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Abstract— The problem of locating visual sensors can be aftedelled as 2D Art
Gallery problems. In particular, tasks such aseaillance require observing the interior
of a polygonal environmeninterior covering, IC), while for inspection or image based
rendering observing the boundaegdde covering, EC) is sufficient. Both problems are
NP-hard, and no technique is known for transformamg problem into the other.
Recently, an incremental algorithm for EC has bgeposed, and its near-optimality
has been demonstrated experimentally. In this papershow that, with some
modification, the algorithm is nearly optimal algar IC. The algorithm has been
implemented and tested over several hundreds aforarpolygons with and without
holes. The cardinality of the solutions providedvésy near to, or coincident with, a
polygon-specific lower bound, and then suboptimal optimal. In addition, our
algorithm has been compared, for all the test pmigg with recent heuristic sensor
location algorithms. In all cases, the cardinabfythe set of guards provided by our
algorithm was less than or equal to that of thecegtputed by the other algorithms. An
enhanced version of the algorithm, also taking iatwount range and incidence

constraints, has also been implemented.

Keywords— Art gallery, visual sensor positioning, mternal covering.



1. INTRODUCTION

ThelC and EC Art Gallery problems

Problems of visual sensor placement arise in skyeextical areas of computer
vision, computer graphics and robotics, such asedlance, object or environment
reconstruction, inspection and image based renglefime subject is covered by several
surveys, encompassing 2D and 3D problems ([21], [28], [23]). The case of known
objects or environment is usually referred tavaslel-based view planning ([22], [5],
[24]).

Locating sensors to inspect, or surveying knownl reavironments, requires
satisfying a number of constrains for distanceid@cce, lighting and visibility where,
clearly, visibility is the main one. In several @mwments, such as buildings, sensor
location is essentially a bi-dimensional problemeventhe area to observe can be
modelled using polygons or sets of polygons. Assgnmultidirectional or rotating
optical sensors, the visibility constraint in 2Dnsdelled by the classic Art Gallery
Problem, or by one of its variants. The original @allery Problem asked to locate in a
given polygon the minimum set of point sensorgjuards, able to completely observe,
or cover, any point of the polygonQ, interior cover). The famous Art Gallery
Theorem states that at mas¥3] guards are required for covering polygons with
edges. Many variations of the problem have beesidered, including particular kinds
of polygons, restricted positions for the guardd additional constraints. Much work
has been done for finding upper tight bounds (Aatl€y Theorems) in these cases.
The decision problem related to the original probléare k guards sufficient for
covering a given polygon?), as well as those rdladeseveral similar problems, is NP-
hard [6]. No exact finite algorithm for locatingr@nimum set of sensors is known. For
further details, the reader is refertedthe monograph by O’Rourke [18hd to the

surveys by Shermer [204nd Urrutia [25] .



Not all practical sensor positioning problems reguovering the whole interior of a
polygonal environment. Tasks such as inspection@ade based rendering, where the
geometry, but not the texture, is known, only regub observe the boundary edges
(EC, edge covering). The EC problem and its relations with IC haverbanalyzed in
[17]. As IC, also EC is NP-Hard, and the same upggtt bound holds for the
minimum number of guards, but in general an optimarmminimal, set of IC guards is
not an optimum set of EC guards and vice versa.shaple rule is known for
transforming an optimal solution of one problenoian optimal solution of the other.
Extreme examples can be produced, showing thatd{ nequire 2 times more sensors
than EC for simple polygons, a@{n) timesmore for polygonsvith holes [17], as in
Fig. 1, where the dots represent the sensors of the H@igoand each gray region

requires an additional IC sensor.

()

Fig. 1. (a) A family of simple polygons where tlaio between IC guards and IC
guards can be arbitrarily near to two. (b) In fhadygon with holes two guards ands;

are sufficient for EC, but IC requires one addisibguard for each area highlighted (a).

Approximate sensor location algorithms: state of the art
Although tight upper bounds (Art Gallery Theorenasg useful and theoretically
interesting, practical problems require algorithebée to find and locate a set of guards

whose cardinality is not far from that of an optiroa minimal cover. Unfortunately,
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finding worst-case polynomial algorithm able todisolution with guaranteed fixed
approximation is unlikely, according to the resufsEidenbentz et. al., [10], which
show that several sensor location problems are A&X- (APX hard means that the
existence of such algorithms would imply P=NP). T happroximate algorithms with
good average behaviour with respect to the optimal solution are required.

