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I. Introduction 

A. Reconstructing 3D shapes: general techniques 

The reconstruction of three-dimensional shapes is a fundamental research field in computer vision. 

A large number of techniques have been discussed and implemented, depending first on the type of 

sensors used. Active 3D scanning is currently a leading technology. Most active 3D scanners use 

ranging techniques (time of flight, phase comparison) or triangulation with laser beams. Their main 

feature is producing depth maps that are close to the final 3D shape (Figure 1).  

 

Figure 1: 3D scanners 
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However, 3D scanners are expensive, and affected by several limitations. They are rather invasive, 

different equipments are required for scanning objects of different sizes, scanning outdoor large 

scenes presents several problems, scanning times are not adequate to real time applications, as 

capturing the shape of objects in motion.  

For these reasons, in several practical situations traditional image-based computer vision 

approaches are more effective. For instance, an important emerging area usually requiring image-

based approaches is the analysis of the human body movements (Figure 2).  

 

Figure 2: the analysis of posture and motion of the human body is a popular computer vision area 

Several passive approaches, based on 2D images captured by inexpensive cameras, have been 

proposed, usually referred to as shape from X, where X stands for some image feature which can be 

used as 3D shape cue (Aloimonos, 1988). Among them, stereo (disparity), texture, motion, focus, 

shading and silhouettes.  An advantage of image-based approaches is that they can easily supply 3D 

textured reconstructed objects. Actually, most of these approaches require textured objects, or lines 

called image contours.  

Some of these approaches, as shape from shading (Zhang and Tsai, 1999), require a number of 

hypotheses and conditions that seldom take place in practice. The most effective approaches are 

shape from stereo and shape from contours. Shape from stereo requires images from (at least) two 

cameras and matching algorithms for determining corresponding points in the two images (Trucco 

and Verri, 1998). From the different positions in the images of the corresponding points (stereo 
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disparity), and camera geometry, it is easy to find the 3D position of a point. Shape from motion in 

principle is an extension of shape from stereo, since it considers multiple images of the same 

objects taken with the same camera from different relative positions, and also requires finding 

correspondences in the various images. The purpose of this work is to discuss theory and practice of 

shape from silhouettes. 

 

B. Shape from silhouettes 

Many algorithms for reconstructing 3-D objects from 2-D image features are based on particular 

lines called image contours. Actually, these lines can be also used for recognizing 3D objects. This 

approach mimics to some extent the human vision, since we are often able to understand the solid 

shape of an object from a few image lines laid out on a plane (Gibson, 1951, Koenderink and van 

Doorn, 1979). 

 

Figure 3: Different types of image lines 

 
In general, from an image of a 3D object we can extract various kinds of lines, separating areas of 

different intensities or colors. Some of them are not directly related to the 3D shape, and correspond 

to different surface properties, or to abrupt changes of the incident light. Other lines are directly 

related to the surface of the object. They are usually called edges and occluding contours (see 

Figure 3). 
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The edges are the projections of the creases of the object (surface normal discontinuities), and are 

not present in images of smooth surface objects.  The lines called occluding contours (apparent 

contours, limbs) are the projection onto the image plane of the contour generators of the objects. A 

contour generator is a locus of points of the object surface where there is a depth discontinuity 

along the line of sight.  

The lines related to the 3D shape (occluding contours and edges) produce line drawings that can be 

organized into the aspect graph, a user-centered representation of 3D objects first proposed in 

Koenderink and van Doorn (1979).  

With the word silhouette we indicate the area of the image bounded by the occluding contours that 

occlude the background. Sometimes the word silhouette is used for the boundary of this area. The 

idea of using silhouettes to reconstruct 3D shapes was first introduced in the pioneering work of 

Baumgart (1974). Since then, several variations of the shape from silhouettes methods have been 

proposed. For example, Martin and Aggarwal (1983) and Kim and Aggarwal (1986) used 

volumetric descriptions to represent the reconstructed shape. Potemesil (1987), Noborio et al. 

(1988) and Ahuja and Veenstra (1989) used octree data structure to accelerate the reconstruction 

process. Shape from silhouettes has also been used in Szeliski (1993) to build a non-invasive 3D 

digitizer using a turntable and a single camera. Other recent techniques (Kutulakos and Seitz, 2000, 

Matusik et al., 2001, Slabaugh et al., 2003) stem from this idea. 

In principle, reconstruction from silhouette requires back-projecting the silhouettes from the 

corresponding viewpoint for obtaining solid cones. They are bounded by the circumscribed cones 

formed by the half-lines tangent to the object. Since the object must lie inside each cone, it must 

also lie inside their intersection R, which summarizes the information provided by all silhouettes 

and viewpoints (Figure 4). This reconstruction technique is called volume intersection (VI) 
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Figure 4: Volume intersection. © 2003 IEEE 

 A reason that makes silhouette-based techniques popular is that silhouettes are usually easy to 

extract from images. This operation is particularly fast and robust with controlled background, or 

for objects in motion with respect to the background. Another important feature of silhouette-based 

technique is that they are convenient for real time applications.  

However, one drawback of this approach is that, depending on the object, the information provided 

by its silhouettes could be insufficient for fully understanding a 3D concave shape. The problem, 

qualitatively perceived by several researchers in the field, received a full quantitative solution in 

Laurentini (1994).   

 The content of this chapter is as follows. First we discuss the theoretical problems raised by 

silhouette-based image understanding. In particular, we present and develop the concept of visual 

hull of an object, which allows answering questions such as: can the 3D shape of an object be fully 

understood from its silhouettes? We will see that this geometric entity allows answering this and 

other basic questions related to silhouettes approach. It will be shown that the visual hull and the 

aspect graph of an object are strictly related. The computation of the visual hull will be discussed 

for polyhedra, object of revolution and smooth surface objects. In general, VI supplies an object 

which is not coincident with the object to reconstruct: the problem of inferring the real shape from 

the object reconstructed will be also discussed, introducing the concepts of hard and soft points. On 

the base of these concepts, we will show how an interactive reconstruction approach can be 
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outlined. Finally we will deal with the problem of reconstructing an object when we have its 

silhouettes, but no information about the relative positioning of the corresponding viewplanes. 

The last part of the chapter is devoted to survey practical shape from silhouettes.  
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II. The Visual Hull 

Reconstructing as well as recognizing 3D objects using silhouettes requires facing some problems 

inherent to the approach. An intuitive analysis of some examples will help us to focus the problems 

raised by this technique. Let us consider the concave objects O1 and O2 in Figure 5. The difference 

between them consists of a small cube inside the concavity. It is not difficult to intuitively realize 

that this cube does not affect any of the silhouettes of the object, provided that the corresponding 

viewpoint is not “too close” to the object (a precise formulation of this statement will be given 

later). The example shows that we could be unable to distinguish different concave objects using 

their silhouettes.  

 

Figure 5: O1 and O2 cannot be neither exactly reconstructed nor distinguished using their silhouettes. © 1994 

IEEE 

Let us consider now the reconstruction from silhouettes of O1 and O2. Since the silhouettes relative 

to viewpoints not ”too close” are equal for the two objects, we cannot reconstruct exactly neither O1 

nor O2 from these viewpoints. On the contrary, assuming viewpoints equally positioned with 

respect the two objects, the same object is reconstructed by VI.  

The examples show that the silhouette-based approach raises a series of question, such as:  

1. can we reconstruct exactly a given 3D object with VI? 

2. if not, which is the closest approximation of the object that can be obtained using VI? 

3. can two objects be distinguished from their silhouettes? 
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4. which parts of the surface of an object can affect its silhouettes, and can be reconstructed by 

VI? 

5. how much a concave object can change its shape without affecting its silhouettes? 

Before dealing with precise geometric definitions and theorems, it will helpful to consider another 

example of VI reconstruction. The object in Figure 6(a) is sufficiently simple to allow answering 

the previous questions concerning reconstruction by an intuitive inspection. We understand that it 

cannot be exactly reconstructed. The closest possible reconstruction is shown in Figure 6(b). It can 

be obtained from two ideal viewpoints. Several more viewpoints-at least six-are required if located 

at finite distance. The surface that can be reconstructed is shown in Figure 6(c). The object can 

assume any shape inside the polyhedron P without affecting any silhouette obtained by parallel 

projection, or perspective silhouettes obtained by viewpoints not “too close” to the object  Figure 

6(d). 
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Figure 6: reconstructing an object using parallel projection 

 In the following we will introduce the geometric concept of Visual Hull, which provides precise 

quantitative answer to the question raised by silhouette-based shape understanding (Laurentini 

1994). In the next sections, we will describe the visual hull concept (II.A) and the algorithms for its 

computation for several classes of objects (II.B). In II.C, we will show what can be inferred of the 

originating object from the reconstructed object. Finally, two particular problems are discussed: 

interactive reconstruction of objects, in II.E, and reconstruction with unknown viewpoint, in II.F. 

A. Definitions and general properties 

Broadly speaking, the visual hull of an object O is the maximal object that gives the same 

silhouettes of O from a given set of viewpoints, or the envelope of all the possible cones 

circumscribed to O generated by these viewpoints. We will first define the visual hull relative to a 

set of viewpoints lying in a particular space region that we call the viewing region.  Then we will 

show that there is a unique visual hull for any viewing region completely enclosing the object and 

not sharing any point with its convex hull. This will be referred as the external visual hull, or visual 

hull without any other specification, since it is relevant to most practical applications. Dropping any 

restriction for the viewpoint, we obtain the internal visual hull, which also provides information on 

the part of the surface of the objects that cannot be seen by a viewing region outside its convex hull.   

 

1. The Visual Hull of an object relative to a viewing region 

Let VR be a region of R3 where we can locate viewpoints to observe an object O and to extract its 

silhouettes.  

Definition 1: the visual hull VH (O,VR) of an object O, relative to VR, is a region of R3 such that 

for any point p ∈VH  and any viewpoint V ∈VR, the half line starting at V and passing through p 

contains at least one point belonging to O. 
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A 2D example is shown in Figure 7. 

 

Figure 7: The visual hull of O relative to VR: a 2D example 

 It is immediate to see that O ⊆ VH (O,VR), since any point of O satisfies the definition.  The 

following propositions can be obtained from Definition 1. 

Proposition 1: VH (O,VR) is the maximal object that gives the same silhouette as O when observed 

by any viewpoint V belonging to VR. 

In fact, according to Definition 1, the projection of every point p ∈ VH (O,VR) from any viewpoint 

V ∈VR belongs to the silhouette of O obtained from V, as well as the projection of any point q 

belonging to O, since O ⊆ VH (O,VR). This demonstrates that VH (O,VR) is silhouette-equivalent 

to O for any viewpoint in VR. Furthermore, VH (O,VR) is the maximal silhouette-equivalent 

object, since for any point p’  not belonging to VH (O,VR) there is at least a line starting from a 

point V’  in VR and passing through p’  and not intersecting O. Therefore, the projection of p’  does 

not belong to the silhouette of O obtained from V’ , and p’  does not belong to an object silhouette 

equivalent to O. A 2D example is shown in Figure 8. 

 

Figure 8: VH(O,VR) is the maximal silhouette-equivalent of O 
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Proposition 2: VH (O,VR) is the closest approximation that can be obtained using volume 

intersection techniques with viewpoints V belonging to VR. 

In fact, only points not belonging to VH (O,VR) can be removed intersecting 3D viewing cones, 

since these are the only points that do not belong to all the silhouettes of O that can be obtained 

from VR. 

These properties provide quantitative answer to the questions relative to capabilities and limits of 

silhouette-based techniques:  

1. an object O can be exactly reconstructed by volume intersection techniques using silhouettes 

obtained by viewpoints from a viewing region VR iff O = VH (O,VR) 

2. the closest approximation of the object that can be obtained with silhouettes obtained from 

VR is VH (O,VR) (Proposition 2) 

3. two objects O and O’ can be distinguished using their silhouettes observed from a viewing 

region VR iff VH (O,VR) ≠ VH (O’ ,VR) 

4. the part of surface of the object that affects its silhouettes obtained from VR and that can be 

reconstructed is the part coincident with the surface of the visual hull  

5. an object can assume any shape without affecting any silhouette observed from VR as far 

these shape variations are contained in VH (O,VR)-O 

 

2. The external Visual Hull 

According to Definition 1, for every object O there is an infinite set of visual hulls, one for each 

possible viewing region VR. This seems to reduce somewhat the effectiveness of the idea. 

However, in this section we will show that there is a unique object subsuming all the practically 

important cases, and that this object is related to CH(O), the convex hull of O. 
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Observe that, in many practical cases, the object to be recognized or reconstructed can assume any 

orientation with respect to the viewpoints. Let us therefore consider the visual hull relative to a 

region VR’  that completely enclose O. Let us also suppose that: 

 VR’ ∈  VRc = R3 - CH(O) 

that is, VR’  is a viewing region outside the convex hull of the object, which appears a practically 

sensible assumption. The following proposition holds: 

Proposition 3: VH (O,VR’ ) ⊆ CH(O) 

To prove this statement, we consider a point p∉∉∉∉CH (O), and show that p∉∉∉∉VH  (O, VR’ ). We can 

easily find a viewpoint V such that the line starting at V and passing through p does not intersect O. 

