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A generalized Monte Carlo method for the solution of the coupled set of kinetic equations for the distribu-
tion functions and the interband polarization is presented. The aim of this method is to combine the advantages
of the description within a fully quantum mechanical picture with the power of the Monte Carlo technique for
the treatment of stochastic processes. It is based on a decomposition of the kinetic equations in a coherent and
an incoherent part. The former is integrated directly while the latter is sampled by means of a Monte Carlo
simulation. This allows us to treat on the same kinetic level carrier thermalization and relaxation as well as
dephasing processes. In particular, the problem of photogeneration and its theoretical description is discussed.
The equations of motion including the relevant scattering contributions are derived and presented in a way that
emphasizes the symmetry between distribution functions and polarization. The scattering terms for the polar-
ization are discussed in detail. We show that some of the approaches commonly used fail in describing
correctly the effect of carrier-carrier interaction in the low-density limit. By including terms that have the
structure of “in-scattering” terms for the interband polarization, the experimentally observed features in the
carrier dynamics are well described in the whole density range.

I. INTRODUCTION lation of the various distribution functions, this will result in
a Monte Carlo simulation of the scattering dynamics of the
The Monte Carlo method, which has been applied forinterband polarization induced by the coherent light field.
more than 25 years to the analysis of semiclassical transport Such an approach allows a self-consistent description of
and relaxation processes in semiconductof$ias been rec- the carrier photogeneration procé&3®The energy broaden-
ognized to be the most powerful numerical tool for micro-ing due to the finite pulse duration and due to the decay of
electronic device simulation based on microscopic scatterinthe interband polarization has not to be introduced as a phe-
rates'®~120n the other hand, the present-day technology alnomenological parameter as in any conventional Monte
lows the investigation of relaxation phenomena in semiconCarlo simulatioR®® but it comes out self-consistently with
ductors with a time resolution that has now reached a fevits full time dependence. However, in a recent p&bere
femtosecond3*~1’On such a time scale, coherent aspectshave shown that a dephasing rate approximatgiven by
play an important role even for experiments that mainlythe total scattering ratewhich is often performed to sim-
probe the dynamics of carrier distributiotfst®%In this case  plify the dynamics of the polarizatiot;®>completely fails in
the carrier dynamics cannot be treated in terms of the tradithe case of carrier-carrier scattering at low densities by
tional semiclassical transport theory where the carrier systerstrongly overestimating the dephasing of the interband polar-
is completely specified by the respective distribution func-ization. Including additional contributions with the structure
tions. Instead, the interband polarization has to be includedf “in-scattering terms” in the equations of motion of the
as an independent variabf®:2® In order to study this par- polarization, on the other hand, resulted in a physically rea-
tially coherent dynamics, a generalization of the convensonable density dependence of the carrier dynamics. Using
tional Monte Carlo method is required. this model, a very good agreement between calculated and
The aim of the present paper is to present both the theaneasured band-to-acceptor luminescence spectra in
retical background and the technical aspects of a method-doped GaAs has been found that demonstrates the impor-
recently proposed by the authdté®?*as well as to discuss tance of a correct treatment of the dynamics of the interband
its application to the analysis of ultrafast carrier dynamics inpolarization'®
photoexcited semiconductof$!® The main peculiarity of The strong symmetry between the equations of motion for
the proposed approach is to retain the big advantages of ttibe distribution functions and for the polarization motivates
Monte Carlo method in treating scattering processes and, #éie use of a Monte Carlo technique also for the solution of
the same time, to take into account on the same kinetic leveahe latter equation. The main objective of this paper is to
also coherent phenomena. Compared to the conventiondiscuss in detail this extension of the conventional Monte
Monte Carlo technique, which simply provides a solution of Carlo method to the simulation of a complex quantity, e.g.,
the semiclassical Boltzmann transport equafiBAE), this  the interband polarization, and to present new results where
generalized Monte Carlo approach provides a solution of th&ve particularly emphasize the scattering dynamics of the in-
semiconductor Bloch equatioSBE). In addition to a simu-  terband polarization; this allows us to gain insight into the

0163-1829/96/539)/1285514)/$10.00 53 12 855 © 1996 The American Physical Society



12 856 STEFAN HAAS, FAUSTO ROSSI, AND TILMANN KUHN 53

details of the dephasing process, which is the result of the ot bt N
interplay between three different contributions: coherent ro- Ho=§ kakaJrzk: ekdkdk+2 hwqbgbq
tation, in-scattering, and out-scattering terms. a
The paper is organized as follows: In Sec. Il we derive the
equations of motion by extending the density matrix ap-
proach given in Ref. 23 to the case of carrier-carrier scatter-
ing in a two-band model. The scattering contributions are ©)
written in a way that emphasizes the symmetry between disv'vhereeﬁ= Eg+ﬁ2k2/(2me) andel'=#2k?/(2m;) denote the
tribution functions and polarization. In Sec. Il we diSCUSSenergies of electron and hole states, andm;, the respec-
the numerical approach that has been applied for the solutiof\,e effective massesE, the band gap, the dispersion
of the equations of motion. Section IV is devoted to therelation of the phonondyl, the dipole matrix element, and
results of the simulations. In particular, a detailed analysis of (t) the amplitude of the external light field with frequency
the scattering dynamics of the polarization at various densiz, . The interaction is treated in dipole and rotating-wave

ties is given that shows the big reduction of the dephasing aipproximation and we do not include any polarization effects
low densities due to cancellation effects. Finally, in Sec. Vof the laser light.

+ ; [MEq(teeticldt  + MY ES (t)e'“t'd_,cy],

some conclusions are drawn. Using the Heisenberg equations of motion one obtains
d |©@ X (0) o
—_— € P —
Il. THEORETICAL APPROACH gt Tgioe T, (4)

In this paper we study the carrier dynamics in a direct—gapd
semiconductor during and after an ultrashort laser excitation.— p,
We consider a bulk semiconductor with two isotropic, para-
bolic bands, the conduction band and the heavy-hole band. (5
The carriers interact via the Coulomb potential. Furthermoreyith the generation rate
they interact with phonons. For reasons of simplicity we dis-
cuss only the case of Hibich interaction with LO phonons, 1 , ,
which is typically the most important carrier-phonon interac- 91 (1) = E[MkEo(t)ef"”Ltpﬁ —M{Eg (e “tip,].
tion for the ultrafast carrier dynamics. (6)

The system is described by a Hamiltonian that can be
decomposed into partd, andH;. In Hy we consider those This system of equations describes an ensemble of two-level
parts that can be treated exactly within a single-particle picsystems coherently driven by the external light field. The
ture. The remaining contributions that have to be treategemiclassical generation rate is obtained by an adiabatic
within some approximation scheme are consideredH in elimination of the polarization as discussed in Ref. 23.