Shermer, [20], reports several approximate polyabnalgorithms for the IC
problem. It can be easily verified that their wezase performance in relation with the
optimal solution can be very unsatisfacto®(it) guards wherO(1) are sufficient).
Bjorling-Sachs and Souvaine [presented a polynomial algorithm that places always
L(n + h)/3] guards, the upper bound, in a polygon wtitholes. This technique could
result in a large waste too, since it is easy twdpce families of polygons were two
guards are sufficient for anyandh. No data are supplied on the average behaviour of
these algorithms.

Other approximate IC positioning techniques hawenl@oposed more recently ([8],
[9], [11], [12], [13], [27]). Several algorithms swict the possible positions of the
sensors, for instance on a grid, or on the vertiOedy a few of the IC algorithms have
been implemented, and, in any case, their averalgaviour with respect to the optimal
unrestricted solution is unknown. Only one receaygy provides experimental results
relative to the quality of the solution using aygmin specific lower bound [1].

As far as the EC problem is concerned, severaiatie have been recently made for
constructing practical algorithms. Kazakakis andyykos [16] have implemented a
heuristic that divides the polygon into a numbecafivex polygons, each of which can
be inspected by a guard with visibility range resobn. Another approach consists, as
for the interior cover, in selecting a cover amangrge number of sensors located on a
grid or at random. The randomized approach has bget by Danner and Kavraki [7],

and Gonzales-Banos and Latombe ([14], [15]). Alsdhiese caseshe quality of the



solutions obtained with respect to the optimumratdheen investigated.

Our contribution

Recently, we have presented an incremental ECiddgoi2] for polygons with and
without holes that converges towards the optimaltsm in an unbounded number of
steps. The algorithm locally refines a starting ragpnate solution provided by an
integer edge covering (IEC) algorithm, where eaiipeais observed entirely by at least
one sensor. A lower bound for the cardinality o€ teensor set, specific of the
polygonal environment considered, allows evaluatthg quality of the solution
obtained at each step. The algorithm can also talee account other geometrical
constraints such as range and incidence. Testsrpefl over hundreds of random
polygons have shown that the cardinality of theecsevs always very close to, and in
several cases coincident with, the lower bound,thacefore nearly optimal or optimal.

In this paper, we show that, with some modificagiothe algorithm also applies to
the IC problem. Extensive tests over more thanr@@dom polygons demonstrate that
the modified algorithm is nearly optimal. In additi we compare, for all the test
polygons, the results of our algorithm with thod#amed by some recently proposed
sensor location algorithms [1]. It results that ¢tlaedinality of the solutions provided by
our algorithm is always lower than or equal to {atvided by these heuristics.

The new IC algorithm essentially exploits the féuzt, in spite of the extreme cases
of Fig.1, on the average an EC sensor set is egtyelikely to be also an IC set, or, if
not, is very close to an IC set.

The content of the paper is as follows. In SecHpto make the paper self-contained
we summarize the EC algorithm. Section 3 describesiew IC algorithm. In Section
4, we report the results of the tests performed @@® random polygons of various

categories, with or without holes and with variousnbers of edges. In Section 5, we
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compare our algorithm with two recent heuristicoaithms. Finally, the extension of

the IC algorithm for accounting other constraindiscussed in Section 6.

2. SUMMARY OF THE EDGE COVERING ALGORITHM

The incremental Edge Covering (EC) has been predent[2] and [3]. It starts from
an initial solution optimal for the Integer Edgewedng (IEC) problem, where each
edge is required to be entirely observed by at lelas sensor. This solution consists of
a set of convex polygons where the sensors muktcaged. A polygon specific lower
bound, LB(P), is used to evaluate the quality efsblution. If the initial solution is not
coincident, or sufficiently close to the lower bduand needs to be refined, the IEC
algorithm is applied again after splitting in twonse edges. A key component of the
approach is the Indivisible Edges Algorithm (INDIYAwhich allows finding
indivisible edges. We caindivisible the edges that are entirely observed by one guard
in some or all optimal solutions, and that therefarust not be split. The algorithm
converges toward an optimal solution in an undeffimember of steps.

