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Abstract Background. Evidence from empirical studies suggests that mobile
applications are not thoroughly tested as their desktop counterparts. In particular,
GUI testing is generally limited. Like web-based applications, mobile apps suffer
from GUI testing fragility, i.e., GUI test classes failing or needing interventions
because of modifications in the AUT or in its GUI arrangement and definition.

Aims. The objective of our study is to examine the diffusion of test classes
created with a set of popular GUI Automation Frameworks for Android apps, the
amount of changes required to keep test classes up to date, and the amount of
code churn in existing test suites, along with the underlying modifications in the
AUT that caused such modifications. We defined 12 metrics to characterize the
evolution of test classes and test methods, and a taxonomy of 28 possible causes
for changes to test code.

Method. To perform our experiments, we selected six widely used open-source
GUI Automation Frameworks for Android apps. We evaluated the diffusion of the
tools by mining the GitHub repositories featuring them, and computed our set
of metrics on the projects. Applying the Grounded Theory technique, we then
manually analyzed diff files of test classes written with the selected tools, to build
from the bottom up a taxonomy of causes for modifications of test code.

Results. We found that none of the considered GUI automation frameworks
achieved a major diffusion among open-source Android projects available on GitHub.
For projects featuring tests created with the selected frameworks, we found that
test suites had to be modified often – specifically, about 8% of developers’ mod-
ified LOCs belonged to test code and that a relevant portion (around 50% on
average) of those modifications were induced by modifications in GUI definition
and arrangement.

Conclusions. Test code written with GUI automation fromeworks proved to
need significant interventions during the lifespan of a typical Android open-source
project. This can be seen as an obstacle for developers to adopt this kind of
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test automation. The evaluations and measurements of the maintainance needed
by test code wrtitten with GUI automation frameworks, and the taxonomy of
modification causes, can serve as a benchmark for developers, and the basis for
the formulation of actionable guidelines and the development of automated tools
to help mitigating the issue.

Keywords Mobile Development · Automated Software Testing · GUI Testing ·
Software Evolution · Software Maintenance

1 Introduction

With its ninth release already announced, the Android OS has established itself as
the preferred operating system among mobile users (featured by 87.7% of handheld
devices in Q2 20171) and as one of the most popular among all families of OSs.

Today’s mobile applications (from now on referred to as Apps) have reached a
very high complexity. This should encourage a thorough Verification and Valida-
tion phase in the development process, to make sure that the promised features are
actually offered to the users without the occurrence of crashes or malfunctionings.
A relevant focus should be posed on testing the GUI (Graphical User Interfaces) of
apps, since most of the interaction with the user is carried through them, involving
sets of different input modalities and gestures to be recognised.

However, in several studies in literature (e.g., the one conducted by Kochhar
et al. [25]) it is given evidence that the automated testing culture among open-
source Android developers is not so well established. This fact can be justified by
several characteristics that are proper of Android apps, as pointed out by Muccini
et al. [39], like the great quantity of different context events to which the apps
have to react properly, the diversity of devices and configurations where apps will
eventually be deployed, the very fast pace of evolution of the operating system,
the lack of resources that has been intrinsic for a long time for mobile devices. In
addition to that, Android tests that traverse the GUIs of the apps are particularly
prone to fragilities, i.e., they may fail or need interventions if even small changes
are operated in the GUI, without modifications of the functionalities of the app.
In our previous works we detailed – as a case study – the maintenance of a small
test suite that we developed for a popular Android app (along with a preliminary
characterization of fragility causes), finding that modifications performed on its
appearance could lead to a need for maintaining up to 75% of the test cases [7].

Several approaches exist for automated GUI testing of Android applications. In
this work we focused on a set of GUI Automation Frameworks and APIs, defined
by Linares-Vásquez et al. as interfaces for obtaining GUI-related information (such
as the hierarchy of components on screen) and simulating user interactions with
a device [32]. We searched for the use of those tools among Android open-source
applications whose source code is hosted on GitHub, and quantified their diffusion
and the amount of test code developed with them. This estimation of the pene-
tration of GUI testing frameworks extends the context of previous studies based
on the F-Droid repository [25], since it is based on a set of about 20 thousand

1 https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-
operating-systems/
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open-source projects, and track how many of them were due to changes in the
AUT.

We then quantified the amount of maintenance (in terms of raw count of mod-
ified lines of code) that had to be performed in code associated to the six selected
GUI automation frameworks between subsequent releases of open-source projects,
and – with the aid of a novel set of metrics of our definition – estimated the oc-
currence of fragilities for both test classes and test methods. Finally, through the
application of the Grounded Theory technique on Git diff files, we constructed
from the bottom up a possible fine-grained taxonomy of the types of modifications
– performed either on production code or graphical appearance of Android apps
– that may trigger the necessity of maintenance on test methods. We applied the
classification to a wide sample of modified test classes featuring the six considered
GUI automation frameworks, so that we could extract and discuss statistics about
the occurrence of modification causes.

The current manuscript has been conceived as an extension of one of our previ-
ous conference papers and a companion journal paper, in which we first presented
our research questions and metrics [8][10]. The original mining procedure, and the
selected testing frameworks considered for the analyses, are common to the three
papers. The following changes have been introduced in the current work, with
respect to the original papers:

– Modified definition of fragility, and changed set of metrics. Fragility occurrence
is now computed quantitatively on a set of diff files and not estimated auomat-
ically from the number of modifications performed in test methods, as opposed
to our previous works;

– Running samples for the computation of metrics (with intermediate results for
releases and test classes) on a real project, reported as an appendix of the
current manuscript;

– Additional filtering of the projects of the context and on the Java classes to
be identified as test classes. This additional filtering provides a more precise
heuristic to extract GitHub repositories actually containing real Android apps
provided with an user interface. The results of a manual validation of the
precision of such heuristic, which was missing in the original conference paper,
is now reported;

– More thorough discussion about the measures obtained for the considered
projects;

– Presentation of a taxonomy of modification causes, built through the applica-
tion of the grounded theory technique. The application of the grounded theory
technique was given a preliminary presentation in another conference work of
ours [9], but on a set of 945 diff files involving the Espresso GUI Automation
framework only. In this manuscript, we present an extended Grounded Theory
study performed on a set of 1724 diff files, involving four different automation
frameworks. The application of the grounded theory technique provides an ad-
ditional validation of the derived taxonomy, proving also its generalizability to
different GUI Automation frameworks..

The remainder of the paper is organized as follows: section 2 provides some
information about the ways of testing Android apps proposed in literature, the
challenges that are proper of Android app testing, and the concept of test fragility;
section 3 explains the Research Questions we aimed to answer with this study,
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the set of metrics we defined and the theoretical basis of the construction of the
taxonomy; section 4 gives details about the procedure through which we defined
our context of open-source projects, computed our statistics and built the proposed
taxonomy; section 5 presents statistics about diffusion, maintenance and fragility
of open-source projects featuring the considered GUI Automation Frameworks;
section 6 describes the taxonomy of modification causes we defined, and gives
the results of the classification applied to the considered set of projects; section 7
discusses related work on the topic; section 8 exposes the threats to the internal
and external validity of the present study; section 8 draws the conclusions and the
possible expansions and prosecutions of the present work.

2 Background

This section provides an introduction to Android testing, and a high-level survey
about existing testing techniques and the challenges they present. Information is
also provided about the Grounded Theory technique, that has been used to derive
the proposed taxonomy of modification causes for Android test code.

2.1 Testing Android apps

Android (and mobile, in general) applications showcase some differences from tra-
ditional desktop applications. Mobile apps are defined by Muccini et al. [39] as
mobile software (i.e., applications that run on mobile devices) taking input from
the context where they are executed (for instance, contextual sensing and adap-
tation, and context-triggered actions).

Mobile apps can be divided in three categories: native apps, if they are de-
signed and programmed for a specific platform, according to its guidelines; web-
based apps, if they are developed as normal web applications that are then loaded
in a browser installed on the mobile device; hybrid apps, if they contain native
components in their interface, that are then used for launching a core that is still
web-based.

Mobile testing can be defined, as done by Gao et al., as “testing native and
Web applications on mobile devices using well-defined software test methods and
tools to ensure quality in functions, behaviours, performance, and quality of ser-
vice” [13].

The first and most immediate option for testing Android applications and their
GUIs is the execution of manual test cases. In a study by Linares-Vásquez et al.
in the field of performance testing [30], manual testing is identified as the option
preferred by developers, along with an examination of reports and feedback from
users. The technique, as discussed by Kropp et al. [26], is however not exhaustive,
error prone and not easily reproducible.

