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Abstract. Natural sintering in ice is a fundamental process
determining mechanical properties of various ice forms. Ac-
cording to the literature, limited data are available about
the complex subjects of snow sintering and bond forma-
tion. Here, through cold laboratory mechanical tests with
a new shear apparatus we demonstrate time-dependent ef-
fects of isothermal sintering on interface strengthening at
various normal pressures. Measurements showed that inter-
facial strength evolved rapidly, conforming to a power law
(mean exponent≈ 0.21); higher pressure corresponded to
higher initial strength and sintering rates. Our findings are
consistent with observations on homogeneous snow, provide
unique records essential for slope stability models and indi-
cate the significant importance of normal load on data inter-
pretation.

1 Introduction

Due to a high homologous temperature, snow and ice sin-
tering (i.e. grain bonding leading to improved strength) has
the fastest rate of any other Earth material at similar pres-
sures and temperatures (Szabo and Schneebeli, 2007; Gubler,
1982). Owing to this, sintering plays a crucial role in the
mechanical behaviour of snow (Gubler, 1978) and snow
avalanche release (McClung, 1979; Schweizer, 1999). Post-
fracture healing of weak snowpack layers, which are a pre-
requisite for slab avalanche initiation, can have an important
influence on the critical length of macroscopic cracks (Mc-
Clung, 2011). For such basal cracks,Louchet et al.(2002)
suggested that healing may significantly reduce stress con-
centrations at the crack tip and thus be equivalent to an ap-
parent increase of the shear toughness. Strength recovery in-

duced by sintering was also suggested as a stabilizing factor
in the case of stress relaxation occurring after rupture with-
out avalanche triggering (Fyffe and Zaiser, 2004). Further-
more, through a snow creep instability approach, based on
a kinematic balance between ice bond rupture and reweld-
ing, Louchet(2001) showed that healing rates of damaged
snow are crucial in determining the onset of slab instabil-
ity. At smaller scales, using a fibre bundle modelReiweger
et al.(2009) demonstrated that the competing effects of bond
breaking and rewelding between two plates are sufficient to
explain the strain-rate-dependent behaviour of snow.

It is known that there are at least six mass-transport mech-
anisms playing a role in the growth of ice bonds (Maeno
and Ebinuma, 1983) and many factors that may affect sin-
tering: temperature and its gradient, normal pressure, micro-
structural properties of grains, and pore-space configura-
tion/geometry (McClung and Schaerer, 2006; Blackford,
2007). Isothermal snow sintering is mainly controlled by
vapour diffusion (Hobbs and Mason, 1964), while external
pressure intensifies the process through plastic deformation
and recrystallization (Blackford, 2007). Experimentally and
theoretically it was shown that the bond-to-grain ratio and
strength change with time according to a power law on sam-
ples of ice spheres and homogeneous snow (Hobbs and Ma-
son, 1964; Mellor, 1975; Colbeck, 1997; van Herwijnen and
Miller , 2013).

Even though in the last five decades a large number of
studies have addressed sintering rates of ice as a fundamen-
tal process (Blackford, 2007), experimental data on sinter-
ing of snow weak layers or cracks has remained elusive
and primarily qualitative (Fyffe and Zaiser, 2004; Birke-
land et al., 2006). Quantitatively it is unknown whether ex-
isting knowledge on homogeneous snow may be directly
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incorporated into models simulating cracks and weak lay-
ers. To our knowledge,Birkeland et al.(2006) andReiweger
(2011) provided the first in situ and experimental evidence
of post-fracture healing of weak layers. However, those mea-
surements could not be put to any operational or practical
use due to missing details that are most crucial for sinter-
ing (like temperature, normal pressure, grain size or heal-
ing time,Blackford, 2007). The influences of these parame-
ters were to some extent investigated for homogeneous snow
(e.g.Ramseier and Sander, 1966; de Montmollin, 1982; Mat-
sushita et al., 2012; van Herwijnen and Miller, 2013) and
for interfaces, but without a focus on sintering as a func-
tion of time (Casassa et al., 1991). Hence, the healing de-
pendence on normal pressure remains unknown, and some
authors have indicated the need to collect more records about
weak-layer and homogeneous snow sintering (e.g.Birke-
land et al., 2006; van Herwijnen and Miller, 2013). Fur-
thermore, in more general terms, regarding bond formation,
McClung and Schaerer(2006) noted “the extremely limited
results available about this complex and important subject”.