The whole algorithm works as follows:

» Step 1. Compute a lower bound LB(P) for the caldinaf the minimum set
of guards, specific for the polygon P, using thenveo Bound Algorithm
(LBA).

e Step 2. Compute an integer edge cover of carcdynlHiICC using the Integer
Edge Cover Algorithm (IECA).

o Step 3. Compare the lower bound and IECC. If tlreyegual, or the relative
maximum error (IECC-LB(P))/LB(P) is less than a gqw@ned threshold,

STOP. Otherwise:



» Step 4. Apply algorithm INDIVA for finding indivigile edges. If all edges are
indivisible, STOP, since IEC solution is optimath@rwise

e Step 5. Split in two the divisible edges and corepunew lower bound with
LBA. Compare the new lower bound and the curre@GEIf they are equal,
STOP. Otherwise, go to Step 2.

For details about IECA and INDIVA, the reader ifereed to [2]. Here we observe
that the LB used in the present paper is that duiced in [3], which is higher than or
equal to that described in [2] and thus better.is Tawer bound is defined as the
cardinality of the maximal subset of not intersegtiveak visibility polygona\Me) of
edgese, and visibility polygonsVP(v;) of concave vertices;. We also underline the
fact that the algorithm works for polygons withwithout holes, which are dealt with
exactly in the same way.

For understanding the changes introduced for cactstg the IC algorithm, it is
necessary to recall briefly some features of IE@Aproduces a partitiorl of the
polygon into convex polygonal aredssuch that:

* The same sdi; of edges is entirely visible from each poinZgfi

* The regionsZ; are maximal regions, that i€; # E; whereZ; is any region

contiguous td;

Then, the algorithm selects tHeminant andessential regions. A regior; is dominant
if there is no other regiod such thag; U E;. An essential zone is a dominant zone that
covers an edge not covered by any other dominaré. 4a the final step, an instance of
the set covering problem, the algorithm selectsopimal (or minimal) solution,
consisting of a se® = {Za, Ze, ..., Ze, Za1, Zao, .-, Zan}, CONtaining all the essential
zonesZg and some dominant regiodg. Locating one sensor anywhere in each region
we obtain a minimum cardinality set of sensors &bleover all edges.

A simple example will help to understand how th€ I&gorithm works (segig. 2).
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The lower bound LB for the polygon is two, sincenadst two not intersecting weak
visibility polygons of edges or visibility polygored convex vertices can be found. The
areas highlighted in the figure are both the wealbiity polygons of the edges and

& and the visibility polygons of the concave versigg andv,. The first application of
IECA gives three polygonal regions where to lodhgesensors. Since this exceeds LB,
we perform a further step. kg. 2 (a), and in the following, point sensors locateside
these regions are shown. Applying INDIVA, all edgescepte;, are found to be
indivisible. Splittinges, a further iteration of IEC gives two sensars.(2 (b)), and this

solution is optimal, being equal to the lower bound

() ¢ (b)

e3 e3a eSb

Fig. 2. A maximum cardinality set of non-intersagtweak visibility polygons and the

initial IEC solution of size three (a). The fingdtomal IEC solution (b)

3. THE INTERNAL COVERING ALGORITHM (ICA)

First, let us observe that, as we will show in fibiéowing, for random polygons of
any kind an edge coves very likely to be also an interior cover. If this happens, since
the EC lower bound also holds for IC, we have aecdhliat is also nearly optimal for
IC. Hence, the IC algorithm (ICA) consists of tiedwing steps:

Step 1. Apply to the polygon the EC algorithm aimdl fan EC covef

Step 2. Check iSis also an IC cover;



Step 3. If not, modifys for covering fully the interior.

In the following, we describe in detail Step 2 &tdp 3.

Sep 2. Checking the EC cover for full IC

The EC algorithm provides a set of convex polygaegions where to locate each
sensor for full edge covering. Checking full intericoverage requires to locate the
sensors somewhere in these regions. Since we arabf® to explore the infinite
possible sensor arrangements, we choose to |doate at the centres of gravity of the
regions. This also avoids locations near to theesdyd the regions, which could put the
sensors near lines containing edges [2] and thaduge poor visibility conditions.
Even if there could exist better locations for e covering, the experimental section
will show that the quality of the algorithm is naeriously affected by this
simplification.