A viewpoints of this kind can be found on the plane P passing through p and perpendicular to the 

segment pq, where q is the point of CH(O) closest to p. In fact, by contradiction, if the viewline Vp 

intersect CH(O) in another point, let’s say point t in Figure 9, the line tq belongs to CH(O) and 

therefore the point of CH(O) closest to p would be r  (being pr  perpendicular to tq), and not q, 

contradicting the hypothesis. 

 

Figure 9: the visual hull relative to viewing regions outside the convex hull of an object O, belongs to CH(O) 

 
Let us consider a second viewing region VR” , that, as VR’, completely encloses O and lies outside 

its convex hull. We have: 

Proposition 4: VH (O,VR’ ) = VH (O,VR” ) 

CH(O) 
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In fact, consider a point q∈VH (O,VR’ ). According to Definition 1, for any viewpoint V’ ∈VR’ the 

half line V‘q  intersects O. It is clear that also any half line V”q , where V” ∈VR”   intersects O (see 

Figure 10), since for any V”  the half line qV” intersects the viewing region VR’. Then we can find 

a viewpoint V’  belonging to the line qV” , such that the half line V”V’q intersects O. Concluding, 

any point q belonging to VH(O,VR’ ) also belongs to VH (O,VR” ).  Vice versa, the same argument 

shows that any point belonging to VH (O,VR” ) also belongs to VH (O,VR’ ), and it follows that the 

two visual hulls are coincident.  

 

Figure 10: all VHs relative to VRs completely enclosing O and not entering CH(O) are equal 

Observe that Proposition 4 could not hold if a viewing region intersects the convex hull of the 

object. Consider in fact the 2D case shown in Figure 11, where the region VR’  has a part inside the 

convex hull of O. Also consider the point p∈∈∈∈VH (O,VR” ).  It does not belong to VH(O,VR’ ), since 

for viewpoint as V’  the half line V’p  does not intersect O. The argument of the previous proof 

requires that V’  and V”  lie on the same side of p, which happens if both viewing regions do not 

share points with the convex hull.  

 

Figure 11: the VHs relative to VR’ and VR” are different 
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In conclusion, there is a unique visual hull, not exceeding the convex hull of O, relative to all the 

viewing regions enclosing O and not entering its convex hull. Observe that this precise geometric 

condition substitutes the intuitive statement “not to near”.  

Definition 2: VH(O,VRc) is the external visual hull, or simply the visual hull of O, indicated as 

VH (O), without any other specification. 

It is clear that the (external) visual hull is relevant to most practical situations. The previous answer 

to the question raised by the silhouette approach can be reformulated in terms of (external) visual 

hull, making reference to normal viewing regions. 

A point p belonging to VH (O) can be characterized in terms of the lines passing through p. The 

following statement holds: 

Proposition 5: a point p belongs to VH (O) iff any line passing through p contains at least one point 

of O. 

This proposition is equivalent to Definition 1 for the viewing region VRc =R3 - CH(O) 

 and it will be used in the following to compute the visual hull. We define free line relative to an 

object O a straight line not sharing any point with O. 

3. The Internal Visual Hull 

A limit case takes place when the object itself is the boundary of the viewing region. Let  

VR i = R3 – O.  

Definition 3: VH (O,VR i) is the internal visual hull, IVH (O) 

The points belonging to the internal visual hull can be simply characterized in terms of half lines: 

Proposition 6: a point p belongs to IVH (O) iff any half line passing through p contains at least one 

point of O. 

This statement, corresponding to Proposition 5 for the (external) visual hull, is useful to construct 

the internal visual hull. Finally, since clearly VH(O,VR) ⊆VH(O,VR’) if VR ⊇VR’ and the 

viewing region relative to IVH (O) is the largest possible, we have: 
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Proposition 7: IVH (O) ⊆ VH (O) 

It also follows that O ⊆ IVH (O) ⊆ VH (O) ⊆ CH(O). 

For convex objects all these entities are coincident. 

The internal visual hull admits another interesting property. It is easy to show that the surface of the 

internal visual hull not coincident with the surface of the object cannot be observed by viewpoints 

outside the convex hull. In other words, the IVH  can tell us which features of a concave object will 

never appear in any image taken by points not too close to the object. 

B. Algorithms for computing the Visual Hull 

In general, the surface SVH of the visual hull can be divided into S’VH, coincident with a part of the 

surface of O, and S”VH, which “covers” some concavities of the object. An example is shown in 

Figure 12, where O is one half of an object of revolution. CH(O) is its convex hull, where the 

concavity has been filled. Proposition 5, stating that through points not belonging to VH  must pass 

free lines, suggests the following intuitive physical construction of VH . Fill the concavities of the 

object with soft material, and scrape off the excess material with a ruler grazing the hard surface of 

the object in all possible ways. The last image shows the visual hull VH(O), and in particular S”VH, 

the surface of the visual hull that covers the concavity, produced by the ruler. A similar intuitive 

construction holds for the internal visual hull. It consists of “digging” into the concavities with a 

tool corresponding to a half line, according to Proposition 6. In the case of Figure 12, the soft 

material filling the concavity would be completely scraped off, since IVH (O) is coincident with O. 

In the following subsection we will show how the patches composing S”VH can be found for 

different categories of objects. Then, we will describe algorithms for computing VH  of 2D objects, 

polyhedra, solids of revolution, and smooth curved objects. 

We will also show that the visual hull is connected to another geometric entity, the aspect graph, 

and that the visual events surfaces, that we will define in the next sections, can be used to determine 

the relevant patches for S”VH.  



 17 

 

Figure 12: An object O, its convex hull CH(O) and its visual hull VH(O). © 2004 IEEE 

1. The Aspect Graph 

As already mentioned in the introduction, the contours that occlude both the background and the 

object itself, together with the image lines which are projections of the creases of the object 

(surface normal discontinuities), produce line drawings that can be organized into the aspect graph 

(Koenderink and van Doorn, 1979). The range of all possible viewpoints can be partitioned into a 

set of maximal open regions where the topological structure of the line drawing, also called aspect, 

is stable. Crossing the boundaries between these regions produces a topological change in the 

aspects known as visual event. The boundaries are also called the bifurcation set. Aspects and visual 

events can be arranged into the aspect graph (AG), where each node is labeled with an aspect and 

each arc represents a visual event. For the perspective AG, each aspect corresponds to a connected 

open volume of viewpoints, and each visual event to a boundary surface. For the parallel AG, 

aspects and visual events correspond to open connected areas and boundary lines on the Gaussian 

sphere. The parallel aspect graph is a sub-graph of the perspective aspect graph, since not any 

perspective aspect is also a parallel aspect. 

Constructing the AG requires determining the catalogue of the possible visual events and the related 

boundary surfaces, which is relatively easy for planar faces object (Gigus et al. 1991). Several 

authors have studied the more complex visual events of curved surfaces. A possible approach is 

using the singularity theory for determining the visual events as the singularities of the visual 

mapping, which maps the surface of the object onto the image plane (Koendrink and van Doorn 

1976, Kergosien 1981, Platanova 1984, Callahan and Weiss 1985, Rieger 1987, Rieger 1990, 
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Petitjean 1996). Other approaches have also been used (Sripradisvarakul and Jain 1989, Eggert and 

Bowyer 1993). For a comparison of the catalogues presented, the reader is referred to Eggert and 

Bowyer (1993).  

 

 

2. The Boundary Surfaces of the Visual Hull 

 

In this section we will derive some necessary condition for a point to belong to S”VH, the surface of 

VH (O) not coincident with the surface of O. In general this surface covers some unreconstructable 

concavities of O, even though in some rather exceptional case there could be parts of VH (O) not 

connected to O (Laurentini, 1994). We will find that S”VH consists of patches of surfaces that 

belong to the bifurcation set of the aspect graph of O. 

Let us recall (from Proposition 6) that a point p does not belong to VH (O) iff through p pass free 

lines (lines not intersecting O). From this statement we can derive a necessary condition for a point 

to belong to SVH: 

Proposition 8 - A necessary condition for a point p to belong to SVH is that through p passes at 

least one straight line sharing with O only boundary points. 

This follows from the fact that the visual hull of O is the object reconstructed by volume 

intersection from any possible viewpoint of a region outside the convex hull of O. This means that 

any point of SVH belongs to the surface of (at least) one cone formed by the half lines starting at a 

viewpoint and tangent to O. Then, for finding points of SVH we can restrict ourselves to consider 

points of straight lines which make contact with the surface S of the object, without intersecting O 

in other parts.  

It is clear that, for lines making contact with O at one point only, this point belong to S’VH. Then, 

for finding S”VH we must consider lines making two (as in the example of Figure 12) or more 
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contacts with S. If we restrict ourselves to generic surfaces without exceptional alignment condition, 

we need to consider only lines making contact at 3 points. Actually, generic surfaces also admit 

lines making more than 3 contacts, but these lines are isolated and do not form surfaces (Arnold, 

1984, Petitjean et al., 1992). Let us inspect more carefully these lines: 

• Bi-tangent lines. Straight lines tangent at two different points of O do not yield surfaces but 

fill volumes, so we need a radical pruning of these lines. This will be discussed in the 

following for two different categories of objects: polyhedra and smooth surface objects.  

• Tri-tangent lines. In this case the relationship with the aspect graph is immediately 

established, since tri-tangent lines produce the visual event known as triple point (Kergosien 

1981, Callahan and Weiss 1985, Petitjean et al. 1992, Eggert and Bowyer 1993, see Figure 

13). Lines making three contacts with an object form surfaces that we will discuss in detail 

for polyhedra and smooth surface objects 

 

Figure 13: the visual event triple point. © 2004 IEEE 

As for the surfaces that bound the internal visual hull, the difference is only that we must consider 

half-lines making two or three contacts with a generic object. 

3. Computing the Visual hull in 2D 

The visual hull is essentially a 3D concept. However, algorithm for computing 2D visual hulls are 

helpful for computing the visual hull of 3D objects obtained by sweeping 2D objects, such as 

buildings and their interior. In addition, the 2D algorithm for polygonal objects can be used as part 

of an algorithm for computing the visual hull of polyhedra. For these reasons we will discuss the 

computation of the VH  (and briefly of the IVH ) of polygons in a plane 
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a) Computing the Visual Hull of a set of polygons. 

The VH  of any simply connected 2D object is trivially coincident with its convex hull, so we will 

consider a set of polygons SP. It is clear that, to find points which could belong to the boundary of 

VH  of generic 2D objects, we must restrict ourselves to lines making two contacts with the object.  

Therefore, for generic polygons, the possible boundaries of VH  are the lines passing trough two 

vertices V i and Vj and not intersecting elsewhere the polygons.  

A line L making two contacts is divided by the vertices into 3 segments. Two cases, shown in 

Figure 14 can take place. In the first case, Figure 14(a), it is easy to see that through each point p of 

both exterior infinite segments can pass a free line as L’, obtained with a small rotation of L about 

p, compatible with the vertices. Then only the interior segment can be a boundary of VH . Here and 

in the following we will call active a segment of a line sharing with the object only boundary points, 

and such that the geometry at the contact point does not allow free lines through the segment. 

 

Figure 14: the active segments 

In the second case, Figure 14(b), only the exterior segments are active. Observe that, for dealing 

with exceptional alignment of vertices, the cases of contact at three or more aligned vertices can be 

decomposed into several two-contact cases, each of which determines active segments. The total 

active part is obtained as the union of all active segments. Consider for instance the example in Fig. 

 

Figure 15: Decomposing a case of three contacts into several two-contact cases 

The whole line results active, as it can be verified by OR-ing the active parts due to each pair of 

vertices. 

The general idea of an algorithm for computing VH  is as follows:  
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a) find the active segments, 

b) intersect these lines to form a partition Π of the plane such that each zone belongs totally 

or does not belong at all to VH .  

c) select and merge the zones belonging to VH . 

Let us consider in more detail each step, and its complexity: 

Step a). Let n be the number of vertices. The edges are O(n). Determining the active segments 

requires considering O(n2) pairs of vertices. Each line joining two vertices must be intersected with 

O(n) edges. O(n2) active segments result in O(n3) time. Some obvious pruning operations can be 

performed, as discarding immediately concave vertices, lines that intersect the polygons at the 

contact vertices, segments outside the convex hull of the polygons that can be computed in 

O(nlogn) time (Preparata and Samos 1985). 

Step b). Observe that, for constructing Π, we must also use the edges of SP that belong to lines not 

intersecting SP. These edges are also boundaries of VH . 

Intersecting the active segments to form Π can be performed with the plane sweep algorithm 

described in Gigus et al. (1991), which makes the computation time sensitive to the size of the 

output. If m is the size of the partition, its construction requires O(mlogm) time. In any case, m is 

O(n4). 

