
10 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A New Lower Bound for Evaluating the Performances of Sensor Location Algorithms / Bottino, ANDREA GIUSEPPE;
Laurentini, Aldo; Rosano, L.. - In: PATTERN RECOGNITION LETTERS. - ISSN 0167-8655. - STAMPA. - 30 (13):(2009),
pp. 1175-1180. [10.1016/j.patrec.2009.05.020]

Original

A New Lower Bound for Evaluating the Performances of Sensor Location Algorithms

Publisher:

Published
DOI:10.1016/j.patrec.2009.05.020

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2278664 since:

Elsevier



A New Lower Bound for Evaluating the
Performances of Sensor Location Algorithms

Andrea Bottinoa,,1, Aldo Laurentinia, Luisa Rosanoa

aDAUIN, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy

Abstract

Locating sensors in 2D can be modelled as an Art Gallery problem. Tasks such

as surveillance require observing or “covering” the interior of a polygon with

a minimum number of sensors (IC, Interior Covering). Edge Covering (EC) is

sufficient for tasks such as inspection or image based rendering. As IC, also EC

is NP-hard, and no finite algorithm is known for its exact solution. A number

of heuristics have been proposed for EC, but their performances with respect

to optimality are unknown. Recently, a lower bound for the cardinality of the

optimal EC solution, specific of a given polygon, has been proposed. It allows

assessing the performances of approximate EC sensor location algorithms. In

this paper, we propose a new lower bound. It is always greater than, or equal

to the previous, and can be computed in reasonable time for environments with

up to a few hundreds of edges. Tests over hundreds of polygons using a recent

incremental EC algorithm show that the gap between the cardinality of the

solution provided by the algorithm and the new lower bound is substantially

reduced, and then the new lower bound outperforms the previous one.
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1. Introduction

Several computer vision and robotics tasks, as surveillance, inspection, im-

age based rendering, constructing environment models, require multiple sensor

locations, or the displacement of a sensor in multiple positions for fully exploring

an environment or an object. Sensor placement, or planning, or location, is an

important area of research, addressed in several surveys [17, 22, 23, 24]. Sensor

location problems require considering a number of constraints, such as image

resolution, field of view of the sensors, feature visibility, lighting, etc. Visibility

is clearly the fundamental constraint. An omni directional or rotating sensor is

usually modelled as a point. A feature of an object is visible from the sensor if

any segment joining a point of the feature and the viewpoint does not intersect

the environment or the object itself.

Although the general problem is three-dimensional, in several cases it can

be restricted to 2D. This is for instance the case of buildings. The 2D visibility

constraint is modelled by the classic Art Gallery problem, which asks to position

a minimum set of “guards” able to see, or “cover” a polygonal environment.

Tight upper bounds for the cardinality of the set of guards have been found

in several cases. The famous Art Gallery Theorem by Chvàtal states that at

most �n/3� guards are required for covering any simple polygon with n edges,

metaphorically the interior of an art gallery. The upper tight bound �(n+h)/3�
holds for polygons with n edges and h polygonal holes. Many variations of

the problem have been considered, as particular kind of polygons, restricted

positions for the guards, additional constraints. For further details, the reader

is referred to the monograph by O’Rourke [19] and to the surveys by Shermer

[21] and Urrutia [25].

Unfortunately, the practical problem, that is locating a minimum set of

guards in a given polygon, is NP-hard, and no finite exact algorithm is known

for locating a minimum cover. Approximate algorithms with guaranteed per-
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formance and polynomial in the worst case are unlikely to exist [10]. Anyway,

several approximate polynomial algorithms have been proposed, reported by

Shermer [21] or presented later, for instance by Bjorling-Sachs and Souvaine [3],

Elnagar and Lulu [11], [12], Efrat and Har-Peled [9], Amit, Mitchell and Packer

[1].

Observe that the sensors are required to cover the interior of a polygon for

tasks such as surveillance. Other tasks, such as inspection, a main application of

sensor planning according to the survey in Ref. [23], and image based rendering,

only require observing the boundary. In this paper, we deal with the latter prob-

lem, referred to as the Edge Covering (EC) problem, while the classic problem

is called the Interior Covering (IC) problem. The EC problem and its relations

with IC have been analyzed in Ref. [16]. The Chvàtal bound also holds for EC,

but, although any interior cover is also an edge cover, in general an optimum

set of IC guards is not an optimum set of EC guards and vice-versa. Examples

show that the number of IC guards may be two times, for simple polygons, or

Θ(n) times, for polygons with holes, the EC guards [16]. Then, even if efficient

IC algorithms were found, using for EC the solution provided could result in a

large sensor waste. EC is different from IC, but not easier. Actually, also EC

is NP-hard [16], and no finite exact algorithm is known for locating a minimum

set of EC guards in a given polygon.