The algorithm for checking if the EC cover is agolC cover is the following:

- compute then centres of gravity of the EC regions

- compute the visibility polygons of each centreytdvity

- merge all the visibility polygons and compare tesult with the original polygon
Computing the centres of gravity takesn@) time. Computing the visibility polygon
of a point takes @) time, and each visibility polygon hasrpEedges. Computing the
union of two of them takes @{+ n log n) time [32] and intersecting all of them takes
O(mn®*+mn log n) time, which is the overall complexity.

A preliminary test, carried on a set of 170 randpatygons with 30 edges and
summarized imable 3 has shown that all but one of the EC sets wese il sets. We
will see in the following that similar results asbtained with all categories of random

polygons.
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Edges |Polygons| EC=IC
30 170 99,4%

Table 1: summary results of a preliminary experitnshowing that, for random

generated polygons, the EC sensor set is verylikgbe also an IC sensor set

Sep 3: Modifying the EC sensor set to obtain an | C set

Although this is in practice a relatively margiraise, in order to avoid deteriorating
the performance of the algorithm, we will firsteatipt to produce an IC set without
adding new sensors. This could be possible sinteageneral, several optimal EC
solutions exist even for relatively simple polygpesclosing different sets of dominant
regions (essential regions are common to all smig). These various EC solutions
cover more or less the interior, and one of themiccbe an IC solution.

An example is shown irig. 3 The lower bound LB(P) is 4 (Fig. 3(a)). A firstr of
IECA could provide the optimal solution shown irgF8(b), where the sens®@s s, S
and s, are located at the centres of gravity of zones simwn in the figure. In
particular, sensors; ands; lie in essential regions; ands, in dominant regions. This
is not an IC sensor set since the gray region iglgtdd in Fig. 3(b) remains uncovered.
Actually, other EC sets of size 4 are also IC debs.instance, consider the yellow dots
d, andd,, centroids of two dominant regions [f It is easy to see that both points
observe the uncovered region in its entirety aadl $ensos; can be substituted by any

of these points, giving an optimal EC solution tisadlso an IC solution.
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Fig. 3. The set of non-intersecting visibility pgbns giving LB=4 (a). One EC set
(sensors,, s, S3 andsy) that is not an IC set, while other optimal EGgétr instance

di, S, S3, &) are also IC (b)

Thus, Step 3 of ICA consists of two Sub-steps:

- Sub-step 3.1- Look for another optimal EC solutioat is also an IC solution

- Sub-step 3.2- If Sub-step 3.1 does not succeedsang sensors for obtaining
the IC cover

In the following, we describe these Sub-steps taide

Qub-step 3.1

To speed up the process, we implemented an heuaigiorithm that starts from the
current EC solutiors= {Ze, Ze, ... , Zek Za1, Zap,s -.- , Zdn }, WhereZg is an essential
zone andZg is a dominant zone, and attempts to substituteesomthe dominant
regions inS with other dominant regions not $which provide the same EC but better
IC. The dominant zone candidates to the substiiudi@ those that see some centroids
of the uncovered areas, and are considered inakogeorder of observed centroids. In

more detail, the algorithm is as follows.
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1) Create the list= {Zu, Zy, ... , Zyp}, of the dominant regions of the partition

N1 candidate for substitution . These zones are those not encloseg] end such

that their centroids are visible from the centroid of at least one @& timcovered

regions of P (it is clear that the other dominagions are not useful candidates).

Then sortL in descending order of number of centroids of weced regions

visible from eacld;

2) For each dominant regiafy; in the curreng:

(0]

Inspect orderly the list and constructhe listL; of dominant zones

(if any) that cover (at least) the same edges of P cover@dsively

by Zg (this is easily done since the algorithm thatdpi®es the
partitionlT also supplies the list of edges covered)