For reasons of simplicity we neglect the spin index in the
calculations; in the numerical results, however, it has been B. Carrier-phonon interaction
taken into account.

We describe the dynamics of our physical system in terms
of the density-matrix approach. The basic variables for th
kinetics of the system are the distribution functigirstra-
band density matricg®f electrons, holes, and phonons,

(0)
=L+ el Pt MEq(te ™ et(1— 7= 1]

In the absence of an external light field the electron states
re eigenstates of an ideal periodic lattice. Deviations from
his idealized periodicity due to lattice vibrations lead to a
coupling of the different electron states. This interaction is

described by the carrier-phonéep) Hamiltonian?®?”

fi=(olog. fh=(aldg. andng=(bjbg. (M HP=3 [yl obacit 5 elblewsat Fiolgbich

hx gtRt
with ¢ ,df,bf (c,,dy,bg) denoting creatior(annihilation +7q" dibglisql- @)
operators of electrons, holes, phonons, respectively. To takgere, y&" are the coupling matrix elements for polar or

into account the coherence induced by the external lasgjeformation-potential interaction for electrons or holes. In
field, we have to consider explicitly the interband polariza-ihe case of a polar interaction, due to the opposite charge of

tion (interband density matrix electrons and holes, the coupling constants are related by
Ye= = Ya=Ya:
. it Starting from this Hamiltonian, the cp contribution to the
pk=(d_xcx) and p; =(c,d’). (2)  equation of motion, e.g., of the electron distribution function,
is given by
A. Single-particle Hamiltonian d [ 1

s _ T _ /At
The single-particle Hamiltonian describing the free carri- at iﬁ% {7al(CDqCi-a) ~(Cics aPqCil]

ers interacting with a classical light field as well as the free wrs At bt
phonons is given + 75 [{CbgCh+ ) —(C—qPgCK I} )
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involving phonon-assisted density matri¢8ghe derivation been neglected, which resulted in a dephasing Fate If
of the contributions up to second order in the coupling Mathey are included, the total second-order cp contributions to

trix element in the Markov approximation is discussed inthe equations of motion of distribution functions and polar-
detail in Ref. 23. There, however, terms involving simulta- q P

neously electron-phonon and hole-phonon interaction hav&ation are given by

d (cp,2 1
il =2 IR WER T o]+ ARl - A pid, €]
d_,[? h h_\h h 1 .h h
afk :_Eq: [Wk(fcg),kfk_wk,(lfg)qfqu]"‘E[Af(ﬁp)ptk_Af(Ep)*pfk], (10
d 2 gy Pcp) 7 P(Cp)
gt Pk :_é [IRZ48 e /8 viac s PP (11
with
We,h(cp)_Zﬂ'E 25 eh _ e,h_,_ﬁ +;_,_; 1_fe,h 12
k—a.,k _745 |'yq| (Ek—q € — wq)(nq 253)( qu)r (12
aa . — v v
7R 7 2 2 vl H A g @t hoglng 37 D+ (ng+ 31111 ], (13)
APV =im 2 |72 (£P- ) A - Sy hag). (14

Here, the functionZ(¢) is defined as o Lt L tat

Hl - 2 Vq[ECka,Ck/+qu,q+ Edkdk’dkurqdqu
1 kk'.q

( = + — —

J(G) 5(6) |7 € (15) _Cldtk’d*k’Jquk*q]' (16)

L . L a8 h(cp)
with 7’ denoting the principal value. The quantitiag Tthe first two parts are the repulsive electron-electron and

appear in the same way as the_laser field in the equations fole-hole interaction terms, the third one describes the attrac-
motion for the distribution functions. Therefore, they can bet

int red it | fields that. h dift p ive interaction between electrons and holes. The presence of
INterpreted as internal Tields that, however, are difterent 10qq o rrigrs leads to a screening of the Coulomb potential. It

electrons and holes. In the polarization equation the field 1% not the aim of the present paper to discuss the derivation

not renormalized. The struct.ure. Of. Eq@)—(.ll) clearly of the screened potential, instead we simply use a Lindhard-
shows a symmetry between distribution functions and polar“ke static screenirf§ (see Appendix A

|tzat|or;:“|n ?Oth t(;as_es ,yve may identify termst\tnth the gttr:uc- The cc contribution to the equation of motion, e.g., of the
ure of “out-scattering proc_es?’esx(fk,pk) and terms wi electron distribution function, is given by
the structure of “in-scattering” processes<{y_q,Px—q)-

The main difference is the fact that, in contrast to the distri- q
bution functions, the polarization and the respective matrices d |~ 1 + 1 ot it
in Eq. (11) are complex quantities. We will come back to this dtfk B iﬁkzq V[ {CkCy/Cr +qCk—q) ~ (Ck—qChr + ¢Ck'Ci)
point later. ’T : RN
—(Cd s qd-kCk—q) +{Cy—qd k- Ck)]
C. Carrier-carrier interaction (17)

The charged carriers interact via the Coulomb potential
V4. We consider in our two-band model only processes coninvolving two-particle density matrices and leading to an in-
serving the number of particles per band. Thus Auger recorrfinite hierarchy of equations of motidi.The first-order con-
bination and impact ionization are neglected. These protributions (Hartree-Fock termsare obtained by factorization
cesses are usually considered to become important at veagcording to
high densities or at energies high up in the band.

The Hamiltonian describing carrier-carri@c) interaction d

i H __f€
is given by dtf"

(cc,)
:E[Akpﬁ_ pel, (19

(CCYD_th
=gt ik
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gt Px z[(hﬂ +hQL )Pt A(1- =121
(19
with  the self-energy of electrons and

th'h: — Ekrvk,k/fﬁ,h and the
Ak: —Ek/Vk,k,pk, .

holes
internal field
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The structure of the second-order cc contributions is exactly
the same as for cp interaction and again shows “in-
scattering” and “out-scattering” terms both for distribution
functions and polarization.

