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ABSTRACT

Current static reservoir models are created by tifatide integration of interpreted well and seisrdata
through geostatistical tools. In these models, mqbiable realizations of structural settings anopprty
distributions can be generated by stochastic siibaldechniques. The integration of regional (osiba
scale knowledge in reservoir models is typicallyfgened qualitatively or semi-quantitatively (foxample,
through the definition of regional property trenolsmain channel-belt orientations). This limitede usf
regional information does not allow an assessmérthe impact of the uncertainties associated wlit t
regional knowledge on the overall uncertainty @ teservoir model.

A novel approach is proposed in this study, whidlowss us to consistently integrate basin-scale
information into reservoir models. A new type oftajarelated to the distribution of the potential
hydrocarbon-bearing volumes at basin scale, weeradat from a 2-DH process-based stratigraphic faiwa
model (SFM) and integrated as a soft constrainihéngeostatistical reservoir modeling. As a consaqge,
reservoir models are quantitatively consistent vifte large-scale geological setting defined by $ifrév
output. Furthermore, the uncertainty associateth wdch SFM parameter can be propagated to reserve
estimation. Thus the partitioning of the overalterainty affecting a reservoir model into the citmittions
of the uncertainties at the basin and reservolesaan be quantitatively assessed.

Several synthetic case studies were carried out aitd without conditioning to SFM output, which
verified the effectiveness of the method. A logigekt step is to apply the proposed methodology teal-

world case.



1 INTRODUCTION

Geological reservoir modeling encompasses all aspeslated to the definition of the structural,
stratigraphic, lithological and petrophysical prdjgs of subsurface rocks, leading to the estimatibthe
spatial distribution and the volume of hydrocarbimnglace (Mallet, 2002).

Available information for geological reservoir mdidg includes static and dynamic data at different
scales (Fig.1), ranging from centimeters (core )dadakilometers (2D/3D seismic). Typically, reseirvo
models result from the quantitative integrationawhilable static data, i.e. well logs, core datd s@ismic
data (Cosentino, 2001, Benetatos and Viberti, 20LB¢se kinds of data are complementary becaude wel
data are characterized by high vertical resolufiog sampling is usually in the order of decimetensd low
horizontal resolution (well spacing is usually sommdreds of meters to some kilometers and wedshat
uniformly distributed), whereas seismic data israbterized by relatively high horizontal resoluti@ens of
meters) and low vertical resolution (tens of métehs creating static reservoir models, depth hori
derived from seismic data providlee structural description, whereas well logs give infation about the
vertical distribution of reservoir lithologies.

Generally, due to the low density of wells in thikindustry, the vertical trend corresponding t@ th
average proportional abundance of lithofacies emievad in the wells is assigned to the entire dornmathe
form of a vertical proportion curve. This assumptiaf stationarity assumes that statistics from svalle
representative of the 3D field properties. Howevstationarity cannot be easily justified from a
sedimentological point of view, and the extent taal vertical proportion curves represent the datusan
lithofacies abundances depends strongly on the auard pattern of wells (Massonnat, 1999). Appreach
based on stationary random functions thereforendéiad to inaccurate reservoir models (Labourdsite.,
2008).

If the stationarity hypothesis does not hold trme the volume of interest, additional geological
information should be incorporated into the modghvorkflow to constrain stochastic simulations. ey
approaches have been developed during recent tgeqegntify the lateral variability of reservoitbology:
(1) Information extraction from seismic surveygg(eBeucher et al., 1999; Marion et al., 2000; Stlebet

al., 2003; Zachariassen et al., 2006); (2) Buildifiga 3D paleobathymetry grid from sedimentological well



data (Massonnat, 1999); (3) Using analogous gemdbgiituations (Howell et al., 2014); (4) Integnafi
dynamic data, such as well-test interpretation poadiuction data (e.g. Oliver, 1994; Wen et al.,8)995)
Integrating sedimentological cross sections (Latdette, 2008), and (6) incorporating local priorkability
in stochastic reservoir simulation (e.g. Deuts€@2 Mallet, 2002).

In this study we propose a novel methodology tontjtatively integrate basin-scale information into
reservoir models and account for the associatecertanty. The proposed methodology allows the
construction of a quantitative prior 3D probabiliube of lithology (or lithofacies) proportions, by
introduction of additional basin-scale informatiamt extractable from either well or seismic daiaf
obtainable from stratigraphic forward models (SENis) previous study (Sacchi et al., 2015) westHated
how the most likely scenarios could be selectethfeoseries of SFM realizations by an objective fiamc
which quantifies the discrepancy between the acuoédlpredicted elevation of a regional seismicergdr
corresponding to the reservoir top. In the prestady, we show that the SFM constraints permitaus t
reconstruct a geological reservoir model by geisttedl technigues, which may be used to downsttae
results of the SFM to the reservoir grid. In partae, we show that we can successfully interpalagelocal
information derived from well logs by imposing aasipl correlation expressed in terms of covariafide
uncertainty associated with spatial prediction mdeied by random function theory. In a follow-updst,
we intend to apply the methodology proposed by Baetcal. (2015) and the present study to a realewvo

case.