Here, we address these issues by focusing on sintering of
planar snow interfaces with time, under constant tempera-
ture and at various normal pressures. For a given snow sam-
ple, the newly created internal interface (which is a simple
analogue for a fractured weak layer or crack) corresponds
to an excess surface energy that is greater than the bulk
energy. Accordingly, the grain contact area of the new in-
terface evolves toward thermodynamic equilibrium with the
snow blocks above and below it. This process is manifested
through an evolution of the global strength of the interface,
which we have attempted to measure for different loading
conditions. Indeed, consideration of the newly created snow
interface as a model of a healing snow crack is a rough first-
order approximation (for examples of possible complexity
seeHeierli et al., 2008). Nevertheless, due to the complete
absence of any alternative methods to measure the process,
we view the method described in this paper as a simple mean
to address this poorly understood issue.

After providing details of the instrument and the exper-
imental procedure, we show and discuss the results of the
tests, focused specifically on interfacial strength evolution
with time under controlled laboratory conditions, and com-
pare with previous studies where possible.

2 Materials and methods

The experiments were conducted in a cold laboratory (CEN,
St.-Martin-d’Hères, France), where the temperature was kept
at −9.0± 0.6◦C and the relative humidity was≈ 70 %. For
the mechanical tests, we used a portable force-controlled ap-
paratus with adjustable shear-loading rate and normal pres-
sure for snow specimen dimensions 160mm× 160mm×

80.8mm (length× width× height) (Fig.1). Ultimately, this
instrument (with a weight of about 7 kg) is being developed

Figure 1. (a)Schematic illustration of the apparatus and(b) of the
inner part of the apparatus with a snow specimen inside (see text for
details);(c) stress–relative displacement curves showing examples
of failure stress (shown by circles) increase after 0, 4 and 16 h of
sintering (σn = 0).

for in situ measurements of the mechanical properties of
weak snow layers in avalanche release zones (Barbero et al.,
2013). (Results of laboratory and in situ tests with artificial
and natural weak layers will be published elsewhere.)

Loading of samples was produced as follows: high-
pressure air from an air compressor transmitted a horizon-
tal load to the upper part of the shear box through a pneu-
matic cylinder (Fig.1a and b). Constant normal pressure,σn,
was induced through inflation of a rubber membrane (within
about 1 s) in the upper part of the shear box (Fig.1b). Shear
displacements, normal pressures and shear force (F ) were
recorded for each test with high-frequency gauges (see Sup-
plement for details; Table1) at 200 Hz sampling rate. The
shear stress exerted on the tested snow interfaces is defined
asτ = F/A, whereA is 256 cm2.

Several homogeneous snow blocks, comprised of fine
grained snow (density 230–400 kg m−3), were harvested
from two sites in the French Alps (Col du Lautaret –
2000 m a.s.l., Massif du Connex – 1200 m a.s.l.) and from
St.-Martin-d’Hères (near the laboratory), transported in
thermo-insulated boxes, and stored in a cold storage room
at −20◦C for 10 to 100 days. Sample properties are pro-
vided in Table2. Natural snow blocks were collected from
flat open spaces and considered homogeneous based on stan-
dard snow-pit observations. Even in cold laboratory condi-
tions the difficulty in creating truly homogeneous snow sam-
ples is known (van Herwijnen and Miller, 2013). Micro-scale
heterogeneities are unavoidable in natural and artificial snow
samples and are inherent in snow as a material.
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Table 1.Description of sensors.

Sensor Producer, model Linearity error (% f.s.)/
accuracy in absolute values

Displacement transducer RDP, linear variable differential transformer DCW1000B 0.1 %/±0.025 mm
Force transducer Hottinger Baldwin Messtechnik, C2 0.2 %/±1 N
Pressure sensing platform General Electric Company, UNIK 5000 0.2 %/±1 Pa

Table 2.Physical properties of tested snow samples. Snow properties are characterized according toFierz et al.(2009). Errors correspond to
standard deviations between measurements.

Snow block
number/number of
samples
used/harvested at
lat., long.