D. Equations of motion
Including the various types of interactions up to the sec-

As for the case of cp interaction, scattering processes agnd order, the equations of motion for distribution functions
pear for the first time in the second-order contributions. Fo@nd interband polarization can be summarized as

cc interaction they are obtained from the two-particle corre-
lations, i.e., the deviations of the two-particle density matri-

ces from their respective factorizations, e.g.,

Tt _/~TAT e
8(CkCy/Ckr +Ck—g) = (CkCyCik+ aCk—q) T TkF i/ Skr k—q -
(20

In the equations of motion for these two-particle correlations d
a factorization and a Markov approximation are performed as
in the case of cp interaction. Details and a discussion of the

d

gefk= k(- 2[vvk akf b= Wek—qffioql, (27
d.o_n h  th_\wh  ¢h
aszg—k(t)_é [Wi—qicfc=Wik—qfk-ol, (28

1
P <r'9+/“k)pk + RO fE= )

approximations are given in Appendix B. This leads to the

second-order cc contributions in the equations of motion for

distribution functions and polarization,

d (cc.2
aiff =2 WG W ]
1 e(cc,? ~* e(cc,2*
+E[Ak P AT P, (21
d ., (ce2 h h_ \ph
&fk =—§q) [Wk(fg),kfk_wk(lf@qfk q]
ﬁ[Ah(CCZ) Ah CC2)*p k], (22)
d (cc,2
atP| =2 RGP 7R ). (23

with
ar ’ ’
e,h(co) _ 2 v &h v v eh
Wielgk =71Vl ,Zh Ek,i NPyt € g €€
v =€

X[ (1~ fk,+q) P+ qPl(1=fE" ) +cc.,
(24)

T
%/E&Cg)’k:%w E EJ‘(EK q+6k,+q ek, €)

v,v'=e,h k'
X[_p:’+qpk’+fﬁ’(1_fE’Jrq)(l_fE*q)
L of (L= o0, (25

AshCe2=j > > |Vq|2J(eEe+ek, ek,+q el s
k’,q v'=¢,h

X[forsq—folPog- (26)

—% [ 78— qkP— 7R k- qPr—ql, (29)

with the generation rates

1 )
9" = 7 [ Pk = 7™ i, (30
the renormalized energies of electrons and holes due do the
Hartree-Fock terms

Zeh= et 2", (31)

the renormalized fields for electrons, holes, and polarization
due to second-order cp and first- and second-order cc inter-
action

2P =M Eq(t)e ot + ASNP 32

and the transition matriceolﬁfq'k and 7% _,« as defined
for cp and cc scattering in the previous sections.

It should be noted that the way of collecting the terms in
the equations of motion is not unique. Instead of using ma-
tricesWg:" Cak and7§_q, in- and out-scattering rates might
be used? The present way makes the symmetries between
in- and out -scattering both for distribution functions and po-
larization directly obvious, which will be the starting point
for the numerical technique described below. A direct con-
sequence of this symmetry is a conservation law for the total
polarizationX,p, due to the scattering processes in complete
analogy with the particle conservation due to scattering pro-
cesses in the BTE. A decay of the polarization, i.e., a dephas-
ing, is only related to the interplay between coherent rotation
and the scattering processes

The transition matrice8Ve:" Zq.k for the distribution func-
tions are real quantities, however they are not necessarily
positive definite if the polarization scattering due to cc inter-
action (ocpk,+qpk/) is included. The matrix7§_ ak IS @
complex quantity. The real part

WP =ReZT_q, (33)

describes scattering processes leading to a dephasing of the
polarization and the imaginary part describes second-order
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contributions to the band-gap renormalization. In the numeridescribed in Ref. 23 resulting in a semiclassical generation
cal investigations presented here these energy shifts havate in Eqs(27) and(28). Since the internal field is directly
been neglected since typically first-ordéHartree-Fock related to the polarization, it has to be neglected. Excitonic
renormalizations are more important. We have neglected fureffects cannot be described in this limit. Apart from the gen-
thermore all contributions in the transition matrices involv- eration termgwhich in this limit can be regarded as an ad-
ing polarizations as well as the second-order contributions tditional scattering mechanism from the valence to the con-
the effective field. This is expected to be a good approximaduction bang, these semiclassical Boltzmann equations are
tion for the case of excitation far from the gap where exci-of the general form
tonic effects play a minor rol&

In contrast to the distribution functions, the polarization
p«(t) is a complex quantity with a phase dependingkcamd
t. Therefore, it is often argued that when performing the ) )
summation in the last term of E¢R9), a cancellation occurs Where eactk denotes a certain region of the phase space and
due to random phases and this term is negligible. Then « its average occupation number. The explicit form of the

k-dependent dephasing rate can be introduced according t§cattering ratesVy ., depends on the interaction mechanisms
considered as discussed in Sec. Il. In general, they depend on

the distribution function itself. Therefore, the scattering rates
Ne=2 ngfq,k' (34 become time dependent via the time dependence of the dis-
9 tribution functions and we deal with a system of nonlinear
Physically, this approximation means that each scatteringquations. In order to treat these nonlinearities, a fixed time
process completely destroys the pair coherence betweetep is usually introduced, at the end of which the new dis-
electrons and holes, and the total scattering Fatplays the tribution functions are evaluated so that the new scattering
role of ak-dependent dephasing rate. We will refer to thisrates can be determined. In this way, within each time step,
case as the dephasing-rate approximation. we deal with a system of linear equations: The scattering
Within the approximations discussed above, all transitiorrates are fixed quantities and the individual carriers can
matrices are positive-definite quantities and the incoherergvolve asynchronously.
parts for both distribution functions and polarization have the Let us consider the semiclassical Boltzmann equaan
structure of rate equations with transition matri(WS,h’(fk, over a single time step, i.e., from timgto timety+ At. Due
the only difference being the complex nature of the polarizato the local linearity of the transport equation, the distribu-
tion. This is the basis for the generalized Monte Carlo techtion functionf, at timet (to<t<ty+At) can be written as
nique for the solution of the coupled set of equations of
motion that will be discussed in the next section. fk(t):% Gieer(tto) Fr(to), (36)

d
i fe= 2 Wi fio = Wi i, (35
k/

lll. NUMERICAL PROCEDURE where the Green'’s functioB, called Boltzmann propagator,