Step c). Efficiently performing this step with a linear visiting algorithm requires introducing the 

concept of visual number of a point VN(p). It is defined as the number of families of free lines 

passing through p. Two free lines belong to the same family if one can be obtained from the other 

with a rotation about p without intersecting O. For instance, the visual number of point q in Figure 

16 is 2. 
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Figure 16: Two families of free lines pass through q. © 1994 IEEE 

Clearly, the VN of a point belonging to VH (SP) is zero. The VN is relevant to our case since it is 

easy to see that all points of each zone of the partition Π have the same visual number. In fact, if we 

imagine a point p moving through the zones of Π, its visual number changes if and only if it crosses 

an active line. More precisely, one is added or subtracted to visual number according to the crossing 

direction. In Figure 17 we show the various possible cases. 

 

Figure 17: the three cases of active lines and their active segments. © 1994 IEEE 

For each case we indicate with an arrow the crossing direction that increases by one the visual 

number, and the new family of free lines obtained. Observe that the edges lying on lines not 

intersecting SP change VN from 0 to 1. 
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Concluding, for selecting the zones belonging to VH  we need only to visit the dual graph of the 

partition, computing the VN of each zone. We can start from a zone internal to SP, whose VN is 0. 

After visiting the dual graph, we can merge the regions whose VN is 0. Step c) can be performed in 

time O(m), and the whole algorithm takes O(n3+mlogm) time.  

An example, showing the initial set of polygons, the partition Π and the VN of each region, is 

shown in Figure 18. Observe that there part of VH  is not connected. 

 

Figure 18: An example that shows the partition and the VNs. © 1994 IEEE 

b) Computing IVH( SP) 

Here we outline an algorithm for computing IVH , similar to the one previously described. The 

differences are the following. The active lines are those shown in Figure 19. Crossing these lines 

also adds or subtracts one to the internal visual number IVN, defined as the number of families of 

free half lines starting at a point (see Figure 20). 
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Figure 19: Active lines and active segments for IVH. © 1994 IEEE 

 

Figure 20: the internal visual number of q is three. © 1994 IEEE 

 

The edges of SP must be also be used for forming the partition, but cannot be crossed visiting the 

partition, since the IVN can assume any value immediately outside SP. More details can be found in 

Laurentini (1994). An example is shown in Figure 21 where we show several objects, their VH  and 

IVH : 
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Figure 21: three 2D objects, their visual hull and their internal visual hull 

 

c) Computing the visual hull of curved 2D objects. 

The previously described algorithms for VH  and IVH  also hold for a set of objects bounded by 

curved lines, the only difference being that the active lines are those bitangent to the objects. 

4. Polyhedral objects 

An algorithm for computing the visual hull of polyhedral objects is described in Laurentini (1994). 

This algorithm uses a brute force approach and takes O(n12) time. 

 A more efficient algorithm has been presented by Petitjean (1998).  The algorithm uses a new 

visibility structure, the visibility complex (Durand and Puech, 1995), which is a partition of the free 

lines according to their visibility with respect to O. The visually active surfaces can be computed 

from the visibility complex, and also the surfaces that intersect the scene transversally can be 

pruned by traversing the complex. Defining the 3D visual number of a point as the number of 

different families of free lines passing through p (two lines being in the same family if one can be 

transformed into another by a rotation around p without intersecting the object), traversing a 

visually active surface means incrementing or decrementing the visual number by one. It then 

suffices to traverse the partition of the viewing space generated by the active surfaces, starting from 
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some initial position, to identify the cells belonging to the visual hull. The algorithm takes O((n4 + 

m3) log n) time, where m, the number of active surfaces, is O(n3) in the worst case.  

Here we will propose a new efficient algorithm. The algorithm is able to determine only the parts of 

VH  that are connected to the object. However, concave 3D objects able to produce visual hulls with 

parts not connected are neither likely to be found in practice, nor easy to construct. An example of 

such an object is shown in Figure 22. The object is multiply connected. With some more ingenuity, 

the reader can also construct examples where the object is simply connected. Concluding, the 

algorithm that we will describe in the following is perfectly adequate to most practical cases. Their 

main feature is that several pruning rules are proposed, able to discard a substantial amount of 

surfaces candidate to bound the visual hull. After intersecting these surfaces, a very simple rule 

allows to find cells belonging to VH .  

 

Figure 22: an example where there is a part of VH (O) not connected to O. The sections with planes P1, P2 and P3 

are shown on the right 

In agreement with the general approach outlined in this work, we consider as candidates to form 

S”VH points of straight lines making two or three contacts with the object. For understanding if a 

point of a such line can actually be a point of surface S"VH, we will investigate, as already done in 

2D, if there are  free lines passing through this point and compatible with the surface of O at the 

contact points.  
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a) Lines making two contacts.  

As already observed, lines making two contacts with two edges of a polyhedron fill a volume. Let 

us consider a line L touching O at two points p1 and p2 of the edges E1 and E2 (Figure 23). Let also 

consider the two planes P and P’, containing L, as shown in Figure 23(a), which is a projection of 

the edges from a viewpoint lying on L. The points p1 and p2 divide L into two exterior half-open 

infinite segments and one open interior segment. Let us consider the intersection of P and O (Figure 

23(b)). It is clear that the exterior segments cannot contain points belonging to S"VH, since in P 

there are free line as L’, obtained with infinitesimal rotations of L, passing through any point of 

both segments. Consider now the interior segment. In P there are free lines passing above the 

segment at an arbitrarily small distance, but no free lines passes through points of the segment. The 

situation is different in a plane as P’, whose intersection with S is shown in Figure 23(c). Through 

any point of the interior segment pass free lines as L' compatible with the local geometry. 

Concluding, no point of L belongs to S"VH, or, in other words, lines making contact at two generic 

edges are inactive. 

 

Figure 23: lines touching O at two generic edges are inactive. 

Now let us consider lines making contact at a vertex V and at a point p of an edge E. We call these 

lines VE lines. Let us analyze the projection of V and E from a point lying on L onto a plane normal 

to L, and suppose first that the projection along L of the edges converging at V is convex.  We also 

admit that E and one of the edges meeting at V are coplanar, since this case is important in practice. 

Five cases, shown in Figure 24(a), (b), (c), (d), (e) can take place. All these cases are inactive. 
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Actually, for each case, it is shown a plane P that contains L, whose intersection with O for all cases 

is like Figure 24(f), showing that, through any point of L pass free lines compatible with the vertex 

and the edge. 

 

Figure 24: VE lines making contact at a convex vertex are not active  

Consider now VE lines making contact at a vertex such that the projection along L of the edges 

converging at V is concave. Taking into account also coplanar edges, the five cases shown in Figure 

25  can occur.  For each case, we show two or three planes P, P’ and P”, representative of the 

families of planes containing L, and their intersections with the object at V and E. Let us consider 

case (a). It is clear that for any plane containing L the intersection is either as that of P’ or of P”. In 

planes as P’ there are free lines passing through the exterior segments. In planes as P” no free line is 

possible. Combining these results, we find that the interior segment is active.  

 

Figure 25: VE lines making contact at a concave vertex. Cases (a), (b) generate an interior active segment. Cases 

(d), (e) produce two exterior active segments. Case (c) is inactive 
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Similar arguments show that also in case (b) the interior segment is active, case (c) is inactive; the 

exterior segments are active in cases (d) and (e). Observe that in case (c) there are three families of 

planes generating three different kinds of intersection.  

The two types of active VE surface patches generated by the active exterior or interior segments are 

shown, respectively, in Figure 26(a) and (b). We recall that the lines making contact at V and E 

must not intersect O, and then can be active only those parts of these surfaces where the generating 

line does not intersect O elsewhere. 

 

Figure 26: two types of active VE surfaces patches 

We also consider another limit VE case, common in practice, where E and the edges converging at 

V are coplanar. It is easy to see that two cases are possible, generating or an interior active segment, 

or two active exterior segments (Figure 27). Also observe that cases of multiple contacts at coplanar 

edges can be decomposed into several cases of two contacts. 

 

Figure 27: The VE case with three coplanar edges. 

Finally, observe that the VE active patches are parts of the VE surfaces considered in the theory of 

the aspect graphs of polyhedra (Gigus et al. 1991).  
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b) Lines making three contacts. 

We will call EEE this case and the line and surfaces involved. From basic analytic geometry it 

results that lines passing through three 3D lines skew to each other form quadric ruled surfaces. 

More precisely, they form a hyperboloid of one sheet or a hyperbolic paraboloid. The second case 

takes place when the three lines are all parallel to a plane (Salmon, 1874).  

Also in the EEE case we analyze the four segments in which the line is divided by the contact 

points, for finding if there are active segments, which produce active patches. Let E1, E2 and E3 be 

the three edges and p1, p2 and p3 the three contact points of line L. Obviously, preliminary to this 

analysis is checking that L shares with O the contact points only. 

It is easy to verify that three different spatial arrangements of the edges can take place. The cases 

are shown in Figure 28(a), (b) and (c). Cases (d) and (e) are cases (b) and (c) observed from the 

opposite side. In the figure we show a view from viewpoints on L, as well as a 3D origami-like 

structure, intended to clarify the 3D relative position of the edges. The arrows in (b), (c), and (e) 

indicate the direction of the inner side of the surface at the hidden edge E3. 

.  

Figure 28: the possible 3D arrangements of the edges for the EEE case. © 2004 IEEE 

Each case can be analyzed by studying the intersection with the edges at the contact points with a 

plane rotating about L. An example of this analysis for case (a) is shown in Figure 28 for case (a). 
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Three possible position of the plane PR are possible, marked with 1, 2 and 3 in Figure 28(a). The 

three intersections, marked (a1), (a2) and (a3), show that the case is not active. 

 

Figure 29: the analysis of case (a) with a rotating plane. © 2004 IEEE 

The results obtained are summarized in Figure 30, where the solid lines mark the active segments. 

 

Figure 30: the active segments of tri-tangent lines. © 2004 IEEE 

c) The algorithm for computing VH 

The outline of the algorithm for computing VH  is as follows. 

a) Compute the surface S’VH, which is the surface of O coincident with the surface of VH(O). 

If it covers completely O, it is O=VH (O), and we stop. Otherwise: 

b) Compute the active VE and EEE patches 

c) Compute VH  using a volumetric approach, which intersects the active surfaces and selects 

the zones of the partition belonging to VH (O). 

In the following we will discuss in detail the various steps, using as a running example the object in 

Figure 31. 
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Figure 31: the running example 

Step a). For computing S’VH we can use the 2D visual hull algorithm applied in the plane of each 

face Fi to the set of polygons SPi obtained intersecting this plane and O and excluding Fi itself. It is 

easy to see that a point of the face belongs to S’VH iff it does not belongs to VH (SPi) (for a full 

discussion see Laurentini, 1994). For each face the complexity of the algorithm is O(n3+mlogm), 

where m is the size of the partition (which is O(n4)) and then the whole step is O(n5logn). 

However, much pruning can be performed. The convex hull of the polyhedron can be computed in 

O(nlogn) time, and the faces, or their parts, belonging to the convex hull can be immediately 

selected as members of S’VH. Other pruning operations are described in Laurentini (1994). The 

result of this step for our toy object is shown in Figure 32.  

 

Figure 32: the surface S’VH (light gray) 
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Step b). In principle, computing the active surfaces requires:  

1. considering O(n2) VE pairs and O(n3) EEE triplets;  

2. verifying in constant time if there could be active surfaces compatible with the contact 

points;  

3. intersecting each candidate surface with O   

In all, it takes O(n4) time for finding O(n3) active patches.  

Actually, also in this case much pruning can be done, reducing greatly the computational burden.  

For both VE and EEE surfaces, a large number of cases can be ruled out in constant time. In the 

following we provide the main pruning rules, without detailing the rather trivial proofs. The rules 

also consider exceptional alignment cases. 

• Rule 1. Concave edges must not be considered neither for VE nor for EEE surfaces 

• Rule 2. Concave vertices must not be considered for VE surfaces. By definition, a concave 

vertex V is such that the intersection of any face sharing V as vertex with O form a concave 

angle at V (see Figure 33) 

 

Figure 33: the intersection with O of a face sharing a convex vertex. 
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• Rule 3. Edges shared by faces lying on CH, at least near the edge, must not be considered 

neither for VE nor for EEE surfaces, as well as vertices shared by these edges 

Applying rules 1 and 2 to the running example deletes the edges and the vertex shown in Fig. (a). 

Applying rule 3 also deletes the edges and vertices shown in Fig. (b). The edges and vertices left, 

which are candidate to form VE and EEE active surfaces, are shown in Fig. (c), and are the rim of 

the concavity of the object. 

 

Figure 34: rules 1 and 2 discard edges and vertices highlighted in (a). Edges and vertices discarded according to 

rule 3 are shown in (b). In (c) edges and vertices candidate to give VE and EEE active patches are shown.  