Storage time
in cold room
at−20◦C
before tests
(days)

Density
(kg m−3)

Snow type Hand hardness
index/shear vane
resistance (kPa)

SSA
(m2 kg−1)

Optical grain
diameter
(mm)

#4/1/45.199◦ N,
5.772◦ E

10, 69 270± 38 DFdc, decomposed
precipitation parti-
cles (were close to
0◦C during
harvesting)

Knife/20.0±5.0 17.7± 0.8 0.37± 0.02

#3a/3/45.038◦ N,
6.399◦ E

34, 69 369± 5 RGlr,
cohesive old snow

Knife/24.8±0.9 14.6± 0.4 0.45± 0.01

#3b/10/45.038◦ N,
6.399◦ E

104 397± 11 RGlr,
cohesive old snow

Knife/23.3±5.3 18.4± 1.7 0.36± 0.03

#1/10/45.015◦ N,
5.743◦ E

79 234± 15 DFbk, wind
packed snow

Pencil/2.95±0.7 28.0± 1.4 0.23± 0.01

The snow blocks were then cut into rectangular prisms us-
ing a saw or specially constructed blades. The snow prisms,
which we call specimens, were installed in the shear cell and
split horizontally in the middle using a thin blade or wire
(< 0.5 mm). Then the specimens were immediately (i.e. ef-
fectively cutting the sintering time to about 30 s–1 min) sub-
jected to horizontal loading (i.e. shearing) at a constant rate
of about 0.7 kPa s−1. Subsequently, the specimens were re-
assembled and left to sinter for 4, 16 or 23 h and re-tested.
The limitations of the described procedure will be shown to
be negligible for the relatively long timescales of our inter-
est, but indeed not in view of the rapid sintering times (see
Sect. 4 for details).

Normal pressure in the experiments was produced in two
different ways: (1) during shearing – by the instrument
through the previously mentioned inflation of the membrane
(hereafterσn); and (2) before shearing – by loading sam-
ples with weights for all period of sintering (hereafterσc).
The tests were repeated at three different instrumental normal
pressures,σn: due to weight of snow only, (0.11±0.03 kPa),
and with an additional external pressure of 0.5 or 1.0 kPa.
Such pressures were equivalent to 20 or 40 cm of snow
with density 250 kg m−3, respectively. Some of the speci-
mens were also left to sinter under a constant normal load,σc
(0.5 kPa using weights) for 4 or 16 h, in order to investigate
the effects of permanent load on sintering. These samples

were sheared withσn = 0.5 or 1.0 kPa, i.e.σn ≥ σc. In total
we tested 24 specimens at various conditions resulting in 91
successful individual tests (see Table S1 in the Supplement).

3 Results

The observed time to failure was within 9 s in 90 % of the
tests (the median time to failure was 3 s). The relative hor-
izontal displacement at failure was between 0.2 and 14.2 %
depending mainly on snow density but also on sintering time
(the median value was 2 %). The horizontal deformation rates
were higher than 10−1 s−1. Due to the design of the instru-
ment the crack occurred at the interface in all considered tests
(as intended). The effect of time on strength can be seen in
Fig. 1c. A clear peak stress, marked by circles, is observed
for tests conducted after 4 or 16 h, while less pronounced
peaks occur for tests made immediately after the cut. The
shear strength of interfaces,τf , corresponds to the peak stress.
From Fig. 1c it is evident that longer sintering times are asso-
ciated with higherτf and displacements at failure. Note that
the load-controlled mode and the present geometry of the in-
strument do not allow any direct insights into the residual
friction (e.g.Casassa et al., 1991). Nevertheless, through sup-
plementary high-speed photography of multiple tests it was
confirmed that peak stresses always correspond to initiation
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Figure 2. Shear strength evolution with sintering time for all sam-
ples and all loading conditions (means are indicated by stars and
connected by lines; error bars show standard deviations for avail-
able measurements: different marker shapes correspond to differ-
ent specimens; samples of the same snow type have the same
colour).(a) Baseline tests with no external normal pressure, and no
preloading (σn, c = 0); (b) and(c) with σn = 0.5 or 1.0 kPa, respec-
tively; σc = 0. (d) and(e)with σn = 0.5 or 1.0 kPa, respectively and
σc = 0.5 kPa.

of catastrophic failure of specimens (not shown; to be pub-
lished elsewhere).