As discussed above, the aim of this paper is to extend thBas a direct physical interpretation: It describes the probabil-
traditional Monte Carlo method for the solution of the Bolt- ity that a particle in stat&’ at timet, will be found in state
zmann equatioh'? to the analysis of coherent phenomena,k at timet. From its definition, the Boltzmann propagator
which are found to play a dominant role in the dynamicmust be also a solution of the Boltzmann equatié®) and it
evolution of photoexcited semiconductors on short timemust satisfy the initial condition
scales. The main features that are not included in the tradi-
tional Monte Carlo method and that we want to take into Gy k(to,to) = Sk - (37

account are the phase relations between different types of js therefore clear that all the information concerning the

carriers(polarization phenomenatheir interaction with an system dynamics is contained in the above Boltzmann propa-

external coherent electromagnetic fieldgeneration-  o0r The state of the system at timés the result of the
recombination processesand the correlation and renormal- independent evolution of the initial conditiohy (to) (i.e.,

ization effechts as_socsiated with %C inte:jacti(jﬂt?rtree—rllz OCL‘] the initial set of carriefsthrough the propagatd®. The sum
terms. As shown in Sec. Il, in order to describe suc CONer-oyerk space can be replaced by a direct sum over an appro-
ent phenomena we need to solve the system of equations

iate ensemble of simulative carriers:
motion (27)—(29) for the distribution functions and for the B

corresponding interband polarization, according to the inter- N/
actions taken into account. fl() =2 Gyrr(tto)frr(te)=> X G (t,tow
In order to see the limitations of a “conventional” Monte K’ koi=1
Carlo simulation and to discuss the problems arising when N
trying to generalize it, let us recall briefly the basic ideas of => G (L)W, (39)
the traditional approach to semiclassical transport. =1

whereN, denotes the number of simulative carriers repre-
sentingf,., w is the weight of each simulative carridk;
denotes the state of théth carrier at timety, and
The semiclassical limit is obtained by eliminating the po-N=Z2,,N, is the total number of simulative carriers. From
larization within the adiabatic and Markov approximations asthe above equation we see that the distribution function at

A. The semiclassical limit and the conventional Monte Carlo
simulation
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time t can be simply written as the sum of the Boltzmanninteraction mechanism and?’ is some functional of the
propagators corresponding to each carrier in the system anginetic variables whose explicit form has been discussed in
in particular, we see that the weight of all the propagators irgec. |I.

the sum is the same. In addition, we want to stress that the Equation(39) is again a system of nonlinear equations.
Boltzmann propagator is a real and positive-definite quantityTherefore, as in the semiclassical case, we introduce a time

We will come back to this crucial point later. discretization in terms of a fixed time stéy. By integrating
Equation(38) can be regarded as the starting point of thegq, (39) over At, we obtain

traditional ensemble Monte Car({&MC) technique'? which

simply provides a Monte Carlo sampling of the sum. Such T+ A)=T7E(t)) ¥ AT cot A7 inco,  @=8,h,p.

sampling is performed by means of a stochastic simulation of (42)

a suitable ensemble of carriers. However, they do not cor-

respond to the real physical particles of the system. For eachherefore, the time variation of the generic kinetic variable

simulative carrier, a sequence of random “free flights,” in- 77 over the time step results in the sum of two independent

terrupted by random “scattering events,” is generated. Suclontributions: the coherent and the incoherent one. In the

a “random walk” in k space is just a Monte Carlo sampling numerical procedure, for each time step, the coherent contri-

of the Boltzmann propagatdgy,  (t,to), wherek; andKks butions are evaluated by means of a direct numerical integra-
denote, respectively, the initial and the final state of the getion while the incoherent contributions are “sampled” by

neric random walk? means of a generalized Monte Carlo simulation.
From the above considerations we see that the EMC tech-
nique, usually considered as a “real” direct simulation of the C. Generalized Monte Carlo simulation

carrier dynamics, can be regarded from a more general point L ¢ . h licit f fth
of view as a formal Monte Carlo sampling of the solution of ﬁt us focus _gur_ attention on ItE € 1ex§)/\|;:|rt]_ orr:n of the
the Boltzmann transport equation. As discussed in detail if'¢© erent contributions given in E¢41). Within the ap-

Ref. 31, the conventional EMC technique is only a particularproximations discussed in Sec. Il D they have exactly the

case of a more general approach, the weighted ensembpructure of the “Boltzmann collision term.” Denoting with

Monte Carlo method. This more general way of looking at
the Monte Carlo simulation does not at all require the exist- a  _ aj

y muat =S 1 . ek WE =0 WY, (43)
ence of “real particles.” The fictitious particles within the : ] :
Monte Carlo simulation can be simply regarded as a math-
ematical instrument used in performing the statistical samthe total scattering rate associated to the kinetic variable
pling of the physical quantity of interest. This result opensfor a transition from statk’ to statek, Eq. (41) can be
the way to extend the application of the Monte Carlo methodwritten as
to the evaluation of physical quantities different from the

usual distribution functiorf, of semiclassical particles. d o a o a
il =2 W, o 7= Wy 711 (44)

. o
B. General structure of the kinetic equations e
Let us now come back to the system of kinetic equationdVVe want to stress that in the present approximation for all
(27)—(29) discussed in Sec. Il. As already discussed, theinetic variables(including the polarization, i.eq=p) the
various kinetic equations exhibit a strong formal similarity: variousWZ’k, are positive-definite quantities, i.e., they can be
The contributions to the dynamics can be always split into aegarded as “true” scattering probabilities from st&teto
coherent and an incoherent contribution. Denoting/&ythe  statek.

generic kinetic variable ¢=e,h,p) with .,ﬁ'hzfﬁ‘h and Thus, the “generalized Boltzmann equatiof?4) for the
TR=py, the system of equatiori27)—(29) can be schemati- kinetic variables7™ has exactly the same structure as the
cally written as semiclassical Boltzmann equati@B5), apart from the fact

that the kinetic variable7®, in general, is a complex quan-

d d d tity. This fact, however, does not limit the application of the
d—t./ffk’:d—tiﬁ + d—t.ﬁﬁ‘ , a=eh,p (39 Monte Carlo method in its general formulation. Due to the
co inco local linearity of our transport equation within one time step,
, the kinetic variable7y at timet (to<t<ty+At) can be
with written as
—_ g —gaolf gw s f za —a @ Py
gt K = ({7 })+§j) ZiCOZa o8 (40) .,%k(t)=§ Gy (t,t0) Zi(to), (45)
d _ _ whereG*“ is now a generalized Boltzmann propagator corre-
7Y =2 X [WHL.7E-WH L7, (4)  sponding to the kinetic variable. As in the semiclassical
inco 1 K ' ' case, the propagat@“ must be a solution of the generalized