2 METHODOLOGY

The workflow proposed in this study aims at intéiggtypical data sets used for geological reservoi
modeling, made up of well and seismic data, witpodentially new kind of data, represented by the
parameters estimated by a quantitative Stratigcapbrward Model (SFM). The SFM provides the channel
belt architecture at basin scale, which can beesgad as a non-stationary 3D probability distrdyutf
depositional lithofacies proportions. This prob#pitube was used as additional input for the geissical

reservoir model. The proposed workflow was appled fluvio-deltaic environment.



Two geostatistical approaches are in widespread fosemodeling reservoirs in fluvio-deltaic
environments (Daly and Caers, 2010), namely OlBased Facies Modeling (OBFM) (Georgsen et al.,
1994) and Multiple-Point Statistics (MPS) (StrebeR002). The first technique directly addressesgshues
of geometry and connectivity, producing a modelt tbantains explicit representations of the channel
features conditioned to data. However, in someunigtances conditioning to data can be difficult, fo
example with dense well data sets or with multdét probability fields (Tetzlaff et al., 2005; 8kelle,
2012; Caers and Zhang, 2004). The second techeimguplements traditional variogram driven cell-based
modeling as well as the object modeling approachatt, it is a cell-based approach that usesiairiga
image to estimate the multivariate distribution aqpfantities of interest, instead of a variogram-Hase
algorithm that expresses a simple bivariate digtidim. Both approaches were considered in thisystadd
their ability to integrate basin data whilst preseg realistic geometry was analyzed and compared.

Incomplete information on the geological featuresd ageophysical parameters characterizing the
subsurface induces uncertainty in every aspectraegery phase of reservoir geological modelinggiGa
2005). Uncertainty of the integrated basin inforoatvas taken into account and propagated to serveir
scale. The proposed workflow is summarized in Fg@r and is described in detail in the following

subsections.

2.1 Stratigraphic Forward Model

For basin-scale simulation an aggregated, 2DH (daptraged flow in the two-dimensional horizontal
plane) stratigraphic model, called SimClast (Dalnaad Weltje, 2008, 2011) was adopted. SimClast was
developed from 2005 to 2008 at Delft University Déchnology (Netherlands) to study the complex
interactions between fluvial and wave influencesdettaic and shore-face development. SimClast featu
relevant for this study, are: realistic channelwrek development, channel stability based on dyoami
calculation of super elevation, and sub-grid patazation of channel features governing avulsiond a
floodplain aggradation. The term sub-grid paraniedéon originated in the field of computationaditl
dynamics (Meneveau, 2010). In the context of thiglyg it refers to the implementation of small-gcal
processes which govern the evolution of drainageori&s (such as avulsions) as sub-grid scale restinto

the large-scale basin-filling model. In SimClase thubgrid parametrization of alluvial processes and



stratigraphy is performed to incorporate the sreedlle processes and stratigraphic/architecturahezies
into the large-scale 2DH stratigraphic model, rsglin the level of vertical detail required foeaogical
reservoir modeling with a moderate amount of comipornal effort.

In order to perform one simulation with SimClastesal environmental parameters have to be set: the
initial surface and subsurface sediment properties sea level change, the (spatially variablekisiénce,
the river inflow location, the discharge and seditmgupply over the runtime, the wave regime, ared th
current pattern at the grid boundaries (Dalman \Afedtje, 2011). As in the previous study (Sacchalet
2015), our main focus was on the analysis of thgaith of the variation of three environmental pariamse
that have the largest influence during the geobibyicshort time interval simulated (ca. 8000 yeat4)
initial topography, (2) sea level and (3) sedimentry point. The other parameters were assumecdto b
known and constant. Each model run was conducteeérutime-invariant forcing, i.e. constant sea level
liquid discharge and sediment load. Two discretinsent classes were considered: sand, mostly deposi
in and near fluviodeltaic channels, and clay, repngative of the floodplain and shallow-marine pdum

deposits.

2.2 Channel-belt architecture at basin scale

When a SimClast basin simulation is run, outpgeserated in the form of multiple maps (snapshwits)
topography, sedimentation patterns and dischangghé&rmore, a 3D cube of discrete stratigraphi@ it
sediment thickness, grain size and age is createthé entire area. The information related to clen
architecture was extracted from the sub-grid paterzation of the fluvio-deltaic architecture, whic

specifies channel patterns in terms of volume @ncielized deposits, flow direction and channel flmp

each grid noddX, Y).

The fluvial architecture is constrained to the hontal discretization of the SFM. The horizontal
dimension of the grid cells in the reservoir moebne order of magnitude below that of the SFNE th
implies that lithological variability at the basatale obtained by the SFM should be regarded dmibpa

averaged information at the reservoir scale. Ini@é#ar, channels are assumed to have a smallghihan



the cell dimension (Dalman and Weltje, 2008), ttingsr exact location cannot be resolved at basatesaor
is it possible to determine the width to thickn@A&T) ratio of the channels inside each cell getesrdy the
SFM.

The sub-grid information was extracted to obtaBDadistribution ofchannel occurrence probability at
basin scale. This information was integrated a®fa constraint in the geostatistical simulation @i

complies with the uncertainty related to the excennel position at reservoir scale.