The results of all experiments are shown in Fig.2 in terms
of calculated shear strength vs. healing time. The temporal
evolution of the mean strengths for the different loading con-
ditions is summarized in Fig.3. In general, the strength in-
creased with time for all loading conditions (Figs.1c and
2). Two slightly decreasing trends (between 4 and 16 h) ob-
served in Fig.2c and d may be due to some artifact (e.g.
improper crack-face placement or partial breakage of some
bonds during sample preparation). In order to verify that such
values do not affect the results, we filtered all measurements
by removing all tests giving lower values for higher times.
The mean values of this selected population of tests are indi-
cated in Fig.3 as dashed lines.

Tests performed without any external normal pressure
(σn) or permanent load by weights (σc) hereafter consid-
ered as baseline values,τf_b, showed an increase in failure
strength from an average of 0.5 ± 0.2 kPa to 5.1 ± 1.2 and
6.2 ± 1.4 kPa after 16 and 23 h, respectively (Fig.2a).

With the additional external pressures,σn, the strength in-
creased compared toτf_b for 0 and 4 h measurements (Fig.2b
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Figure 3.Mean shear strength evolution with sintering time for each
set of loading conditions (thick lines indicate all tests; dashed lines
– filtered tests).

and c), on average by a factor of 1.8. However, the in-
crease in strength was comparable for bothσn = 0.5 and
1.0 kPa. Specimens which were loaded withσc = 0.5 kPa for
4 and 16 h before testing (Fig.2d and e) show strengthen-
ing curves which are similar to those without any permanent
loading (σc = 0 kPa). For example, compared withτf_b there
is a more than twofold strength increase of 0 and 4 h values
(some further discussion of possible differences is given be-
low).

4 Discussion

4.1 Strengthening rates

Previous published interfacial strengthening rate measure-
ments and estimates (i.e. values assumed for modelling)
vary greatly and are extremely scarce. For example, in situ
observations on strengthening of post-collapse layers were
reported as linear coefficients and ranged from 0.07 to
0.3 kPa h−1 (Birkeland et al., 2006). Some modelling stud-
ies used a typical 10 s timescale (with sensitivity tests within
a range 1 s–28 h) for the recovery of weak-layer strength to
its original value (Fyffe and Zaiser, 2004). The average rate
of strengthening within 16 h calculated for global strength
means of all results, 0.26± 0.09 kPa h−1, was comparable to
the values reported byBirkeland et al.(2006). However, con-
stant rates are unlikely to apply, because even with high vari-
ability between tests, the data demonstrate that the most rapid
healing occurs within the first four hours, and after that slows
down and continues at lower rates (Fig.3). Comparison to
other experimental results, for example, obtained for artifi-
cial homogeneous snow byMatsushita et al.(2012) (0.08–
0.17 kPa h−1) and for unfractured weak layers byJamieson
and Johnston(1999) (about 8 Pa h−1), is not straightforward
due to other effects in their data (such as different timescales,
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1964; ♦ – Blackford, 2007; O – van Herwijnen and Miller, 2013,
where empty triangles – marginal values,H – the mean).

densification, different microstructure including grain shape,
bond spacing, etc.).

In line with previous studies on homogeneous snow
(Hobbs and Mason, 1964), analysis of data shown in Fig.3
suggests that a power law functionf (t) = atb for τf(t) fits
the observed strengthening process at any conditions under
consideration (withR2 from 0.91 to 0.97; with two-tailedp
value ≤ 0.2 for three time steps, and≤ 0.05 for four time
steps). When we provide an empirical power law fit for the
change of meanτf with time in all our experiments, we ob-
tain an exponent 0.21± 0.08 (Fig.4). If we provide fits only
for the filtered tests or exclude all measurements made at
or after 16 h from the fitting (to avoid the previously men-
tioned slightly decreasing trends), we obtain similar mean
results= 0.22±0.08; if we set the first measurement time to
30 s instead of 1 min, we obtain 0.19± 0.08. When we com-
pare the results on interface strengthening with those from
other studies on homogeneous snow, ourb values fall well
within the range of previously reported values (Fig.4).

4.2 Influence of normal stresses

The increase of initial interfacial strength,τf(0), with normal
pressure (σn) is shown in Fig.5. The observed dispersion
may be attributed to a slight uncertainty in time of the initial
measurements and consequently a possible initial cohesion
of the interface (see discussion below).

