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A Nearly Optimal Algorithm  

for covering the interior of an Art Gallery  
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Corso Duca degli Abruzzi 24, 10129 Torino, Italy, mail: andrea.bottino@polito.it tel. 

+390115647175, fax +390115647099, Aldo Laurentini, Dipartimento di Automatica e 

Informatica, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, mail: 

aldo.laurentini@polito.it 

Abstract— The problem of locating visual sensors can be often modelled as 2D Art 

Gallery problems. In particular, tasks such as surveillance require observing the interior 

of a polygonal environment (interior covering, IC), while for inspection or image based 

rendering observing the boundary (edge covering, EC) is sufficient. Both problems are 

NP-hard, and no technique is known for transforming one problem into the other. 

Recently, an incremental algorithm for EC has been proposed, and its near-optimality 

has been demonstrated experimentally. In this paper we show that, with some 

modification, the algorithm is nearly optimal also for IC.  The algorithm has been 

implemented and tested over several hundreds of random polygons with and without 

holes. The cardinality of the solutions provided is very near to, or coincident with, a 

polygon-specific lower bound, and then suboptimal or optimal. In addition, our 

algorithm has been compared, for all the test polygons, with recent heuristic sensor 

location algorithms. In all cases, the cardinality of the set of guards provided by our 

algorithm was less than or equal to that of the set computed by the other algorithms. An 

enhanced version of the algorithm, also taking into account range and incidence 

constraints, has also been implemented. 

 

Keywords— Art gallery, visual sensor positioning, internal covering.  
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1. INTRODUCTION 

The IC and EC Art Gallery problems 

Problems of visual sensor placement arise in several practical areas of computer 

vision, computer graphics and robotics, such as surveillance, object or environment 

reconstruction, inspection and image based rendering. The subject is covered by several 

surveys, encompassing 2D and 3D problems ([21], [22], [18], [23]). The case of known 

objects or environment is usually referred to as model-based view planning ([22], [5], 

[24]).  

Locating sensors to inspect, or surveying known real environments, requires 

satisfying a number of constrains for distance, incidence, lighting and visibility where, 

clearly, visibility is the main one. In several environments, such as buildings, sensor 

location is essentially a bi-dimensional problem where the area to observe can be 

modelled using polygons or sets of polygons. Assuming multidirectional or rotating 

optical sensors, the visibility constraint in 2D is modelled by the classic Art Gallery 

Problem, or by one of its variants. The original Art Gallery Problem asked to locate in a 

given polygon the minimum set of point sensors, or guards, able to completely observe, 

or cover, any point of the polygon (IC, interior cover). The famous Art Gallery 

Theorem states that at most n/3  guards are required for covering polygons with n 

edges. Many variations of the problem have been considered, including particular kinds 

of polygons, restricted positions for the guards and additional constraints. Much work 

has been done for finding upper tight bounds (Art Gallery Theorems) in these cases. 

The decision problem related to the original problem (are k guards sufficient for 

covering a given polygon?), as well as those related to several similar problems, is NP-

hard [6]. No exact finite algorithm for locating a minimum set of sensors is known. For 

further details, the reader is referred to the monograph by O’Rourke [19] and to the 

surveys by Shermer [20]  and Urrutia [25] . 
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Not all practical sensor positioning problems require covering the whole interior of a 

polygonal environment. Tasks such as inspection and image based rendering, where the 

geometry, but not the texture, is known, only require to observe the boundary edges 

(EC, edge covering). The EC problem and its relations with IC have been analyzed in 

[17]. As IC, also EC is NP-Hard, and the same upper tight bound holds for the 

minimum number of guards, but in general an optimum, or minimal, set of IC guards is 

not an optimum set of EC guards and vice versa. No simple rule is known for 

transforming an optimal solution of one problem into an optimal solution of the other. 

Extreme examples can be produced, showing that IC may require 2 times more sensors 

than EC for simple polygons, and O(n) times more for polygons with holes [17], as in 

Fig. 1, where the dots represent the sensors of the EC solution and each gray region 

requires an additional IC sensor. 

 

Fig. 1. (a) A family of simple polygons where the ratio between IC guards and IC 

guards can be arbitrarily near to two. (b) In this polygon with holes two guards s1 and s2 

are sufficient for EC, but IC requires one additional guard for each area highlighted (a).  