The channel occurrence probability for each locefi Y, Z) was calculated as follows:

V,
Pen (X, Y, 2) = Vﬂ (@D)

cell

WhereVCH is the channel volume in positidg, Y, 2) while V_, represents the grid cell volum@hannel

occurrence probability @2) was assumed to be constant along the channbhﬂrﬂs(h).
Since the subgrid parameterization does not sugphyinformation about channel width, length or khiess,

the latter was estimated from the channel volunveyrga W/T ratio(f ):

h(xy,z) = Ven 2)

CH f
where|CH (channel length) was approximated with the celeesionAx . The W/T ratio employed equals

250, a representative value for distributary chisaed crevasse deposits (Reynolds, 1999).

2.3 Reservoir realizations constrained to basin information

For each SFM scenario several equiprobable stachaskervoir scenarios were generated, both with
the multiple-point geostatistical approach and abgct-based facies modeling approach. In othedsyor
each vector of SFM input parameters (sea leveliainiopography and sediment entry point) generated
several reservoir realizations, which were expmrksseterms of spatial lithology distribution ovehnet
reservoir-scale grid. This approach was followedider to capture the uncertainty associated with t

downscaling of each scenario to the reservoir-sgade



The geostatistical approach provides a weightesymtion of the different kinds of data (Daly anaeG,
2010). Well data, in the form of lithology logs pieusly defined, are classified as ‘hard’ data lseathey
derive from the interpretation of direct measuretseiVell stratigraphy constitutes a strong constrai
during model building and it is integrated into thmdel without any modification. The depth horizons
derived from seismic data interpretation were assumed to be fixed (i.e. equal for all realizatjon
Conversely, local basin information was integrasesdsoft constraining data: the distribution of cteln
volume fraction at basin scale was softly imposed aolume trend. In other words, the informatiasiag
from SFM simulation was converted into a 3D probigbtube of lithology proportions and locally imped
at each grid cell.

Basin-scale averaged information, such as the twvemannel volume fraction and the main channel
orientation, was also integrated. In the multipteap geostatistical approach the overall sand ifvacand
main channel orientation was integrated in theningi image: different training images were constdc
based on the sand fraction and channel orientatiained by different SFM scenarios. In the object-
modeling approach the sand fraction and channehtaiion are required parameters. Channel orientati
was assumed normally distributed with a mean etmahe mode of the SFM simulations and a fixed
standard deviation (45°), corresponding to the ésghSFM resolution, was imposed. The remaining
parameters were taken from literature (Reynold€91%ibling, 2006): amplitude and wavelength were
assigned a triangular distribution with given minim mean and maximum values. The W/T ratio waslfixe
at 250; the width was triangularly distributed wéthminimum value equal to 300 m, a mean value 6f5

and maximum value of 600 m.

2.4 Uncertainty at basin scale

A reasonable degree of uncertainty was imposed aufn @f the three considered SFM parameters
(Sacchi et al., 2015). A range of variability fazaslevel and location of the sediment entry poiasw
assumed. Several initial topographies at basiressate stochastically generated by perturbing ereete
initial topography and constraining the surfacehe stratigraphy observed at wells. The input patans

were assumed to be independent and uniformly bliged over the chosen ranges. A systematic sampling



algorithm (Cochran, 1963) was applied to extracsibascenarios representative of the considered
uncertainty. This approach differs from a classiont¢ Carlo method because a quasi-random sequence i
place of a random sequence is exploited in the Wagngtage (Caflisch, 1998). A Quasi-Monte Carlo
method requires a smaller number of samples tdhrbee same accuracy as a classic Monte Carlo method
when the population is uniformly distributed, besalit emphasizes a thorough coverage of the area of
interest (Pal, 1998) and eliminates the clumpingnamenon, which is a limiting factor in the accyra€

the Monte Carlo method (Caflisch, 1998). As a cqusace, the computational cost is significantlyucastl.
More complicated sampling approaches could als@afyied, such as Latin Hypercube Models (Vose,
1996) or searching algorithms (deplivene et al., 2014) but they are beyond theeabphis paper.

A SFM simulation was run for each quasi-random dariyporder to account for uncertainty over basin
input parameters, obtaining a 3D distributioncbinnel occurrence probability at basin scale for each
scenario. Successively, the most promising scemawiere extracted by comparing the basin simulation
results with the available data (i.e. depth horizderived from seismic and well stratigraphy). Makuse
of the results of Sacchi et al. (2015), two goodradit functions were implemented, quantifying thbility
of each scenario to match the available depth twsizderived from seismic and lithological logs,

respectively. Details are reported in the appe(elix A1 and A2).

