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Abstract: A knot is a circle embedded in the space. Projecting a knot on a plane, we obtain a diagram which is known 

as the knot diagram. The vertices of the diagram, where the curved lines are crossed, can be considered as sites 

occupied by oscillators. The synchronization of these oscillators can be studied by means of a Kuramoto model. Here 

we propose to define some order parameters, of the complete knot diagram and of its regions, to study the 

synchronization of the system with regard to the different parts of it. 
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Introduction 

 

Networks of coupled systems have been used to model 

the collective dynamics of biological oscillators in self-

organizing systems and in excitable media. Under 

certain conditions, the collective dynamics shows 

synchronization [1]. In fact, the importance of the 

synchronized behaviours in biology was already 

highlighted by A.T. Winfree [2] in 1967: in his paper, 
the author told that "the variety of biological rhythms 

leaves no doubt that autonomously periodic processes 

contribute to the coordination of life-processes." 

 

To study the synchronized behaviour of coupled 

oscillators, a mathematical model, which is known as 

the Kuramoto model, had been developed. This model 

assumed the oscillators were nearly identical and that 

the phase of each oscillator was coupled to the 

collective behaviour [3,4]. Recently, some studies 

based on the Kuramoto model have been proposed for 

a modelling of neuronal synchronisation [5], after the 
discovery that the regions of the brain are coupled and 

exhibit synchronous activity [6]. As told in [5], 

neuronal synchronisation also plays a role in vision, 

movement, memory and epilepsy [7–13]. Thus, the 

Kuramoto model would provide a basis to modelling 

some phenomena of the brain. 

 

In fact the Kuramoto model had been applied to many 

networks of coupled oscillators to study the collective 

dynamics. Studies have been performed either on 

regular networks, such as cubic lattices, or on random 
networks [3]. The small-world networks, which are 

intermediate of the local regular networks and the fully 

random networks, have been used too. The small-

world networks are characterized by the fact that a 

high clustering, which is a characteristic of the regular 

networks is accompanied by a short path length, which 

is typically observed in random networks [14]. Phase 

synchronization on small-world networks emerges in 

the presence of even a tiny fraction of shortcuts, 

indicating that the same synchronizability as that of a 

random network can be achieved [14]. 

 

Kuramoto oscillators and knots 

 

Here we propose the study of the synchronization of 

Kuramoto oscillators placed on the graph created by 

the projection of a mathematical three-dimensional 

knot on a bidimensional plane. This projection is 
known as the knot diagram. An intuitive suggestion is 

provided by Wikipedia [15]: think of a knot casting a 

shadow on the wall to have the knot diagram. Here we 

are talking about mathematical knots which are the 

embedding of a closed line in the three-dimensional 

space: this line can be knotted or unknotted. From a 

more theoretical standpoint, a knot is a 

homeomorphism that maps a circle into three-

dimensional space and cannot be reduced to the simple 

circle by a continuous deformation. The difference 

between the mathematical and the conventional notion 

of a knot is that mathematical knot is closed; the 
conventional knot has the ends to tie or untie. The 

branch of mathematics that studies knots is known as 

knot theory [16-19]. 

 

In the upper part of Fig.1, it is shown the so-called 

Jordan curve of a knot, a non-self-intersecting 

continuous loop in the plane representing the three-

dimensional knot. A “trip code” can be created 

considering the intersections and labelling them [17]. 

In the case of the diagram in Fig.1, the trip code is 

ABCDEFBCGEHAFGHA. The labels are letters in 
alphabetic order (A,B,…,H). The label is put on the 

vertices the first time we meet it during the trip on the 

knot diagram. Each letter labelling the intersections is 

then appearing twice in the trip code. The starting label 

appears three times for the convenience of the reader.  

We can see from the figure that each vertex of the 

graph can be connected with two or four other sites, 

according to the curve. The knot diagram subdivides 

the space in several regions.  
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Fig.1 – The Jordan curve of a knot and the corresponding graph. The trip code is ABCDEFBCGEHAFGHA. 

 
Let us study the synchronization on the knot, using 

then a Kuramoto approach. The Kuramoto model as it 

stands describes oscillators of nearly natural 

frequencies, connected together via coupling constants. 

Each vertex  i of the knot diagram has an oscillator, the 

state of which is characterized by its phase φi. We 

write the set of equations of motion governing the 

dynamics of the N oscillator system: 
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.where i  denotes the nodes connected to site i. For 

instance, let us consider site i=G: from the figure we 

see that it is connected with C, D, E and F. Then we 

have i =C,D,E,F, when we  assume a coupling just 

to the nearest neighbour sites. K is the coupling 

strength, k the range of the local connection [14]. In 

our example k=4. i  is the intrinsic frequency of the 

i-th oscillator. 

To evaluate the synchronization, an order parameter is 

defined [14]. Let us define it as: 
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.where n is the number of oscillators chosen for 

calculation. The bracket  indicates the average 

over time. The average over different realizations of 

the intrinsic frequencies, as used in [14], is not 
considered in the proposed calculation.  

To show an example of synchronization on a knot we 

look at the diagram in Fig.1, having oscillators on 

vertices with frequencies which are ranging from 1.20 

to 0.85 s−1, reducing by steps of 0.05 s−1, following the 

alphabetic order of labels ( ,20.1 1 sA  

,15.1 1 sB  
185.0,...,  sH ). 
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Fig.2 – The diagram corresponding to the knot in Figure 1 divides the plane in several regions. The grey ones are here 

used to study the synchronization. 

 

Discussion and results 

 

We can study the role of the coupling strength K in the 

frequency synchronization. It is interesting to compare 
the overall behaviour of the synchronization, that we 

obtain using all the sites in the evaluation of the order 

parameter, with the synchronization of each single 

region of the knot diagram. As we can see in Fig.2, the 

curve obtained by the projection of the knot on a plane, 

is a curve which divides the plane is several region. 

 

In Fig.3, the red dotted curve is showing the behaviour 

of the order parameter obtained from Eq.2, when it is 

assumed index j ranging from 1 (corresponding to 

vertex A) to n=8 (corresponding to vertex H). The 
order parameter is then evaluated considering all the 

vertices of the knot. The other curves are referring to 

the synchronization of each of the grey regions in the 

following way. Let us consider for instance region 

CDG: it is assumed in Eq.2 that j is ranging from 1 to 

3, where 1 corresponds to C, 2 to D and 3 to G.  

 
Let us note the different behaviour of the 

synchronization of regions AH and BC shown in Fig.3 

(obtained from the Equation 2 of the order parameter, 

evaluated for j=A,H and j=B,C, respectively). As we 

can see from the figure, BC is synchronized for lower 

values of the coupling strength K. The reason is than 

BC have two vertices occupied by oscillators with the 

lowest possible difference in frequency, connected 

each other by two edges. Moreover B and C are 

connected by the trip code with other vertices having 

close frequencies. AH is a region where the vertices 
have oscillators with the highest frequency difference 

and the trip code is connecting them with oscillators 

quite different too. 

 
Fig.2 – Behaviour of the order parameter defined in Equation 2 (see text for explanation) as a function of the coupling 

strength K. 
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The use of knot diagrams to simulate the behaviour of 

real systems composed by several oscillators could be 

useful in studying the synchronization of the system. 

Adjusting the frequency values according to the labels 

and the trip code according with the connections 

among sites we can obtain some order parameters, 

suitable to analyse the behaviour of the system. A 

study and analysis of existing functional integrals and 

invariants defined on knots is under development to 
verify a connection with the proposed order parameter 

for oscillators.  
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