Automated testing of mobile apps can be performed on a series of different
levels: in addition to the traditional unit testing, integration testing, system test-
ing and regression testing, scopes that are specific to the mobile scenario must
be considered. Kaur et al. [23] highlight the importance of compatibility testing
(i.e., to ensure that the application works on different handheld models and/or
OS versions), performance testing (i.e., to ensure that the mobile devices do not
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consume too many of the resources available) and security testing. GUI testing is
identified as a very prominent testing need for all mobile applications. For Android
applications, GUI testing is focused on testing the Activities (i.e., the components
in charge of managing the appearance and the composition of each screen exposed
to the user) and the transitions between them.

Various classifications have been provided in literature for testing techniques of
mobile applications. As pointed out by Alegroth et al. [1], automated GUI testing
techniques can be generally – and not only in the mobile domain – categorized un-
der three different generations: coordinate-based testing techniques, that identify
the elements to test according to their absolute position on screen, and hence pro-
vide very limited dependability; widget/component-based testing technique, that
identify elements of the interface according to the definition and arrangement of
layouts, and their properties; image-recognition testing techniques, that recognize
the elements on screen by their visual appearance.

Linares-Vásquez et al. [32] classify the approaches to automated testing of
Android applications in different families, according to the level of knowledge
that the tools have of the code of the application, and to the way the inputs
are generated and distributed. GUI-Automation Frameworks and APIs provide
a basic interface to obtain GUI-related information, and to exercise the widgets
and objects the Activities are made of; those frameworks can be used to manually
write down testing code with sequences of operations to be performed on the AUT
(Application Under Test), and are investigated in several other studies existing in
literature, like the ones by Kropp et al. [26] and Singh et al. [45].

Capture & Replay testing tools (examples are presented in works by Gomez et
al. [17], Kaasila et al. [22] and Liu et al. [33]) record the operations performed on
the GUI to generate repeatable test sequences, thus providing a faster and cheaper
alternative to the manual writing of test scripts. Event-sequence generation tools
are based on the construction of test cases as streams of events, that then can be
inserted in repeatable scripts: the works by Choi et al. [5] and Jensen et al. [21]
provide examples of such paradigm.

A significant amount of research in the field of mobile testing is focused on
techniques for Automated Test Input Generation. Without the need for in-depth
information about the AUT, Random and Fuzzy input generation techniques feed
random sequences of inputs to activities, in order to trigger potential defects and
crashes. Monkey2 is the random tester supported by Android. Random testers can
be applied after a model of the user interface is created (like it is done in works
by Machiry et al. [34], Moran et al. [38], Zhauniarovich et al. [53]) to distribute
the input given to the interface in a more intelligent way.

Model-based input generation techniques leverage models (typically Finite
State Machines or Event-Flow Graphs) of the GUI of the AUT, that can be cre-
ated manually or extracted automatically with a process called GUI ripping. Such
models are therefore used to generate systematic test cases traversing the GUI.
The tools and studies by Amalfitano et al. [2, 3] and Yang et al. [50] can serve as
examples of this approach.

2 https://developer.android.com/studio/test/monkey.html
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2.2 Challenges in testing Android Apps

Several studies (like the ones by Kaur et al. [23] and Muccini et al. [39]) are focused
on the peculiarities of Android apps that make testing them properly a complex
challenge: limited energy, memory and bandwidth; rapid changes of context and
connectivity type; constant interruptions caused by system and communication
events; the necessity to adapt the input interface to a wide set of different devices;
very short time to market; very high multitasking and interaction with other apps.

Pinto et al. [40] found that time constraints, compatibility issues, complexity
and lack of documentation of available testing tools are among the most relevant
challenges experienced by the interviewed developers, that may therefore discour-
age them from testing their applications.

Test fragility (of which a general definition has been provided by Garousi et
al. [15]) represents a problem for different kind of software, and has been largely
explored in literature: Grechanik et al. [18], and Memon et al. [35] proposed ap-
proaches for automatically fix broken test cases for GUI-based applications. Gao et
al. developed SITAR [14], a technique to automatically repair test suites, modeling
and repairing test cases using Event-Flow Graphs (EFGs).: Leotta et al. [27, 28] re-
port a study about fragility of web application GUI tests, in which they compared
the fragility of different approaches used for the identification of GUI widgets.

For our purposes and in the remainder of this manuscript, we use the following
definition:

A GUI test case is fragile if it requires interventions when the application
evolves (i.e., between subsequent releases) due to any modification applied
to the Application Under Test.

Being system level tests, test cases developed with GUI automation frame-
works may be affected by variations in the underlying functionalities of the app,
but also from even small interventions in the appearance and presentation of the
screens by which the GUI is composed. Our definition distinguishes tests that
need interventions because of any type of change in the AUT from tests that do
not require changes because of the evolution of the app, but that instead are just
subject to variations in the test logic or in the functions that are proper of the
GUI Automation Frameworks adopted.

With the definition provided, a certain amount of fragility is expected during
the lifespan of any test case: testware, in fact, is supposed to follow the evolution of
the Application Under Test, and hence it is likely that significant interventions in
the AUT would require the related test cases to be updated accordingly. However,
high values for our fragility measurements may indicate a tendency of test cases
to be invalidated even by trivial (in terms of LOCs modified, or in relevance of
the changed feature) variations applied to the AUT, and hence suggest the need
for high effort in performing maintenance of testware during the normal evolution
of the application.

2.3 Taxonomies and Grounded Theory

Objectives, quality criteria and methodological guidelines for obtaining process
theories and taxonomies in Software Engineering have been provided by Ralph [41].
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Taxonomies are identified as an important mean for software engineering studies,
to provide nomenclature helping understanding and describing the entities of a
specific domain. Taxonomies can be organized or not around mutually exclusive
classes, and can provide hierarchies of classes for different layers of categorization
of entities. According to Ralph, the following strategies can be followed to obtain a
taxonomy: Grounded Theory, Interpretative Case Studies, Single-Source primary
studies, or personal experience.

Stol et al. provide a critical review and a set of guidelines about the use of
Grounded Theory in Software Engineering research, and a literature review of
existing studies leveraging the method. [46]. Grounded Theory (GT), originally
introduced by Glaser and Strauss [16], is a qualitative method to generate theory
from data that is progressively and comparatively analyzed, instead of applying
an existing theory to answer a Research Question. In its classic form, also called
Glaserian grounded theory, GT does not contemplate the a priori definition of
a Research Question: instead, the Research Question emerges from the research
itself. Also, the process of reviewing existing literature should be delayed as much
as possible, to avoid that existing concepts influence the emerging theory. A later
revision of the method by Strauss and Corbin [47] (also called Straussian grounded
theory) allows a prior definition of a research question, and the consultation and
utilization of concepts from literature during the generation of the theory.

Both versions of Grounded Theory suggest different types of coding activities:
Open Coding is based on text data, which is examined line by line to capture the
main concepts of the theory, and the categories that can be based on them. During
Open coding, researchers can leverage the practice of Memoing, to sketch down the
knowledge emerging from data during the examinations [4]. Axial Coding is the
process of understanding how codes, concepts and derived categories are linked one
to another, to identify a structure in the theory that is being built. Selective Coding
is the procedure of defining a central category to which all other macro-categories
can relate.

Several examples of taxonomies created through Grounded Theory are avail-
able in literature. For instance, Scott et al. leverage Straussian GT to create a
taxonomy of affect in online-chats [42]; Sedano et al. create a taxonomy of waste
in software development applying GT to an observation study of software compa-
nies [43].

3 Study Design

The main objectives of the present work are: estimating the penetration of GUI
testing frameworks, assessing the amount of modifications performed in test code,
giving a categorization of the motivations that induce the need for modifications in
test suites, and quantifying the fraction of them that are related to modifications
in the underlying AUT and its GUI.

These goals entail answering the following research questions:

RQ1 Diffusion: how many open-source Android projects leverage GUI automation
frameworks, and how much test code do they feature?

RQ2 Evolution: how much is test code associated to GUI automation frameworks
modified over different releases of Android open-source projects?
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Table 1 Metrics definition

Group Name Explanation

Diffusion and
size
(RQ1)

TD Tool Diffusion
NTR Number of Tagged Releases
NTC Number of Test Classes
TTL Total Test LOCs
TLR Test LOCs Ratio

Test evolution
(RQ2)

MTLR Modified Test LOCs Ratio
MRTL Modified Relative Test LOCs
MRR Modified Releases Ratio
TSV Test Suite Volatility

MCR Modified Test Classes Ratio
MMR Modified Test Methods Ratio

MCMMR Modified Classes with Modified Methods Ratio

RQ3 Modification Causes: what are the main causes behind the need for main-
taining GUI test code in Android open-source projects?

RQ4 Fragility: how fragile are test methods and classes to modifications in the
AUT or in its appearance?

The first step of our research was an estimation of the diffusion of Android GUI
automation frameworks. We started from a repository of Android open-source ap-
plications – we selected GitHub for this purpose – and we performed a code search
in order to detect the usage of a set of six testing GUI Automation Frameworks
that are frequently cited in literature.