The analysis of the various VE cases generated shows that there is only one active VE surface. The 

surface V3 E5 (Figure 35(a)), as well as the symmetric V5 E4, is not active, since they both 

correspond to case (b) of Figure 24. For the same reason, also V3 E1, as well as the symmetric V3 E2 

(Figure 35(b)), is not active. Observe that, since E1, E2 and E3 are coplanar, (Figure 35(b)), the 

rectangle V1, V2,V3 and V5 is covered by other VE patches, as V2 E1, that are active. However, the 

rectangle is inactive since it is covered completely by the two inactive patches V3 E1 and V3 E2. The 

patch V1 E4, as V2 E5, (Figure 35 (c)) is also inactive since it corresponds to case (c) of Figure 24. 

Concluding, only V4 E2 (Figure 35 (d)), corresponding to case (a) of Figure 25, is potentially active. 

This is actually the case, since the whole VE surface does not intersects O elsewhere. Observe that, 

given this object with 16 edges and 10 vertices, the pruning operations, which are all performed in 

constant time, produce only one active VE surface.  
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Figure 35: Inactive VE surfaces are shown in (a), (b), (c). The only active VE case is shown in (d). 

As for EEE surfaces, only the edges candidate to form VE patches can form them. We can consider 

all pairs of such edges, prune all coplanar pairs, and, for each remaining pair Ei Ej we must check if 

one of the remaining edges (or a part of it) is included into the volume formed by all lines passing 

through Ei and Ej (Figure 36). This takes constant time for each remaining edge. In the running 

example, the candidate pairs are E4 E1, E4 E2, E5 E3 and E5 E2, and, for each pair, no other candidate 

edge is enclosed into the corresponding volume, so that there are no active EEE surfaces. 

In general, if one edge or part of edge is enclosed, we must verify if the case corresponds to one of 

the active cases of Figure 30, and in this case intersect the whole EEE surface with O. 

 

Figure 36 
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Step c). Let S’(O)= S(O) - S’VH, that is the part of the unreconstructable surface of O. After finding 

all active VE and EEE patches, we construct a 3D partition Π using these patches and the faces of 

the surface S’(O). For k active patches and faces, the partition consists of O (k3) cells. Note that this 

result holds for infinite algebraic surfaces: in the current case, with small finite patches (also when 

the active surface is an exterior segment, we are interested only in the part inside VH ), the number 

of cells is much smaller.  

Each cell of this partition belongs entirely or does not belong at all to VH . If we suppose that the 

visual hull is connected to O, which, as already shown, happens for most objects, selecting the cells 

of the partition belonging to VH  can be done in constant time for each cell. In fact: 

Proposition 9: if VH (O) is connected to O, only the cells of partition Π that are bounded by one or 

more faces of S’(O) belong to VH(O).  

This can be easily proofed by contradiction. Observe that, for each active patch there is a side, that 

we will call positive, where free lines pass near to the surface. Suppose that there is a cell not 

bounded by S’(O). Then its boundary faces are only patches of active surfaces, whose positive side 

must lie on the exterior of the cell, otherwise there would exist free lines inside the cell. But this 

means that on the exterior side of each face pass free lines, and that the cell of VH(O) is an 

insulated one, against the hypothesis.  

In the running example, the partition consists of one cell only that satisfies the condition of 

Proposition 9. The visual hull of the object is shown in Figure 37. 

 

Figure 37: the visual hull of the example. 
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Let us consider another example. The object is shown in Figure 38(a). Its surface S’VH is shown in 

Figure 38 (b). After applying the various pruning rules we find the candidate edges and vertices 

shown in Figure 38 (c). Various overlapping VE patches result. Consider for instance the rectangle 

V1, V2, V4 and V5. It includes two active patches (V1E5 and V5E2) and two inactive patches (V2E5 

and V4E2). Superimposing the various patches, the active patch shown in (d) results. Two other 

similar VE active patches can be obtained. No EEE active surface results. The partition produced is 

shown in Fig (e). The only cell produced belongs to VH  since it satisfies Proposition 9. 

 

Figure 38: The object (a), the surface S’VH (b), the edges and vertices after the pruning (c), an active VE patch 

(d), the only cell of the partition belongs to the visual hull (e).  

Also this case shows the effectiveness of the pruning rules. The sample object has 21 edges and 14 

vertices, but produces only 6 active VE patches, no EEE patches and a single partition with one 6 

faces cell.   

A more complex object, also able to produce EEE active surfaces, is shown in Figure 39 (a). In (b) 

we show the surface S’VH, in (c) the vertices and edges surviving the pruning. Several VE surfaces 

are generated, some of them overlapping, which we will not enumerate. As an example, we show 

the patches originated by V1. The patches V1E9, V1E8 and V1E4 are active, V1E5 corresponds to case 

(c) of Figure 25 and then is inactive. However, V1E4 is inactive since it is coincident with the 
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inactive patch V3E3 (case (b) of Figure 24). Also for V1E9 there are other patches lying in the same 

plane, but those superimposed are active. Concluding, V1 actually generates two active patches: 

V1E9 and V1E8. The most interesting feature of the object is an EEE patch, adjacent to V1E8, formed 

by the lines making contact at E3, E8and  E5 (Figure 39 (e)). Using Figure 30 it results that the active 

part is between E3 and E8. Also in this case the partition includes only one cell belonging to VH  

(Figure 39 (f)). 

 

Figure 39: The object (a), the surface S’VH (b), the edges and vertices after the pruning (c), active VE patches 

(d), (e), the visual hull of the object (f). 

 

5. Solids of revolution 

The problem of computing the visual hull of solids of revolution can be transformed in a 2D 

problem, since also their visual hulls are solids of revolution.  

Consider a solid O generated by revolution about an axis X of a series of planar areas lying in the 

same half plane. To construct VH (O), the algorithm for computing the visual hull of 2D objects of 

section II.B.3 can be extended, in order to find the intersection of the visual hull on an axial plane P. 

The intersection of O and P, OP, gives the symmetric 2D objects of Figure 40(a). 
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We recall that the 3D visual number of a point p relative to O is the number of families of free lines 

passing through p. A point belongs to VH (O) if and only if its visual number is zero. Therefore, 

computing the 2D visual hull on the axial plane P requires finding the areas of P whose 3D visual 

number is zero.  

The boundaries of areas having different visual numbers are line and curve segments, called active, 

that belong to visual curves. A visual curve is the intersection with the axial plane of the surface 

obtained by rotating a free line about the axis of revolution X. Three kinds of visual curves can be 

obtained: hyperbolae (visual curves of type I), two straight lines symmetric with respect to X, when 

the hyperbolae degenerates (visual curves of type II), two half lines starting at X and perpendicular 

to the axis of revolution, when the free line lies on a plane normal to X (visual curves of type III). 

For each class of curves, we can define their active part. Curves of type I present active segments 

only if they make three contacts in P with OP. Active lines of type II are only those making contact 

at two points in P with OP. Active lines of type III are those normal to X and making contact with 

OP at one point; the active segments are those which connect this point to X or to the first point 

where the line intersects OP. Examples of the three kind of active segments can be seen, 

respectively, in Figure 40(b), (c) and (d). Each active segment has a positive direction. Crossing an 

active segment in the positive (negative) direction increases (decreases) the 3D visual number by 

one. The complete catalogue of active segments is reported in Laurentini (1999), to which we refer 

the interested reader. 

The algorithm for finding the intersection of VH (O) and P is the following: 

1. find the active segments of the visual curves of type I, II and III 

2. construct the partition of P given by the boundaries of OP and the active segments 

3. find the visual number of each region of the partition, merging those region whose visual 

number is zero; this can be done evaluating the visual number in one region and visiting the 

region graph from this one, adding (subtracting) one from the visual number of the starting 

region when crossing a boundary in the positive (negative) direction 
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In Figure 40(e) the partition of P for our example is shown, and the corresponding visual hull is 

shown in Figure 40(f). 

 

Figure 40: cross cut of the solid of revolution (a); active segments for visual curves of type I (b), II (c), III (d); the 

partition of (half) P, where each region is marked with its visual number (e); cross cut of the visual hull (f).  © 

1992 IEEE 

It is worth noting that the surfaces we have used to compute VH (O) are due to multilocal visual 

events (Petitjean et al. 1992).  

6. Smooth curved objects 

An algorithm for computing the visual hull of smooth curved objects is described in Bottino and 

Laurentini (2004). It is shown that S"VH consists of patches of the boundary surfaces of the aspect 

graph corresponding to the visual events tangent crossing and triple point of smooth curved objects. 

Tangent crossing occurs when the projections of two limbs meet at a point and share a common 

tangent (or, which is the same, the same normal) forming a tacnode (Figure 41).  Triple point occurs 

when the free line is tri-tangent to S (Figure 42). 

 

Figure 41: the visual event tangent crossing. © 2004 IEEE 
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Figure 42: the visual event triple point 

The equations that determine these surfaces can be found in Bottino and Laurentini (2004).  

Much pruning of these surfaces can be done for finding the active patches. As for polyhedra, active 

patches are defined as the parts of these surfaces which are formed by tangent lines not intersecting 

elsewhere the object, and such that no free lines compatible with the surface near the tangency 

points pass through points of the patches.  

The analysis of the surfaces corresponding to the visual event triple point is identical to that 

previously reported for EEE surfaces of polyhedra. Then, we only need to analyze the surfaces 

related to the visual event tangent crossing.  

Let us consider a line tangent at two points of the surface. These points divide this line in two 

exterior segments and one interior segment (Figure 43). Let us consider the intersection of the 

surface and a plane containing the surface normals n1 and n2 at the tangency points. If the normals 

have the same directions, Figure 43(a), the exterior segments cannot contain points belonging to 

S"VH, since through any point of the exterior segments can pass free lines compatible with the 

surface near the tangency points. The situation is different when the normals have opposite 

directions, as in Figure 43(b), showing that through any point of the interior segment can pass a free 

line. 

 

Figure 43: Two cases of bi-tangent line: potentially active segments 

Each of the cases shown in Figure 43 can be analyzed in more detail considering if the shape of the 

surface at the tangency points is compatible with free lines  trough the potentially active segments. 
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For performing this analysis, we recall that near any point a smooth surface can be approximated by 

a quadric. According to the Gaussian curvature k at a point, it is classified as elliptic (k>0), 

parabolic (k=0), and hyperbolic (k<0), and the surface near the point can be approximated by an 

ellipsoid, a cylinder or a saddle-shaped hyperboloid (Figure 44, see O’Neill, 1996). 

 

Figure 44: surface approximations: elliptic, parabolic and hyperbolic points. © 2004 IEEE 

The results of this analysis are summarized in Table 1, where the state of exterior and interior 

segments of the two main cases, that is normals at the tangency point having or not the same 

direction, are itemized per kind of surface approximation at the tangency points. The details of this 

analysis can be found in Bottino and Laurentini (2004), to which the reader is also referred for 

further details on the complex case hyperbolic-elliptic. 

 n1= n2 n1= -n2 
 interior exterior interior exterior 

Elliptic-elliptic inactive inactive inactive inactive 
Parabolic-elliptic inactive inactive inactive inactive 

Parabolic-parabolic 
Only insolated tangent 

lines of this kind exist for 
generic surfaces 

inactive inactive 
Only insolated tangent lines 
of this kind exist for generic 

surfaces 
Hyperbolic-parabolic active inactive inactive active 

Hyperbolic-hyperbolic active inactive inactive active 
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Hyperbolic-elliptic 

The internal patch is 
divided, according to the 
local curvatures at the 

tangency points, into an 
inactive surface, near  the 
hyperbolic point, and an 
active surface, near the 

parabolic point 

inactive inactive 

The external segments near 
the parabolic and hyperbolic 
points are partially or totally 
active according to the local 
curvatures at the tangency 

points 

Table 1: active and inactive bi-tangent surface patches 

 
The algorithm for computing the visual hull is similar to that described for polyhedra, the only 

difference being the different computation of active surfaces. 

An example is shown in Figure 45. The object, which is symmetric, has been modeled as a NURBS 

surface, and the rim of the concavity has a high curvature; (a) and (b) shows two views of the 

object. Three active patches, shown in (c), (d) and (e), are candidate to cover the concavity. Patch P1 

is generated by the lines touching the object along the contour generators C1 and C2, and is an 

instance of the active case hyperbolic-hyperbolic. P2 is generated by lines tangent at C3 and C4 

(which is very close to C2).  Since the object is symmetric, all these line pass through a point and 

form a conical surface. This is an instance of the case parabolic-hyperbolic, and only the patch near 

the parabolic rim is active. P3 is symmetric to P1. Lines L1 and L2, which are the boundaries 

between P1 and P2 and P3 and P2 respectively, correspond to a flex point of the projection of the far 

rim. Intersecting the three patches (P1 and P3 intersect along a curve lying in the symmetry plane of 

the object), only one closed cell results, which belongs to VH . The visual hull surface, formed by P1 

and parts of P2 and P3, is shown in (f). 
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Figure 45: (a), (b): original object; (c), (d), (e): active surfaces; (f). © 2004 IEEE 

 

C. Understanding 3D shapes from silhouettes: hard and soft 

points 

Volume intersection summarizes the information provided by a set of silhouettes, and constructs a 

boundary volume R which approximates more or less closely an unknown object. Only if the object 

O is coincident with its visual hull we are able, at least in principle, to reconstruct the object 

exactly. 