 

Approximate sensor location algorithms: state of the art 

Although tight upper bounds (Art Gallery Theorems) are useful and theoretically 

interesting, practical problems require algorithms able to find and locate a set of guards 

whose cardinality is not far from that of an optimal or minimal cover. Unfortunately, 
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finding worst-case polynomial algorithm able to find solution with guaranteed fixed 

approximation is unlikely, according to the results of Eidenbentz et. al., [10], which 

show that several sensor location problems are APX-hard (APX hard means that the 

existence of such algorithms would imply P=NP). Then, approximate algorithms with 

good average behaviour with respect to the optimal solution are required. 

Shermer, [20], reports several approximate polynomial algorithms for the IC 

problem. It can be easily verified that their worst-case performance in relation with the 

optimal solution can be very unsatisfactory (Θ(n) guards when O(1) are sufficient). 

Bjorling-Sachs and Souvaine [4] presented a polynomial algorithm that places always 

(n + h)/3  guards, the upper bound, in a polygon with h holes. This technique could 

result in a large waste too, since it is easy to produce families of polygons were two 

guards are sufficient for any n and h. No data are supplied on the average behaviour of 

these algorithms. 

Other approximate IC positioning techniques have been proposed more recently ([8], 

[9], [11], [12], [13], [27]). Several algorithms restrict the possible positions of the 

sensors, for instance on a grid, or on the vertices. Only a few of the IC algorithms have 

been implemented, and, in any case, their average behaviour with respect to the optimal 

unrestricted solution is unknown. Only one recent paper provides experimental results 

relative to the quality of the solution using a polygon specific lower bound [1].  

As far as the EC problem is concerned, several attempts have been recently made for 

constructing practical algorithms. Kazakakis and Argyros [16] have implemented a 

heuristic that divides the polygon into a number of convex polygons, each of which can 

be inspected by a guard with visibility range restriction. Another approach consists, as 

for the interior cover, in selecting a cover among a large number of sensors located on a 

grid or at random. The randomized approach has been used by Danner and Kavraki [7], 

and Gonzales-Banos and Latombe ([14], [15]). Also in these cases, the quality of the 
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solutions obtained with respect to the optimum has not been investigated.  

 

Our contribution 

Recently, we have presented an incremental EC algorithm [2] for polygons with and 

without holes that converges towards the optimal solution in an unbounded number of 

steps. The algorithm locally refines a starting approximate solution provided by an 

integer edge covering (IEC) algorithm, where each edge is observed entirely by at least 

one sensor. A lower bound for the cardinality of the sensor set, specific of the 

polygonal environment considered, allows evaluating the quality of the solution 

obtained at each step. The algorithm can also take into account other geometrical 

constraints such as range and incidence. Tests performed over hundreds of random 

polygons have shown that the cardinality of the covers is always very close to, and in 

several cases coincident with, the lower bound, and therefore nearly optimal or optimal.  

In this paper, we show that, with some modifications, the algorithm also applies to 

the IC problem. Extensive tests over more than 600 random polygons demonstrate that 

the modified algorithm is nearly optimal. In addition, we compare, for all the test 

polygons, the results of our algorithm with those obtained by some recently proposed 

sensor location algorithms [1]. It results that the cardinality of the solutions provided by 

our algorithm is always lower than or equal to that provided by these heuristics.  

The new IC algorithm essentially exploits the fact that, in spite of the extreme cases 

of Fig.1, on the average an EC sensor set is extremely likely to be also an IC  set, or, if 

not, is very close to an IC set. 

The content of the paper is as follows. In Section 2, to make the paper self-contained 

we summarize the EC algorithm. Section 3 describes the new IC algorithm. In Section 

4, we report the results of the tests performed over 600 random polygons of various 

categories, with or without holes and with various numbers of edges. In Section 5, we 
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compare our algorithm with two recent heuristic algorithms. Finally, the extension of 

the IC algorithm for accounting other constrains is discussed in Section 6. 

 

 

 

2. SUMMARY OF THE EDGE COVERING ALGORITHM  

The incremental Edge Covering (EC) has been presented in [2] and [3]. It starts from 

an initial solution optimal for the Integer Edge Covering (IEC) problem, where each 

edge is required to be entirely observed by at least one sensor. This solution consists of 

a set of convex polygons where the sensors must be located. A polygon specific lower 

bound, LB(P), is used to evaluate the quality of the solution. If the initial solution is not 

coincident, or sufficiently close to the lower bound and needs to be refined, the IEC 

algorithm is applied again after splitting in two some edges. A key component of the 

approach is the Indivisible Edges Algorithm (INDIVA), which allows finding 

indivisible edges. We call indivisible the edges that are entirely observed by one guard 

in some or all optimal solutions, and that therefore must not be split. The algorithm 

converges toward an optimal solution in an undefined number of steps.  