. _ _ _ Boltzmann equatio44) and it must verify the initial condi-
wherewm, denotes the scattering rate associated with theion (37). Again, all the information concerning the dynam-
kinetic variablea for a transitionk’ —k induced by thgth  ics is contained in the real quanti“. The state of the
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system at time is the result of the independent evolution of However, this is the only one for which all carriers have the
the initial condition .7, (to) through the corresponding same weightV* apart from the phase;*. This provides, in
propagator. general, a strong reduction of the statistical fluctuations. This
Equation(45) constitutes the starting point of our gener- particular choice can then be regarded, to some extent, as a
alized Monte Carlo approach, which, by itself, simply pro- sort of “generalized importance sampling?®”
vides a Monte Carlo sampling of the sum in E45). As in The structure of the numerical procedure can then be
the semiclassical case, such a sampling is performed bsummarized as follows: The total time is divided into time
means of a stochastic simulation of a suitable ensemble ¢fteps. The simulation starts at the initial tirhebefore the
N carriers, which, in general, have nothing to do with reallaser has been switched on. The system is chosen to be in its
physical particles. At the initial timé¢, the ensemble oN  fundamental state, i.e., the vacuum of electron-hole pairs.
particles is assumed to be distributeckispace according to The simulation then results in a loop over the various time

the absolute value of the kinetic variablg : steps and for each time stef)) we evaluate the coherent
contributions by means of a direct numerical integratian;
Ng(to)=Ce. 7% (to)], (46) for each kinetic variable7®, we introduce an ensemble of
_ o o N “simulative particles” according t¢.7| where we attach
whereC® is a normalization coefficient. to each “particle” a phase factaw| according to the phase

The sum ovek space in Eq(45) can then be translated

, ; , ) ! of .7 ; (iii) for each of these “particles” we perform a
into a sum over this ensemble of simulative carriers: i

traditional Monte Carlo simulation, i.e., a random sequence
N of “free flights” and “scattering events” originated by the
TR =2 Gyt W Ng (to)= > Gy (ttgws, scattering rateVy,, in Eq. (44).
k' ' =1 : 4 The generalized Monte Carlo approach described above
(47) has also been recently applied to the analysis of four-wave-

where mixing experiment$334In this case, a Monte Carlo simula-
tion of the various, in general complex, Fourier components
1 Te(to) of the distribution functions is required.
wi=_ L =\Wael¢f (48)
T A (o)

IV. APPLICATIONS

can be regarded as a “weight” of thj¢h simulative particle . . . .
in the sum. As in the semiclassical case, its absolute value BY @PPlying the numerical procedure described in the pre-

W is the same for all the particles but its phaﬁéis that of  Vious section, we now analyze the generation and relaxation

L : —a . ; : . dynamics of laser-pulse excited carriers. First, we study the
m m ;
the kinetic varlable,/kj from which the simulative carrier dynamics of the carrier distribution functions as obtained

originates. Therefore, the functiory at timet is given by  from the three different models: BTE, SBE in dephasing rate
the sum of the Boltzmann propagators related to the variougpproximation, and SBE including the full scattering dynam-
simulative carriers, each one multiplied by its Weiglft. In ics of the polarization. In order to get more insight into the
order to evaluate the Boltzmann propagdst, the conven-  failure of the dephasing-rate approximation, in particular at
tional EMC simulation discussed in Sec. Ill A can be em-low densities, we then investigate tkespace dynamics of
ployed. the polarization. If not stated explicitly, all simulations refer
Our generalized Monte Carlo sampling proceeds as folto a  Gaussian laser pulse  with  amplitude
lows: Given the initial condition7}, an ensemble oN Eo(t)=E, exp(—t3/7), a width 7, =85 fs (corresponding to
simulative carriers is randomly generatedkispace accord- a full width at half maximum of the intensity of 100)fand
ing to the absolute value of}’ and to each carrier we attach an excess energy of 180 meV. The GaAs material parameters
a phasep" defined in Eq(48). For each simulative carrier, a used for all simulations can be found in Ref. 23.
sequence of random “free flights,” interrupted by random In Fig. 1 the electron energy distributiO{ﬁe_ﬁfE at time
““scattering events,” is then generated according to the scatt=100 fs, i.e., towards the end of the pulse, is plotted as a
tering ratesW,,,. As for the semiclassical case, it can be function of the electron energy for the three models at three
showrt! that such “random walk” ink space is just a Monte different densities. In the BTE ca$ig. 1(a)] at the lowest

Carlo sampling of the Boltzmann propagaéf , (t,t;).  density we see the peak of the generated carriers at 160 meV
o and, at lower energies, replicas due to the emission of an

o integer number of optical phonons. The width of the peaks is
by summing the phase factorg'=W<*e'? of all the simu-  given by the width of the laser pulse, cc scattering plays
lative carriers that at time are in statek. When the kinetic  essentially no role at this low density. With increasing den-
variable is a distribution functiofii.e., a=e or a=h), all  sity cc scattering becomes more efficient, resulting in an in-
the phasesp]" are equal to zero. Therefore, the above sum-<reased broadening of the peaks. Due to band-gap renormal-
mation simply reduces to the usual “counting” of the par- ization, at a density of ¥ cm™2 the generated peak is
ticles in statek and the conventional EMC technique is re- shifted towards higher energies. In the SBE case in the
covered. dephasing rate approximatiorrig. 1(b)] the behavior is
Finally, we want to stress that the random generation otompletely different. It turns out that here the broadening is
the initial distribution of simulative carriers according to the determined by the scattering terms in the polarization equa-
absolute value af7} is only one of very many possibilities. tion. We observe distribution functions with nearly the same

The desired kinetic variablgr} at timet is finally obtained
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FIG. 1. Electron energy distribution at different densities for the  FIG. 2. Generation rates for the case of excitation with an 85-fs
case of excitation with an 85-fs pulsetat 100 fs obtained fronta)  laser pulse at different times and densities obtained from the full
the Boltzmann model(b) the Bloch model without in-scattering Bloch model.
terms in the polarization equation, atg the full Bloch model.