Also for the EC problem, approximate sensor positioning algorithms have

been presented. For instance, Kazazakis and Argyros [15] have proposed and

implemented a polynomial heuristic that also takes into account the range con-

straint. The randomized approach (Danner and Kavraki [8], Gonzales-Banos

and Latombe [13, 14]) attempts to approach the optimal solution by locating

at random many sensors. Anyway, no experimental or theoretical results are

supplied for evaluating the quality of the solution provided by these algorithms

(cardinality of the set of guards compared with that of the optimal solution).

Recently, an EC incremental sensor location algorithm has been presented
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[4, 5, 6]. This algorithm converges toward the optimal solution in an undefined

number of steps, and makes use of a lower bound, specific of the polygon con-

sidered, for the minimum, or optimum, number of guards. The lower bound

allows evaluating the quality of the solution obtained at each step, and halting

the algorithm if the solution is satisfactory. Experimental results show that on

the average the algorithm supplies solutions close to the lower bound, and then

to the optimal cover. The idea of a lower bound for the IC problem has been

presented in Ref. [1].

Clearly, since no known algorithm is able to compute the cardinality of

a minimum set of EC guards, a tight lower bound is of great importance for

evaluating the quality of sensor positioning algorithms. In this paper, we present

and discuss a new, polygon specific, lower bound algorithm. The lower bound

computed with this algorithm is equal or larger than that computed with the

algorithm described in Refs. [4, 6]. The algorithm has been implemented and

tested for many random polygons of different categories and different number

of edge, and compared with the results supplied by the previous lower bound

algorithm. The tests show that the new lower bound is significantly larger than

that provided by the previous algorithm, and, most of all, that the gap between

the solution provided by the incremental algorithm and the lower bound is

substantially reduced. The algorithm is not polynomial, but its running time

allows dealing with polygons with up to a few hundred of edges, and it will be

shown that computing the new lower bound takes less time than the old one.

The paper is organized as follows. In Section 2, we describe the new lower

bound algorithm. Section 3 provides the experimental results and comparisons.

Concluding remarks are reported in Section 4.
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Figure 1: Two weak visibility polygons. Each of these polygons must contain at least one

guard.

2. The Lower Bound Algorithm for EC

2.1. The previous Lower Bound and its shortcomings

Let us first recall the lower bound algorithm described in Ref. [5]. It is based

on the concept of weak visibility polygon of an edge. Two points of a polygon P

are visible, or see each other, if the segment joining the points lies completely

in P . According to Avis and Toussaint [2]:

Definition 1 a polygon W is weakly visible from an edge e if for each point

w ∈ W there exists at least a point z ∈ e such that w is visible from z.

In other words, the weak visibility polygon W (ei) of an edge ei is the polygon

whose points see at least a point of ei. Observe that points seeing only one vertex

of ei do not belong to W (ei). Examples of weak visibility polygons are shown in

Fig. 1. Polynomial algorithms for computing weak visibility polygons of an edge

are described in the literature [20]. In our case, however, weak visibility polygons

are computed as a by-product of the sensor location algorithm described in

Refs. [4, 6].

Weak visibility polygons allow us to determine a lower bound for the number

of sensors needed. In fact, each weak visibility polygon must contain at least one

sensor, otherwise no points of the edge are seen by any sensor. Therefore, a lower
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bound LBW (P ) for a polygon P is obtained by computing the cardinality of the

maximal subset of disjoint (not intersecting) weak visibility polygons W (ei) of

P .

A simple example is shown in Fig. 1. It is easy to verify by inspection that

no more than two disjoint weak visibility polygons can be found, for instance

W (e1) and W (e2), and thus LBW (P ) = 2, which is also the cardinality of the

minimum set of sensors.

Computing LBW requires solving the maximum independent set problem for

a graph G where each node represents the weak visibility polygon of an edge of P ,

and each edge of G connects nodes corresponding to intersecting weak visibility

polygons. The problem is equivalent to the maximum clique problem for the

complement graph G′. Although this is an NP-complete problem, exact branch-

and-bound algorithms for these problems have been presented and extensively

tested [25, 18, 26], showing more than acceptable performances for graphs with

hundreds of nodes.

The tests reported in Refs. [4, 6] also show that on the average the difference

between the LBW (P ) and the cardinality of the solution provided by the sensor

location algorithm is small, and both are close to the optimum cardinality that

lies in between.