The whole algorithm works as follows: 

• Step 1. Compute a lower bound LB(P) for the cardinality of the minimum set 

of guards, specific for the polygon P, using the Lower Bound Algorithm 

(LBA). 

• Step 2. Compute an integer edge cover of cardinality IECC using the Integer 

Edge Cover Algorithm (IECA). 

• Step 3. Compare the lower bound and IECC. If they are equal, or the relative 

maximum error (IECC-LB(P))/LB(P) is less than a predefined threshold, 

STOP. Otherwise: 
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• Step 4. Apply algorithm INDIVA for finding indivisible edges. If all edges are 

indivisible, STOP, since IEC solution is optimal. Otherwise 

• Step 5. Split in two the divisible edges and compute a new lower bound with 

LBA. Compare the new lower bound and the current IECC. If they are equal, 

STOP. Otherwise, go to Step 2. 

For details about IECA and INDIVA, the reader is referred to [2]. Here we observe 

that the LB used in the present paper is that introduced in [3], which is higher than or 

equal to that described in [2] and thus better.  This lower bound is defined as the 

cardinality of the maximal subset of not intersecting weak visibility polygons W(ei) of 

edges ei, and visibility polygons VP(vi) of concave vertices vi. We also underline the 

fact that the algorithm works for polygons with or without holes, which are dealt with 

exactly in the same way. 

For understanding the changes introduced for constructing the IC algorithm, it is 

necessary to recall briefly some features of IECA. It produces a partition Π of the 

polygon into convex polygonal areas Zi such that: 

• The same set Ei of edges is entirely visible from each point of Zi, ∀i 

• The regions Zi are maximal regions, that is Ei ≠ Ej where Zj is any region 

contiguous to Zi 

Then, the algorithm selects the dominant and essential regions. A region Zi is dominant 

if there is no other region Zj such that Ei ⊂ Ej. An essential zone is a dominant zone that 

covers an edge not covered by any other dominant zone. In the final step, an instance of 

the set covering problem, the algorithm selects an optimal (or minimal) solution, 

consisting of a set S = {Ze1, Ze2, ..., Zek, Zd1, Zd2, ..., Zdh}, containing all the essential 

zones Zei and some dominant regions Zdj. Locating one sensor anywhere in each region 

we obtain a minimum cardinality set of sensors able to cover all edges.  

A simple example will help to understand how the IEC algorithm works (see Fig. 2). 
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The lower bound LB for the polygon is two, since at most two not intersecting weak 

visibility polygons of edges or visibility polygons of convex vertices can be found. The 

areas highlighted in the figure are both the weak visibility polygons of the edges e1 and 

e2 and the visibility polygons of the concave vertices v1 and v2. The first application of 

IECA gives three polygonal regions where to locate the sensors. Since this exceeds LB, 

we perform a further step. In Fig. 2 (a), and in the following, point sensors located inside 

these regions are shown. Applying INDIVA, all edges, except e3, are found to be 

indivisible. Splitting e3, a further iteration of IEC gives two sensors (Fig. 2 (b)), and this 

solution is optimal, being equal to the lower bound. 

 

 

Fig. 2. A maximum cardinality set of non-intersecting weak visibility polygons and the 

initial IEC solution of size three (a). The final optimal IEC solution (b)  

 

 

3. THE  INTERNAL COVERING ALGORITHM (ICA) 

 

First, let us observe that, as we will show in the following, for random polygons of 

any kind an edge cover is very likely to be also an interior cover. If this happens, since 

the EC lower bound also holds for IC, we have a cover that is also nearly optimal for 

IC. Hence, the IC algorithm (ICA) consists of the following steps:  

Step 1. Apply to the polygon the EC algorithm and find an EC cover S 

Step 2. Check if S is also an IC cover; 
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Step 3. If not, modify S for covering fully the interior.   

In the following, we describe in detail Step 2 and Step 3. 

 

Step 2.  Checking the EC cover for full IC 

The EC algorithm provides a set of convex polygonal regions where to locate each 

sensor for full edge covering. Checking full interior coverage requires to locate the 

sensors somewhere in these regions. Since we are not able to explore the infinite 

possible sensor arrangements, we choose to locate them at the centres of gravity of the 

regions. This also avoids locations near to the edges of the regions, which could put the 

sensors near lines containing edges [2] and thus produce poor visibility conditions.  