For evaluation of the influence of permanent normal load
(σc) on sintering rates, we assume that interfacial strength is
governed by the Mohr–Coulomb law (e.g.Matsushita et al.,
2012) τf(t) = c(t,σc) + σn tanφ. Thus the failure strength of
the interface depends on a constant pressure-dependent fric-
tion term and on a cohesion,c, evolving with time (such con-
stitutive behaviour should be viewed with caution, since it
does not provide physical phenomenological explanation and
thus should be considered as a simplification). We surmise
that initial strengthτf(0) corresponds only to the frictional
part since the snow bonds did not have sufficient time to de-
velop and may be considered as negligible. Accordingly, in
order to evaluate the evolution not only of the strength but of
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Figure 5. Influence ofσn on τf(0) (dashed line – 1: 1; marker code
is the same as in Fig.2).

cohesion, without an effect of normal pressure (σn), we re-
moved the frictional part of the strength for full and filtered
tests (Fig.6). Cohesion values suggest a possible increase
of sintering rates due to long-term loading,σc. Correspond-
ing tests show an increase of cohesion of up to 70 % after
4 h compared to tests without any permanent loading. For
the 16 h measurements, data variability precludes a similar
observation, except for one series of tests (shown in green;
Fig. 6).

If the measured strength depends onσn and a temporarily
evolving cohesion between grains, care should be taken in the
evaluation of power law fit parameters. If the latter are esti-
mated only for cohesion (Fig.6), we obtain substantially dif-
ferent values ofa andb, which are extremely sensitive to the
initial value taken for the cohesion (while not very sensitive
to initial time; Fig.A1). When we assume that there is some
pre-existing cohesion (c0 between 1 and 400 Pa, for exam-
ple), a andb values will vary in the range 150–3300 Pa s−b

and 0.24–1.23, respectively (see Fig.7 for an example).
In general, higherc0 corresponds to lowerb; whenc0 is

> 200 Pa, the exponents start to resemble those in the liter-
ature (Fig.A1). Interestingly, this is also in accordance with
Fig. 5, where such initial cohesion values may be inferred
from the data, and supports the idea, opposite to our initial
assumption, that a timescale of less than 1 min is sufficient to
have non-negligible cohesion in the experiments. Moreover,
Fig. 7 suggests that the permanent load increases the scaling
factor a, while leaving the exponent,b, almost unaffected.
Even though only preliminary at this stage, this discussion (i)
suggests that the previously shown scatter of published expo-
nents could be caused by slight differences of normal pres-
sure; (ii) poses strict requirements on precise pressure and
time control in future tests; and (iii) indicates that we have to
be careful with strength prediction at small timescales.
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Figure 6. Cohesion evolution with sintering time (marker code is
the same as in Fig.3).

4.3 Limitations

The operations performed in the experiments were focused
on relatively long time intervals, and not on very short
timescales of sub-seconds or seconds (Gubler, 1982; Szabo
and Schneebeli, 2007). Nevertheless, it was shown above that
an error in the fit due to uncertainty of the initial time was
negligible for the timescales of our interest. However, clearly
for an extrapolation of results to smaller timescales a dif-
ferent methodology would be required, which is beyond the
scope of the present study.

The number of time steps for which fits were made was
relatively small. The optimal choice considered the very
time- and labour-consuming procedures of the presented
tests. Nevertheless, sensitivity tests for fits made even with
only two steps (4 and 16 h) indicated the stability of the ob-
tained exponents. Furthermore, since the power law depen-
dency was previously postulated for homogeneous snow at
timescales two times smaller than in the present study (van
Herwijnen and Miller, 2013), it was interesting to further ex-
tend the time range of the process.

To achieve better quantitative characterization of the nor-
mal stress effect on sintering, more experiments with larger
values of normal pressure are needed.

With regard to sample splitting, the following should be
noted. Similarly to common snow saw fracture tests (Mc-
Clung, 2011) (where the cut is made with a saw ten times
thicker than the cutting method used in the present study) the
changes in microstructure caused by cutting procedure were
not documented and remain unknown. It would be interesting
to investigate this issue through X-ray tomography (Hagen-
muller et al., 2013), which was not available in this study.