Substitute orderly each of the dominant regior. pfo the dominant
regionZg in S, and check if an IC cover has been obtained. SOP
this case, otherwise check if the interior areaeced by the new set
of sensors is greater than the previous one. dfiththe case, confirm
the substitution irs, recompute the number of centroids of uncovered
zones seen by the remaining candidate dominanbriegremoving
from L candidates with zero labels, and go back to Zalllfthe
dominant regions ir5 have been checked for possible substitution

without obtaining an IC cover, go to Sub-step 3.2

An example, relative to the polygon of Fig. 3, denseen in Fig. 4. The initial st

of regions gives the sensors,{s,, s3, &4}, where {s;, ;} are centroids of dominant

regions and ¢;, 4} of essential regions. U is the uncovered region,.ds are the

centroids of the dominant regionsdfnot inS. Since only {;, d», ds, ds} are visible

from the centroid of U, the lidt is composed by the four corresponding regionsuket



consider possible substitutions of the zone witintrogd s;; e is the edge seen
exclusively by this zone. Inspectimgwe find that the list.; is composed by the two
zone with centroid d;, d>}, which covere in addition to other edges. Substituting the
zone with centroids; with the zone with centroid;, we find that that the new set

provides full IC, and the algorithm stops supplyargoptimal IC cover.

d 4
6 S7
-~ d.

Fig. 4: the initial EC solution and the set of doamt regions ofl
ub-step 3.2
If Sub-step 3.1 fails to produce an IC set, newseesimust be added ® This is
done with the following simple algorithm.
1. compute the centroid of the regions left uncovered and assign to iteggit w;
given by the number of other centroids of otheraweced regions visible fromm
2. repeat the following operations urfillis an IC set:
* add toSthe centroid with the maximum weight
* re-compute the weights of the remaining candidates
The algorithm described attempts to balance theitguat the solutions obtained
when the initial EC set is not an IC set, with cartabion times.
Concerning the complexity of Step 3 of ICA, in sstbp 3.1 we have regions that
can be (potentially) substituted withregions in listL, checking each time the new

solution for internal coverage, at the cost op®?). As for sub-step 3.2, given
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uncovered regions, its complexity isqa’).

4. EXPERIMENTAL RESULTS

The proposed approach has been thoroughly testeciar to assess the quality of
the results. The algorithm has been applied to niba®@ 400 random and custom
polygons in addition to the 170 polygons of theliprmary test of Table 1 The
randomly generated polygons used to test the #tgorbelong to the following four
categories:

* Generic random polygons, with edges oriented ideandirections
» Orthogonal random simple polygons

* Random polygons with holes

* Orthogonal random polygons with holes

The generic polygons have been generated with ad®anPolygon Generator
(RPG), already used for testing the EC algorithn), [Rased on the Delaunay
triangulation of a set of point randomly distribditen a square region. The interested
reader is referred to [30] and [31] for similar RR{Bproaches. The orthogonal
polygons are irgeneral position, that is they have no collinear edges, and haea be
generated with the RPG described in [26], whose ¢@s been kindly supplied by the
authors. Examples of generic random and orthogpoilgons with 50 edges are
shown in Fig. 5 and Fig. 6, respectively.

For each category, four groups of twenty randonygus, each with 30, 40, 50 and
60 edges have been generated. The only exceptithre igroup of generic polygons
with 30 edges, which includes also the initial Fadnples offable 1

We recall that the iterative EC algorithm is haltéden the solution is guaranteed to
be optimal (cardinality equal to the lower boundno more divisible edges), when no

improvements have been obtained in a predefinedbeunof steps, or when a
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predefined time has been exceeded. A time bourtD ohinutes and two consecutive
iterations without improvement were chosen. Expenta were run on a Core2
processor at 2.66 GHz and 2GB of RAM.

The results of the tests summarizedTinle 2Table 5 contain the following data.
Edges indicates the number of edges of each set of polygC is the average
cardinality of the final IC solutiorL.B is the mean value of the lower bound at the last
iteration. UB is the mean upper bound for each group. The fighinds/n/3] and
L(n+h)/3] ([17]) have been used respectively for random gahg and random
polygons with holes, while the bouhal4] ([33]) has been used for rectilinear polygons
with and without holesEC=IC is the percentage of polygons whose EC set isalso
IC set,IC=LB the percentage of solutions which are guarantedaktoptimal G the
average absolute gap between the lower bound andatfuinality of the IC solution,
GIC the average relative gablaxdiff the maximum difference over the set between
cardinality of the solution and lower bound, ahdwe is the average time to compute

the IC solution, in seconds.

