,0 = · · · = x2r,r−2 = 0, and also
x2r,r = xr−1,2r = 0.

We continue in this way, considering relations in (ii) whose indices differ
by 2 and so on, until we get all the claimed vanishings in matrix (10) and
moreover the following 2r equations:

x0,1 + xr+1,r = x1,2 + xr+2,r+1 = · · · = xr−1,r + x2r,2r−1 = 0,

and the symmetric ones

x1,0 + xr,r+1 = x2,1 + xr+1,r+2 = · · · = xr,r−1 + x2r−1,2r = 0.

The relations in (iii) and (iv) impose 2r−2 conditions on the elements of the
main diagonal of X, and 2r − 2 conditions on the elements of the subdiagonal
and supradiagonal of X, and precisely:

x0,0 + xr,r = x1,1 + xr+1,r+1 = · · · = xr−1,r−1 + x2r−1,2r−1,

x0,0 + xr+1,r+1 = x1,1 + xr+2,r+2 = · · · = xr−1,r−1 + x2r,2r,

x1,0 + xr,r+1 = x2,1 + xr+1,r+2 = · · · = x2r−1,2r,

xr+1,r = x0,1 + xr+2,r+1 = · · · = xr−2,r−1 + x2r,2r−1.

Combining everything, we obtain for X the expression in (10), with z = x0,1

and y = xr−1,r−2; the Proposition is proved.

Our description of the stabilizer compared with the known classification of
Lie algebras of small dimension ([11]) gives the following result.

Proposition 4.6. The Lie algebra of the stabilizer of the GL(2r + 1)-orbit of
pencils of quadrics of constant rank 2r and order 2r + 1 described in Proposi-
tion 4.5 is isomorphic to sl2 ⋉C2.

Proof. From the detailed description of the Lie algebra of the stabilizer given in
Proposition 4.5, one sees that its elements depend on 5 independent parameters,
namely any element X in this Lie algebra is X = X(x00, x11, x33, y, z). With
obvious notation, let us call

C1 = X(1, 0, 0, 0, 0), C2 = X(0, 1, 0, 0, 0),

X = X(0, 0, 0, 0, 1), Y = X(0, 0, 0, 1, 0), Z = X(r − 1, r − 3,−r, 0, 0).
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If we compute the bracket of these elements, we get that [C1, C2] = 0 and
[X ,Y] = Z
[Z,X ] = 2X
[Z,Y] = −2Y

which tells us that C2 =< C1, C2 > and sl2 =< X ,Y,Z >. The fact that
[C1,X ] = X = −[C2,X ]

[C1,Y] = −Y = −[C2,Y]

[C1,Z] = [C2,Z] = 0

allows us to conclude that our Lie algebra falls into the first case in the clas-
sification table appearing in [11, Section 4], namely the semidirect product
sl2 ⋉C2.

When the partition has h = 2 parts, the balanced and unbalanced case have
two different behaviors, as explained in the following result.

Proposition 4.7. Let r ⩾ 1 be an integer. The GL(2r + 2)-orbit of pencils of
singular quadrics of constant rank 2r and order 2r+2, whose associated bundle
is OP1(r1)⊕OP1(r2), with r1+ r2 = r, and r1 ⩽ r2, has stabilizer of dimension

1. 2r2 + 8 = r + 8 when r is even and r1 = r2 = r
2 ;

2. 2r2 + 7 when r1 < r2.

Proof. In the notation of Section 2, a representative of the orbit is the matrix

L(r1,r2) = aA+ bB =

(
Lr1

Lr2

)
.

We also introduce the notation A =

(
A1

A2

)
, B =

(
B1

B2

)
, where

Ai, Bi are matrices of order 2ri + 1, for i = 1, 2.
Let X = (xij)i,j=0,...,N be a matrix of unknowns. We write X as a block

matrix as follows:

X =

(
X11 X12

X21 X22

)
=

 (xij)i=0,...,2r1+1
j=0,...,2r1+1

(xij) i=0,...,2r1+1
j=2r1+2,...,N

(xij)i=2r1+2,...,N
j=0,...,2r1+1

(xij)i=2r1+2,...,N
j=2r1+2,...,N


where Xii are square matrices of order (2ri + 1), and X12, X21 have order
(2r1 + 1)× (2r2 + 1) and (2r2 + 1)× (2r1 + 1) respectively.