2.5 Accounting for basin uncertainty at the reservoir scale

The uncertainty associated with the spatial distrdm of lithology at the reservoir scale could be
estimated from the set of stochastic reservoiriza@bns. This is a non-trivial task because theanda be
analyzed included several variables evaluated samebusly and, thus, it represents a multivaritatssic
of correlated variables (Johnson and Wichern, 2008¢ realization of a property (channel occurreince
our case) over the grid is a vector of correlatadables (one for each grid point), where the datfi@n
comes from the principle of spatial continuity, i®o data points close to each other are moréyliikehave
similar values than two data points that are fartgeart (Isaaks and Srivastava, 1989). In the mego
methodology such a correlation was guaranteed doliasin scale, by the SFM equations, and at reiserv

scale, by the geostatistical theory.
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Large data sets, such as the 3D lithofacies patemhzations, pose serious obstacles to visual
inference. It is not possible to visualize the utaiaties over the local realizations of each gredl all
together. Rather than summarizing this informabgrusing descriptive statistics, we selected a rarnolh
representative locations to analyze. The nine smldocations (W1 — W9) follow a regular patterronaer
to uniformly cover the reservoir area (Fig. 5b)eTtumber of locations was chosen to preserve #tistgtal
representativeness of the results, as a deterrfio@dsensitivity analysis.

Uncertainty obtained from the reservoir realizasiovas shown in terms of sand probability curvehat t

selected locations: sand probability of each seéer(d,,, (X Y,2)) was calculated as the mean of the local

sand distribution over all the realizations of theen scenario. The Ioc&and represents a marginal

distribution, because the correlation between saalization in other levels of the same locatiorabother
locations were neglected in the calculation of lodstribution percentiles. The local probability
distributions were graphically represented by fisgicond and third quartiles. The lithology predittat a
given monitoring location, expressed by any sigaifit vertical variation in sand probability, wasified by

comparison against a reference case.

3 REFERENCE CASE AND SYNTHETIC DATASET

A synthetic appraisal scenario was considered, foith wells penetrating the reservoir. A SFM refere
case was chosen extending for 50 km in the nontithsdirection and for 47 km in the east-west diogct
The initial topography was generated with a gengiato the north-east; the altitude varies frorm24o 74
m, resulting in an average slope of about 0.1%. Sdeelevel was set equal to 44.5 m (above the lesdtaa
level). The sediment supply was assumed to enven &in intermediate location along the west sidthef
model. Sedimentation was simulated over a perid®®000 years. Over the course of this comparatisiabyrt
time interval (geologically speaking), the sedimentry point did not migrate laterally, the seaelewas
stable, and climate fluctuations as mirrored inngjess of liquid and solid discharge were absentmg step
of 1 year was imposed, giving a vertical resolutidn-10 cm for the selected parameter set (in théwe

SFM's vertical scale is unlimited). The selectadetistep is a good compromise between a reasonably
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contained simulation time and a vertical resolutwdnich has to be comparable with core and log data
resolution. Figure 3a shows the vertically averagedto gross (N/G) ratio, representing the praporof
sand. Main channel belt deposits are in yellowed color (high N/G). The four wells A, B, C, and D,
located in the model’s central area, are also aygul. The area was discretized (fig. 3b) in a aggtid
with cell dimensionsAx, Ay) equal to 1 km x 1 km, representing the smahesizontal spacing tolerated by
SimClast. The corresponding grid at reservoir sisal®0 m x 100 m .
From this reference case, a synthetic data setewiacted which may be considered representative of
data sets available for geological reservoir mogelit consists of:
* The top stratigraphic surface, defined throughgbismic interpretation.
» The lithology intercepted by wells A, B, C, D. figally it is derived from the correlation of wineé
logs to the core data.
» The well control points for bottom (initial top@phy) and top surfaces. They are typically defined
from well log analysis.
A synthetic top stratigraphic surface was generaiegerturbing the final topography simulated bg th
SFM to account for the overall seismic uncertainty:
S =S FUU g ©)
where:
S.: base case, or reference surface
Ui, depth error on the reference surface with assigtendard deviatioo=1
Ugs: stochastic error surface obtained by Sequent@alsGian simulation with zero mean and unit
standard deviation, conditioned to wells A, B, &d ®.
As a result, seismic data cover the entire bagia aitith horizontal resolution equal to 1000 x 1600
In order to be consistent with the definition of tmitial topographic surface, the same degree of
uncertainty was considered. The initial and toptigjraphic surface quotes in correspondence oftijadks
intercepting wells were constrained to the well toanpoints. Finally, well lithology was synthetita

generated by downscaling the SFM lithologies ofdéls containing wells A, B, C and D to resensgale



12

(fig. 4). Downscaling was performed by geostatatisimulation (Multiple-Point Statistics) in whidghe

channel pattern information at basin scale wagmated by soft constraining.

4 RESULTS

4.1 Degree of integration of SFM with MPS vs. OBFM

Tests were conducted in order to identify the hgmbstatistical approach for integration of SFM
information. Two different approaches were congdeMultiple-Point Statistics (MPS) and Object-Bése
Facies Modeling (OBFM). The 3D channel occurrenaibability at basin scale @g ) for the reference case
is shown in fig. 5a and two corresponding reservaializations simulated with OBFM and MPS,
respectively, are shown in fig. 6 (a) and (b). Sigantly different responses were observed. A vty
weighted upscaling to the basin scale of the reserealizations of fig. 6 was performed, obtainitig
channel volume fraction at the basin scale showigiry. A quantitative comparison of the obtairddnnel
volume fractions with the imposed channel probgbdistribution is shown in fig. 8 in terms of a 2Dap
and the distribution of the depth-averaged errothBnethods allow integration of the basin inforimat but
Multiple-Point Statistics appears to respect thpased constraints more accurately (fig. 8 ).