Edges C LB UB EC=IC IC=LB G G/C MaxDiff Time
30 4,2 4,0 10 99,5% 82,6% 0,2 5,0% 1 1,57
40 5,6 5,4 13 95,0% 75,0% 0,3 5,3% 1 2,97
50 6,7 6,4 16 100,0% 75,0% 0,3 5,4% 2 221,92
60 8,6 8,1 20 95,0% 60,0% 0,5 6,3% 2 271,50

Table 2: generic polygons

Edges C LB UB EC=IC IC=LB G G/C MaxDiff Time
30 4,6 4,4 7 100,0% 85,0% 0,2 4,2% 1 1,08
40 6,1 5,9 10 100,0% 85,0% 0,2 2,8% 1 9,30
50 7,8 7,6 12 100,0% 80,0% 0,3 3,5% 2 6,41
60 9,3 9,0 15 95,0% 70,0% 0,3 3,4% 1 81,95

Table 3: rectilinear polygons
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Edges C LB UB EC=IC IC=LB G G/C MaxDiff Time
30 5,8 5,2 10,3 90,0% 55,0% 0,6 11,3% 2 88,53
40 7,0 5,7 13,7 95,0% 15,0% 1,4 25,9% 2 810,54
50 7,7 6,8 17 95,0% 40,0% 0,9 14,2% 3 637,39
60 8,5 7,4 20 95,0% 35,0% 1,1 15,1% 2 485,28

Table 4: polygons with holes (up to three holes)

Edges C LB UB EC=IC IC=LB G G/C MaxDiff Time
30 4,8 4,5 7 90,0% 75,0% 0,3 6,3% 1 1,83
40 6,4 5,9 10 95,0% 50,0% 0,5 8,9% 1 70,87
50 8,5 7,7 12 85,0% 45,0% 0,8 11,1% 3 241,47
60 9,8 8,9 15 85,0% 30,0% 0,9 10,3% 2 209,57

Table 5: rectilinear polygons with holes (up toeniholes)

=1 Ex

S\
'
gl

Fig. 6: Examples of rectilinear random polygondma0 edges

A s

Fig. 5: Examples of generic random polygons witle8@es




The experiments show that:
* Most of the times (about 96% of the cases), thes&tSor set is also an IC set
* The solutions provided by the algorithm are vemysel to the lower bound.
For all the categories, several times the soluoguaranteed to be optimal
(about 68% of the times) or, on the average, itdigality exceeds LB by a
small percentage. For instance, for random 40 edigdinear polygons, the
solution is optimal (at least) in 85% of the tesiad the average percent
difference is 2.8%. Therefore, our solutions camdresidered nearly optimal.
As for the computational times, the results are mamable to that obtained in [2].
The time spent in checking if the EC sensor selse an IC set is, in the worst case,

lower than 1.5 sec.

5. COMPARISON WITH OTHER ALGORITHMS

As already mentioned, only few IC algorithms haeerbimplemented, and only one
recent paper provides experimental results abaatqtiality of the solution using a
polygon specific lower bound [1].

In order to assess the capabilities of our algorjttve compared our results to those
obtained by the algorithms proposed in [1]. Foreeig polygon, it determines several
different IC sensor sets, starting from differestssof candidates, chosen according to
various heuristics. We implemented the variantthefalgorithm based on the heuristics
Al and All, which according to the results preskme[1] were on the average the
most effective. The algorithm starts from two ialtsetsC; and Cy1; of candidates
composed in both cases by the vertices of the polyg and by the centroids of the

regions of two different partitions determined by:

17
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» the set okdge extensions, for heuristic Al,

» the set olvisibility extensions, that is the lines separating regions of P where
an edge is entirely or partially visible from regsowhere the edge is not
visible, for A11.

Both partitions can be easily obtained from thdifan N used by our incremental
EC algorithm, since edge and visibility extensians a subset of the active lines used
for N (see [2] for details). Examples of edge and Misjbextensions for a polygon P,

and the resulting partitions, are showrfrig 7.