In this section we will deal with the problem of inferring the shape of the real object O from the 

object reconstructed R, or, which is the same, from a set of its silhouettes. We will face first the 

optimal case, where we have been able to construct the best possible approximation, the visual hull. 

Then we will consider the case which is more likely to happen in practice, where we do not know if 

the reconstructed object R is the visual hull or not. The problem has been discussed first in 

Laurentini (1995). 

The intuitive analysis of a simple example will provide some insight into the problem. Let us 

consider the problem of inferring the shape of an object from the visual hull. In Figure 46, various 

objects sharing the same visual hull, the cube of Figure 46(a), are shown. They are part of an 
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infinite family of objects ranging from the cube itself to zero-volume objects like the one shown in 

Figure 46(e), provided that no free line intersect the bounding cube without intersecting the object 

itself. The objects must lie within the bounding cube: what else can we infer about their shape? It is 

easy to realize that all these objects share the 12 edges of the cube with the surface of the visual 

hull. In addition, the surfaces of these objects can take any shape, without the need to be connected, 

as long as no line passes through the object without intersecting these surfaces.  

 

Figure 46: all objects have the same visual hull, coincident with the object (a). © 1995 IEEE 

This example shows that in general the best reconstruction achievable is not sufficient to infer the 

real shape of the unknown object. However, we have also seen that some points of the surface of the 

visual hull are shared by any possible object O originating on the visual hull, while the other points 

may or may not belong to O. This leads to the following definition: 

Definition 4: let p be a point on the surface of a visual hull VH . p will be specified as: 

• a hard point if it also belongs to the surface of any possible object originating VH  

• a soft point otherwise 

In other words, a soft point may or may not belong to the surface of O. This definition raises a 

problem: how can we find hard and soft points on the surface of a visual hull? 

Recalling  Proposition 5, the following statement can be derived (Laurentini, 1995): 

Proposition 10: a necessary and sufficient condition for a point p belonging to the surface of a 

visual hull VH (O) to be hard is that at least one line L passes through p without intersecting VH (O) 

at any other point. 
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Figure 47: a necessary and sufficient condition for p to belong to VH(O). © 1995 IEEE 

Proposition 10 allow us to divide the surface of the visual hull into a part belonging to the 

originating object, the hard part, and a part which is an outer bound of O, the soft part. However, 

even if the surface of the unknown object O can assume different shapes within the boundary of the 

soft surfaces, every visual ray intersecting the soft surfaces will also intersect O. We will call this 

the opaqueness property. It is important to note that the opaqueness property does not hold for a 

generic reconstructed object R when it is not coincident with the visual hull. 

Finally observe that, in spite of its name, volume intersection supplies precise information only on 

the surface of an unknown object.  

Proposition 10 is a point condition. Finding the hard surfaces for various types of visual hulls 

requires further work. Let us consider polyhedral visual hull. We have seen that polyhedral visual 

hulls can be originated by polyhedra, but not every polyhedron has a polyhedral visual hull. It can 

be shown that the interior points of faces of a polyhedral visual hull are always soft, and only the 

convex edges can be hard (Laurentini, 1995). It is also easy to see that a sufficient condition for a 

convex edge to be hard is to lie on the convex hull of the visual hull. This immediately confirms the 

intuitive analysis of the hard points of the object of Figure 46.  

A general algorithm for finding the hard edges of polyhedral visual hull in O(n6) time can be found 

in Laurentini (1995). Only curved visual hulls can have hard surfaces. For instance, all the surface 

of a spherical visual hull is hard. However, constructing algorithms for finding the hard points of 

non-polyhedral objects, as smooth or piecewise smooth object is currently an open problem. 

The results presented so far in this section (inferring the real shape from the visual hull) are rather 

theoretical. In practice, when in addition to silhouettes no other information on the object is 

available, we do not know whether the object R reconstructed by volume intersection is or not the 
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visual hull.  In the following we will face the practical problem of finding hard points on the surface 

of a generic reconstructed object.  

A simple example will provide some insight into the problem. It will also show that in general a 

generic reconstructed object R supplies less information on O, i.e. less hard points, than the same 

object considered as a visual hull. Figure 48 shows a cube reconstructed from three square 

silhouettes obtained with viewing directions parallel to the axes. It is clear that infinite objects 

enclosed by the cube supply the same silhouettes.  Figure 49 shows some of these objects, three 

polyhedra and three origami-like objects.  In particular, inspecting the origami-like objects it is easy 

to realize that in this case no hard point exists on the surface of R. 

 

Figure 48: the volume R obtained from three square silhouettes. © 1995 IEEE 

 

Figure 49: three polyhedra (a) and three zero-volume, planar face objects (b) which may give the three square 

silhouettes of Figure 48. © 1995 IEEE 
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In order to understand how to find the hard points,  let us consider one of the silhouettes involved in 

the process of VI, the corresponding viewpoint V and the viewing cone circumscribed to the object 

O and starting at V (Figure 50). The viewing cone is tangent to O along a curve CV that is shared by 

O and the surface of the cone. In general this curve can have discontinuities, and, for exceptional 

alignments, a half line of the circumscribed cone may share multiple points or segments with O. 

This curve belongs to an annular surface homeomorphic to a closed curve, a strip ST(V) of variable 

width (measured along a line of the cylinder), which is what is left of the original circumscribed 

cone after the various intersections. During the reconstruction process, this annular strip cannot be 

interrupted (i.e. become homeomorphic to an open curve), since no point of O can be removed by 

VI; at most it can reduce to a curve with zero width. The following theorem holds: 

Proposition 11: let p be a point on the surface of the reconstructed object R. A necessary and 

sufficient condition for p to be hard is that it belongs to at least one strip ST(V) of width zero at p. 

 

Figure 50: VI reduces the surface of the circumscribed cone to ST(V) by, containing the curve CV belonging to 

O. © 1995 IEEE 

Let us summarize the results obtained. The surface of any reconstructed object consists of a number 

of strips ST(Vi), one for each viewpoint V i. On each of these strips there is a curve CV of points 

belonging to O, but usually we are not able to locate the curve. The only case when we are able to 

locate points of this curve, and therefore hard points, is when the strip has zero width. 

An important consequence of the proposition is that we are not able to find hard surfaces when 

considering an object R reconstructed with a finite number of intersections, but only hard points or, 
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at most, hard lines. As a matter of facts, the visual hull is able to supply hard surfaces, but they 

require an infinite number of zero-width strips for their full description. 

It is not difficult to understand that hard points results when two strips intersect (Figure 51).  Hard 

line results in situations like the one depicted in Figure 52, where the two viewpoints V i and V j 

produces the corresponding strips ST(Vi) and ST(Vj). Viewpoint Vk produces a third strip ST(Vk) 

of width zero and therefore coincident with the hard curve CVk. From the figure, it is also easy to 

see that hard lines can appear where there is a crease, that is a discontinuity of the surface normal. 

 

Figure 51: How to generate a hard point P on a smooth surface. © 1995 IEEE 

 

Figure 52: how a hard line is generated. © 1995 IEEE 

 
An important practical consequence of this discussion is that hard points and hard lines can be 

simply obtained as a by-product of the VI algorithm. 
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A simple example is shown in Figure 53 that shows an L-shaped polyhedron observed from ideal 

coplanar viewpoints. Two ideal coplanar viewing directions, V1 and V2, shown together with the 

corresponding strips, do not produce hard points, since both strips have everywhere non-zero width 

(Figure 53 (a)). One additional co-planar viewing direction V3 supplies four R-hard segments 

(Figure 53 (b)), highlighted with thick lines. 

 

 

Figure 53: examples of hard edges 

For further detail and examples the reader is referred to Laurentini (1995). 

 

 

D.   How many silhouettes does the best reconstruction require? 

In theory, the visual hull is the best reconstruction that we can obtain from the silhouettes of an 

object. In practice, also the number of silhouettes required by this optimal reconstruction is 

important. In this section we will briefly deal with the problem of finding the minimum theoretical 

number of silhouettes required (Laurentini, 1997). Let us first define the volumetric accuracy AV of 

the VI reconstruction as the ratio between the volumes of the real object O and that of the object 

reconstructed R: 

 AV =Vol(O)/Vol(R) 

AV can be expressed as the product of two accuracies: 

AV = AVH AI  where AVH =  Vol(VH (O))/Vol(R)   and AI =Vol(O)/ Vol(VH (O)) 
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This allows to separate the accuracy AI due to the intrinsic properties of the object from AVH, due to 

the number and positions of the viewpoints. Let us define e-reco an object coincident with its visual 

hull, such that AI =1. 

Also define f-reco objects whose visual hull can be reconstructed with a finite number of 

silhouettes. It is clear that the volumes obtained by back-projecting the silhouettes have conical 

surfaces, for perspective projections, formed by lines passing trough a point, or cylindrical surfaces 

formed by lines parallel to a direction for parallel projections. Therefore, the surface of any object 

obtained with a finite number of VI operations consists of a finite number of patches of conical or 

cylindrical surfaces.  

It follows that objects with curved surfaces are f-reco only in exceptional cases. Even a simple 

sphere is not f-reco. Also a cylinder is not f-reco using perspective silhouettes. In these cases, since 

these objects are e-reco, we can speak of reconstruction with arbitrarily high accuracy AVH. 

Polyhedra are a more promising category of objects. A convex polyhedron, which is e-reco as all 

convex objects, is also f-reco. In fact, if the planes supporting the faces are in general position, we 

can choose n/3 viewpoints at the intersection of disjoint triplets of these planes. More viewpoints 

are required, in any case less then n, if some planes are parallel each other. 

Let us consider a general polyhedron. If it is not e-reco, the surface of the visual hull could contain 

curved quadric patches. Although ruled, they are not patches of a cone or a cylinder, and then these 

polyhedra are not f-reco.  

Let us restrict ourselves to polyhedra with polyhedral visual hulls.  It seems not unreasonable to 

expect that the minimum number of silhouettes required is bounded by some function of n. 

Actually, in general this is not the case. For some classes of polyhedra we have the rather 

counterintuitive result that, for a given n, the number of silhouettes required can assume any value. 

An example of such a polyhedral visual hull with 14 faces is shown in Figure 54(a). Reconstructing 

face F, and in particular the part F’ highlighted in the figure requires viewpoints lying in the plane 

of the face and outside the convex hull, and then outside the face. Figure 54(b) shows that the part 
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of F’ reconstructed by each viewpoint can be made arbitrarily small by reducing the distance 

between the vertical wedges, without changing the number of faces. 

 

Figure 54: a visual hull whose reconstruction may take any number of silhouettes 

The situation is different if we want to reconstruct an internal visual hull, and then viewpoints 

inside the convex hull are allowed. In this case, it can be shown that a polyhedral internal visual hull 

is f-reco. In Laurentini (1997) an algorithm is described, which computes polyhedral internal visual 

hull using O(n5) viewpoints. 

 

E. Interactive reconstruction 

In the previous section we have discussed the theoretical minimum number of silhouettes required 

for the optimal reconstruction. Silhouette-based reconstruction algorithms must face another 

important problem. If no a priori information about the 3-D shape is available, we have no idea of 

the accuracy of the reconstruction obtained, and consequently we do not know whether halting or 

not the reconstruction process. It is also clear that, for a given object, each new VI operation can 

refine the reconstruction to different degrees, depending on the viewpoint chosen. Then another 

problem is where to locate new viewpoints. If we were given the shape of the object, in principle we 

could construct some object specific algorithm for finding the next best viewpoint, but the shape is 
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the very information we are looking for. So in general we are reduced to a simple “the more 

silhouettes the better” strategy.   

Object specific heuristics for finding the next viewpoint have been suggested, for instance in 

Shanmukh and Pujari (1991) and Lavakusha et al. (1989). Some results have been also obtained in 

the area known as geometric probing (see Skiena, 1992, for a survey).  

In Bottino et al (2001) a quantitative approach is presented, able to solve, at least in part, this 

apparently under-constrained problem. The approach is based on a necessary condition for the 

reconstruction obtained to be optimal. The condition can be verified considering the reconstructed 

object R only, without any a priori knowledge about O. If the necessary condition is not satisfied, it 

is possible to derive suggestions for locating new viewpoints.  

We have seen in section II.C that the points of the surface of R can be divided into hard points, 

which belong to any possible object originating R, and soft points, which could belong or not to O. 

The computation of the hard points of R can be performed under two hypotheses: 1) R is the visual 

hull; 2) R is a generic object reconstructed by VI. Let us call VH-hard the hard points in the first 

case, and R-hard a hard point in the second case. 

. 

1. The interactive reconstruction approach 

Consider an object R reconstructed by VI. Let VH(R) be the set of VH-hard points of R, and R(R) 

be the set of R-hard points. The following proposition holds. 