The degree of integration of the basin data wathdéuranalyzed by comparing the basin channel
occurrence probability to the synthetic lithosgediphy obtained at monitoring locations W1, W3, W&/,

W9 in the two cases (fig. 9). Note that when a zghtannel occurrence probability is imposed, reservo
realization obtained by MPS always exhibit clapdfilplain deposits), while OBFM sometimes exhibits a
channel sand (for instance at W1,W3,W9), thus iggothe assigned constraint. This is due to thiécdity

of honoring a wide array of soft and hard constgaimith the OBFM method (Hauge et al., 2007). New
developments and approaches are being developestitce this limitation (Syversveen et al., 201h). |
conclusion, the Multiple-Point Statistics provedraspect the constraints, while the Object-BasedeBa
Modeling was not able to honor all the soft datavjated to steer the simulations. As a consequenee,

used the Multiple-point Statistics modeling techugign the proposed workflow.
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4.2 Lithology prediction at reservoir scale

Further analyses were performed to monitor thellsead probability distribution at reservoir scale
obtained by geostatistical realizations constratoeithe SFM reference case. A comparison of thereete
case with geostatistical reservoir models obtaiméthout any basin-scale SFM constraints was also
performed to verify the effectiveness of the pregabe/orkflow relative to the standard methodologijch
only relies on seismic and well data. For this eiser, the sand volume fraction was estimated fraaeti w
logs, assuming that lithofacies proportions at svelere representative of the entire reservoir aeaertical
proportion curve derived from the layer averagevefl data was calculated (fig. 10). The channeltiid
amplitude, wavelength and width-to-thickness valese assumed as in the constrained case. Thrgesran
of variability were considered to represent theantainty over channel directions ( 0°- 60°, 60°09,2120°-
180°), with the minimum and maximum end membersdp@&0° and 180° degree angles, respectively. One
hundred unconstrained realizations were run foh ediche three considered channel direction ranges.
number was verified to be statistically represéveatas increasing the number of realizations dit n
materially change the results. An example of on#éhef300 realizations of facies architecture gerdray
the MPS methodology as described above withoutbasyn-scale constraints (fig. 11) is compared aith
realization conditioned to the calculated vertigabportion curve (fig. 12), and with a realization
conditioned to the 3D lithofacies probability distrtion (fig. 13). Fig. 11 does not show any paiie trend,
neither horizontally (a) nor vertically (b). In fig2b the effect of the imposed vertical trendésady visible.

In fig. 13 the effect of a 3D trend is clearly shgwoth horizontally (a) and vertically (b).
In order to evaluate the local predictability ob&ble without any basin constraining, the predicaadd

probability (P,,,,) was calculated from the 300 realizations desdrddgove, at the nine monitoring locations

(W1-W9) shown in Fig. 5b. A sand probability curfee each location was calculated at each deptht @@in
the ratio between the number of realizations efihipisand and the total number of reservoir retiting.
The obtained curves were then compared with th@seg N/G value (arising from well data) and witk th
lithostratigraphy of the reference reservoir restlan. In fig. 14a nine plots are displayed, one dach
selected location (W1-W9) at which the reservoalesdithological sequence has been monitored. &ine s

probability curve is distributed quite uniformlyoalg the wells, according to the imposed sand fractin
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other words, by averaging over a large number afizations the mean N/G value of the reservoir is
obtained almost uniformly everywhere. This is it@dance with the stationarity assumption. Because
information about channel trends was provided, shme statistical properties (mean N/G value) were
assigned to the entire domain. Consequently, witiformation about the channel trends obtainednfro
SFM, it is impossible to infer the channel architiee at the reservoir scale. Analogously, imposingrtical
proportion curve on the overall reservoir area wagilze a vertical predictability which is not repeatative

of the entire reservoir. In particular, monitoritmcations W1-W4 would be badly represented (cf. the
vertical proportion curve in fig.10 and the W1-Wiasigraphy in fig. 14).

In Figure 14b we show the average of 100 realimatizvhich were generated with the 3D channel
occurrence probability from the SFM simulation asaalditional soft constraint. A significant vertiGnd
horizontal variability of the sand probability cervs observed (fig. 14b), thus the channel locatan
actually be predicted. Furthermore channels anddfitain occurrence are statistically preservedh bot

locally as well as globally.

4.3 Pch uncertainty propagated to the reservoir scale

Finally, the impact of inaccurate basin characéian on the quality of lithology prediction was
investigated, by exploring the ranges of SFM inparameters. The uncertainty associated with the
definition of the initial topography was represehtey a set of 22 realizations, which were stochabi
generated by perturbing the initial topographicfaee of the reference case (Sacchi et al.,, 20156¢ T
sediment entry point was located to the west sfdia@ model, i.e. on the highest elevation of thdaze
dipping to the north east. Starting from an intediate position on the west side, a range of 10 &rthé
north and to the south was considered. For thelesed, which was assumed to be constant during the
simulated time interval, values in the range 3%@m were considered, with a sampling interval & O
meters. The definition of the highest sea level Wwased on well data. The main constraint on thestow
boundary of sea level was the assumption that watiHocation (A, B, C, D) should be comprised ofedy
fluvial deposition, that is above sea level.