related structure is observable, in contrast to the BTE case.
shape when varying the density over four orders of magniHowever, it is noteworthy that even at the density ofé10
tude. This behavior, which is clearly unphysical, is related tocm™2 there is still a remarkable difference between the SBE
the fact that the total cc scattering rate is nearly density ineaseqb) and(c), in particular on the high-energy tail, show-
dependent. The increase in the number of partner carriers fomg that the dephasing rate approximation still overestimates
a scattering process is almost exactly compensated by thhe scattering efficiency.
increase in the screening wave vector. However, the charac- The increasing difference between BTE and SBE when
teristic features of a scattering process change: At low derincreasing the density can be understood by looking at the
sities scattering processes occur mainly in the forward direcgeneration rate at different times as plotted in Fig. 2. In the
tion. With increasing density the momentum exchangeBTE case the generation rate is completely determined by
increases. In the equation for the distribution functions thighe spectral profile of the laser pulse. Therefore the shape of
leads to the strong density dependence as observed in Figne generation rate is constant in time, only its amplitude
1(a). However, in the equation of motion for the polarization follows the intensity of the laser pulse. In contrast, in the
this phenomenon is completely neglected if the dephasing ISBE case carrier generation is determined by the dynamics
described only in terms of the total scattering rate. Includingof the polarization, which is strongly influenced by scattering
the in-scattering terms in the SBE modEig. 1(c)], we re-  processes and therefore it becomes density dependent. As
cover the correct low-density limit where, as observeddiscussed in detail in Ref. 23 for the case without cc scatter-
experimentally:*3>*®phonon replicas are present. Compareding, as a consequence of the energy-time uncertainty the
with the BTE case, at 6 cm™2 the peaks are slightly width of the generation rate decreases with increasing time,
broader, which is due mainly to cp scattering in the polariza-exhibiting negative parts off-resonance due to stimulated re-
tion equation. With increasing density the SBE results excombination processes. These recombination processes,
hibit a much more pronounced broadening than the BTE caskowever, require a coherence to be still present in the carrier
because of the increased efficiency of cc scattering processsgstem. An increasing density leads to an increased effi-
both in the equations for the distribution functions and in theciency of cc scattering and, therefore, to a loss of coherence.
equation for the polarization. It turns out that the latter oneThus, stimulated recombination processes are inhibited and
gives the dominant contribution due to the fact that while inthe generation rate remains broad, resulting in a much
the BTE case the electron distribution is influenced only bybroader generation of the carriers than in the semiclassical
scattering processes of the electrons, the dynamics of thease. Figure @) clearly shows the shift of the generation
polarization involves scattering processes of electrons anchte towards higher energies during the buildup of the carrier
holes, the latter ones being more important due to their largedistribution due to the increase in the band-gap renormaliza-
density of states. At the highest density ho more phonontion.
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FIG. 4. Electron energy distribution at low density for two dif-
ferent pulse durations obtained from the BTE and the SBE model.
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“:’s—%_:”“ = oo subsequent buildup of the phonon replicas is clearly visible.
- - S T At the intermediate density the first replica is still visible,

however, due to cc scattering it is already strongly broad-

e (6\6}2 (c) ened. At the highest density no more phonon-related struc-

600 5 tures are observable; the electron distribution relaxes conti-
400 nously towards the band edge. Looking at the contour plots
one can see in particular in the low-density case the succes-
sive buildup of the electron energy distribution. The width of
the carrier distribution is reduced due to the stimulated re-
combination discussed above. Comparing the insets for the
three different densities, we clearly see an increase of the
linewidth with increasing density.

The differences between the BTE and the SBE ap-
proaches depend also on the pulse duration. To analyze this
dependence, in Figs. 4 and 5 we compare the electron energy
distributions at three different times obtained by a 85-fs
pulse with those obtained by a 170-fs pulse. Figure 4 shows
: — the results for low density (f6cm™3). At t=0 fs we find
SN e pronounced differences between BTE and SBE results for
S s both pulse widths due to the fact that, as discussed above, in
the SBE approach at the center of the pulse energy-time un-

FIG. 3. Evolution of the electron energy distribution after exci- Cert&_“nty leads to a broadening that, Is twice as big as that
tation with an 85-fs laser pulse obtained from the full Bloch modeIObt"jIInEd from the total pulse duration. In the absence of

showing relaxation due t¢a) mainly cp interaction(final density ~ €fficient dephasing processes, with increasing time the
n=104 cm~3), (b) cc and cp interactiorifinal densityn= 10 broadening in the SBE case decreases, resulting in much
cm™3, and(c) mainly cc interactior(final densityn=10 cm~3). ~ more similar distributions after the pulg€ig. 4(c)]. It is
interesting to notice that the agreement is better for the gen-
Figure 3 summarizes the generation and relaxation dyerated peak than for the phonon replicas due to the fact that
namics of the electron distribution function as a function ofcarriers in the phonon replicas have been generated at earlier
energy and time for the three densities discussed above &imes. Furthermore, we find a slightly better agreement for
obtained from the full SBE model. At the lowest density thethe short pulse than for the long pulse mainly related to a

Electron distribution (arb. units)
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FIG. 5. Same as Fig. 4 but at an intermediate density.

small broadening due to the dephasing by cp scattering pr¢
cesses, which is observable only if the pulse width become
of the order of the cp scattering time. S _ o

At the higher density (11(9 cm 3 Fig. 5 the influence of FIQ. 6. Real and imaginary _parts of the |nte_rband polarl_zgtlon as
the pulse width becomes much more pronounced. In the BT@mctlons of wave vector and time for three different densities.