Proposition 13: VH(R) ⊇ R(R)  

This follows from the fact that each new VI operation cannot delete R-hard points already obtained, 

but only add new R-hard points, and the visual hull is the reconstruction made with all the possible 

silhouettes. If the best possible reconstruction has been obtained, that is R=VH (O), no more hard 

points can be found. It follows: 

Proposition 14: a necessary condition for the reconstruction to be optimal is: VH(R)=R(R) 
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Let us define compatible a reconstruction that satisfies this condition, that is, such that all the points 

of R which could be hard (the VH-hard points) have been found to be actually hard (R-hard points). 

The condition in general could be not sufficient for the reconstruction to be optimal, and in some 

cases small details of the object could remain undetected.  

However, the necessary condition is fruitful. If it is satisfied, we can stop the VI process, although 

the optimal reconstruction is not absolutely guaranteed. If not, we are sure that the optimal 

reconstruction has not yet been obtained, but the R-hard and VH-hard points suggest the location of 

the next viewpoint. 

a) A general approach to interactive reconstruction 

The general idea of the interactive reconstruction approach is attempting to obtain a compatible 

reconstruction, and, in any case, to improve at each step the accuracy, which is not guaranteed if the 

new viewpoints are selected at random.  

At each step: 

• Compute VH(R), R(R)  

• If VH( R)=R(R), stop  

• Otherwise, refine the reconstruction by checking if the potentially R-hard points VH(R)-

R(R) are actually R-hard or not. This can be done by selecting a viewpoint such that some 

potentially hard points are projected on the boundary of the silhouette of R.   

Whatever the new silhouette of O turns out to be, it improves the reconstruction. If the new 

viewpoint produces a circumscribed cone containing half-lines tangent at potentially hard points, 

these points are verified as R-hard. If not, the VI process deletes a part of the reconstructed object 

R. Then either we find new R-hard points, or we increase the volumetric reconstruction accuracy 

AV. In any case, our knowledge of O improves. The outlined approach can be applied to any class 

of objects (i.e., convex polyhedra, concave polyhedra, curved objects…) provided that an algorithm 
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for evaluating VH-hard points is available for that class. As an example this approach has been 

applied to convex polyhedra. 

b) An interactive algorithm for convex polyhedra 

Interactively reconstructing unknown convex polyhedra from silhouettes has been studied by 

Dobkin et al. (1986). Their algorithm, restricted to orthographic projections, uses a strategy that 

determines the polyhedron with a bounded number of silhouettes Ns: 

V/2 ≤ Ns ≤ V+5F 

where V and F are the numbers of vertices and faces respectively. The algorithm has not been 

implemented. 

The interactive approach described is able to reconstruct any convex polyhedron from a bounded set 

of parallel or perspective silhouettes and has been implemented for virtual polyhedra (Bottino et al., 

2001). It consists of three parts: 

1. ALGVI, which performs the volume intersection;  

2. ALGR, the algorithm for computing the R-hard points R(R);  

3. NEXT, which compares VH(R) and R(R) and, if the sets are not equal, computes the next 

viewpoint; 

ALGVI implements VI and works for any kind of polyhedra (actually also concave) and parallel 

and perspective projections. ALGR is a straightforward consequence of VI. In this case the 

algorithm in Laurentini (1995) for computing the VH-hard points is not necessary, since any 

reconstructed object R is convex, and all edges are VH-hard. Therefore, NEXT computes new 

viewpoints until all the edges of R are R-hard. An edge is R-hard if it belongs to a strip with zero 

width. Then to verify an R-hard edge E requires three planar surfaces of three cones Ci making 

contact with R at E. To verify a face requires a viewpoint in the plane of the face. 

(1) The strategy of NEXT 
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The general approach described in section II.E.1.a) guarantees that each new viewpoint improves 

the reconstruction, but not that the reconstruction is performed with a bounded number of 

silhouettes. To this purpose, NEXT uses a set of rules that guarantees that at each step a face at least 

is verified, or a contact with at least one undetected R-hard edge is obtained. For the exact 

reconstruction, NEXT requires  

F/3 +2 ≤  Ns ≤ F+3E 

silhouettes (see Bottino et al., 2001). 

NEXT works as follows. Start with two random viewpoints (after the first VI, all edges are 

potentially R-hard). For each following step, select a potentially R-hard edge E and locate the 

viewpoint according the following rules, related to the characteristics of the faces F1 and F2 of R 

which meet at E. Three cases are possible. 

 

Figure 55: three cases for the candidate edge E 

 

Case 1 – The edges of O that produce F1 and F2 have not yet been detected (see Figure 55(a), where 

the undetected edges E1 and E2 are shown as dotted lines). In this case, any viewpoint projecting E 

on the boundary of the silhouette is convenient. In fact, it will either verify E as a R-hard edge, or 

produce at least a new face of R making contact with one or more R-hard edges yet undetected 

inside the region bounded by F1 and F2. Then the viewpoint can be located anywhere in two of the 

four regions into which the space is divided by the planes of F1 and F2. 

Case 2 - There is one R-hard edge on both F1 and F2 (see Figure 55(b), where the hard edges are 

thick).  A viewpoint lying on a line passing through one point of both the hard edges will either 

verify a possible undetected face (for co-planar hard edges), or produce one or more faces making 
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contact with undetected R-hard edges. Also in this case the viewpoint can be located anywhere in 

an infinite space region, which is planar for coplanar R-hard edges. 

Case 3 - There is one R-hard edge on one face; let it be F1 (see Figure 55(c)). Consider a line 

starting at V2 (the viewpoint which produces F2) and lying on F2. The intersection of this line with 

F2 is bounded by two points. Let P be the one closer to V2. Chose a new viewpoint on a line passing 

trough P and one point of the R-hard edge E1 on F1. It is clear from the figure that it will produce 

one or more new faces making contact with undetected R-edges (possibly E2). Also in this case the 

viewpoint is restricted to lie in an infinite space region. 

In some cases the above conditions can be satisfied for more than one potentially R-hard edge. 

Actually, two additional rules have been used for speeding up the algorithm. Since the polyhedron 

is known to be convex, if two R-hard vertices are joined by a potentially R-hard, the edge can be 

immediately classified as R-hard, even if it does not belongs to a strip of zero width. This happens 

frequently in our examples.  

The second rule is the following heuristic. When possible, a viewpoint is located on a line 

containing one R-hard edge, if at least one of the faces sharing the edge has not yet been verified. 

This verifies one or two faces, usually deletes several non R-hard edges and adds one or two faces 

tangent at several R-hard edges not yet detected.  

An example of the steps performed by the algorithm is shown in Figure 56, where the arrows 

indicate a line containing the viewpoint and the R-hard edges are marked thick. The original object 

is shown in (a) and, at the end of the reconstruction, when all the edges are R-hard, in (h). In (b) the 

first cone is shown, truncated by one fore and one back plane. The first rule and the heuristic are 

used in several cases, (d) to (g), while (c) refers to case 1.  
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Figure 56: an example of reconstruction of a convex polyhedron 

We have experimentally evaluated the performance of the algorithm with respect to our upper and 

lower bounds, and to the bounds of the algorithm of Dobkin et al. For this purpose, the algorithm 

has been applied to fifty randomly generated convex polyhedra. The average number of vertices, 

edges and faces of the fifty polyhedra are 17.8, 26.7 and 10.9 respectively. We have found that the 

average number of silhouettes required for the reconstruction is 13. This number should be 

compared with 91, our upper bound averaged over all the fifty polyhedra, with 99.9, the average 

upper bound of Dobkin et al., and with 5.6 and 8.9, the two corresponding lower bounds. These 

comparisons show that the average behavior of our algorithm is much closer to the lower then to the 

upper bounds. 

 

F. Reconstruction with unknown viewpoints 

So far, we have discussed the problem of reconstructing 3D shapes from 2D silhouettes by back-

projecting them from the corresponding viewpoints and intersecting the resulting solid cones. This 

requires knowing the position of the viewpoints with respect to the object. However, in several 

practical situations, as observing a vehicle, a plane or an asteroid, this information is not available.  
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In these cases we have a set of silhouettes together with the position of the corresponding viewpoint 

with respect to each silhouette, or, in other words, a set of circumscribed cones, without knowing 

their relative position. This raises the following questions  

1. does an object exist able to produce them?  

2. if a set of silhouettes can be generated by the same object, how can we find one or more 

objects able to produce the same silhouettes? 

In the following, we will call compatible a set of silhouettes if the same object can generate them. 

An object able to produce a compatible set of silhouettes will be said to be compatible with the set. 

As an example, are the three orthographic silhouettes in Figure 57 compatible? 

 

Figure 57: Can these orthographic silhouettes be generated by the same object? © 2003 IEEE 

A preliminary discussion of the problem has been reported in Bottino and Laurentini (2003), where 

the case of planar orthographic silhouettes has been thoroughly investigated. This case idealizes 

some practical situations, as observing a vehicle on a planar surface, or a ship on a calm see. 

First, we must define the compatibility of two silhouettes. Given S, a 2D orthographic silhouette of 

a 3D object, and L(S,α), the length of the 1D silhouette of S obtained projecting orthographically S 

along a direction in the plane of S making an angle α with the x axis of that plane (see Figure 58), 

two silhouettes S1 and S2 are compatible if two angles α1 and α2 exist such that L(S1,α1) = L(S2,α2). 

 

Figure 58: 1D silhouette of S. © 2003 IEEE 
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When two silhouettes are compatible, it is easy to select the parameters required for intersecting in 

3D the cylinders obtained by back-projecting S1 and S2. First, we must select the angle β between 

the viewing directions, or, which is the same, the angle between the planes of the silhouettes. Let I 

be the intersection of these planes. The two cylinders must be positioned as follows: 

• the 2D viewing directions that produce L(S1,α1) and L(S2,α2) must be both orthogonal to I  

• both cylinders must be supported by the same plane P orthogonal to I 

It is clear from the figure that the object obtained by VI is compatible with both silhouettes. This 

reconstruction is possible for any angle β between the viewing directions. 

 

Figure 59: reconstructing an object compatible with S1 and S2. © 2003 IEEE 

Clearly, when we have more than two silhouettes, we must ensure the pairwise compatibility 

between silhouettes. However, this condition is not sufficient for the full compatibility of the set, as 

shown in Bottino and Laurentini (2003). For instance, the three silhouettes of Figure 57 are pairwise 

compatible, but it can be shown that no objects exist able to produce them all.  

A necessary and sufficient condition can be found referring to the annular strip ST(V), that is, to 

what is left after various VI operations of the circumscribed cone (or cylinder, in this case) relative 

to viewpoint V.  

Proposition 12:  A necessary and sufficient condition for a set of silhouettes to be compatible is that 

it be possible to find viewpoints such that no annular strip of the reconstructed object is interrupted. 
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Proposition 12 allows to write sets of inequalities that determine feasible VI parameters. Before 

introducing them, let’s give some notations (Figure 60). Each planar silhouette Si is defined, for 

0≤y≤ymax by two curves Sil(y) and Sir(y). For simplicity, let us consider mono-valued functions. 

Also let Si(y)=Sir(y)-Sil(y). 

 

Figure 60: notations used for a silhouette. © 2003 IEEE 

1. Writing the sets of inequalities  

The general case is when Sir(0)≠ Sil(0) and Sir(ymax)≠Sil(ymax) for all the silhouettes considered. 

Special cases, not respecting these conditions, simply require considering additional constraints and 

are discussed in details in Bottino and Laurentini (2003). 

a) Three silhouettes 

Let’s start considering a generic horizontal plane P between 0 and ymax, three viewpoints V1,V2,V3 

and the intersections of the corresponding back-projection cylinders and the plane P are shown in 

Figure 61(a). Other arrangements of the viewpoints satisfying the condition of Proposition 12 will 

be discussed at the end of this section. In this case, it is not difficult to see that the condition 

requires, for all possible values of y, that the two lines projecting the endpoints S3l(y) and S3r(y) of 

S3(y) along V3 falls inside the curves defining the projections along V3 of vertices 3-4 and 1-2, 

respectively (see Figure 61(b)). 



 62 

 

Figure 61: (a) A case where S3(y) is compatible with S1(y) and S2(y) in a horizontal plane. (b) The condition for 

the compatibility of the whole silhouettes. © 2003 IEEE 

Inspecting in details the intersections in P, we can derive set of inequalities characterizing this case 

(Figure 62). Let O1, O2, and O3 be the intersections of the axes y of the coordinate system of each 

silhouette with this plane. The unknown are three: the angle α1 between V1 and V2, the angle α2 

between V1 and V3 and the distance d between the intersections on the line projecting O1 along the 

direction V1 of the line projecting O2 along V2, and line projecting O3 along V3. Thus, to find 

feasible solutions we must search the 3-dimensional space [α1, α2, d]. 