Following the approach of Sacchi et al. (2015), th&ertainty over basin parameters was

propagated to & and the possibility to reduce the resulting uraiety by a posteriori check of the
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scenario's goodness of fit was addressed. Thetsema shown in a depth-averaged 2D map (fig. Hsa-1
and in 1D vertical plot (fig.16a-16b), respectivefigure 15a shows thecfvaluesaveraged over all the
considered scenarios (2000); figure 15b providesRy valuesaveraged over a subset of the most likely
scenarios (100) selected according to thednd kp_sutCriteria (see Appendix) applied sequentially; figu
15c shows the JR values for the reference case. Thg Rariability in the vertical direction (fig. 16a dn
16b) was evaluated for the specific locations W1-\W8played in fig. 5b. Thed? median value over all
considered scenariqfig. 16a) and over the 100 most likely scenaridg. (16b) are compared to the
reference case values. A clear improvement of thenfedian was observed when we filtered out the
scenarios that did not meet the goodness of fier@a, especially at locations W3, W6 and W9. The
comparison reveals how the selection of the mdstyliscenarios reduces the uncertainty relatechéo t
sandy channel occurrence at basin scale, whichdhmribtherwise unfeasibly high (fig. 15a).

As already observed in a previous study (Sacchi.e2015), the goodness of fit trends observed for
the considered reference case show significantigibealues in the range of the sediment entry 232
km and in the range of the sea level 40.5-50.5 maAconsequence, the parameters were limited & tho
smaller ranges, thus reducing the number of saemaronsidered for the analysis from thousands to
hundreds. These scenarios were used to consteistdbhastic reservoir realizations, from which shad
probability distribution is estimated. The remamniancertainty was propagated to the channel oautere
probability by SFM simulation, and subsequentlyite reservoir 3D facies architecture following Qeasi-
Monte Carlo approach. For each considered sced@fiogeostatistical realizations (MPS) were gendrate
and the corresponding sand probability curves atWW@L locations were computed. Then, the sand
probability uncertainty range was estimated at\WieW9 monitoring locations based on the entirec$et
curves derived for the different scenarios. Thestiainty was expressed as the interval betweefirgtend
the third quartile of the corresponding distribatiovhich corresponds to the 25° and 75° percentile,
respectively. Results are shown in figure 17. Thecl line represents the median of the local sand
probability distribution obtained for all the codsred scenarios, while the grey area represents the
associated uncertainty (25°-75° percentile). Orrithigt, the lithological stratigraphy of the refeoe case is

shown. It can be noted that the presence of shdleideeper layers is correctly detected, espeaiaivells
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W5-W9. Conversely, the position of the sand inteyva subject to a high degree of uncertainty, esfig
in wells W1-W4. Thus, reliable SFM inference isezdgal for uncertainty reduction.

In order to investigate how efficiently the goodseas fit functions could be exploited to reduce the
uncertainty at reservoir scale, the presented gesxdaf fit criteria (eq. A1-A2) were compared byraating
small subsets containing the most promising basemarios according to each criterion and calcgattire
corresponding uncertainty at reservoir scale. Taarafair comparison, instead of imposing threshiad
the goodness of fit values, subsets of equal sz wxtracted for each case: the 10 most promisasmn
scenarios according to each criterion were chasmmesponding to 1000 reservoir realizations each.

Firstly, the goodness of fit based on the top igirapphic surfaces (& su) Was imposed in two variants:
considering the entire basin area and restrictoght reservoir area only. In both cases the 10t mos
promising scenarios extracted had a sediment quiryt between 28 and 30 km (reference case 30 km).
However, only the goodness of fit calculated oves entire domain was able to identify the scenarios
corresponding to the reference initial topograpfius, the estimated sand probability distributidn a
reservoir scale was more precise and accurate thieeantire domain was considered (fig. 18a vsig&h).

It is pointed out that the accuracy depends onstismic resolution that was explicitly accounted ifo
equation Al through a tolerance term.

Secondly, a subset of scenarios was extracted tmpaiing the stratigraphy at wells A, B, C, D wittet
corresponding channel occurrence probability ainbssale and selecting the 10 scenarios offeriegbibst
match in terms of &x. The uncertainty corresponding to this subsetweag high (fig. 18c), which indicates
that this criterion alone is not very informativmless the number of available wells is large.

Finally, a combination of the two goodness of fiteria (top stratigraphic surface at the basinesead
lithostratigraphy) was investigated. Different cangtions of the two criteria were considered:

» linear combination (F), where each goodness of fit value was normalizedhleymode of the

corresponding distribution in order to weigh theteviteria. That is:

F F
CH + top_ surf

F=
modg( F,, ) modg F,

(4)

op_ surf )
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» Pareto approach: only the scenarios that had a set of goodnesfit eflues, which were not
simultaneously improved by any other scenariosevestracted.