Then, we studied how applications (and their test code) were changed through-
out their release history, by means of file-by-file comparisons. Finally, with the aid
of an automated shell script, we tracked the modifications of individual test classes
and methods to compute a set of change indicators, explained in detail in section
3.1. Test code that underwent modifications has been finally manually examined
to construct a taxonomy of modification causes, and to compute the frequency of
occurrence of individual causes.

3.1 Metrics Definition

We defined a set of metrics that can be divided into two groups: Diffusion and
Size metrics, that characterize the amount of test code and the size of the tested
projects, and Test Evolution metrics, that give insights about the evolution of the
test code during the lifespan of the project. Table 1 reports the metrics together
with the relative descriptions. The metrics are explained in detail in the following
subsections.

The metrics we defined are normalized, to allow comparison across projects of
different sizes. Most of them can be defined on top of lower-level metrics for the
quantification of absolute changes in test classes and test cases. For instance, Tang
et al. [49] report eighteen basic metrics for the description of bug-fixing change
histories (e.g., number of added or removed files, classes, methods or dependencies).

In Appendix B we investigate a GitHub project to give a running sample of
the computation of the full set of metrics.
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3.1.1 Diffusion and size (RQ1)

To estimate the diffusion of Android automated GUI testing tools and of the size
of test suites using them, we defined the following five metrics:

TD (Tool Diffusion) is defined as the percentage, among the set of Android
projects in our context, of those featuring a given testing tool.

NTR (Number of Tagged Releases) is the number of tagged releases of an Android
project (i.e., the ones that are listed by using the command git tag on the GIT
repository). This metric can be used to understand what is the nature of the
applications that are more likely tested using GUI Automation Frameworks.

NTC (Number of Test Classes) is the number of classes featured by a release of
an Android project, featuring code associated to a specific tool.

TTL (Total Test LOCs) is the number of lines of code that can be attributed to
a specific GUI automation framework in a release of an Android project.

TLR (Test LOCs Ratio) defined as

TLRi = TTLi/Plocsi,

where Plocsi is the total amount of Project LOCs (including both program
and test code) for release i. This metric, lying in the [0, 1] interval, allows us to
quantify the relevance of the testing code attributed to a given GUI automation
framework.

3.1.2 Test suite evolution (RQ2)

The metrics addressing RQ2 aim to describe the evolution of Android projects
and the relative test suites; they have been computed for each pair of consecutive
tagged releases.

MTLR (Modified Test LOCs Ratio) defined as

MTLRi = Tdiffi/TTLi−1,

where Tdiffi is the amount of added, deleted or modified LOCs in classes
associated to a given GUI testing framework between tagged releases i−1 and
i, and TTLi−1 is the total amount of test LOCs in release i− 1 (the metric is
defined only when TTLi−1 > 0, i.e., the previous version is provided with test
code). This quantifies the amount of changes performed on existing test LOCs
for a specific release of a project.

MRTL (Modified Relative Test LOCs) defined as

MRTLi = Tdiffi/Pdiffi,

where Tdiffi and Pdiffi are respectively the amount of modified (or added, or
deleted) LOCs in code associated to a given GUI automation framework and
in the whole project (including both program and test code), in the transition
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between release i − 1 and i. It is defined when Pdiffi > 0 and computed only
for releases with test code associated to the GUI automation framework under
inspection (i.e., TRLi > 0). This metric lies in the [0, 1] range. Values close to
1 imply that a significant portion of the total effort in making the application
evolve is needed to keep tests up to date.

MRR (Modified Releases Ratio), computed as the ratio between the number
of tagged releases in which at least a test class associated to a given GUI
automation framework has been modified, and the total amount of tagged
releases. This metric lies in the range [0, 1] and bigger values indicate a minor
adaptability of the test suite – as a whole – to changes in the AUT.

TSV (Test Suite Volatility), is defined for each project as the ratio between the
number of test classes associated to a given GUI automation framework that
are modified at least once in their lifespan, and the total number of test classes
of the project history.

MCR (Modified test Classes Ratio) defined as

MCRi = MCi/NTCi−1,

where MCi is the number of classes associated to a given GUI automation
framework that are modified in the transition between release i− 1 and i, and
NTCi−1 the number of classes associated to the framework in release i−1 (the
metric is not defined when NTCi−1 = 0). The metric lies in the [0, 1] range: the
larger the values of MCR, the less test classes are stable during the evolution
of the app.

MMR (Modified test Methods Ratio) defined as

MMRi = MMi/TMi−1,

where MMi is the number of test methods associated to a given GUI automa-
tion framework that are modified between releases i − 1 and i, and TMi−1 is
the total number of methods associated to the framework in release i− 1 (the
metric is not defined when TMi−1 = 0). The metric lies in the [0, 1] range: the
larger the values of MMR, the less test methods are stable during the evolution
of the app they test.

MCMMR (Modified Classes with Modified Methods Ratio) defined as

MCMMRi = MCMMi/NTCi−1,

where MCMMi is the number of classes associated to a given GUI automation
framework that are modified, and that feature at least one modified method
between releases i−1 and 1. The metric is not defined when NTCi−1 = 0. The
metric is upper-bounded by MCR, since by its definition MCRi = MCi/TCi,
and MCMMi ≤ MCi.
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3.2 Selected GUI Automation Frameworks

We have chosen six different popular GUI Automation Frameworks for our inves-
tigations. We selected open-source tools that were already considered in similar
explorations of the testing procedure of Android applications. All the tools give
the possibility to write test scripts in Java: this was a fundamental inclusion cri-
terion since the computation of some of the metrics requires comparisons with
the production code of Android apps, written in Java. The selected set of GUI
Automation Frameworks covers most of the possible peculiarities that can be at-
tributed to open-source GUI Automation Frameworks [31].

The first two tools we have searched for are part of the official Android Instru-
mentation Framework3. Espresso4 [24] is an open-source automation framework
that allows to test the GUI of a single application, leveraging a gray-box approach
(i.e., the developer has to know the internal disposition of elements inside the
view tree of the app, to write scripts exercising them). Espresso allows to test one
activity at a time. Recent extensions of the Espresso GUI automation frameworks
allow the development of test scripts using the Capture & Replay approach, with
the use of the Espresso Test Recorder tool5. UI Automator6 [6, 29] adds some
functionalities to those provided by Espresso: it allows to check the device status
and performance, to perform testing on multiple applications at the same time,
and operations on the system UI. Both tools give only partial support to the test
of non-native apps.

Selendroid7 [48] is a testing framework based on Selenium, that enables GUI
black-box testing of native, hybrid and web-based application; the tool allows to
retrieve elements of the application and to inspect the current state of the GUI
without having access to its source code, and to execute the test methods on
multiple devices at the same time.

Robotium [19, 52] is an open-source extension of JUnit for testing Android
apps, that has been one of the most used testing tools since the beginning of the
diffusion of Android programming; it can be used to write black-box test scripts or
function tests (if the source code is available) of both native and web-based apps.

Robolectric8 [2, 36, 37] is a tool that can be used to perform white-box test-
ing directly on the Java Virtual Machine, without the use of a real device or an
emulator; usable for other purposes than GUI testing (especially for the execution
of Unit tests of the internal logics of the application), it can be considered as an
enabler of Test-Driven Development for Android applications, since the instru-
mentation of Android emulators is significantly slower than the direct execution
on the JVM.

Appium [44, 45] leverages WebDriver and Selendroid for the creation of black-
box test methods that can run on multiple platforms (e.g., Android and iOS);
test methods can be created through an inspector that enables basic functions of
recording and playback, image recognition, or manual coding. It can be used to

3 https://developer.android.com/studio/test/index.html
4 https://developer.android.com/training/testing/ui-testing/espresso-testing.html
5 https://developer.android.com/studio/test/espresso-test-recorder
6 https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
7 https://github.com/selendroid/selendroid
8 http://robolectric.org/
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test both native and web-based applications. Test scripts can be data-driven, and
can be created with the Capture & Replay technique using the inspector module.

3.3 Procedure

The following paragraphs describe in more detail the steps performed to conduct
this study.

3.3.1 Context Definition and Test Code Search (RQ1)

The approach we adopted for the selection of the context (i.e., the set of projects
that we used for the subsequent study) is a sequence of different steps, the first one
being a search for the word “Android” in descriptions, readme files and names of
projects. The Repository Search API of GitHub has been leveraged to this purpose.
The data mining procedure has been performed between September and December
2016. We leveraged the cURL bash function, inside a Linux bash script, to access
the GitHub Repository Search API, and we then examined the output – which is
in given as a json file – using the jsawk tool. Since the API returns at most 1000
projects, we performed multiple searches, limiting the amount of possible results
by cycling over different disjoints date ranges (the created parameter of the API
is used for this purpose), starting from before 2013 to the end of 2016.