(@ (b)
Fig. 7. Edge (a) and visibility (b) extensions

The IC solutions are built iteratively, adding letcurrent set G at each iteration the
candidate with the largest score, until P is fulywered. For a candidate c, the score
p(c) at every iteration is given by the number afididate points seen by c but not by
any other point in G. A final post-processing steppplied. Since the solution could be
redundant, each sensor is in turn removed front @el remaining set is still an IC
sensor set, this sensor is discarded. The readefeised to [1] for further details.

We run the two variants of the algorithm for aletpolygons used in the tests
presented in the previous section. The averagd#tsdeueach category are summarized
in Table 6Table § where BIC, BAL and BAl1l are the percentage of solutions for,
respectively, our IC algorithms and the two hetgssAl and A11, whose cardinality is
equal to the minimum of the three results (and thetser then or equal to that provided

by the other algorithmsBA=LB is the percentage of cases where the result di¢ke



heuristic between Al and All is guaranteed to ldenap Diff is the mean percentual
difference between the best sensor cardinalityiobtaby A1l or A11 and the result of

our algorithm.

Edges | IC=LB BIC BA1 BA1l1 | BA=LB Diff
30 82,6% [ 100,0% | 48,4% 37,4% | 458% 11,0%
40 75,0% [ 100,0% | 20,0% 25,0% 10,0% 15,8%
50 75,0% [ 100,0% | 25,0% 10,0% 15,0% 18,4%
60 60,0% [ 100,0% | 15,0% 5,0% 0,0% 15,5%

Table 6. Generic polygons

Edges | IC=LB BIC BA1 BA1l1 | BA=LB Diff
30 85,0% [ 100,0% | 55,0% 350% [ 45,0% 9,9%
40 85,0% [ 100,0% | 40,0% 10,0% 35,0% 12,9%
50 80,0% [ 100,0% | 20,0% 0,0% 15,0% 15,9%
60 70,0% [ 100,0% | 15,0% 10,0% 10,0% 14,5%

Table 7. Rectilinear polygons

Edges | IC=LB BIC BA1 BA1l | BA=LB Diff
30 55,0% [ 100,0% | 20,0% 0,0% 10,0% 17,6%
40 15,0% | 100,0% | 25,0% 15,0% 10,0% 11,6%
50 40,0% | 100,0% | 25,0% 5,0% 0,0% 12,8%
60 35,0% [ 100,0% 5,0% 0,0% 0,0% 19,8%

Table 8. Polygons with holes

Edges | IC=LB BIC BA1 BA1l | BA=LB Diff
30 75,0% [ 100,0% | 30,0% 20,0% 25,0% 17,8%
40 50,0% [ 100,0% | 25,0% 5,0% 0,0% 18,6%
50 45,0% | 100,0% | 20,0% 15,0% 5,0% 15,9%
60 30,0% [ 100,0% | 10,0% 0,0% 0,0% 17,2%

Table 9. Rectilinear polygons with holes

The tables clearly show that our algorithm proviiésolutions whose cardinality is
always lower than or equal to the cardinality af #olution provided by the algorithms
Al and Al1.

Since for most random polygons the EC solutionl$® &an IC solution, we also
created a set of 21 custom polygons, constructeddh a way that the optimal EC and
IC sensor set are different. Clearly, this situati@lthough unlikely, is strongly

unfavourable for our algorithm. Some examples carséen irFig. 8 The results for
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these cases are summarized in Table 10 wikdges is the mean number of edges of
the polygons and, obviously, we did not reportB@=IC column. It is clear that none
of the samples can reach LB, since it is the loeamd for the EC solution, which is,
in these cases, lower than the IC solution. Theetabows that, also in these unlikely

cases, our algorithm is slightly better and neversa.

Fig. 8: Examples of polygons whose optimal EC adénsor sets are different

Edges BIC BA1l BAll Diff
44,8 100,0% 61,9% 38,1% 3,5%

Table 10. Polygons whose EC is not an IC

For a fair comparison, we also discuss a very spease were these heuristics could
provide better results. This happens when the polydhave edges aligned. Since the
heuristics A1 and A1l are allowed to place guatds at the vertices, there are cases
where a single vertex-sensor covers a region #tlires two non vertex-sensors, as
those used by our algorithms. An example is shawnrig. 9. In the left part of the
figure, the solution with 5 sensors given by thel€lristic is shown. This solution is
also equal to the lower bound and therefore optinfiak 7 sensors given by our
algorithm are shown on the right. One of the vedersors on the left is highlighted,
together with its visibility polygon. Clearly, thisisibility polygon requires two
different non vertex-sensors. Overall, our algenthequires two more sensors since
this situation occurs two times in the example. idoer, we observe that: a) in practical

cases no real sensors is punctiform and can beglkaxactly in the vertices b) in any
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case, sensors aligned with an edge could not heladdserve the edge itself.