* Union of the best five basin scenarios with respect ol esiterion.

* Intersection of the best scenarios from two bigger subsetssetsbof 100 scenarios for each
criterion were necessary to find 10 intersections.

» Cascade selection: firstly the 30 most likely basin realizations witespect to their ability to fit the
top stratigraphic surface were selected; among ,thleen10 most likely realizations with respect to
lithostratigraphy were extracted.

In the considered reference case, the union @itayave the best results (fig. 18d).

5 DISCUSSION AND CONCLUSIONS

As shown in this study and Sacchi et al. (2015emeoir modeling could significantly benefit frormet
integration of quantitative basin scale informataitained from SFMs. In particular, stratigraphicvfard
modelling can be used to steer the reconstructioth® internal reservoir geometry and to reduce the
uncertainty in the distribution of the hydrocarbmearing lithologies. Uncertainty reduction is oficial
importance, especially during the early appraisadse of a reservoir when relevant decisions haveeto
taken but few wells are drilled and, as a consecpiea limited amount of data is available to penfa
reliable volumetric estimate. Furthermore, the jmtimh of the channel body geometry and stacking
architecture in a fluvial depositional environmetdan effectively assist in planning the strategyrfew or
infill wells.

The approach proposed in this paper has provedefBicient in estimating the lithological fractiai the
hydrocarbon bearing rocks in a fluvio-deltaic eamiment. The integration of the basin informatiag.[the
3D channel-belt occurrence probability, the ovecathnnel body (sand) versus floodplain (shale) melsi
and the channel directions] was accomplished bystgéstical simulations. Two methodologies were

considered, being the most widely used to desciila@nelized deposits: Object-Based Facies Modealirly
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Multiple-Point Statistics. The latter offered aistctory integration of all the available inforneat (i.e.
reservoir and basin data), whereas the former grawvée less accurate.

The proposed workflow allows us to investigate wheertainty affecting a reservoir model, arisingfr
limited information on initial and boundary conditis of the basin-scale SFM, as well as from thetdb
geostatistical approach for lithofacies simulatirhe reservoir scale. An accurate assessmenitiaf and
boundary conditions for the SFM is required foradelle prediction of channel locations and locagkobal
N/G ratios. The reduction of the uncertainty of Skiut by application of a goodness of fit function
significantly improved the predictability of theHbfacies distribution at reservoir scale. With tlemsidered
data set, the comparison between the SFM outpdt thie stratigraphic surfaces derived from seismic
interpretation proved to be extremely effective iftfierring the SFM parameters. The effectivity isedtly
linked to the vertical and horizontal resolutiordazoverage of available seismic data. The effdagtiof
goodness of fit functions based on well litholodnusld increase with the number of wells. In expliom
and appraisal phases when few wells are availtide, effectivity is expected to be limited.

Significant improvement of the proposed methodologgry be possible if the overall 3D reservoir
architecture in the form of channel patterns caevmuated rather than monitoring the lithologyefined
reservoir locations as in the current analysighis way, the assessment of the uncertainty basékdeosand
probability from a joint distribution of the sandlumes rather than from a marginal distribution idooe
possible. Implementation of methods such as adedday Karamitopoulos et al. (2014) would allow as t
rigorously take into account the 3D relations tifdiogical bodies in the uncertainty estimation.

A careful calibration of SFMs was shown to be maodafor uncertainty reduction. To this end the
application of automatic search methods with thgedlve of finding a range of valid models will be
investigated. A promising approach for this kind agplication is a modification of the gradient-free
neighborhood algorithm (Falivene et al., 2014) ogital next step is to apply the proposed methagoto

a real-world case.
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APPENDIX

The two goodness of fit functions used to filtee thasin scenarios were presented in Sacchi €2Cdl5)
and are reported here for sake of completeness.
The function measuring the mismatch between ecigefi channel /non-channel facies from a

lithological log and the corresponding channel ommce probability (By) from simulated results was

expressed by:

1 Ty 1 2 1 >
Foy=— [ | =CH)” +—— z ZCHJ || wherez P )=0, z P Zj):l

where R,,(Z ) is the lithology of welliw at the quotez, CH is the channel lithologyR.,,.,(z ) is the

channel volume fraction of the grid cell interceptitheiw™ well at the depthy; nzw is the number of

depth points of théw™ well that are expected for sure not to interceﬂhmnel(l%mw(; )=O), analogously

nzw is the number of depth points of ti™ well that are expected to surely intercept a chlanne
(Pcmw( z ):J); N,q151S the number of wells

The function expressing the goodness of fit withdeismic surface was defined as:

1
Fto aur = d ()ﬂ ! y| )2
e v nn, \/02 (Ztop_surf ) ; (A2)

wherenuny is the number of cells of the grid covering theaaﬂz(zmp_surf) is the variance among depth
data of the top surface ami{xi Y ) is the punctual distance between surfaces, com@sted
d(X, %) =MaX(Zg aut (XY= Zug st (%Y, ~toll O) (A3)
wherez . (x,y,) is the elevation of the simulated final topograginghe cell corresponding to the

coordinatess,y , z, (xi,yi) is the elevation of the final topography in thensalocation according to

seismic data antdll is a tolerance interval (i.e. 5m).
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It should be pointed out that differently from haddta (i.e. well logs and well tops), seismic data
affected by a substantial degree of uncertaintyfalket, depth (geo)referencing of well logs is dikgec
achieved by measuring the wire length at each aitoui point while depth (geo)referencing of seismi
interpretation is obtained indirectly, and erraas ©ccur in the interpretation phases (i.e. deptiversion of
time data through the definition of a velocity mid&hus in the case of seismic data, the defirmutigess
of fit function accounts for a uncertainty in thefarence data by considering zero misfit if thefeasg is

comprised in a confidence intervaliobm for the seismic top surface horizon.