All the projects that have no tagged releases were cut out from the context.
This has been done because the aim of the experiment was to track the evolution
of the projects, by means of computing differences between tagged releases (as it is
explained later). That considered, projects without at least a single tagged release
(which allows for a single comparison, made between it and the master release)
were not of interest. To know how many releases were featured by each repository,
we leveraged the GitHub Tags API, which outputs the names of all the tagged
releases of a given GitHub repository.

Searching for the keyword “Android” alone would have included in the context
libraries, utilities, and applications intended to interface with Android counter-
parts. Hence, a third filtering has been applied, in order to cut out these spurious
results. Since it is mandatory for any Android app to have a Manifest file in its
root directory, we searched for the “Manifest” keyword using the GitHub Code
Search API in all the remaining repositories. We cut out from our context all the
projects which returned an empty result for this query.

To limit the investigations on the test code only to applications that had
an actual GUI, we performed an additional filtering phase, cutting out from
our context all the projects that did not feature either any call to the ”setCon-
tentView” method or any declaration of a FragmentTransaction object. The ”set-
ContentView” method is typically called as the first one in the onCreate() method,
which is itself called as the beginning of the lifecycle of any Activity of the appli-
cation, and is used to load a layout file to populate the GUI of the current screen
of the app. The FragmentTransaction object is used to construct the GUI of the
current Activity dynamically through the instantiation of Fragments.

Examining the resulting projects, it could be noticed that many of the reposi-
tories were clones of the Android sdk or sets of applications/frameworks that were
not of interest for our study. We removed the projects named this way from the
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sets of projects that we considered for our further investigations. All the projects
that were named after the following list were hence automatically removed from
our context, along with the ones which featured combinations of the keywords
”android”, ”platform”, ”frameworks” and ”base” in their full name.

Once a filtered list of Android projects was obtained, the GitHub Code Search
API has been leveraged to search in the repositories for the name of the frame-
works and include statements that can be attributed to them. We considered any
“.java” file featuring the name of a testing technique in its code as a test class
(for instance, a class featuring the statement “import static android.support.test.
espresso.Espresso. onView;” is considered as a class featuring Espresso). To avoid
having false negatives when identifying Android projects featuring a given tool
(e.g., improper usage of functions related to the GUI Automation Frameworks in
files that were not test files, or presence of keywords related to the GUI automa-
tion frameworks inside insignificant sections of Java code) we also set the condition
that a .Java class had to contain the ”test” keyword in its absolute path to be con-
sidered as a test class, and we removed line and block comments before searching
for keywords related to the six selected GUI Automation Frameworks. Six subsets
of the context were thus obtained, each containing all the projects featuring code
that can be associated to one of the selected GUI Automation frameworks. All
the repositories of these six subsets were cloned locally. Sets of projects featuring
different testing tools are not necessarily disjoint: it is possible that a repository
features more than just one scripted testing tool.

For each tool its adoption has been estimated by means of the TD metric. For
each test class the lines of test code have been counted using the cloc9 tool, so
that TTL and NTC could be computed for each project, on the master release.
The use of the git tag command allowed to obtain the NTR metric.

3.3.2 Test LOCs analysis (RQ2)

To answer RQ2, for each pair of consecutive tagged releases of any project, the
total amount of modified LOCs was computed.

Then, the total amount of LOCs added, removed or modified in classes as-
sociated to the featured testing frameworks was computed. Throughout all our
study, we have considered moved or renamed files as different test files. The git
diff command was used to perform all computations of changed lines for the whole
projects or for individual files associated to the testing tools

Those measurements allowed to compute TLR (that we also tracked through-
out the history of the projects in addition to measuring it statically on the master
release), MTLR, and MRTL for each tagged release of the project.

Finally, when the exploration of the project history was complete, global aver-
ages were computed: TLR = Avgi{TLRi}, MTLR = Avgi{MTLRi}, MRTL =
Avgi{MRTLi}, with i ∈ [2, NTR], being NTR the number of tagged releases
featured by the project.

Volatile classes (i.e., classes featuring modifications throughout their lifespan)
have been identified inside each project, in order to compute the TSV value.

We have then tracked the evolution of single test classes and methods, taking
into account the tagged releases in which each test class has been added, modified

9 http://cloc.sourceforge.net/
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or deleted. To enumerate the methods in each test class, and compare the methods
to identify the added, deleted or modified ones, we leveraged an open-source tool,
JavaParser10, that we integrated in our bash script.

For each tagged release we have obtained the number of modified classes and
methods, i.e., MCR, MMR, and MCMMR. Also in this case, at the end of the
exploration averages have been computed as MCR = Avgi{MCRi}, MMR =
Avgi{MMRi}, MCMMR = Avgi{MCMMRi}, with i ∈ [1, NTR].

3.3.3 Diff files analysis (RQ3, RQ4)

To analyze the causes behind the modifications in test code, we collected all the
diff files pertaining to classes with code associated to the selected GUI Testing
Frameworks, containing modifications in test methods.

According to Ralph’s guidelines for the construction of taxonomies [41], we
followed the Grounded Theory approach. In accordance with the Straussian defi-
nition of Grounded Theory [11], our Research Question (RQ3) was defined upfront,
as a follow-up of the previous ones already answered, and did not emerge from the
research.

As the site for our taxonomy construction, we selected the repository of An-
droid open-source projects mined in the first step of the study, whereas the Data
Collection is performed through technical observation of the extracted diff files.
Starting from the modified lines in test methods, the corresponding production
classes and layout files have been individuated and examined, to understand what
was the underlying reason for each modification. When individual widgets were
involved in the modified test LOCs of the examined diff files, the layout files where
such widgets are defined were identified and inspected for the presence of modifi-
cations in their definition, properties or widgets arrangement; also, the activities
where the identified layouts are inflated were inspected, to understand whether the
modifications in the test code derived from changes in the application behaviour.
When the modified LOCs in test classes were not evidently linked to individual
widgets of the screen, the modifications were considered as pertaining test code
only, and no examinations on associated source code were performed.

Based on those inspections, the categories of the taxonomy were generated
through Open Coding, and each modification has been categorized under one or
more classes of the taxonomy.

Causes of modifications of test methods have not been considered as mutually
exclusive, i.e., two different causes could concur to a single modification operated
on a test method. The taxonomy has been built incrementally, with new categories
of modification causes added every time a modification appeared to be unclassifi-
able under the available categories. Categories of modification causes were linked
one to another, leading to the construction of a set macro-categories. Compar-
isons have been performed constantly over already labeled modifications, any time
a new category was added to the taxonomy.

The open coding procedure was performed by one of the authors of the manuscript,
involving two iterations over the collected set of diff files. All the diff files contain-
ing modifications in test methods for the Android open-source projects associated
to the GUI Automation Frameworks Espresso (819 diff files), Robotium (424 diff

10 http://javaparser.org/
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Table 2 Metrics for RQ1

Name Explanation

TD Tool Diffusion
NTR Number of Tagged Releases
NTC Number of Test Classes
TTL Total Test LOCs
TLR Test LOCs Ratio

files) and UI Automator (59 diff files) were manually examined. Sets of diff files
with modifications on projects featuring Appium and Selendroid were not consid-
ered, due to their size, way smaller with respect to the other ones. On the contrary,
the sets of diff files extracted for Robolectric were subsampled, due to the size of
the set of modified methods featuring Robolectric, that did not allow to perform
manual open coding on the entirety of the set. This selection led to 422 examined
diff files (out of the full set of 4221) of test classes associated to Robolectric. To
sum up, the open coding procedure involved the manual examination of a total of
1724 diff files.

The application of the taxonomy over the four sets of diff files also served as a
conceptual evaluation of its transferability, dependability and confirmability when
different GUI Automation Frameworks are taken into account.

The percentage of modifications of test classes that can be justified by modifi-
cations in the AUT or in its GUI has been finally computed, in order to obtain an
estimation of the fragility of test suites developed using GUI Automation Frame-
works.

We have made available a replication package containing all the test scripts
used for the execution of this study on our website11.

4 Measures for Diffusion and Evolution

In the following paragraphs, we report the results we obtained by applying the
procedure described in section 3.4. The results measured for the metrics defined in
section 3.1 are detailed, along with the conclusions we can base on them. The full
set of raw intermediate data measured about classes and releases of each project
has been made available online12.

4.1 Diffusion and Size (RQ1)

We initially gathered a total of 280,447 GitHub repositories featuring the term
Android in their names, descriptions or readmes. Then, a significant amount of
projects were pruned because of their lack of tagged releases (so they had no history
to be investigated), or Manifest files, obtaining a set of 18,930 Android projects
(6.75% of the initial number of projects). After the last filtering phase, in which we
cut out from the context all the projects which were not likely to offer any GUI to

11 http://softeng.polito.it/coppola/replication package.zip
12 https://figshare.com/articles/Testing Fragility Data - ESEM/7149104
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Table 3 NTR, NTC, TTL, TLR per testing tool: average and median (in parentheses) values
for master release.