(16 of 22) A. BORALEVI AND E. MEZZETTI

Then tXA+ AX and tXB +BX can be written as block matrices as well,
and precisely:

tXA+AX =

(
tX11A1 +A1X11

tX21A2 +A1X12

tX12A1 +A2X21
tX22A2 +A2X22

)
, (13)

and similarly for B. Lemma 8 implies that X belongs to the Lie algebra of the
stabilizer if and only if equations (8) are satisfied. We analyze separately what
this means for the diagonal blocks X11, X22 and for the off-diagonal blocks
X12, X21 of X.

Diagonal blocks. We use Proposition 4.5: X11, X22 must belong to the
Lie algebras of the stabilizers of the orbits of L(r1) and L(r2) respectively,
therefore each of them depends on 5 parameters and has the form described
in Proposition 4.5. But equations (8) imply that the parameters appearing in
X11 and X22 are not independent, and precisely, after fixing the 5 parameters
required to describe X11, an explicit computation shows that only one new
parameter is needed to describe X22, therefore the two diagonal blocks depend
on a total of 6 parameters.

Off-diagonal blocks. The matrices tX21A2+A1X12 and tX12A1+A2X21 are
the transpose of each other, and they both have to be the zero matrix. The
same holds for tX21B2 +B1X12 and tX12B1 +B2X21.

From the explicit expressions of their entries, we get the following condi-
tions:

xa,b + xi,j = 0 for any 2r1 + 1 ⩽ a, j ⩽ 2r, 0 ⩽ i, b ⩽ 2r1 − 1 (14)

with |b− i| = r1, |a− j| = r2,

xa,b + xi,j = 0 for any 2r1 + 1 ⩽ a, j ⩽ 2r + 1, 0 ⩽ i, b ⩽ 2r1 (15)

with |b− i| = r1 + 1, |a− j| = r2 + 1.

We also get a first series of four vanishings, referring to the last and the central
columns of X12 and X21:

(i) the last column of X12 except its last element:

x0,2r+1 = x1,2r+1 = · · · = x2r1−1,2r+1 = 0,

(ii) the central column of X12, of index 2r1+r2+1, except its central element
xr1,2r1+r2+1;

(iii) the last column of X21 except its last element:

x2r1+1,2r1 = x2r1+2,2r1 = · · · = x2r,2r1 = 0,
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(iv) the central column of X21, of index r1, with the exception of its central
element x2r1+r2+1,r1 .

The vanishing of these columns, together with conditions (14) and (15), implies,
in order, the following second series of vanishings, referring to the rows of the
two matrices:

(i) the row of index 2r1 + r2 of X21, except the element x2r1+r2,r1−1; this is
the row above the middle;

(ii) the first row of X21 except its first element x2r1+1,0;

(iii) the row of index r1 − 1 of X12 except xr1−1,2r1+r2 ; this is the row above
the middle;

(iv) the first row of X12 except its first element x0,2r1+1.

We now analyze separately the two cases (1) and (2) in our statement.

Case (1): when r1 = r2, X12, X21 are square matrices. Going on with the
argument above, we deduce that in both X12 and X21 all the elements above
the central row and to the right of the central column are zero, except those of
the main diagonal. Moreover, the first r2 entries of the main diagonal of X12

are equal to each other and also to the last r2 elements of the main diagonal of
X21, and similarly the last r2 elements of the main diagonal of X12 are equal
to each other and also to the first r2 elements of the main diagonal of X21.

We are left to analyze the two rectangles of order (r2 +1)× r2 in the lower
left corner: from conditions (14) and (15) we get that they depend on 2r2
parameters, independent of those previously considered. More precisely, we
can divide each of the two rectangles into its 2r2 anti-diagonals; each of them
results to be formed by elements all equal to each other and to those of the
same anti-diagonal of the other matrix.

All in all, there are 2 + 2r2 independent parameters for this case (1). For
the reader’s convenience, we illustrated the case (2, 2) in Figure 1.

Case (2): assume now r1 < r2. We obtain the vanishing of the entire first
r1 rows of X12 and of the last r1 + 1 columns of X21. Now we need to look
at the last r1 + 1 rows of X12 and the first r1 columns of X21. The former is
divided into two blocks α12 and β12 of size (r1 +1)× r2 and (r1 +1)× (r2 +1)
respectively, while the latter is divided into two blocks α21 and β21 of size r2×r1
and (r2+1)× r1 respectively. All entries in each of the r2+2 anti-diagonals of
α12 are equal to each other, and the same is true for the r2 + 2 anti-diagonals
of β21. Moreover, these diagonals are paired, in the sense that they depend in
order exactly on the same r2 + 2 parameters. Finally, the same relations hold
for the r2 − 1 principal diagonals of the blocks β12 and α21, with the difference
that this time all entries above and below these r2 − 1 principal diagonals are
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Figure 1: Structure of the submatrices X12 and X21 in an element of the Lie
algebra of the stabilizer of L(2,2): entries that are equal (up to a sign) are
highlighted with the same color.

zero. (By “principal diagonal” we mean a maximal length diagonal with r1+1
entries in β12 and r1 entries in α21.)