However, the algorithm for computing LBW fails to produce good results

in some simple cases. Consider for example the case in Fig. 2, showing a comb

polygon of a family used for showing that the Chvàtal upper bound is tight

for both IC and EC. Only two not intersecting weak visibility polygons can be

found, for instance those shown in Fig. 2(a), and then LBW (P ) = 2. However,

three EC guards are clearly required, one for each spike. The reason of the bad

behaviour of the algorithm in this case can be appreciated from Fig. 2(b), where

the weak visibility polygon W (e3) of one of the edges forming the central spike

is shown. W (e3) intersects W (e1), and likewise W (e4) intersects W (e2).
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Figure 2: LB1(P ) is two, but EC requires three guards.

Let us observe that similar arguments show that the lower bound LBW is 2

for all polygons of the comb family: while the cardinality of the minimum set

of guards increases with the number of spikes.

2.2. The new Lower Bound Algorithm

The previous example suggests considering visibility polygons of parts of the

boundary smaller than an edge. Given a polygon P, let us recall the definition

given by O’Rourke [19]:

Definition 2 the point visibility polygon V P (x) of a point x is the set of points

p ∈ P visible from x.

In particular, we focus our attention on convex vertices of the polygon and

thus consider V P (vi) of all convex vertices vi of P . We only consider convex

vertices, because they produce visibility polygons smaller than those of the edges

converging at the vertices.

Consider the cardinality of the maximal subset of not intersecting V Ps of

convex vertices. It is clear that this cardinality is another lower bound, since

7



Figure 3: The non intersecting V P (vi) are as many as the guards.

each V P must contain at least one guard. If we use this new lower bound, the

problem with the comb polygon family is solved, as shown in Fig. 3.

However, choosing as lower bound the cardinality of the larger set of V P s of

convex vertices could be not satisfactory even in relatively simple cases. Con-

sider for instance the polygon in Fig. 4. It can be easily verified that no more

than four V P s of convex vertices exist, and precisely those of the vertices v1, v2,

v3, v4 (Fig. 4(a)). However, five EC sensors are required, located for instance

as shown in Fig. 4(b).

The examples discussed suggest to take into account both weak visibility

polygons of edges and point visibility polygons of convex vertices.

Then we assume the following new definition of lower bound:

Definition 3 The lower bound LBW&V P (P ) is the cardinality of the maximal

subset (or subsets) of not intersecting weak visibility polygons W (ei) of

edges ei of P , and visibility polygons V P (vi) of convex vertices vi of P .

With this definition we solve the problems highlighted both for the comb

polygons and for the polygon of Fig. 4. In the latter case the new definition

supplies five and not four as lower bound. A maximum set of non intersecting

visibility polygons is shown in Fig. 5. One of them is the weak visibility polygon

of the edge e; the other polygons can be interpreted either as visibility polygons
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Figure 4: At most, four non intersecting VP of convex vertices can be found (a), but five

guards are required (b).

Figure 5: Five non intersecting visibility polygons are found.

of convex vertices, or as weak visibility polygons of edges converging in these

vertices. Combining polygons as those shown in Fig. 2 and 4, we can easily

produce examples where the new lower bound is better then those provided by

weak visibility polygons and convex vertex visibility polygons separately.

In general, it is clear that LBW&V P (P ) � LBW (P ) for any P , and then

LBW&V P (P ) is a better or equal lower bound. A block diagram of the new

algorithm is shown in Fig. 6.

Polynomial algorithms for computing V P s of polygons with and without

holes can be found in O’Rourke [19]. In addition, for polygons without holes it

is possible to compute the point visibility polygon of a convex vertex vi as the

intersection of the weak visibility polygons of the edges converging into vi. In

our case, vertex visibility polygons are computed again as a by-product of the
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Compute WP={WP(ei)}

Compute VP={VP(vi)}

Intersect all pi and pj
belonging to WP U VP

Create graph G’

Eval max_clique(G’)

Figure 6: New algorithm.

sensor location algorithm described in Refs. [4, 6].

At a first glance, we could expect a heavier computational burden for the

non polynomial part of the algorithm, that is the selection of the maximum

independent set of vertices in the associated graph. However, as confirmed by

the experimental section, this is not the case since an important reduction of the

number of nodes of the graph can be performed. It is clear in fact that the nodes

corresponding to weak visibility polygons of the edges converging at the convex

vertices can be deleted from the graph, since they enclose the weak visibility

polygon of the vertex. Adding up, considering c convex vertices reduces to n−c

the number of nodes of the graph.