 

Figure 62: the intersections in a horizontal plane  

As shown in Figure 61(b), the compatibility condition can be expressed in terms of P1(y), P2(y), 

P3(y) and P4(y), the distances from O3 of the orthographic projections of the vertices of the 

parallelogram onto the line supporting S3(y). The resulting inequality set is the following: 
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The fifth inequality characterizes the case in analysis, let it be Case 1. The other feasible cases are 

determined by the direction of V3 with respect to V1, V2, and by the directions of the diagonals V14 

and V32 of the parallelogram. Each of these cases, depicted in Figure 63, produces different sets of 

inequalities. For each case, a possible orthographic projection onto the plane of S3 of the edges of 

the object produced by the first intersection is shown with thick lines. The boundaries of S3 are the 

thin lines. 

 
Figure 63: the eight intersection cases. © 2003 IEEE 

b) Four silhouettes 

Adding a fourth silhouette S4 introduces two new parameters: the angle α3 between V1 and V4 and 

the distance d1, measured, as d, along the line that projects O1 from V1. The condition of 

Proposition 12 requires cutting away two opposite vertices of the polygon produced by three 

silhouettes, without eliminating completely the edges that meet at these vertices (Figure 64). By 

orthographically projecting the six vertices onto the plane of S4 we obtain six curves. For the new 

intersection to be feasible, the boundaries S4l(y) and S4r(y) of S4 must lie in the areas bounded by the 

two leftmost and the two rightmost curves respectively. 
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Various sets of inequalities result, depending on the direction of V4. For each couple of opposite 

vertices, there are two main cases (case (a) and (b) in the left of Figure 64) related to the direction 

that determines the leftmost and rightmost vertices (5 and 7 for case (a) and 7 and 5 for (b) in 

Figure 64). Each case can be subdivided into four sub-cases for the leftmost and rightmost strips 

where S4l and S4r must lie (see right part of Figure 64). The inequalities corresponding to each sub-

case are easily written. For instance, for the sub-case a1 in Figure 64, it is: 

P5(y)≤S3l(y) S3l(y)≤P4(y)  

P1(y)≤S3r(y) S3r(y)≤P7(y)  

P4(y)≤P6(y) P8(y)≤P1(y) 

where Pi(y) are the projections of the points i(y) onto the plane of S4. As before, the last two 

inequalities guarantee that the inner boundaries of these areas are actually P6 and P8.   

Summarizing, each set of inequalities for four silhouettes contains 11 inequalities (the five 

inequalities related to the first three silhouettes and six new inequalities also referring to S4). As for 

the number of sets of inequalities, we have 8 cases for three silhouettes, 3 pairs of opposite vertices 

and 8 cases for each pair, and thus 192 sets each containing 11 inequalities. 

 

        

Figure 64: cases (a) and (b) and the 8 sub-cases. © 2003 IEEE 

c) Five or more silhouettes 

Each new silhouette adds two new parameters and, to provide compatibility, it must always cut a 

pair of opposite vertices without deleting completely the edges converging at these edges; this 
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corresponds to seven additional inequalities for each sub-case. Thus, for n silhouettes, the number 

of parameters is 2n-3, and the number of inequalities 6(n-3)+5 (n≥3). Each new silhouette adds 8 

sub-cases for each pair of opposite vertices. For the n-th silhouette, the pairs of vertices are n-1. Let 

Nc(n) be the number of sets of inequalities for n silhouettes. For n>3 it is: Nc(n)=8(n-1)Nc(n-1).  

2. Writing and solving the sets of inequalities 

The inequalities discussed in the previous section allow to answer, in a particular case, both 

question raised: finding objects compatible with a set of compatible silhouettes, and understanding 

if an (artificial) set of silhouettes is compatible. We have developed an algorithm for automatically 

writing the sets of inequalities, detailed in Bottino et al. (2003b). A set inversion technique (Jaulin 

and Walter 1996) has been applied for finding the feasible solution set S of the set of non-linear 

inequalities that characterizes each sub-case. This technique performs a paving the parameter space 

with boxes. If the current box [b] is proved to be inside S, then the box is kept as part of the 

solution space. If it is proved to have an empty intersection with S then it is discarded. Otherwise, 

[b] is bisected except if its width is smaller than a defined threshold. The dimensionality of the 

initial box is equal to the number of variables involved in the set of inequalities. To prove that a 

given box [b] is inside S, interval computation (Moore 1979) has been used.  

In Figure 65 three silhouettes S1, S2 and S3 of a parallelepiped are shown. The boxes defining the 

paving of the solution set of each of the eight sub-cases obtained, are depicted in Figure 66, where 

the axis of the reference system are α1 and α2 on the plane and d as vertical axis. Several different 

compatible objects, each one reconstructed from a different feasible sets, can be seen in Figure 67. 
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Figure 65: the silhouettes S1, S2 and S3 

 

 
Figure 66: the eight solution spaces 

 

 

Figure 67: objects compatible with the silhouettes of Figure 65 
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III. Practical object reconstruction 

In the previous sections we have presented a theoretical discussion on limits and capabilities of the 

shape from silhouette approach. In practical situations we must be content with the object R 

reconstructed using a finite set of viewpoints, which, as already discussed, in general is not the 

optimal reconstruction. To comply with the current parlance in the field, we will use the term visual 

hull, or VH (O), to indicate the inferred visual hull computed from a finite set of images. 

Practical shape from silhouette algorithms require facing several significant problems. 

First of all, in order to perform VI, the position and orientation of the image planes relative to each 

other must be known, in order to relate the respective back-projection cones. In other words, the 

cameras need to be calibrated. A copious literature is devoted to this problem, and a complete 

survey is outside the scope of this work. The most common approaches (Tsai 1987, Zhang 2000) 

require to evaluate camera parameters a grid of 3D reference points, together with their 

corresponding 2D projections on the image planes, such as in Figure 68. Camera parameters are 

divided into intrinsic parameters (specifying the camera characteristics, like focal distance, etc…) 

and extrinsic parameters (describing the spatial relationship between the image plane and a common 

and fixed 3D reference system). Efficient implementations of these techniques, such as the Tsai 

Camera Calibration Code (TsaiCC), the Camera Calibration Toolbox (Bouguet) and the Open 

Computer Vision Library (OpenCV) can be easily found over the Internet. 

 

Figure 68: reference points on a calibration object, and their position on the image plane 
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Given a set of calibrated cameras, the projective geometry between two different views is 

completely described by the epipolar geometry. Referring to Figure 69, given two viewpoints V1 

and V2, the corresponding image planes and a point P in 3D, the three points V1, V2 and P are 

coplanar, and form the so-called epipolar plane. The line connecting the two optical centers V1 and 

V2 is called baseline and its intersection with the image planes gives the points e1 and e2, the 

epipoles. The intersection of the epipolar plane with the two image planes gives the epipolar lines, 

passing through the corresponding epipole. The epipolar geometry can be expressed in algebraic 

form by means of the fundamental matrix. Assuming that P projects into the image planes in pixel 

space as p1 and p2, the main result of the epipolar geometry is that the linear relationship p1·F·p2=0 

can be written, where F is the fundamental matrix. F determines the relation between a point in one 

image and the corresponding epipolar line on the second image. F can be computed from the 

calibration parameters or, for instance, with the so-called “eight point algorithm” (Hartley 1995). 

 

Figure 69: epipolar geometry 

 

Another problem to face with real images is the silhouette extraction. Since usually stationary 

cameras are used, the silhouette extraction component processes a relatively static scene. Therefore, 

a naïve approach is to detect the silhouette using the difference between the current frame and an 

image of the background scene. Defining a likelihood parameter, each pixel of the image can be 

compared with the corresponding pixel on the scene model to decide if the pixel belongs to the 

silhouette or not. However this simple approach has a series of drawbacks. First of all there is likely 
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to be noise in the video signal and thus a certain neighborhood of the target color must be classified 

as background color. Then, classification involves the measurement of a certain distance function 

between the pixel color and the target region; a distance lower than a threshold indicates 

background, otherwise foreground. Second, in a real situation the background is unlikely to be 

uniform due to illumination changes, subtle camera motion, or changes in the background 

geometry. A possible solution is to model the scene on the background as a texture surface: each 

point on this surface is associated with a mean color value and a distribution about that mean. The 

basic idea is that, as we stated before, the pixels of the image acquired by the camera sensors 

contain noise, whose effect can be drastically reduced if we observe the same static background and 

evaluate the mean color of each pixel. This is the approach used in Wren (1997) and Yamada et al. 

(1998). The static model can be initialized shooting the empty scene for few seconds and it is 

continuously updated in an adaptive way when a new frame has been classified in background and 

foreground pixels. This allows compensating for changes in the lighting conditions of the scene. As 

an example, in Figure 70(a) is depicted the scene model built for the camera, while in Figure 70(b) 

is shown one of the frames where a person is present in the image. In Figure 70(c)-(d) is shown the 

result of the silhouette extraction process: the darker pixels represent the silhouette and the lighter 

pixels the cast shadows that are removed from the silhouettes. The false recognition due to the 

lighting changes will be slowly removed in the following frames using the adaptative filtering. 

In order to cope with multimodal background distributions, more complex methods have been 

developed using either mixture of gaussians, Stauffer and Grimson (1999),  Kernel Density 

Estimators, Elgammal et al. (2000), “eigenvectors” exploiting Principal Component Analysis, 

Oliver et al (2000), or mean-shift based estimation, Han et al. (2004). 
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Figure 70: (a-d): the scene model, a frame of the sequence and the extracted silhouette 

Finally, we must discuss the types of representation used for the reconstruction. As far as shape 

from silhouette has been stated, a number of modeling approaches have been proposed. They can be 

broadly divided in two main categories. The first includes surface based approaches, where the 

boundary surface of R is reconstructed, usually exploiting polyhedral or spline representation. The 

second category comprises volume-based methods, representing the entire volume as a set of finite 

samples of different characteristics (octrees, voxels). This is also the main taxonomy we will use in 

the rest of the section to describe the approaches in literature to practical shape from silhouette. This 

short survey is not meant to be exhaustive and will be only devoted to describe the latest 

contribution to the state of art. 

 
 
 

A. Surface reconstruction 

Surface modeling provides a geometric representation of the surface of the reconstructed objects. 

These methods compute the bounding surface of R from the envelope of rays defined by the optical 
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center and the contour of the silhouettes in the image planes. Before entering the discussion, we 

recall the meaning of some terms.  

For each camera, the contour generator is the set of points of O where the viewlines are tangent to 

the object. The projection of a contour generator on the corresponding image plane is called 

apparent contour. The visual cone is defined as the set of viewlines passing through the optical 

center of the camera and all the points of the apparent contour. The intersection of all the visual 

cones is the inferred visual hull. Contour generators can intersect at isolated points, called frontier 

points. Frontier points are related to epipolar geometry, since for epipolar planes tangent to O, the 

tangency point is a frontier point. On the image planes, the apparent contours are tangent at epipolar 

tangent lines in points f1 and f2, projections on the image planes of the frontier point F (Figure 71). 

A triple point is a point in 3D where the viewlines passing from three points on different apparent 

contours intersect. 

 

 
Figure 71: contour generators, apparent contours and frontier points 

 
Several authors tackled the problem of surface visual hull reconstruction.  

Spline reconstruction has been used in Sullivan and Ponce (1998). The advantage of using splines is 

that they guarantee certain smoothness conditions. In particular their approach uses G1 triangular 

splines, which are triangular Bezièr patches sharing the same tangent at their boundaries. First, they 
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reconstruct a polygonal approximation of the volume occupied by the visual hull, intersecting in 3D 

the visual cones obtained back-projecting from each viewpoint a polygonal approximation of the 

corresponding apparent contour. The result is converted into a triangular mesh that is subsequently 

simplified and converted into a spline surface made up by triangular spline patches. The final step is 

to deform these spines to ensure that they are tangent to the viewing cones defined by the 

silhouettes. Surface fitting is obtained minimizing a suitable distance function between the spline 

surface and the viewing cones. 

Lazebnik et al (2001) compute the visual hull of objects with smooth surfaces and without planar 

patches exploiting two data structures: the rim mesh, describing the connections of the contour 

generators on the surface of O, and the hull mesh, describing the structure of the surface of the 

visual hull, whose patches are the strips ST(V) of Figure 50. The rim mesh is a graph whose 

vertices are frontier points, edges are contour generator segments connecting frontier points, and 

faces are regions bounded by edges. The visual hull mesh is a graph whose vertices are frontier 

points and triple points, edges are intersection curve segments between consecutive vertices, and 

faces are patches of the strips ST(V). Frontier points and triple points are evaluated exploiting 

epipolar geometry. The advantage of building the rim mesh is that its topology can be used to 

reconstruct the adjacency relationship between vertices and edges of the visual hull. However, the 

approach is limited by the fact that only zero genus surfaces can be reconstructed. Otherwise, the 

graph built is not necessarily complete. Calibration errors and noise on the input data are also taken 

into account. 