Tool n TD NTR NTC TTL TLR

Espresso 372 2.42% 13 (5) 3 (2) 418 (181) 7.63% (4.23%)
UI Automator 50 0.32% 19 (7) 3 (1) 523 (226) 7.35% (3.38%)
Robotium 129 0.84% 16 (6) 4 (1) 518 (196) 6.15% (2.96%)
Robolectric 631 4.11% 15 (6) 9 (3) 1,307 (331) 13.50% (8.47%)
Appium 12 0.08% 37 (27) 14 (3) 1,510 (927) 2.81% (1.27%)

Average 15 6 908 10.49%

the user, we obtained a final set of 15,326 Android projects (5.46% of the original
number of projects retrieved by just searching ‘’Android”). We graphically report
in Appendix C all the projects that remained in the considered context after each
filtering phase we applied.

Table 3 summarizes the metrics gathered to answer RQ1. The columns show:
the total number of projects featuring the GUI automation frameworks considered;
the Tool Diffusion (TD) metric; the average and median values for Number of
Tagged Releases (NTR), Number of Test Classes (NTC), Total Test LOCs (TTL)
and Test LOCs Ratio (TLR), computed on the master releases of the projects.
Last line in table 3 shows an average for all the projects considered, weighted by
the number of projects for each set. The acronyms used in the subsection, and
their meanings, are summarized in table 2.

Even though an overestimation may be possible due to overlaps (since the sets
for the individual tools are not necessarily disjoint) slightly less than 8% of the
filtered set of Android projects feature tests belonging to at least one of the five
selected tools. None of the testing frameworks reached by itself a significant level of
diffusion. To provide a comparison value to those extracted for the GUI Automa-
tion Frameworks, the JUnit unit testing tool was present in 20% of the projects
of our context. The absolute number of projects featuring Selendroid and Appium
test classes is practically irrelevant. A higher number (the 4.11% of the total) of
projects featuring Robolectric has been found, but the tool has been available for
a longer time than the others (especially Espresso and UI Automator) and is often
used solely for Unit Testing. A single project (namely, moneymanagerex/android-
money-manager) featured the Selendroid tool after the filtering phases that were
performed. Hence, statistics about such tool have not been included in table 3.

Although the total number of Android projects extracted can take into account
some projects that are not likely to feature test code (e.g. experiments, duplicates,
exercises, prototypes, projects that are abandoned at very early stages) the statis-
tics extracted about the metric TD give evidence of the lack of an extensive usage
of scripted automated GUI testing on Android. However, it must be taken into
account that the study we performed is limited to the GUI automation frameworks
we considered, hence it is possible that different scripted testing tools are used by
some other projects of the context.

The average and median number of classes featuring a GUI testing framework
can be quite small (e.g., just 3 and 2, respectively, in the case of Espresso) possibly
due to the typical coding patterns for Android applications, according to which
– usually – one test class is written specifically for each Activity. Most apps –
this is particularly evident for small or experimental open-source projects – do
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not feature many screens to show to their users, and therefore they do not feature
many activities to be tested.

The Number of Tagged Releases (NTR) of the examined project was between
13 (for projects featuring Espresso) and 37 (for projects featuring Appium). Those
extreme values can give indications about the nature of the projects that are more
likely adopting the studied GUI Automation frameworks. The smaller average
number of tagged releases for projects featuring Espresso can suggest a preference
of the use of the Espresso testing framework for smaller applications, with projects
having shorter lifespans. On the other hand, the higher value for projects featuring
Appium suggests the adoption of such tool in longer-lived projects. However, in
the case of Appium the result can be heavily influenced by the small size of the
set that is considered (just 12 projects).

Average TTL values are very large for the sets of open-source Android projects
featuring code associated to Robolectric and Appium; however, the very distant
TLR metrics for the two tools suggests that the amount of test code written with
Robolectric is typically more relevant if compared to the amount of project LOCs.
On the other hand, Appium appears to be used in bigger projects, hence having
very small ratios of test code upon project code.

The fact that the set of projects featuring Espresso has the lowest average TTL
can be due to the little effort required for exercising functionalities of the app us-
ing such tool, and for the accessibility of the framework to even non-experienced
developers. This can lead it to be used also in very small projects, in tryouts, and
even for experimental and partial coverage of the use cases of the app.

Answer to RQ1: The considered GUI testing tools reach a diffusion that is
always lower than 4.11%. Projects that have their GUI tested on average have 6
test classes, with a total of 908 LOCs (10.49% of the whole project code).

4.2 Evolution (RQ2)

Table 5 shows the statistics collected about the average evolution of test code for
the sets of projects featuring Espresso, UI Automator, Robotium and Robolectric.
Since from the diffusion analyses a marginal presence of Appium and Selendroid
among Android projects emerged, we did not take into account the sets of projects
featuring them for the remaining phases of our study. For every set, Test LOCs
Ratio (TLR), Modified Test LOCs Ratio (MTLR), Modified Relative Test LOCs
(MRTL), Modified Releases Ratio (MMR), Test Suite Volatility (TSV ), Modified
Test Classes Ratio (MCR), Modified Test Methods Ratio (MMR) and Modified
Classes with Modified Methods Ratio (MCMMR) have been averaged on all
the projects. The values in last row are obtained as averages of the four values
above, weighted by the respective sizes of the four sets. The acronyms used in the
subsection, and their meanings, are summarized in table 4.

The values reported for average Test LOCs Ratio (TLR) show that – when
present – GUI testing can be an important portion of the project during its life-
cycle, if compared to the number of LOCs of program code. The average values
range from about 5.11% (for the set of projects featuring Robotium) to 11.23%
(for the set of projects featuring Robolectric).
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Table 4 Metrics for RQ2

Name Explanation

TLR Test LOCs Ratio
MTLR Modified Test LOCs Ratio
MRTL Modified Relative Test LOCs
MRR Modified Releases Ratio
TSV Test Suite Volatility
MCR Modified Test Classes Ratio
MMR Modified Test Methods Ratio
MCMMR Modified Classes With Modified Methods ratio

Table 5 Measures of the evolution of test code (averages on the sets of repositories)

Tool TLR MTLR MRTL MRR TSV MCR MMR MCMMR

Espresso 6.30% 4.21% 3.17% 16.64% 19.42% 15.75% 3.83% 60.12%
UI Automator 5.84% 3.10% 1.14% 10.68% 21.46% 14.48% 3.42% 55.86%
Robotium 5.11% 5.09% 3.07% 16.50% 25.13% 17.40% 3.80% 58.41%
Robolectric 11.23% 5.30% 5.93% 20.39% 18.12% 14.91% 3.88% 55.36%

Average 8.78% 4.94% 4.54% 18.37% 19.43% 15.43% 3.83% 57.21%

Average Modified Test LOCs Ratio (MTLR) measures show that typically
around 5% of code associated to the selected testing frameworks is modified be-
tween consecutive releases. The smallest values were obtained for the projects
featuring UI Automator. In general, this should be a consequence of bigger test
suites, in terms of absolute LOCs, with respect to the ones written with other
testing frameworks. Hence, the influence of a similar amount of absolute modified
LOCs would result in a lower MTLR value.

The measures about Modified Relative Test LOCs (MRTL) show that, on
average, when GUI automation frameworks are used, the 4.54% of the modified
LOCs belong to test classes. With this metric, however, we are still unable to
discriminate what is the reason behind the modifications to be performed on test
classes. Highest MRTL values were found for projects featuring Robolectric: this
can be justified by the higher value of TLR for these projects, that suggests an
higher relevance of test code, which is hence more likely to need modifications
during the normal evolution of the projects.

The Modified Releases Ratio (MRR) metric gives an indication about how
often the developers had to modify any of their test classes when they published
new releases of their projects. On average, 18.37% of releases needed modifications
in the test suite (with a maximum of 20.39% for the set of projects featuring
Robolectric). Since releases may be frequent and numerous for GitHub projects,
this result explains that the need for updating test classes is a common issue for
Android developers that are leveraging scripted testing. The average 19.43% value
for the Test Suite Volatility (TSV) metric, which characterizes the phenomenon
from the point of view of whole test suites, highlights that, on the lifespan of a
project, about one fifth of test classes require at least one modification.

The column about the Modified Classes Ratio (MCR) metric shows that, on
average, 15.43% of test classes are modified between consecutive tagged releases
in our set of Android projects. The 3.83% average value found for the Modified
Methods Ratio (MMR) metric highlights that the percentage of modified methods
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is – as expected – smaller than the percentage of modified classes: this is obviously
due to the fact that multiple test methods are contained in single test classes.

Not all modified test classes contained significant modifications. The Modified
Classes with Modified Methods Ratio (MCMMR) metric gives a statistic about
the possibility of a modified class to contain modified methods, and not having
changes limited to irrelevant sections of code (e.g., import statements). The results
collected show that more than half of the classes having modified lines featured
modifications inside the code of test methods as well, and hence were worth to
undergo the following phase of the study, about the identification of reasons for
modifications in test methods.