Direct projection of the results with artificially created in-
terfaces onto real snow weak layers remains to be done. In
particular, the snow densities used in this work may be lim-
ited to cracks along such types of weak layers as crusts, inter-
faces between two horizons of snow with different hardness,
or post-collapse weak layers with negligible thickness. On
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Figure 7. Example of scaling factors,a, and exponents,b, of the
power law fit for the cohesion (the filtered population, where marker
shapes indicate sensitivity of fit parameters for a “basis” of each fit:
the first measurement is at 1 min,♦, or 30 s,F; c0 = 400; see also
Fig. A1).

the other hand, the experimental densities may be higher than
densities of other important types of weak layers like buried
surface hoar or depth hoar, thus indicating a need for further
tests. Nevertheless, similarities between in situ reported rates
(Birkeland et al., 2006) and results of this study, as well as re-
cent findings about the similarity of sintering rates for sieved
depth hoar and those of rounded grains (van Herwijnen and
Miller , 2013), suggest that the processes responsible for bond
development may be very similar.

5 Conclusions

The experiments showed the healing of snow interfaces, pre-
sumably through a growth of intergrain contact surfaces,
leading to a fast increase of their strength. Such interface
strengthening behaviour was quantitatively characterized un-
der controlled laboratory conditions (in shear mode) for rel-
atively long timescales through a novel instrumental tech-
nique. It was shown that normal pressure (σn) influence was
associated with an increase of failure strength, and that per-
manent load (σc) seems to increase sintering rates. Also it
was found that the interfacial strength increase is nonlinear
for all reported loading conditions; it occurs most intensely
within the first four hours (0.71± 0.22 kPa h−1) and con-
tinues afterwards at much lower rates (e.g. within the next
12 h at 0.14± 0.07 kPa h−1) and may be described as fol-
lowing a power law function of time with a mean exponent
around 0.21. This exponent agrees well with several other
experimental studies, which were based on artificial homo-
geneous snow, completely different instrumental methods or
shorter timescales (van Herwijnen and Miller, 2013). The
observed dependency indicates that homogeneous and inter-
facial snow/ice sintering share comparable fundamental dy-
namics, which is very sensitive to normal pressure and indeed
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needs further investigation (e.g. through X-ray tomography).
Similarly to field studies byBirkeland et al.(2006) our exper-
iments have confirmed that newly formed interfaces, like hy-
pothetical sub-critical weak layer cracks, are dynamic, tran-
sient phenomena.

www.the-cryosphere.net/8/1651/2014/ The Cryosphere, 8, 1651–1659, 2014
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Appendix A

A1 Additional information about tests

Additional information is provided (i) about the sensors in
Table1, (ii) about the physical properties of tested snow sam-
ples in Table2, (iii) about the experiments in Supplement Ta-
ble S1 (please see the attached file), and finally, (iv) some
sensitivity tests are shown in Fig.A1.

To complement the mechanical tests with a full documen-
tation of snow properties, we collected the following sup-
plementary measurements (Table2): (1) snow density (by
measuring the mass of known volumes); (2) weight of up-
per snow blocks (above the interface); (3) shear resistance
of snow blocks (by shear-rotary vane,Domine et al., 2011);
(4) specific surface area, or SSA, for estimating the opti-
cal diameter of snow grains (by dual-frequency integrating
sphere for snow SSA measurement, or DUFISSS, at 1310 nm
wave length, seeGallet et al.(2009) for details); and, finally,
(5) microphotography of separated snow particles. However,
we notice that differences in temporal evolution of interfa-
cial failure strength or sintering rates based on snow proper-
ties (i.e. density, grain size or grain type) could not be evalu-
ated due to large variability between tests, meaning that cor-
responding possible differences may be smaller than the vari-
ability between tests.

Figure A1. Sensitivity analysis of power law fit parametersa andb to uncertainty inc0 for each set of loading conditions (see the main text
for details; marker code is the same as in Fig.3); (a) the filtered population of tests, where the first measurement is at 1 min, or(b) at 30 s.
For comparisonb axes provide exponents from other studies (marker code is the same as in Fig.4).

Furthermore, a table with an overview of performed tests
is provided in Supplement Table S1 (a separate file). We note
that additionally to tests described in the paper, four speci-
mens were left to sinter for about 1653 h (i.e. more than two
months) of sintering at−20◦C without any external load.
These specimens had a strength of around 11.6± 4.3 kPa,
but since they were subjected to the lower air temperature,
which could significantly slow down the growth of bonds,
we did not compare them with other tests.

A2 Sensitivity of power fit parameters to initial
cohesion
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The Supplement related to this article is available online
at doi:10.5194/tc-8-1651-2014-supplement.
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