2.3. Taking into account range and incidence

The new lower bound can be easily extended to take into account other

geometrical constraints. EC algorithms usually also consider: a) minimal and

maximal distances between the sensors and the observed boundary points; b)
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Figure 7: C(ei) for range (a) and for incidence (b) constraints; C(vi) for range constraint.

minimal angle of incidence between an edge and the viewline [8, 13, 14, 15]. For

each edge ei each constraint defines a region C(ei) of P where the viewpoint

can be located. These regions can be easily computed (we omit the obvious

details). An example of these regions for range and incidence constraints can

be seen in Fig. 7 (a) and (b). Further details can be found in Ref. [6]. The

range constraint for convex vertices simply defines a region C(vi) as that shown

in Fig. 7(c).

For computing the new lower bound LBW&V P , it is sufficient to consider

reduced visibility polygons, obtained as intersections of W (ei) and C(ei) or of

V P (vi) and C(vi).

Finally, observe that same care must be observed in selecting incidence and

range parameters, otherwise the resulting regions could be empty, or lie outside

the polygon.

3. Experimental results

In this section, we present experimental results showing that, on the average,

the new lower bound significantly outperforms the previous.

In order to evaluate the performance of LBW&V P compared to LBW , we

implemented it within the EC algorithm described in Ref. [5]. Thus, two ver-

sions of the EC algorithm are considered: one is the original version (described

in Ref. [5]) computing the lower bound LBW , while the second computes the

LBW&V P proposed in this article. In the following, results from the original
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version of the EC algorithm are subscripted with W , while results from the new

version are subscripted with W&V P . Comparing the old and the new LB is

not sufficient for a full evaluation. A better insight is provided by the reduction

of the absolute gap between the lower bound and the solution provided by the

EC algorithm, as well as by the reduction of the relative gap, that is the gap

divided by the cardinality. Finally, computation times for the new and old lower

bounds are compared.

Both versions of the EC algorithm were tested over several hundreds of

polygons belonging to the following five categories:

(A) generic random polygons, with edges oriented in generic directions;

(B) generic random polygons with one to three holes;

(C) orthogonal random polygons with no holes;

(D) orthogonal random polygons with one to three holes;

Four different sets of polygons, with 30, 40, 50 and 60 edges, were constructed

for each of the first four categories. Test results for each category are illustrated

through Table 3 to Table 6.

Each line of the tables refers to a set of no. polygons with nedges edges

used for tests. Data reported in these tables provide the following information

averaged over the total number of polygons for each set:

• LB, the lower bound computed;

• C, the cardinality of the final EC solution. For polygons of the categories

(A)-(D) the cardinality is given by the solution of the EC algorithm pre-

sented in Ref. [5], with four iterations without improvements and a time

limit for the execution of 2400s. For polygons of category (E), the cardi-

nality is given by the greedy solution of the EC algorithm;
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• G, the gap between the lower bound and the cardinality of the EC solution.

Precisely, GW = C − LBW is the gap estimated for each polygon tested

under the original version of the EC algorithm and GW&V P = C−LW&V P

is the gap estimated under the new version of the algorithm. The smaller

is the gap, the better a solution is. Clearly, in the optimal case, the gap

is null;

• G/C, the relative gap; that is, respectively, GW /C and GW&V P /C.

• LBtime, the total time, in seconds, spent to compute the lower bound

computation (see below for further details);

• G reduction, the gap reduction percentage, defined as 100∗(1−GW&V P /GW );

• LBtime reduction, the percentage of time saved computing the lower bound

as LBW&V P instead of LBW (negative values stand for extra time spent).

The experiments show a substantial reduction of the gap between LB and the

final EC solution and of the relative gap. These improvements are summarized

per polygon category in Table 1, where we can see that the gap reduction ranges

between 28% and 46%.

Table 1: Total gap reduction per polygon category.

Polygon category G reduction

Random 42.59%

Random with holes 30.38%

Orthogonal 46.43%

Orthogonal with holes 28.93%

Total 35.80%

As a whole, considering all the experiments, the mean gap reduction is

35.80%. These results assert that the new lower bound presented in this ar-

ticle provides a substantially tighter approximation of the optimum.
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Regarding the processing time, the total time reported includes:

• the data structure time, that is the time spent to construct the required

data structure (weak visibility polygons in the case of LBW , weak and

point visibility polygons in the case of LBW&V P )

• the max clique time, which is the time taken to construct the dual graph

from the set of visibility polygons and to solve the max clique problem.