Answer to RQ2: On average, near 5% of testing code is modified between con-
secutive tagged releases. 4.54% of the overall LOCs modified between consecutive
tagged releases belong to testing code. On average, around 20% of tagged releases
require modifications in the test suite, and 20% of any test suite needs modifica-
tions during the project history. On each new release, on average, 15.43% of test
classes and 3.83% of test methods are modified.

4.3 Precision of the heuristics

We resorted on heuristic methods to automatically identify test classes related
to GUI Automation Frameworks inside Android projects hosted on GitHub. It
is not assured whether the Java classes extracted through the described proce-
dure are actual test classes, and in case they are so, whether they are actually
used for testing features of the AUT related to the GUI. We hence extracted a
random sample of classes after we performed our measurements about diffusion
and evolution of test code, on which to perform a manual inspection in order to
compute the precision of the heuristics we leveraged13. The manual inspection was
performed by one of the authors of the paper. We first computed the precision in
intercepting actual test classes. On the sample set of 100 test classes we used, just
9 of them could not be considered as actual test classes (e.g., they were collections
of helper methods for other test classes, or empty examples of the structure of a
given GUI Automation Framework), and hence we computed a precision of 91%
for the identification of test classes.

Among the 91 Java classes of the sample that could be considered test classes,
we also discriminated the ones that were exercising elements of the GUI and those
that were not. We did so again with a manual inspection of test code, searching
for method calls related to the instantiation or the interaction with Widgets of
the user interface, method calls related to the Activity life cycle, or references to
textual and/or graphical resources of the application. Of the 91 considered test
classes, we found that 63 of them actually tested features related to the GUI
of the projects (and hence were true positives of our heuristic) and 28 did not
(and hence were false positives of our heuristic). Thus, we measured a precision of
69.3% for the extraction of test classes that were actually testing the GUI of the
AUT. Among the test classes that were considered, most of the ones that did not

13 The sample and the evaluations based on the examined Java classes is available at the
following URL: http://softeng.polito.it/coppola/precision evaluations.csv
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interact with the GUI of the AUT were associated to the Robolectric testing tool.
This was an expected finding, since – even though it is frequently categorized as
a GUI Automation Framework [32] – Robolectric can be leveraged simply as an
automation engine for unit or integration testing of Android apps, without even
instantiating the widgets composing the GUI.

5 Taxonomy of Modification Causes in Test Methods

The present section illustrates the taxonomy that has been derived, and the fre-
quency of occurrence of each category of modifications among the examined sets
of diff files.

A previous effort towards the classification of modifications performed on
generic test code has been provided by Yusifoglu et al. in their systematic mapping
of test-code engineering, where they identified four types of maintenance activities
for test code [51]: Perfective maintenance, when modifications are performed only
to improve the quality of test code (e.g., refactoring); Adaptive maintenance, when
modifications to test code are performed to follow the evolution of the production
code; Preventive maintenance, when test code is modified after the detection of de-
fects (e.g., test code smells or redundancies); Corrective maintenance, when bugs
are found in test code and fixed. The novelty of the taxonomy we derived is assured
by the lack of prior effort in defining a detailed taxonomy of modification causes
of test code specific to Android (and mobile, in general) development.

5.1 Modification Causes (RQ3)

In this section, the taxonomy of all the causes of test modifications that have been
found is shown. The individual causes have been divided in nine macro-categories.
The first, Test Logic Change, is not related to the GUI of the AUT; the macro-
categories Application Logic Change, Execution Time Variability, Compatibility
Issues are linked to the AUT, but not specifically to its GUI. The remaining five
categories are related to the GUI of the app, on its elements and their definition,
on the access to graphic widgets, and on the transitions between them.

The graphic taxonomy is shown in figure 1 (the three groups of macro-categories
described before have been depicted using different colors), whilst detailed descrip-
tions of all causes are given in the following.

5.1.1 Test Code Change

This category covers all the changes in test code that are not due to modifications
in the user interface, nor to changes in the actual behaviour and functionalities
of the app, but only to the way tests are actually set up and executed. Those
modifications occur on test code only, and have no evident connection with pro-
duction code. According to the classification of test code maintenance provided
by Yusifoglu et al. [51], this macro-category covers the modifications related to
Perfective, Preventive and Corrective maintenance.
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Fig. 1 Graphic taxonomy of modification causes

Test Logic Change. Modifications in the test code and in the usage of the GUI
automation frameworks inside the examined test methods. For instance, differ-
ent functions belonging to the adopted test framework can be used, or adapta-
tions may be needed due to the natural evolution of the GUI testing frameworks
used (e.g., for coping with API changes, breakages or deprecations).

Changed Assertions. Modifications in the assertions that are checked in the
same test method, or in the sequence of oracles that are verified during the
test case, as if the use case on which the test case is based is changed slightly.
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Test Refactoring. This category includes all the refactoring modifications that
are performed on test code, without any influence from modifications (includ-
ing refactoring) operated on production code. Examples of this category are
modifications of the names of the variables and/or functions declared inside
test methods, or the creation of helper functions in test classes to simplify the
code of existing methods and make it less redundant.

Logging. Addition, removal or modification of logging operations inside test meth-
ods, using the built-in Logcat tool of the Android Development Bridge or third
party logging tools.

Screenshots. Screen captures are used to create test traces that can be analyzed
after the execution of test suites. This category of modification causes includes
additions, removals or changes of the places where screenshots are taken inside
test methods.

Test Syntax Corrections and Comments Modifications only in the syntax of
test classes/methods (e.g., adding white lines or spacing inside brackets, adding
or removing comments).

5.1.2 Application Code Change

This macrocategory contains all modifications that are due to changes in the pro-
duction code, that are not related to the graphic appearance of the app. Under this
category are considered all the functionality and behaviour changes of the app, e.g.
the addition or modification of methods defined inside the activities, or changes in
the data model used by the app. Changes in the application code are expected to
have effects on all levels of testing performed, from unit tests – expected to verify
the compliance to requirements of small, individual components – to system level
tests exercising the application through its user interface. According to the classi-
fication of test code maintenance given by Yusifoglu et al. [51], this macrocategory
covers the modifications operated on test code to perform Adaptive maintenance,
when the adaptations are to the functionalities of the AUT only and not to its
GUI appearance and/or definition.

Application Functionalities Change. Changes in the functionalities provided
by the application, in classes and methods that do not pertain the graphical
appearance of the app. An example of this category can be a modification in
the way a connection to a remote server is performed.

Application Startup / Intents. Changes in the definitions of the activities, in
the parameters exchanged between them, and in the operations that must be
performed at the startup (or teardown) of each screen.

Application Data Change. Changes in the data models, classes and objects
used by the activities of the app. Those changes must be reflected by test
code, if operations involving data have to be performed.
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Application Code Refactoring. Refactoring operations performed in the code
of the AUT, and that must be reflected by test code (e.g. changed names of
activities, methods, data structures).

5.1.3 Execution Time Variability

In some cases an application may require a few seconds to perform a given op-
eration; for instance, while performing an authentication that has to establish a
secure connection with a server. Network and system resources may significantly
affect the latency. However, also changes in graphic animations can sensibly alter
the amount of time to wait for a view to be fully shown to the user.

Moreover, if the tests are performed on real handheld devices, other applica-
tions running concurrently may cause additional delays to the loading time.

Typically, the way the execution time variability is reflected by test methods is
the need for adding, removing or changing sleep instructions between operations
and checks on the views, like in the following diff file excerpt:

− Thread . s l e e p ( 5 0 0 ) ;
+ Thread . s l e e p ( 1 0 0 0 ) ;

5.1.4 Compatibility Adaptations

Behavioural adaptations of test classes to guarantee compatibility with different
versions of the Android operating system. Compatibility issues may also pertain
the visual appearance or the navigation inside existing activities, and often trans-
late to the adoption of new classes for the same widget, due to deprecations of the
previous ones.

For instance, the following diff file excerpt contains a modification in a test
method due to a different orientation behaviour shown by the app to comply with
the GUI of varying OS versions:

− ro ta t eToPor t ra i t ( t h i s ) ;
+ i f (VERSION. SDK INT >= VERSION CODES.JELLY BEAN MR2) {
+ rota t eToPor t ra i t ( t h i s ) ;
+ }

5.1.5 GUI Interaction Change

Test code may need modifications because of changes in the operations that can
be performed over existing views and widgets that compose the user interface. For
instance, changes in the order of operations to perform on widgets, in the available
operations on existing widgets, and in the operations that must be performed to
access some views, are classified under this category.