Matusik et al. (2001) compute a polyhedral textured representation of the visual hull. The apparent 

contours are represented with their polygonal approximation. The face of the cone corresponding to 

each edge of an apparent contour is intersected with all other viewing cones. The intersection is 

performed in 2D, projecting the viewing cones on the plane of the face, and then back-projecting in 

3D the result. The obtained polygons maintain as texture a reference to the images that contain it, 

entirely or partially. The final polygon texture is evaluated at rendering time by means of a series of 



 73 

blending weights that are used to merge the original images associated to the polygon. The weights 

are based on the angles at the rendered vertex between the virtual camera and the corresponding 

image. 

The approach of Franco and Boyer (2003) can deal with general surfaces, producing a polyhedral 

representation of the visual hull based on frontier points and triple points. Also in this case the 

apparent contours are approximated by polygonal contours. For each vertex of these polygons, the 

corresponding viewline is cast in 3D, and its intersection with all the viewing cones is computed. 

The result is a set of intervals along this line, called the viewing edges, which are the contribution of 

the viewing line to the visual hull. However, since the surface of the object can be general, viewing 

edges alone may not be sufficient to reconstruct a closed surface. Therefore missing vertices and 

connections needed to reconstruct the final polyhedron are computed using the geometry and 

orientation of the apparent contours.  

An interesting and original contribution is the one proposed by Kang et al. (2001). They exploit a 

dual space based on differential geometry that relates a point of an occluding contour to the 

corresponding local tangent plane on the 3D surface of the object. The position of this plane is 

deduced by fitting an implicit polynomial surface of degree n, which estimates the local surface of 

the object, in the dual space. The surface of the reconstructed object is obtained as union of the set 

of locally estimated polynomial patches. The approach has been generalized in Brand et al. (2004) 

in order to reconstruct an entire free-form surface. They still make use of the dual space, but the 

tangent plane position is derived from continuity principles, given the position of nearby points on 

the surface and information on the local surface curvature. The output is a set of tangent planes and 

corresponding surface contact points (lying on the surface of the visual hull), that can be 

transformed into a 3D surface by locally intersecting the tangent planes. 

There are also works exploiting multiple image cues for surface reconstruction. In the work of 

Isidoro and Scarloff (2003) an initial polygonal representation of the VH , constructed via CSG, is 

simplified and subdivided in order to provide a more uniform distribution of vertices on the surface. 
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Then photometric consistency with the incoming images is used to remesh the visual hull, until the 

error between the silhouettes and the reprojection of the textured visual hull falls below a 

predefined threshold. Hernandez Esteban and Schmitt (2004) use a snake-based deformable model 

which is adapted to the VH  by means of two external forces based on the images, driven by the 

shape of the silhouettes and by the model texture. 

 
 
 
 

B. Volumetric reconstruction 

Algorithms for intersecting visual cones of general objects in 3D are complex and generally prone 

to rounding errors. Therefore, effective approaches to represent the volume occupied by R are 

needed. The most common is a regular tessellation of cubic primitives, called voxels, and the 

reconstruction is defined as an occupancy classification problem, the voxel belonging to the volume 

if at least one of its vertices project inside all the silhouettes in the corresponding image planes. 

When the model is used for synthesizing new views, several rendering algorithms can be used, 

including ray casting, splatting and shear-warp. Other representations use octrees, allowing a more 

efficient subdivision of the scene space (Potemesil 1987, Noborio et al. 1988, Ahuja and Veenstra 

1989). From such models, it is possible to reconstruct a polygonized representation of the surface of 

the visual hull using the Marching Cubes, Lorensen and Cline (1987), or the Marching Tetrahedron 

algorithms, Carneiro et al. (1996). 

A 2D example of voxel-based reconstruction is shown in Figure 72. Image (a) shows the inferred 

visual hull of an object computed from four views, while in (b) its approximated voxelized 

reconstruction is shown. As can be seen, the latter is significantly bigger. 



 75 

 

Figure 72: (a) the object O and its inferred visual hull; (b) the approximated reconstruction of VH (O) 

 
A different representation, using the so-called Bounding Edges (BE), has been introduced by Chen 

et al. (2003). A BE is defined as follows. A point u on an image plane corresponds to a 3D line in 

world space. The BE is the part of this line that projects inside all the silhouettes used for 

reconstruction. It can be immediately seen that a BE can be composed by several separate segments 

along the originating line. The visual hull is then reconstructed in terms of the BE corresponding to 

points sampled on the contour of all the silhouettes used. It should be noted that each BE is part of 

the strip ST(V) shown in Figure 50, that is to what is left of the visual cone relative to V after the 

various volume intersection operations, and therefore it belongs to VH (O). Hence, this 

representation, although incomplete, is an effective description of the surface of the visual hull. 

All these approaches, however, provide a coarse reconstruction of the visual hull. The results can be 

improved when multiple image cues, and not only the binary silhouettes, are used. The first attempt 

has been presented in Fromherz and Bichsel (1995), where volume intersection is combined with a 

consistency test based on the luminance of the pixels in the image planes. This basic idea has been 

extended by Seitz and Dyer (1997) with their voxel coloring algorithm. Initially the volume 

containing the scene is reconstructed by means of a traditional voxel based algorithm. Then voxels 

are checked for color consistency with the silhouettes in the image planes, and inconsistent voxels 

are removed from the initial volume. Finally consistent voxels are assigned the colors they project 

in the image planes, enhancing the quality and realism of the object when rendered from a different 
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view. Consistency checking requires knowing voxel visibility in the image planes. Since this is a 

complex problem, some simplifications have been introduced. If it is possible to establish a 

topological ordering of the voxels, that is if it is possible to sort the voxels in order of visibility with 

respect to a set of cameras, voxels can be traversed in this order, guaranteeing that when a voxel is 

visited, all other possible occluders have been already checked. An example is when we have a 

single camera, Fuchs at el. (1980), or when all the cameras lye on the same side of a plane, Langer 

and Zucker (1994). In their work, Seitz and Dyer (1997) demonstrated that a multi-view visibility 

ordering exists for particular camera configurations, that is when O lies outside the convex hull of 

the optical centers of the cameras.   

Those pioneering works focused the attention of the scientific community on the so-called shape 

from photo-consistency problem, whose main recent contributions are detailed in the following 

sections. 

1. Space Carving 

Space carving has been proposed in its original formulation by Kutulakos and Seitz (2000). This 

method addresses the problem of computing an unknown shape from a multiple set of colored 

images taken at arbitrary viewpoints. It takes into account several image and object cues, like 

parallax, occlusion, scene radiance, shape contours and image correspondences.  

First, the authors prove the existence of a photo-hull, which is a shape subsuming all the class of 

objects having appropriate reflectance properties that, seen from any of the specified viewpoints, 

produce the same input image. This can be done constraining the reconstructable objects to belong 

to the particular subclass of objects whose radiance function is locally computable (or, in other 

words, when global effects of illumination, like diffuse to diffuse, diffuse to specular and specular 

to diffuse interactions can be neglected, as well as shadows and transparencies) and also accordant 

to a known radiance function. The existence of the photo-hull is also in accordance with the fact 

that 3D shape reconstruction from a set of images is an under constrained problem, since multiple 
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shapes can be consistent with the set of input images. This problem has been discussed thoroughly 

in chapter II for silhouettes. 

Second, the authors give a set of consistency rules, to define when a point is consistent with a single 

image, when a set of objects is consistent with a single photo, and finally when a set of objects is 

consistent with the full set of input images. Point consistency is given when the point does not 

project on the image plane on a background pixel and its computed radiance is equivalent to the 

color of the image pixel. Objects consistency with respect to a single photo is given when all not 

background pixels correspond to consistent points. Objects consistency with the full set of input 

photos is given when the objects-photo consistency is guaranteed for every input image. These rules 

are used to characterize the photo-hull, and are used in the photo-hull reconstruction.  

The process of photo-hull reconstruction is performed by effectively carving an initial volume and 

repeatedly scraping off small portion of volume until the final shape is reached. The initial volume 

is supposed to consist of a set of voxels. When a voxel is checked to be not consistent, it is removed 

from the volume, until no more inconsistent voxels are found. The contribution of this work is how 

visibility is dealt with. All the cameras are considered, and no particular configuration of the 

position of their optical centers is required. Since in the general case there is no topological ordering 

of the voxels with respect to the viewpoints, voxels are traversed in a visibility compatible order by 

means of a multi plane-sweep algorithm, along the positive and negative directions on the three 

coordinate axis, and consistency is checked using only the cameras lying on the positive side of the 

plane. A different approach has been used in Culbertson et al. (2000). Their algorithm iterates 

through bounding voxels, until no more inconsistent voxels are found. Visibility is determined 

using all the cameras at the same time exploiting a particular data structure, layered depth images 

(Shade et al. 1998) to update visibility constraints when inconsistent voxels are carved away.  

A similar approach, presented by Carceroni and Kutulakos (2001), uses surfels, or surface elements, 

instead of voxels to reconstruct the surface of R. 
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As can be seen from this description, the final result is not an exact reconstruction of the photo-hull, 

but only its approximated description in terms of its composing voxels. Therefore, the quality of the 

approximation is related to the size of the voxels, and no exact geometric description of the final 

shape is given. Another problem is given by the photo-consistency measure used to decide when the 

voxel should be eliminated. In the work of Kutulakos and Seitz (2000) this measure is based on the 

color variance of the projections of the voxel on all the image planes, which is thresholded to decide 

when to retain a voxel. The drawback of this method is that it is very sensitive to the global 

threshold selected, and that a single threshold is unlikely to give optimal results for complex scenes. 

Therefore, other researcher have used different approaches, like in Slabaugh et al. (2000), where the 

authors introduce a post-processing iterative method, where voxels are added or removed from the 

initial result until the squared sum of the differences between the reconstructed volume and its 

reprojections on the input images are minimized. Other approaches, Agrawal et al. (2001), 

Broadhurst et al (2001), Yezzi et al (2002), Montenegro et al. (2004), use probabilistic approaches, 

where each voxel is assigned a probability based on an appropriate likelihood, and the reconstructed 

surface is minimal with respect to a metric defined by these probabilities. 

Another problem of this approach is the model of surface reflectivity, and the difficulty of dealing 

with specular highlights or textureless surfaces. The work of Yang (2003) tries to overcome this 

difficulty by developing a novel photo consistency measure, valid for both lambertian and specular 

surfaces, conjugated with a progressive space carving scheme that, starting from some reliable 

voxels, incrementally add voxels using photo consistency, uniqueness and local smoothness 

constraints. The basic idea is to defer any decision about uncertain voxels until a sufficient amount 

of evidence has been achieved. The new photo-consistency measure is based on the assumption that 

the surfaces are such that the reflected light is only modulated by the incident light, like plastic and 

glass. In this case, the reflected colors observed by different viewpoint are collinear in color space, 

that is they form a segment starting from the diffuse color to the color of the incident light. This 

color signature in color space is used for evaluating photo consistency. 
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2. Image Based Visual Hull 

Image based Visual Hull (IBVH), Matusik et al. (2001), is a method for producing an image-based 

rendering of the VH  from silhouettes. The method renders the VH  from a generic view without 

reconstructing an auxiliary representation. Given the image to create, for each pixel, a ray starting 

from the optical centre of the virtual camera is cast in 3D. The ray is projected on each reference 

image, its intersection with the corresponding silhouette is computed and back-projected on the 3D 

ray, and the intersection of all these back-projections is computed. All these operations are 

optimized exploiting the epipolar geometry. The point of the resulting intersection on the 3D ray 

closer to the virtual viewpoint, which is a point belonging to the surface of the visual hull, is then 

assigned the color of the projection of the point on the image that is more similar to the virtual view. 

The similarity measure is given by the angle between the visual hull point and the desired camera 

centre. An example can be seen in Figure 73, where a virtual image is created from two input 

images. 

 

Figure 73: the ray from pixel (i,j) is projected from the desired view, then it is projected on the input images with 
the corresponding silhouettes; finally their back-projections in 3D are intersected, and the closest point to the 

virtual view is rendered on the virtual image 
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The Image Based Photo Hull (IBPH), by Slabaugh et al. (2003), combines the IBVH and the photo 

hulls approaches. The drawback of IBVH is that it is not very accurate, since it reconstructs only the 

visual hull. On the contrary, the photo hull is a tighter bound to the object O. Therefore the IBPH 

combines the efficiency of the IBVH and the improved reconstruction capabilities of the photo hull. 

The idea of the algorithm is simple. First, the IBVH is reconstructed. Then, for each ray, the photo 

consistency of the closest point on the visual hull is evaluated. If the point is inconsistent, the point 

is shifted away from the virtual camera center of a small portion, until a consistent point is found or 

the entire ray is discarded as being totally inconsistent. The advantage of this method is also that 

only the portion of the photo hull visible from the virtual camera is effectively reconstructed. The 

disadvantage is the loss of performances. On similar test data, as shown in Slabaugh et al. (2003), 

the IBVH runs at 24 frames/sec, while the IBPH runs between 6 and 7.5 frames/sec. 
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