Processing times required for computing the data structure and solving the

max clique problem were individually recorded for each polygon tested and then

averaged per each polygon category. Per cent time reductions for: 1) construct-

ing the data structure, 2) solving the max clique problem and 3) computing the

lower bound as a whole are summarized in Table 2.

Table 2: Lower bound reduction times.

Average reduction times

Polygon category Data struct Max Clique Total

Random -1.24% 31.40% 10.70%

Random with holes -3.19% 30.69% 10.72%

Orthogonal -1.21% 21.39% 5.96%

Orthogonal with holes -15.46% 24.27% -0.15%

Total -3.60% 28.28% 8.33%

Positive values stand for time savings while negative values stand for extra

time consumed. Table 2 shows that, as expected, the time spent in creating

the data structure increases, but the time spent in evaluating the max clique

decreases. This is particularly evident for polygons with a very high number of

edges. On the average, a time saving results, particularly for large sizes of the

associated graph.

Concluding, the new LB definitely outperforms the previous one.
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4. Conclusions

We have studied, implemented and experimented a new lower bound for the

minimum number of guards required for solving the EC problem, a variation of

the Art Gallery problem important for tasks such as inspection.

The new lower bound has been experimentally compared with a previous

lower bound, and with the cardinality of the coverage provided by an efficient

incremental EC algorithm.

The results collected from a wide range of polygons, with and without holes,

show that the new lower bound outperforms the previous one, since the gap

between the lower bound and the solution provided by the EC algorithm is re-

duced on average of about one third. Furthermore, the new lower bound requires

less time for its evaluation, since the bottleneck of the algorithm, computing a

maximum independent set of vertices of an associated graph, is performed on a

graph with less vertices.

Concluding, the new lower bound has been shown to be closer to the opti-

mum, and than more effective for evaluating the performances of approximate

EC sensor location algorithms.

Table 3: Random polygons - (A)

nedges no. C LB G G/C LBtime G LBtime

W&VP W W&VP W W&VP W W&VP W reduction reduction

30 20 4.30 3.95 3.80 0.35 0.50 0.078 0.108 0.319 0.292 30.00% -9.09%

40 20 5.40 5.20 4.90 0.20 0.50 0.035 0.087 0.643 0.598 60.00% -7.58%

50 20 6.70 6.25 5.90 0.45 0.80 0.066 0.114 1.561 1.731 41.88% 9.83%

60 20 8.30 7.75 7.40 0.55 0.90 0.063 0.102 2.687 3.212 38.89% 16.37%
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Table 4: Random polygons with 1-3 holes - (B)

nedges no. C LB G G/C LBtime G LBtime

W&VP W W&VP W W&VP W W&VP W reduction reduction

30 20 5.20 4.90 4.60 0.30 0.60 0.046 0.099 0.460 0.448 50.00% -2.83%

40 20 6.45 5.70 5.40 0.75 1.05 0.115 0.159 1.674 1.728 28.57% 3.12%

50 20 7.45 6.75 6.40 0.70 1.05 0.106 0.137 2.106 2.345 33.33% 10.19%

60 20 8.40 7.40 7.15 1.00 1.25 0.115 0.146 2.982 3.569 20.00% 16.44%

Table 5: Orthogonal polygons - (C)

nedges no. C LB G G/C LBtime G LBtime

W&VP W W&VP W W&VP W W&VP W reduction reduction

30 20 4.50 4.25 3.95 0.25 0.55 0.053 0.128 0.195 0.173 54.55% -13.06%

40 20 6.15 5.70 5.35 0.45 0.80 0.073 0.127 0.333 0.329 43.75% -1.16%

50 20 7.30 6.60 6.15 0.70 1.15 0.095 0.159 2.236 1.055 39.13% -111.85%

60 20 8.85 8.00 7.15 0.85 1.70 0.091 0.187 1.814 3.311 50.00% 45.22%

Table 6: Orthogonal polygons with 1-3 holes - (D)

nedges no. C LB G G/C LBtime G LBtime

W&VP W W&VP W W&VP W W&VP W reduction reduction

30 20 6.00 5.45 5.25 0.55 0.75 0.464 0.647 0.202 0.170 26.67% -18.85%

40 20 8.30 7.70 7.55 0.60 0.75 0.069 0.086 0.248 0.182 20.00% -36.38%

50 20 9.10 7.85 7.40 1.25 1.70 0.142 0.198 0.707 0.733 26.47% 3.53%

60 20 11.35 9.45 8.50 1.90 2.85 0.165 0.243 1.402 1.471 33.33% 4.67%
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