Navigation Change. It is possible that the order of the interactions with the
widgets is changed between consecutive releases, even though the views fea-
tured by the tested activity are not modified. Test code must reflect the changed
navigation inside activities.
The following diff file excerpt shows the effect that the necessity of an additional
click on a second button – already present on-screen – has on the corresponding
test method, developed with Espresso.
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+ onView ( withId (R. id . connectButton ) ) . perform ( c l i c k ( ) ) ;
onView ( withId (R. id . s tartButton ) ) . perform ( c l i c k ( ) ) ;

Changed Operations Performed on Views. Even though the navigation be-
tween different widgets in the user interface does not change, it is possible
that the way to execute the same operations requires different gestures to be
performed on the same widgets (e.g., long clicks instead of normal clicks). In
these cases, the operations must be replicated by test cases accordingly.
In the following diff file excerpt, an example regarding the addition of a click
operation on a widget, using the Espresso GUI Automation Framework, is
shown.

− Espresso . onView ( withId (R. id . f i tnessProgramButton ) )
. perform ( ViewActions . s c r o l l T o ( ) ) ;

+ Espresso . onView ( withId (R. id . f i tnessProgramButton ) )
. perform ( ViewActions . s c r o l l T o ( ) , c l i c k ( ) ) ;

Changed Keyboards / Input Methods. Modifications in the way the soft-
ware keyboard of the application is accessed, used or removed from the inter-
face.
For instance, in some diff files with Espresso test code, the call to a function
for closing the software keyboard explicitly has to be added:

− InputMethodManager manager = ( InputMethodManager ) view
− . getContext ( ) . getSystemServ ice ( Context . INPUT METHOD SERVICE) ;
− manager . t o gg l eS o f t In p u t ( InputMethodManager .SHOW FORCED, 0 ) ;
+ mCloseSoftKeyboard . perform ( u iCont ro l l e r , view ) ;

Changed Checked Properties. Properties – not only graphic – that are checked
on the tested widgets may need to change between subsequent versions of the
application.
In the following diff file excerpt, the properties that are checked for an element
of the interface now include also the contained text and not only its position
on screen:

onData ( anything ( ) )
. inAdapterView ( withId ( android .R. id . l i s t ) )

− . a t P o s i t i o n ( 2 4 ) ;
+ . a t P o s i t i o n (24)
+ . check ( matches ( withText (” purus ” ) ) ) ;

Changed Way of Accessing Widgets. According to the definition of the ap-
plication, the same widgets can be accessed in different ways, e.g. from the
context menu instead of the normal placement inside layouts inflated by the
activity. In some cases, to comply with modifications of libraries or the dep-
recation of API functions, it is possible that the way to perform the same
actions on graphic elements of the interface changes between a version of the
application and another.
In the following example, the way to access the menu of the application through
Espresso functions is changed:

− onView ( withId (R. id . c o n s o l e f l i p ) )
. perform ( pressMenuKey ( ) ) ;
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+ openActionBarOverflowOrOptionsMenu
( Ins t rumentat ionReg i s t ry . getTargetContext ( ) ) ;

5.1.6 GUI Views Arrangement

All the modifications in the number and type of elements in the visual hierarchy
belong to this macro-category of modification causes.

View Addition. It may be possible that new elements are added in the visual
hierarchy of the activity to test, even though they are not essential for the
completion of the tested functionalities. Those elements may need initialization
values that may make test cases working on the activities fail. Modifications
caused by View Additions have been identified by examining layout files relative
to the tested Activities, and verifying that the operations added in the new
release of the test class are on widgets that were not present in the previous
version of the layout file.
A possible automated solution to this kind of modifications is the creation of
methods to fill automatically the newly added widgets in the tests with default
values, if it is fundamental to populate them.

View Substitution. Views can be substituted between two consecutive releases
of the application, with other ones having similar functionalities. For instance,
a TextView may be changed to an EditText view, and the test code may need
to be changed accordingly (e.g., in the retrieval of the pointer to the view).
Modifications caused by View Substitutions have been identified by examining
layout files relative to the tested Activities, and verifying that the operations
changed in the new release of the test class are on widgets whose type or
characteristics have been changed with respect to the previous version of the
layout file.

View Removal. Between different releases of the same app, it may occur that
an element of a screen is removed or moved to another activity. Consequently,
a test which has to use it is invalidated.
Modifications caused by View Removals have been identified by examining
layout files relative to the tested Activities, and verifying that the operations
removed in the new release of the test class are on widgets that were present
in the previous version of the layout file, and that have been removed.

Screen orientation change. Operations with the orientation of the application
may need to be added in test methods, to comply with similar modifications
in the production code.

Hierarchy Change. Changes in the definition of layouts used by activities, and
in the arrangement between widgets of the user interface. For instance, the
same activity may be re-arranged using a ConstraintLayout instead of a Rel-
ativeLayout or LinearLayout in the passage to a new version, without mod-
ifications in the functionalities offered or in the widgets it contains; another
example is the movement of a widget from one layout to another inside the
same activity.
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As in the following diff file excerpt, modifications in test methods due to Hier-
archy Change are linkable to changed parents or views that are related to the
widgets interacted in test code:

e x p e c t V i s i b l e ( viewThat (
− hasAncestorThat ( withId (R. id . a t t r ibute symptoms onset days ) ) ,
+ hasAncestorThat ( withId (R. id . a t t r i b u t e w e i g h t ) ) ,

hasText (” ” ) ) ) ;

5.1.7 View Identification

The chosen way to identify an individual view in test code, or the actual identifier
used, may change between subsequent releases, thus invalidating otherwise working
test methods.

ID Change. Elements can be identified in visual hierarchies of the application
through the use of the (optional) unique ID that can be attributed to them,
either programmatically with Java code or in the layout .xml files. A test that
detects elements by their identifier is invalidated if they are changed.
A first possible guideline to avoid fragilities due to changes in the IDs of the
widgets is to use semantical IDs that clearly describe the functionalities of the
widgets, and that are not related to their position in the layout arrangement
or appearance, nor randomly generated. This way, even though the operations
on a widget are changed, or the widget is moved inside the layout, it is unlikely
that its ID will have to change.
The following diff file excerpt shows the effect that a variation in the ID of an
unchanged elements has on a test method developed with Espresso:

− onView ( withId (R. id . mor s e input t ex t ca rd ) )
+ onView ( withId (R. id . m o r s e i n p u t t e x t c o n t a i n e r ) )

. check ( matches ( i sD i sp l ayed ( ) ) ) ;

Text Change. Elements that do not possess a unique identifier, but contain text,
can be detected by their textual description. This case is frequent in menus
where options have no individual identifier but obviously show distinct textual
descriptions. This strategy is not robust for tests, because the textual attributes
are more likely to change during the evolution of the app (and not only: for
instance, they also depend on the device language) than identifiers, so tests
must be modified at any change of the textual content of the widgets.
It is worth highlighting that image recognition testing tools – like Sikuli –
which cannot rely on identifiers to discriminate between the elements of the
GUI, are particularly subject to this kind of fragility (as they are with pure
graphical modifications).
In this category also fall the modifications of the text that is expected to be
given as input to a text view of the user interface. Also screen name changes
are subcases of the Text Change category.
A possible guideline to avoid this fragility is to always use String resources to
identify text, so that a modification in the String resource file has no impact
in the management of test cases and classes.
The following diff file excerpt shows an example of modification in plain text
used by a test case to identify a widget:
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− onView ( withText (”No Account has been added yet ” ) )
. check ( matches ( i sD i sp l ayed ( ) ) ) ;

+ onView ( withText (”No account has been added yet ” ) )
. check ( matches ( i sD i sp l ayed ( ) ) ) ;

Changed Way of Identifying Elements. The way in which widgets are re-
trieved may need to change between consecutive releases of the app. For in-
stance, it may be possible that a view, once referred by its ID, is now referred
by text, or class name, or other properties.
In the following example, the original text contained in a text view is no longer
set as text but as a hint in the new release; the diff file excerpt highlight the
corresponding modification in the Espresso test method:

− onView ( withText (” Log In ” ) ) . perform ( c l i c k ( ) ) ;
+ onView ( withHint (” Log In ” ) ) . perform ( c l i c k ( ) ) ;

5.1.8 Access to Resources

Resources, mainly text, can be used as oracles and hence loaded and confronted
with the proper appearance they should have inside test methods. The place
and the identifiers with which the oracles (if there are any) are addressed may
change between consecutive releases of the app, and hence test methods need to
be changed accordingly.