Even if there could exist better locations for interior covering, the experimental section 

will show that the quality of the algorithm is not seriously affected by this 

simplification.  

The algorithm for checking if the EC cover is also an IC cover is the following: 

- compute the m centres of gravity of the EC regions 

- compute the visibility polygons of each centre of gravity 

- merge all the visibility polygons and compare the result with the original polygon  

Computing the centres of gravity takes O(nm) time. Computing the visibility polygon 

of a point takes O(n) time, and each visibility polygon has O(n) edges. Computing the 

union of two of them takes O(n2 + n log n) time [32] and intersecting all of them takes 

O(mn2+mn log n) time, which is the overall complexity. 

A preliminary test, carried on a set of 170 random polygons with 30 edges and 

summarized in Table 1, has shown that all but one of the EC sets were also IC sets. We 

will see in the following that similar results are obtained with all categories of random 

polygons.  
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Edges Polygons EC=IC
30 170 99,4%  

Table 1: summary results of a preliminary experiment, showing that, for random 

generated polygons, the EC sensor set is very likely to be also an IC sensor set 

 

  Step 3:  Modifying the EC sensor set to obtain an IC set 

Although this is in practice a relatively marginal case, in order to avoid deteriorating 

the performance of the algorithm, we will first attempt to produce an IC set without 

adding new sensors. This could be possible since, in general, several optimal EC 

solutions exist even for relatively simple polygons, enclosing different sets of dominant 

regions (essential regions are common to all solutions). These various EC solutions 

cover more or less the interior, and one of them could be an IC solution.  

An example is shown in Fig. 3. The lower bound LB(P) is 4 (Fig. 3(a)). A first run of 

IECA could provide the optimal solution shown in Fig. 3(b), where the sensors s1, s2, s3 

and s4 are located at the centres of gravity of zones not shown in the figure. In 

particular, sensors s3 and s4 lie in essential regions, s1 and s2 in dominant regions. This 

is not an IC sensor set since the gray region highlighted in Fig. 3(b) remains uncovered. 

Actually, other EC sets of size 4 are also IC sets. For instance, consider the yellow dots 

d1 and d2, centroids of two dominant regions of Π. It is easy to see that both points 

observe the uncovered region in its entirety and that sensor s1 can be substituted by any 

of these points, giving an optimal EC solution that is also an IC solution. 
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Fig. 3. The set of non-intersecting visibility polygons giving LB=4 (a). One EC set 

(sensors s1, s2, s3 and s4) that is not an IC set, while other optimal EC sets (for instance 

d1, s2, s3, s4) are also IC (b) 

 

Thus, Step 3 of ICA consists of two Sub-steps: 

- Sub-step 3.1- Look for another optimal EC solution that is also an IC solution 

- Sub-step 3.2- If Sub-step 3.1 does not succeed, add some sensors for obtaining 

the IC cover 

In the following, we describe these Sub-steps in detail. 

 

Sub-step 3.1 

To speed up the process, we implemented an heuristic algorithm that starts from the 

current  EC solution S= {Ze1, Ze2, ... , Zek, Zd1, Zd2, ... , Zdh }, where Zei is an essential 

zone and Zdi is a dominant zone, and attempts to substitute some of the dominant 

regions in S with other dominant regions not in S which provide the same EC but better 

IC. The dominant zone candidates to the substitution are those that see some centroids 

of the uncovered areas, and are considered in decreasing order of observed centroids. In 

more detail, the algorithm is as follows. 
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1) Create the list L=  {Zc1, Zc2, ... , Zcp}, of the dominant regions of the partition 

Π candidate for substitution in S. These zones are those not enclosed in S, and such 

that their centroids di are visible from the centroid of at least one of the uncovered 

regions of P (it is clear that the other dominant regions are not useful candidates). 