case the energetic width of the generation rate is determined " . . .
by the laser pulse. Thus, for the longer pulse we find mucti€Sonance. At low densities the imaginary part has positive

narrower peaks than for the shorter pulse. Due to the narroX@lues off-resonance that are responsible for the stimulated
generation rate we still find pronounced phonon replicas aicombination resulting finally in the narrow generation rate.
t=300 fs. The broadening of the distribution function occursWith increasing density these positive parts are reduced in
mainly by a growing background, while the width of the agreement Wlt!’] the reduction of negative parts in the genera-
generated peak and its replicas increases only slightly. In thion rate as discussed aboveee Fig. 2 Furthermore, by
SBE case, on the other hand, at this density the energet|@oking at the time decay of the polarization, we observe a
width of the generation rate is determined by dephasing prostrong increase in the_ dephasing W_lth increasing densny asis
cesses and therefore it is essentially the same for both pulsé&Pected due to the increased efficiency of cc scattering. It
At all times there is nearly no dependence of the distributiorsnould be mentioned that, again, from a dephasing-rate ap-
functions on the pulse duration. Here it is clearly evident thaProximation we would find a very fast decay of the polariza-
the main origin of the broadening of the distribution function 10N that is nearly density independent.

is not related to scattering processes of the generated carriers 1"€ dynamics of the polarization allows us to obtain a
but to the broadening of the generation process itself. f€€Per insight into the question of why the dephasing rate
particular, the phonon replicas that are present in the BTEPProximation leads to completely unphysical results, in par-
case for the longer pulse are strongly washed out. ticular at low densities. For this purpose the scattering part of

The results discussed above have demonstrated the impdR® €quation of motion for the polarization may be written as

tance of the dynamics of the interband polarization on the

shape of the carrier distributions. Therefore, now we concen- E “Repe=S [ —wp_ WP Pk—q (49)

trate on the density dependence of the dynamics of the po-  dt Pk kP« k=g.k T Tkk—q Pk

larization. In Fig. 6 the real and imaginary parts are plotted

as functions of wave vector and time. Here, the fast oscillain this notation, the quantitRr,=|R,|expiA¢,) can be in-

tion related to the laser frequency has been taken out; i.e., wierpreted as a generalized rate, which, however, is a complex
have plotted the real and imaginary partsmfexpiw.t).  variable with modulus and phase. In the dephasing rate ap-
The real parts exhibit a dispersive behavior with zero at resgproximation the second term in the brackets is neglected and
nance and the imaginary parts exhibit a mainly absorptivéhe modulus coincides with the total scattering reite The
behavior characterized by negative values centered arourghase is independent &fand equal tor. Due to the struc-
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FIG. 7. Complex “scattering rates” for the polarizatidsee FIG. 8. Same as Fig. 7 but for a final density o 10

text for a final density oh=10" cm~3 at different times. At each -3,
time the figure shows thie dependence of the polarizatiok?p,|,
the absolute value of the rate of charigg|, and the phase differ- fore, the fractiorpy_q/px in Eq. (49) is approximately unity
enceA ¢y between in- and out-scattering terms. in the region of interest and the two contributions nearly
cancel. The phase is always closertan this region, show-
ture of the equation, we will refer to this case as to the ouing that, as expected, there is still dephasing, mainly due to
rate. In the full model, on the other hand, depending on thep scattering. It is interesting to notice that aroune0.43
relative phases opy and py_q, both modulus and phase nm™! the total rate is much larger than in the generated re-
becomek dependent. The modulus indicates the scatteringjion and the phase differs significantly from This phe-
efficiency and the phase determines whether the polarizatiofiomenon is related to cp scattering: Like in the case of the
at a given wave vector is reducédr A ¢~ ) or increased electron distribution, where phonon replicas are created by
(for Apy=0 or 27). The latter case describes polarizationthe transfer of carriers ik space, the in-scattering term in
transfer between different regions knspace. In Figs. 7-9 Eq. (49) transfers polarization from the generation region to
we analyze the details of the scattering dynamics of the pothe k region of the first phonon replica. Due to the phase
larization by plotting modulus and phase f at different  difference between initial and final polarization and the ad-
times for the same three densities as above. In addition, weitional dephasing, however, this effect is much weaker than
have included the modulus of the polarization including ain the case of the distribution function. Nevertheless, it is
density-of-states factdk?p,| in order to indicate thé& re-  responsible for a weak phonon-assisted generation at the first
gion that is relevant for the dynamics. phonon replica.

In the case of the lowest density (f@m~3, Fig. 7) we With increasing density (¥6cm ™3, Fig. 8 the screening
notice a big difference between the out rate and the total rateave vector increases, resulting in a less pronounced peaked
in the region of the generated polarization arok¥0.51  shape of the scattering matrix. Tlipsummation then ex-
nm~1. This difference is clearly the reason for the failure of tends over a larger range and the varying phase of the polar-
the dephasing rate approximation at low densities as seen ination results in a reduction of the in-scattering term. At the
Fig. 1. The out ratédotted ling is dominated by cc scatter- highest density (1§ cm~3, Fig. 9 the assumption of ran-
ing. However, due to the weak screening the scattering madom phases in the in-scattering term is well satisfied, in par-
trix Wy q is strongly peaked around smalivalues. There- ticular at later times, where the total rate agrees practically
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process completely destroys the phase coherence, strongly
" T g overestimates the dephasing at low and intermediate densi-
ties by producing very broad carrier distributions which are
in clear contrast to experimental findings. Including contri-
butions with the structure of in-scattering terms also in the
polarization equation removes this unphysical behavior.
: From thek-space dynamics of the polarization we have
0r extracted a generalized complex “dephasing rate,” which
3 clearly showed the cancelation between in- and out-
scattering contributions at low densities and the existence of
polarization transfer due to cp interaction. Thus, the scatter-
ing dynamics of the polarization exhibits a strong similarity
omn bl ] with the scattering dynamics of the distribution functions.
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| polarization in contrast to the carrier conservation in the
. out rate equation for the distribution function, is related to the com-