All in all, there are (r2 + 2) + (r2 − 1) = 2r2 + 1 independent parameters
for this case (2). Figure 2 illustrates the case (2, 3).

Notice that the unknowns appearing in the on and off-diagonal blocks are
independent from each other: this means that we only need to add the number
of independent parameters coming from the off-diagonal blocks to the 6 ones
needed for the diagonal blocks. This concludes the proof in both cases.

Proof of Theorem 4.1. We mimic and generalize the proof of Proposition 4.7.
Given a pencil L(r1,...,rh) in the canonical form (4) and generated by A and B,
with obvious notation we write

A =


A1

A2

. . .

Ah

 and B =


B1

B2

. . .

Bh

 .

To describe the matrices X belonging to the Lie algebra of the stabilizer
of L(r1,...,rh) we use Lemma 4.3. We write a general matrix of unknowns X =
(xij)i,j=0,...,N as a block matrix with the same type of blocks Xij as above,
each of size (2ri + 1)× (2rj + 1):

X =


X11 X12 . . . X1h

X21 X22

...

...
. . .

...
X1h . . . . . . Xhh

 . (16)
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Figure 2: Structure of the submatrices X12 and X21 in an element of the Lie
algebra of the stabilizer of L(2,3): again, the entries that are equal (up to a
sign) are highlighted with the same color.

Then tXA + AX can also be written as a block matrix, where the square
blocks on the diagonal have the form

tXiiAi +AiXii,

while the off-diagonal ones with i < j are

tXjiAj +AiXij ,

and similarly for B. As in the proof of Proposition 4.7, the upper left diagonal
block X11 depends on 5 independent parameters, and each other diagonal block
contributes with 1 more degree of freedom. This accounts for 5+(h−1) = 4+h
parameters. The off-diagonal blocks Xij and its symmetric Xji are in the same
relation described for X12 and X21 in the proof of Proposition 4.7, so each pair
accounts for 2rj + 2 if ri = rj , and 2rj + 1 if ri < rj .

As anticipated, now we make the key remark that the blocks Xij and Xkℓ

are independent for (i, j) ̸= (k, ℓ), meaning that none of the variables xpq

appear in two different blocks; therefore, the total number of parameters is

4 + h+
∑
i<j

(2rj + 1) + #{(i, j) | ri = rj},

and this concludes our proof.

To illustrate our result, we collected in Table 1 all orbits of pencils of
quadrics of constant rank 2r, r ⩽ 6, their dimension, and the dimension of
their stabilizer.
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r h partition N = 2r + h− 1 dim orbit dim stabilizer
1 1 (1) 2 4 5
2 1 (2) 4 20 5

2 (1,1) 5 26 10
3 1 (3) 6 44 5

2 (1,2) 7 53 11
3 (1,1,1) 8 62 19

4 1 (4) 8 76 5
2 (2,2) 9 88 12
2 (1,3) 9 87 13
3 (1,1,2) 10 100 21
4 (1,1,1,1) 11 112 32

5 1 (5) 10 116 5
2 (2,3) 11 131 13
2 (1,4) 11 129 15
3 (1,2,2) 12 146 23
3 (1,1,3) 12 144 25
4 (1,1,1,2) 13 161 35
5 (1,1,1,1,1) 14 176 49

6 1 (5) 12 164 5
2 (3,3) 13 182 14
2 (2,4) 13 181 15
2 (1,5) 13 179 16
3 (2,2,2) 14 200 25
3 (1,2,3) 14 199 26
3 (1,1,4) 14 196 29
4 (1,1,2,2) 15 218 38
4 (1,1,1,3) 15 215 40
5 (1,1,1,1,2) 16 236 53
6 (1,1,1,1,1,1) 17 254 70

Table 1: Dimension of orbits of pencils of quadrics and their stabilizers.
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Looking at Table 1, it is interesting to observe the phenomenon occurring
when there are two different partitions of r of the same length. As expected
from the behaviour of a rational normal scroll P(OP1(r1) ⊕ OP1(r2)) degener-
ating to a P(OP1(r1 − 1) ⊕ OP1(r2 + 1)), the dimension of the relative orbit
increases.
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