Then sort L  in descending order of number of centroids of uncovered regions 

visible from each di 

2) For each dominant region Zdj in the current S: 

o Inspect orderly the list L and construct the list L j of dominant zones 

(if any) that cover (at least) the same edges of P covered exclusively 

by  Zdj  (this is easily done since the algorithm that produces the 

partition Π also supplies the list of edges covered)  

o Substitute orderly each of the dominant region of L j to the dominant 

region Zdj in S, and check if an IC cover has been obtained. STOP in 

this case, otherwise check if the interior area covered by the new set 

of sensors is greater than the previous one. If this is the case, confirm 

the substitution in S, recompute the number of centroids of uncovered 

zones seen by the remaining candidate dominant regions, removing 

from L  candidates with zero labels, and go back to 2. If all the 

dominant regions in S have been checked for possible substitution 

without obtaining an IC cover, go to Sub-step 3.2 

 

An example, relative to the polygon of Fig. 3, can be seen in Fig. 4. The initial set S 

of  regions  gives the  sensors {s1, s2, s3, s4}, where {s1, s2} are centroids of dominant 

regions and {s3, s4} of essential regions. U is the uncovered region, d1…d6 are the 

centroids of the dominant regions of Π not in S. Since only {d1, d2, d4, d5} are visible 

from the centroid of U, the list L is composed by the four corresponding regions. Let us 



 13 

consider possible substitutions of the zone with centroid s1; e is the edge seen 

exclusively by this zone. Inspecting L  we find that the list L1  is composed by the two 

zone with centroid {d1, d2}, which cover e in addition to other edges. Substituting the 

zone with centroid s1 with the zone with centroid d1, we find that that the new set 

provides full IC, and the algorithm stops supplying an optimal IC cover. 

 

Fig. 4: the initial EC solution and the set of dominant regions of Π 

Sub-step 3.2 

If Sub-step 3.1 fails to produce an IC set, new sensors must be added to S. This is 

done with the following simple algorithm. 

1. compute the centroid ci of the regions left uncovered and assign to it a weight wi 

given by the number of other centroids of other uncovered regions visible from ci 

2. repeat the following operations until S is an IC set: 

• add to S the centroid  with the maximum weight 

• re-compute the weights of the remaining candidates  

The algorithm described attempts to balance the quality of the solutions obtained 

when the initial EC set is not an IC set, with computation times.  

Concerning the complexity of Step 3 of ICA, in sub-step 3.1 we have m regions that 

can be (potentially) substituted with p regions in list L , checking each time the new 

solution for internal coverage, at the cost of O(pm2n2). As for sub-step 3.2, given q 
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uncovered regions, its complexity is O(qmn2). 

 

4. EXPERIMENTAL RESULTS 

The proposed approach has been thoroughly tested in order to assess the quality of 

the results. The algorithm has been applied to more than 400 random and custom 

polygons in addition to the 170 polygons of the preliminary test of Table 1. The 

randomly generated polygons used to test the algorithm belong to the following four 

categories: 

• Generic random polygons, with edges oriented in random directions 

• Orthogonal random simple polygons 

• Random polygons with holes 

• Orthogonal random polygons with holes 

The generic polygons have been generated with a Random Polygon Generator 

(RPG), already used for testing the EC algorithm [2], based on the Delaunay 

triangulation of a set of point randomly distributed in a square region. The interested 

reader is referred to [30] and [31] for similar RPG approaches. The orthogonal 

polygons are in general position, that is they have no collinear edges, and have been 

generated with the RPG described in [26], whose code has been kindly supplied by the 

authors. Examples of generic random and orthogonal polygons with 50 edges are 

shown in Fig. 5 and Fig. 6, respectively.  

For each category, four groups of twenty random polygons, each with 30, 40, 50 and 

60 edges have been generated. The only exception is the group of generic polygons 

with 30 edges, which includes also the initial 170 samples of Table 1. 

We recall that the iterative EC algorithm is halted when the solution is guaranteed to 

be optimal (cardinality equal to the lower bound, or no more divisible edges), when no 

improvements have been obtained in a predefined number of steps, or when a 



 15 

predefined time has been exceeded. A time bound of 20 minutes and two consecutive 

iterations without improvement were chosen. Experiments were run on a Core2 

processor at 2.66 GHz and 2GB of RAM. 

The results of the tests summarized in Table 2-Table 5 contain the following data.  

Edges indicates the number of edges of each set of polygons. C is the average 

cardinality of the final IC solution. LB is the mean value of the lower bound at the last 

iteration. UB is the mean upper bound for each group. The tight bounds n/3 and 

(n+h)/3 ([17]) have been used respectively for random polygons and random 

polygons with holes, while the bound n/4 ([33]) has been used for rectilinear polygons 

with and without holes. EC=IC is the percentage of polygons whose EC set is also an 

IC set, IC=LB the percentage of solutions which are guaranteed to be optimal, G the 

average absolute gap between the lower bound and the cardinality of the IC solution, 

G/C the average relative gap, Maxdiff  the maximum difference over the set between 

cardinality of the solution and lower bound, and Time is the average time to compute 

the IC solution, in seconds.  