= oaf — total rate plex nature of the polarization and the interplay between co-

~ ; herent rotation and scattering processes.
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The present calculations have been performed with a stati-
y = cally screened Coulomb potential. On the time scale of a few
tens of femtoseconds this might lead to an overestimation of
the screening efficiency since the time required to build up
the screening is neglected. As a consequence, the total scat-
tering ratel’, at very short times might be larger. However,

in the present case we do not expect strong changes when
taking an improvedretarded screening model for the fol-
lowing reasons: First, the calculations are performed for
85-fs pulses and thus the density is still very low at these
very early times. Second, and more important, the increase in

o
~
lipl

Ay,

. /pdl

0.3 0.4 0.5 0.6 0.7 the matrix element due to a reduced screening occurs mainly
: . at small wave vectors. In contrast to a dephasing rate ap-
k (nm™) proximation, where all scattering processes give the same

contribution to the dephasing, here we have seen that scat-

FIG. 9. Same as Fig. 7 but for a final density o=10"*  tering processes with small momentum exchange are ineffi-
cm®, cient for the dynamics of both distribution functions and po-

larization and therefore we do not expect a strongly
exactly with the out rate in the region of nonzero polariza-enhanced dephasing.
tion. The big fluctuations at later times outside this region are The proposed Monte Carlo procedure can be regarded as
due to numerical noise created by the very small denominaa generalization of the more conventional EMC technique to
tor in Eq. (49) and is irrelevant for the dynamics. At early the case of physical quantities with complex value such as
times, however, on the high-energy side there is still a stronghe interband polarization or any other physical quantity,
cancellation between in- and out-scattering terms, which igvhich reflects some phase informatiteng., Fourier compo-
responsible for the difference between full model andnents of distribution functions in the analysis of four-wave-
dephasing rate approximation in this region as found in Figmixing experiment¥). This clearly shows that the Monte
1. Carlo method in this more general formulation is not limited

to incoherent dynamics of classical particles. On the con-

V. CONCLUSIONS trary, it can t_)e apsrilied to simulate any complelassical or

guantum variable:

We have presented both the theoretical background and As generally accepted, the Monte Carlo method, based on
the technical aspects of a generalized Monte Carlo methothe so-called “importance sampling?is the most efficient
recently proposed by the authors for the analysis of the muapproach for the analysis of incoherentlike dynamics with
tually coupled coherent and incoherent phenomena characomplicated scattering processes. This high efficiency is due
terizing the ultrafast carrier dynamics in photoexcited semito a “natural” distribution of statistical sampling, i.e., the
conductors. This approach combines on the same kineticomputer timgproportional to the statistical samplingpent
level the direct-integration method for the analysis of coherfor a givenk-space region is always proportional to the mag-
ent dynamics with the Monte Carlo simulation for the studynitude of the physical quantity of interest in this region as
of the incoherent scattering regime. well as to the scattering rates determining its time evolution.

This method has been applied to the study of the ultrafasfs a consequence, while the computer time required for a
carrier dynamics in pulse excited semiconductors based ondirect integration of a rate equation is only determined by the
SBE approach including cc and cp interactions. It turned ouparticular choice of th& space and time discretizations, the
that a dephasing rate approximation, where each scatterifgonte Carlo solution automatically evolves according to the
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natural time scale, i.e., that one given by the scattering APPENDIX A
rates>® and devotes computer time only to the energy regions
of physical interest.

As a result, the computer time spent in a Monte Carlohas been used in the calculations. The matrix element is
simulation reflects the role played by incoherent processes;. '

6
e.g., cc and cp scattering events. Therefore, the combinatioq{ven by?

For the sake of completeness, here we summarize the for-
mulas related to the statically screened Coulomb potential as

of direct and Monte Carlo solutions on which our approach 4me? 1+ aq?

is based constitutes a natural way of splitting coherent and Vo= SR, I (A1)
incoherent dynamics: When the phenomenon under investi- e/ K+ taq

gation is a typically coherent one, i.e., the typical time scalayith

of the dynamics is determined by the coherent terms, most of

the computer time will be devoted to the direct integration eh?Kk?

while only a negligible fraction will be spent for the Monte 4~ 16mmne?’ (A2)
Carlo simulation of the rare scattering processes. On the con- _

trary, when the dynamics is dominated by incoherent phethe screening wave vector

nomena, i.e., scattering rates determine the typical time scale 5 D=1 aep

as in the case of energy relaxation and dephasing, most of K= — Aﬁ (ﬁ) ‘9_fk) (A3)
the computer time will be devoted to the Monte Carlo simu- es7 % | K ok |’

lation. From these considerations, we see that the questioH tal volume?” th duced d the stati
whether one should prefer a Monte Carlo technique or ghe crystal volume”, the reduced mass,, and the static

direct integration in general is ill defined, the answer dependg'e\llf’/ﬁmC constangs. d Coulomb Al th h
ing on the naturémainly coherent or mainly incohereraf en using a screened Coulomb potential the exchange

the phenomenon under investigation. As discussed abové?lf'ggergy has to be supplemented by the Coulomb hole
rm=° The total self-energy of electrons and holes in

the present approach combines the advantages of both tecﬁ— S :
niques by automatically splitting the computer time accord- artree-Fock approximation is then given by
ing to the relevance of the particular regime. 1
RQENCel =3 Ve fe S X [VE - Vil (Ad)
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APPENDIX B
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In order to truncate the hierarchy of equations on this level, the expectation values of six opghatmrgparticle density
matriceg have to be factorized into distribution functions and polarizations. Renormalization and correlation effects can be
taken into account if additional contributions obtained by a factorization into single-particle density matrices and two-particle
correlations are included. Here, however, we will neglect these terms. Correlation effects are partially taken into account by
using the screened Coulomb potential. Energy renormalizations are of minor importance since typically the dominant term is
a rigid shift of the bands, which cancels in the energy differences relevant for intraband scattering processes. With these
approximations, the first term reads

T T T __¢e ege e e e
<Ck—q'Ck"+q'Ck”Ck'Ck’+qu—q>_ fk—q’fkfk’ék”,k—q’5k’,k—q+ fk—qfk’+q(1_ fk,)ékn’kr(éqr’q_ 5q’,k—k’—q)- (BZ)

Collecting all contributions, the equation of motion is then given by
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d
ih o S{(CkC/Cur+ qCc—q) = (— €k — €5t €51, o € ) S(CKC Cer 1 qCic—g) + (V= Vi - [FRFR (1= fRr ) (1= 5 )

— 18 e (L= TE) (L= 1)1+ V[ P gPE (51— T2+ Prrs Py (FE_q— 5]

_Vk—k'—q[Pk—qp:r(fﬁr+q_fﬁ)+ P+ aPk (FR—q= fin)].

(B3)

Formally integrating Eq(B3) and performing a Markov approximation as in the case of cp interaction results in the second-
order contributions given by Eq921)—(26). In these equations exchange contributions, i.e., terms proportional to
VoVk-k —q., have been neglected with respect to the direct terms proportioh‘agh%) which, except for very high densities,

is usually a good approximation due to the strongly peaked shape of the matrix element.
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