NOMENCLATURE

d = punctual distance between surfaces [m]

f = channel width to thickness ratio [-]

Fcn = fitness function evaluating misfit betweegRnd lithological log datal-]
Fiop_surf = fitness function evaluating misfit between sintethtop surface and seismic data [-]
h = channel thickness [m]

Ich = channel length [m]

Pcy = channel occurrence probability [-]

Psana = sand probability [-]

R = lithological log [-]

Veai = grid cell volume [rf]

Ven = channel volume within a grid cell fin

Z« st = punctual elevation of reference top surface [m]

Zop_surf = punctual elevation of simulated top surface [m]

¢ = elevation variance [fh
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FIGURE CAPTIONS

Fig. 1: Resolution and coverage of a typical datda geological reservoir modeling.
Fig. 2: Geological reservoir modeling workflow poged in this study.

Fig. 3: 3D view of basin-scale model in terms of tee gross and fluvial architecture at reservoialec

Reference wells A to D are displayed. Comparisogriofding at basin and reservoir scale is shown (b)
Fig. 4: Lithology at wells A, B, C, D (referencesel.

Fig. 5: (a) 3D channel occurrence probability disttion (reference case) at the basin scale irr¢bervoir
area and (b) plane map showing wells (A, B, C, M) monitoring locations (W1-W9); gridding at basimd

reservoir scale is also displayed.

Fig. 6: Simulations with the geostatistical (a) eathj modeling and (b) multipoint geostatistics o 8D

fluvial architecture at the reservoir scale for tbference case (fig.5).

Fig. 7: Channel volume fraction at basin scale@ained from volume-weighted upscaling of the resier

realizations of fig. 8: (a) object modeling and fm)ltipoint geostatistics.

Fig. 8: Maps of the depth-averaged error of volumegghted upscaling of the 3D lithofacies distrilonis
(fig. 9) with respect to the imposed 3D lithofacidsstributions (fig.7): (a) object modeling and (b)
multipoint geostatistics.

Figure 9: Channel occurrence probability curve (ED)the basin scale (center) at wells W1, W3, W5,

W7,W9 and corresponding stratigraphy obtained bytipuint geostatistics (right) and object modeling

(left).

Fig. 10: Original lithofacies proportion (a) andhdgprobability curve (b) as derived from well data.

Fig. 11: Example of multipoint reservoir realizatioonstrained to wells A, B, C, D with imposed ags

N/G computed from well data: (a) 3D view; (b) frahsection.

Fig. 12: Example of multipoint reservoir realizatioonstrained to wells A, B, C, D with imposed ezt
proportion curve computed from well data: (a) 3Bwij (b) frontal section compared to imposed velrtica

proportion curve.
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Fig. 13: Example of multipoint reservoir realizatioonstrained to wells A, B, C, D with imposed 3i2iés
probability distribution arising from basin modék) 3D view, (b) frontal section (c) frontal sectiof facies

probability distribution cube.

Fig. 14: Monitoring locations W1-W9: sand probdlilcurves unconditioned (a) and conditioned (bjhi
3D channel occurrence probability distribution afcalated from a statistically representative numtie
reservoir realizations (MPS approach). Each plohmises two columns. In the first column, the sand
probability curve (black line) is plotted againsietimposed N/G (red line) (a) or channel occurrence
probability of the reference case (b). The secasldnen represents the lithological sequence at veser

scale for the base case scenario.

Fig. 15: Reduction of uncertainty over channel o@nce probability (B) at basin scale: average over all
scenarios (a), average over a subset of seleateadsas (b), reference case (@« Ralues shown in 2D map

corresponding to the reservoir area are depth-gedra

Fig. 16: Reduction of uncertainty over channel ommce probability (By) at basin scale at selected
monitoring locations (W1-W9): all scenarios (a) al@d/2000 most likely scenarios (b), wherg, and

Fop_surtCriteria (see Appendix) were sequentially applied.

Fig. 17: Sand probability curves and their assediaincertainties, arising from uncertainty of ti2 3

channel occurrence probability, which in turn reffethe uncertainty of SFM parameters.

Fig. 18: Uncertainty reduction via selection of SHMalizations by goodness of fit evaluation;
comparison of different goodness of fit functiofes) top stratigraphic surface fitting in the baanea; (b)
top stratigraphic surface fitting in the reservaiea; (c) lithostratigraphy fitting at wells A, B, D; (d)

union of the best five basin scenarios with respectiterion of (a) and (c).