 

Edges C LB UB EC=IC IC=LB G G/C MaxDiff Time
30 4,2 4,0 10 99,5% 82,6% 0,2 5,0% 1 1,57
40 5,6 5,4 13 95,0% 75,0% 0,3 5,3% 1 2,97
50 6,7 6,4 16 100,0% 75,0% 0,3 5,4% 2 221,92
60 8,6 8,1 20 95,0% 60,0% 0,5 6,3% 2 271,50  

Table 2: generic polygons 

 

Edges C LB UB EC=IC IC=LB G G/C MaxDiff Time
30 4,6 4,4 7 100,0% 85,0% 0,2 4,2% 1 1,08
40 6,1 5,9 10 100,0% 85,0% 0,2 2,8% 1 9,30
50 7,8 7,6 12 100,0% 80,0% 0,3 3,5% 2 6,41
60 9,3 9,0 15 95,0% 70,0% 0,3 3,4% 1 81,95  

Table 3: rectilinear polygons 
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Edges C LB UB EC=IC IC=LB G G/C MaxDiff Time
30 5,8 5,2 10,3 90,0% 55,0% 0,6 11,3% 2 88,53
40 7,0 5,7 13,7 95,0% 15,0% 1,4 25,9% 2 810,54
50 7,7 6,8 17 95,0% 40,0% 0,9 14,2% 3 637,39
60 8,5 7,4 20 95,0% 35,0% 1,1 15,1% 2 485,28  

Table 4: polygons with holes (up to three holes) 

 

Edges C LB UB EC=IC IC=LB G G/C MaxDiff Time
30 4,8 4,5 7 90,0% 75,0% 0,3 6,3% 1 1,83
40 6,4 5,9 10 95,0% 50,0% 0,5 8,9% 1 70,87
50 8,5 7,7 12 85,0% 45,0% 0,8 11,1% 3 241,47
60 9,8 8,9 15 85,0% 30,0% 0,9 10,3% 2 209,57  

Table 5: rectilinear polygons with holes (up to three holes) 

 

 

Fig. 5: Examples of generic random polygons with 50 edges 

 

 

Fig. 6: Examples of rectilinear random polygons with 50 edges 
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The experiments show that: 

• Most of the times (about 96% of the cases), the EC sensor set is also an IC set 

• The solutions provided by the algorithm are very close to the lower bound. 

For all the categories, several times the solution is guaranteed to be optimal 

(about 68% of the times) or, on the average, its cardinality exceeds LB by a 

small percentage. For instance, for random 40 edges rectilinear polygons, the 

solution is optimal (at least) in 85% of the tests, and the average percent 

difference is 2.8%. Therefore, our solutions can be considered nearly optimal.   

As for the computational times, the results are comparable to that obtained in [2]. 

The time spent in checking if the EC sensor set is also an IC set is, in the worst case, 

lower than 1.5 sec.  

 

 

5. COMPARISON WITH OTHER ALGORITHMS 

 

As already mentioned, only few IC algorithms have been implemented, and only one 

recent paper provides experimental results about the quality of the solution using a 

polygon specific lower bound [1].  

In order to assess the capabilities of our algorithm, we compared our results to those 

obtained by the algorithms proposed in [1]. For a given polygon, it determines several 

different IC sensor sets, starting from different sets of candidates, chosen according to 

various heuristics. We implemented the variants of the algorithm based on the heuristics 

A1 and A11, which according to the results presented in [1] were on the average the 

most effective. The algorithm starts from two initial sets C1 and C11 of candidates 

composed in both cases by the vertices of the polygon P, and by the centroids of the 

regions of two different partitions determined by:  
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• the set of edge extensions, for heuristic A1,  

• the set of visibility extensions, that is the lines separating regions of P where 

an edge is entirely or partially visible from regions where the edge is not 

visible, for A11.   

Both partitions can be easily obtained from the partition Π used by our incremental 

EC algorithm, since edge and visibility extensions are a subset of the active lines used 

for Π (see [2] for details). Examples of edge and visibility extensions for a polygon P, 

and the resulting partitions, are shown in Fig. 7. 