—

RS

Fig. 9: A special case were heuristic Al (lefthetter than our algorithm (right)

6. TAKING INTO ACCOUNT RANGE AND INCIDENCE

In [2] and [3], we showed that the EC algorithm dake into account other
geometrical constraints, namely minimal and maxidiatances between the sensors
and the observed boundary points, and minimal awfglecidence between an edge and
the viewline. For each edgg these constraints define a restricted regiog) @f P
where the sensor must be located. These not padygegions can be easily computed,
as well as the restricted visibility polygonsv(of convex vertices, required by the
computation of LB(P). Examples of €(and Cy) regions for range and incidence
constraints can be seenrig. 10 Observe that range and incidence cannot be anibjtr
fixed, otherwise the regions allowed could vanisbr. instance, narrow corridor could
not be covered if the minimal range is too largej adges forming acute angles, for a
given angle, could be not fully observable. Detaillgshese problems can be found in

[2] and [3].
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Fig. 10: Cg) for range (a) and for incidence (b) constraift;) for range constraints (c)
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In this section, we discuss range and incidencetcaints for the IC algorithm. As
for incidence, it is clear that the approach ofE@algorithm does not change for IC.

Dealing with range is more complex. For taking iattwount the maximal distance
only, it is sufficient to restrict the visibilityegion of each sensor by intersection with a
circle of ray kax centred in the sensor. For sub-step 3.2 of ICAniuncovered region
R is included in a circle of rayky it can be covered with a single sensor. Otherwise
we select the location insidethat encloses the greater number of its vertiaed,we
add more sensors with the same rule uid fully covered.

The current implementation of our IC algorithm takato account incidence and
maximum range constraints. An example, using malxéiséance only, is shown iFg.
11, where kax has been defined as the 27.5% of the longest édgge. an initial edge
splitting, since some edges are longer thap we obtain a solution with 6 sensors,

with 4 as lower bound. For each sensor, we alsw stsovisibility region.

Fig. 11. The final IC solution, showing also theikility regions of the sensors placed



Taking also into account minimal distance is mucbrencomplex, and cannot be
easily implemented in our algorithm. The visibilpplygon of any sens® should be
intersected with a doughnut regionsQ(delimited by two circles of raymh and fax
centered in the sensor. Unfortunately, an EC swiuts unlikely to be also an IC
constrained solution, since each circle of rgy around the sensors must be covered by
another sensor. In addition, no sensors can beglaside possible uncovered regions

R.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel IC sgossitioning algorithm, which is
based on a recent EC incremental algorithm thaviges optimal or sub-optimal
solutions. The basic idea is that the EC sensoissettremely likely to be also an IC
sensor set or it can be easily extended into ann€ The approach exploits a lower
bound for the number of sensors, specific of thiggomal environment, which can be
used to evaluate the closeness to optimality ofstilation. The algorithm has been
implemented and tested over about 600 random astbroupolygons of various
categories and with different number of edges. Agseeted, we have found that the
initial EC solution is in most of the cases, ab®6%o, also an IC sensor set, and that the
solutions provided by the IC algorithm are sevéiales optimal, about 68% of the
cases, or very close to the lower bound. Therefeeecan state that our IC algorithm is
nearly optimal. Furthermore, the approach has loeempared with other approximate
sensor location algorithms reported in the scienliferature, showing better or equal
performances.

We underline that, since the algorithm is increrakrgven better results could be

obtained at the expense of more computation time.
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The algorithm can be easily extended to take intooant several geometric
constraints, and a version able to deal also wakimum range and incidence has been
implemented.

Future works aim at extending the algorithm in B0preliminary version of the 3D
incremental boundary covering algorithm, which pdeg the coverage of the faces of a
polyhedral environment, has been already presenti@8]. The present IC approach in

2D could be used as a basis for developing and@riéhm in 3D.
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