 

  

Fig. 7. Edge (a) and visibility (b) extensions 

The IC solutions are built iteratively, adding to the current set G at each iteration the 

candidate with the largest score, until P is fully covered. For a candidate c, the score 

µ(c) at every iteration is given by the number of candidate points seen by c but not by 

any other point in G. A final post-processing step is applied. Since the solution could be 

redundant, each sensor is in turn removed from G. If the remaining set is still an IC 

sensor set, this sensor is discarded. The reader is referred to [1] for further details. 

We run the two variants of the algorithm for all the polygons used in the tests 

presented in the previous section. The average results for each category are summarized 

in Table 6-Table 9, where BIC, BA1 and BA11 are the percentage of solutions for, 

respectively, our IC algorithms and the two heuristics A1 and A11, whose cardinality is 

equal to the minimum of the three results (and thus better then or equal to that provided 

by the other algorithms). BA=LB is the percentage of cases where the result of the best 
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heuristic between A1 and A11 is guaranteed to be optimal. Diff is the mean percentual 

difference between the best sensor cardinality obtained by A1 or A11 and the result of 

our algorithm.   

 

Edges IC=LB BIC BA1 BA11 BA=LB Diff
30 82,6% 100,0% 48,4% 37,4% 45,8% 11,0%
40 75,0% 100,0% 20,0% 25,0% 10,0% 15,8%
50 75,0% 100,0% 25,0% 10,0% 15,0% 18,4%
60 60,0% 100,0% 15,0% 5,0% 0,0% 15,5%  

Table 6. Generic polygons 

Edges IC=LB BIC BA1 BA11 BA=LB Diff
30 85,0% 100,0% 55,0% 35,0% 45,0% 9,9%
40 85,0% 100,0% 40,0% 10,0% 35,0% 12,9%
50 80,0% 100,0% 20,0% 0,0% 15,0% 15,9%
60 70,0% 100,0% 15,0% 10,0% 10,0% 14,5%  

Table 7. Rectilinear polygons 

Edges IC=LB BIC BA1 BA11 BA=LB Diff
30 55,0% 100,0% 20,0% 0,0% 10,0% 17,6%
40 15,0% 100,0% 25,0% 15,0% 10,0% 11,6%
50 40,0% 100,0% 25,0% 5,0% 0,0% 12,8%
60 35,0% 100,0% 5,0% 0,0% 0,0% 19,8%  

Table 8. Polygons with holes 

 

Edges IC=LB BIC BA1 BA11 BA=LB Diff
30 75,0% 100,0% 30,0% 20,0% 25,0% 17,8%
40 50,0% 100,0% 25,0% 5,0% 0,0% 18,6%
50 45,0% 100,0% 20,0% 15,0% 5,0% 15,9%
60 30,0% 100,0% 10,0% 0,0% 0,0% 17,2%  

Table 9. Rectilinear polygons with holes 

 

The tables clearly show that our algorithm provides IC solutions whose cardinality is 

always lower than or equal to the cardinality of the solution provided by the algorithms 

A1 and A11.  

Since for most random polygons the EC solution is also an IC solution, we also 

created a set of 21 custom polygons, constructed in such a way that the optimal EC and 

IC sensor set are different. Clearly, this situation, although unlikely, is strongly 

unfavourable for our algorithm. Some examples can be seen in Fig. 8. The results for 
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these cases are summarized in Table 10 where Edges is the mean number of edges of 

the polygons and, obviously, we did not report the EC=IC column. It is clear that none 

of the samples can reach LB, since it is the lower bound for the EC solution, which is, 

in these cases, lower than the IC solution. The table shows that, also in these unlikely 

cases, our algorithm is slightly better and never worse. 

    

 

Fig. 8: Examples of polygons whose optimal EC and IC sensor sets are different 

Edges BIC BA1 BA11 Diff
44,8 100,0% 61,9% 38,1% 3,5%  

Table 10. Polygons whose EC is not an IC 

 

For a fair comparison, we also discuss a very special case were these heuristics could 

provide better results. This happens when the polygons have edges aligned. Since the 

heuristics A1 and A11 are allowed to place guards also at the vertices, there are cases 

where a single vertex-sensor covers a region that requires two non vertex-sensors, as 

those used by our algorithms. An example is shown in Fig. 9. In the left part of the 

figure, the solution with 5 sensors given by the A1 heuristic is shown. This solution is 

also equal to the lower bound and therefore optimal. The 7 sensors given by our 

algorithm are shown on the right. One of the vertex-sensors on the left is highlighted, 

together with its visibility polygon. Clearly, this visibility polygon requires two 

different non vertex-sensors. Overall, our algorithm requires two more sensors since 

this situation occurs two times in the example. However, we observe that: a) in practical 

cases no real sensors is punctiform and can be placed exactly in the vertices b) in any 
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case, sensors aligned with an edge could not reliably observe the edge itself.  

 

      

Fig. 9: A special case were heuristic A1 (left) is better than our algorithm (right) 

 

6. TAKING INTO ACCOUNT RANGE AND INCIDENCE 

In [2] and [3], we showed that the EC algorithm can take into account other 

geometrical constraints, namely minimal and maximal distances between the sensors 

and the observed boundary points, and minimal angle of incidence between an edge and 

the viewline. For each edge ei these constraints define a restricted region C(ei) of P 

where the sensor must be located. These not polygonal regions can be easily computed, 

as well as the restricted visibility polygons C(vi) of convex vertices, required by the 

computation of LB(P). Examples of C(e) and C(v) regions for range and incidence 

constraints can be seen in Fig. 10. Observe that range and incidence cannot be arbitrarily 

fixed, otherwise the regions allowed could vanish. For instance, narrow corridor could 

not be covered if the minimal range is too large, and edges forming acute angles, for a 

given angle, could be not fully observable. Details of these problems can be found in 

[2] and [3].   
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Fig. 10: C(ei) for range (a) and for incidence (b) constraints; C(vi) for range constraints (c) 

 

In this section, we discuss range and incidence constraints for the IC algorithm. As 

for incidence, it is clear that the approach of the EC algorithm does not change  for IC. 

Dealing with range is more complex. For taking into account the maximal distance 

only, it is sufficient to restrict the visibility region of each sensor by intersection with a 

circle of ray rmax centred in the sensor. For sub-step 3.2 of ICA, if an uncovered region 

R is included in a circle of ray rmax, it can be covered with a single sensor. Otherwise, 

we select the location inside R that encloses the greater number of its vertices, and we 

add more sensors with the same rule until R is fully covered. 

The current implementation of our IC algorithm takes into account incidence and 

maximum range constraints. An example, using maximal distance only, is shown in Fig. 

11, where rmax has been defined as the 27.5% of the longest edge. After an initial edge 

splitting, since some edges are longer than rmax, we obtain a solution with 6 sensors, 

with 4 as lower bound. For each sensor, we also show its visibility region.  

 

 

Fig. 11. The final IC solution, showing also the visibility regions of the sensors placed 
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Taking also into account minimal distance is much more complex, and cannot be 

easily implemented in our algorithm. The visibility polygon of any sensor si should be 

intersected with a doughnut region C(si), delimited by two circles of ray rmin and rmax 

centered in the sensor. Unfortunately, an EC solution is unlikely to be also an IC 

constrained solution, since each circle of ray rmin around the sensors must be covered by 

another sensor. In addition, no sensors can be placed inside possible uncovered regions 

R.  

 

7. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented a novel IC sensor positioning algorithm, which is 

based on a recent EC incremental algorithm that provides optimal or sub-optimal 

solutions. The basic idea is that the EC sensor set is extremely likely to be also an IC 

sensor set or it can be easily extended into an IC one. The approach exploits a lower 

bound for the number of sensors, specific of the polygonal environment, which can be 

used to evaluate the closeness to optimality of the solution. The algorithm has been 

implemented and tested over about 600 random and custom polygons of various 

categories and with different number of edges. As expected, we have found that the 

initial EC solution is in most of the cases, about 96%, also an IC sensor set, and that the 

solutions provided by the IC algorithm are several times optimal, about 68% of the 

cases, or very close to the lower bound. Therefore, we can state that our IC algorithm is 

nearly optimal. Furthermore, the approach has been compared with other approximate 

sensor location algorithms reported in the scientific literature, showing better or equal 

performances.  

We underline that, since the algorithm is incremental, even better results could be 

obtained at the expense of more computation time. 
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The algorithm can be easily extended to take into account several geometric 

constraints, and a version able to deal also with maximum range and incidence has been 

implemented.  

Future works aim at extending the algorithm in 3D. A preliminary version of the 3D 

incremental boundary covering algorithm, which provides the coverage of the faces of a 

polyhedral environment, has been already presented in [28]. The present IC approach in 

2D could be used as a basis for developing an IC algorithm in 3D. 
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