Changed Retrieval of Text Resources. Text resources can be defined in sev-
eral different ways: Strings can be hardcoded, defined as constants inside Java
classes, or as resources in the ”strings” .xml file in the ”res” folder of the An-
droid project. When the way text resources are defined and accessed changes
between two consecutive releases of the app, and even if the contained text
does not change, it is likely that test classes have to be modified to reflect the
modifications in the production code.
The following diff file excerpt shows the consequence on an Espresso method
due to the access to a text resource through a String identifier, instead of the
previously used hardcoded text:

− onView ( withText (”Coupon ” ) ) . perform ( c l i c k ( ) ) ;
+ onView ( withText (R. s t r i n g . category coupon ) )

. perform ( c l i c k ( ) ) ;

Changed Retrieval of Other Resources. The way graphic resources are ac-
cessed in the production code may change (e.g. using the root view inside a
fragment, or accessing them through identifiers declared in .xml resource files).
This can apply, for instance, to colors used for the graphic appearance of the
widget, to drawable images or to fonts used in TextViews.
In the following diff file excerpt, the way a graphic characteristic of the activity
(a font size) is retrieved is changed, and the modification propagates to a test
method using it:

− P r e f e r e n c e s S t a t e . g e t In s tance ( ) .
s e t S c a l e ( Constants .FONTS LARGE) ;

+ P r e f e r e n c e s S t a t e . g e t In s tance ( ) .
s e t S c a l e ( g e t A c t i v i t y I n s t a n c e ( ) . g e t S t r i n g (R. s t r i n g .
f o n t s i z e l e v e l 2 ) ) ;
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5.1.9 Graphic Changes

Even though the widgets are not entirely modified, small modifications in their
appearence (e.g. animations, transparencies, themes, absolute coordinates, sizes)
can invalidate tests, especially if they are based on graphic recognition, or on exact
coordinates of the position of the widgets on screen (i.e., tests are coordinate-
based).

The following diff file excerpt shows the modifications that have to be per-
formed when an element of the interface is identified through its exact coordinates,
that are changed between two consecutive releases of the app:

− f i n a l f l o a t screenX = screenPos [ 0 ]
+ x ∗ ( view . getWidth ( ) / gameSize ) ;

− f i n a l f l o a t screenY = screenPos [ 1 ]
+ y ∗ ( view . getHeight ( ) / gameSize ) ;

+ f i n a l f l o a t screenX = screenPos [ 0 ]
+ ( 0 . 5 f + x ) ∗ ( view . getWidth ( ) / gameSize ) ;

+ f i n a l f l o a t screenY = screenPos [ 1 ]
+ ( 0 . 5 f + y ) ∗ ( view . getHeight ( ) / gameSize ) ;

Answer to RQ3: Examining a set of 1724 diff files related to Espresso, UI
Automator, Robotium and Robolectric, we identified 28 different possible causes
for modifications of test methods developed for Android apps with the use of
GUI Automation frameworks. We found nine different macrocategories of change
reasons: changes in the functions and logic of test code, changes in the application
functionalities, changes in the interaction with the GUI, varied arrangements of
the widgets of the layout, changed identification of views, changed retrieval of
resources, pure graphic changes, execution time variations, and adaptations to
provide compatibility with different OS versions.

5.2 Diffusion of Modification Causes and Fragility Occurrences (RQ4)

Table 5 shows the percentage of occurrence for any category of modification
causes, among the four considered sets of diff files, each pertaining a different GUI
Automation Framework. Non-normalized numbers of occurrences of modification
causes are given in Appendix A.

Since the causes of modifications have not been considered as mutually ex-
clusive (i.e., multiple causes, either related to GUI changes or not, can concur
to the modification of the same test method) the columns of frequencies do not
mandatorily sum up to 100%.

The Test Logic Change category showed a high percentage of occurrence for
all the four sets considered. This highlights that there is a relevant amount of
situations in which modifications only pertain to test code, without any evident
connection to the production code. In the case of Espresso test methods, this
category of modifications is often represented by changes in the way the library
functions are accessed, or in the kind of assertions that are checked inside test
methods. Another common example, in the set of diff files containing code written
with Robolectric, is the change of the way the interface is mocked by the GUI
Automation Framework (i.e., using the Mockito mocking framework or not).
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Table 6 Frequencies of occurrence of modification causes

Espresso UI Automator Robotium Robolectric

Test Code Change Test logic change 15.85% 17.95% 20.52% 29.86%
Assertions Change 2.56% 6.78% 4.48% 5.42%
Test refactoring 5.24% 5.08% 17.92% 18.01%
Logging 2.44% 1.69% 0.48% 1.18%
Screenshots 2.44% 0.00% 0.94% 0.00%
Test syntax corrections and comments 5.98% 15.25% 12.26% 12.00%

Application Code Change Application functionalities change 17.80% 0.00% 9.90% 13.44%
Application startup / intents 6.83% 3.38% 3.53% 4.48%
Application data change 0.49% 1.69% 0.23% 3.30%
Application code refactoring 2.93% 5.08% 11.56% 8.25%

Execution Time Variability Sleeps add 3.54% 13.56% 7.78% 0.00%
Sleeps change 3.41% 1.69% 2.83% 0.00%
Sleeps removal 2.68% 3.38% 2.12% 0.23%

Compatibility Adaptations 0.98% 5.08% 0.0% 2.12%

GUI Interaction Change Navigation change 9.27% 20.34% 10.14% 2.59%
Changed operations performed on views 1.71% 0.00% 0.94% 0.47%
Changed keyboards / input methods 1.46% 1.69% 0.23% 0.00%
Changed checked properties 1.83% 0.00% 0.71% 0.47%
Changed way of accessing widgets 7.68% 0.00% 3.77% 0.00%

GUI Views Arrangement View Addition 1.71% 3.38% 0.94% 0.23%
View substitution 0.73% 3.38% 0.94% 1.18%
View removal 0.37% 1.69% 0.0% 0.00%
Screen orientation change 0.37% 0.0% 0.23% 0.00%
Hierarchy change 0.24% 1.69% 1.65% 0.00%

View Identification ID Change 7.56% 0.0% 0.48% 2.83%
Text Change 5.00% 15.25% 4.24% 0.94%
Changed way of identifying elements 3.78% 6.78% 3.54% 0.00%

Access to Resources Changed retrieval of text resources 4.27% 1.69% 2.83% 1.41%
Changed retrieval of other resources 1.22% 0.0% 1.41% 1.18%

Graphic Changes 1.71% 1.69% 0.48% 2.59%

Modification reasons related to the design of the test cases, that we filed under
the Assertions Change category, happened more rarely than the changes in the
functions called in test classes. This suggests that the use cases on which the tests
are based were rather stable during the evolution of the considered Android apps.
Test Refactoring operations, that we interpret as a form of perfective maintenance
of working test code, were quite common for all the considered GUI Automation
Frameworks. A higher occurrence of refactoring operations occurred in the set of
diff files associated to Robotium and Robolectric. This may be a consequence of
more rigorous and complex test cases, hence needing more frequent fixes without
corresponding modifications in tested functionalities.

A relevant amount of modifications in test cases (more than 11% in the case
of Robotium test classes) were due only to added or modified documentation (i.e.,
commenting) or to syntax fixing of existing test code.

The modifications in test methods that are due to Application Code Change
had a minor frequency of occurrence than the ones related to Test Logic Change, for
all the four sets considered. Application Refactoring and Application Data Change
proved to be relevant in terms of modifications triggered in test code, and another
modification cause that proved to be frequent (especially for Espresso test classes,
which have a tigther coupling with the activities of the tested applications) is the
change in the way activities and components are called and instantiated, and in the
way the information to the newly created screens are bundled and passed between
Activities (Application Startup/Intents). A possible overlap between Application
Logic Change and Test Logic Change must also be kept in account. We performed
our manual inspection of diff files without executing the tests, hence it is possible
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that a modification in a test method may be due to modifications in the application
logic that span multiple releases of the app, with tests adapted only once. In
addition to that, our inspection only considered the last cause that created the
need for maintenance of test methods: hence, modifications that are classified as
pure test logic changes, could be sometimes backtracked to previous modifications
in the application logic.

Modifications linked to Execution Time Variability, that are reflected by the
addition, removal or changes in the parameters passed to Sleep functions, occurred
rather rarely in the set of modified test methods examined. It must be considered
that, for what concerns the animations of the GUI, Espresso and Robotium wait
for the views to appear in their final state, before performing any kind of inter-
actions or check on them: hence, the sleep instructions added or removed in test
methods written with them are most of the times related to long-running tasks
(e.g., logging to a service and awaiting for the response) and not to the waiting
times needed for the GUI widgets to appear. The same reasoning does not apply
to UI Automator: for test methods written with this GUI Automation Framework,
explicit sleep instructions have to be inserted in test code, because no automated
recognition of the complete rendering of the widgets is provided. This characteris-
tic of UI Automator is reflected by the higher occurrence of modifications caused
by Execution Time Variability for the relative set of diff files. Robolectric test
methods, instead, are run on the Java Virtual Machine without the need to wait
for an actual rendering of the GUI elements: this peculiarity is reflected by the
lacking occurrences of modifications linked to Execution Time Variability in the
relative set of diff files.

Another rare category among causes of modifications to test code is the one
linked to Compatibility Adaptations: this is mainly justifiable with the fact that,
in general, Android apps guarantee retrocompatibility to previous releases of the
OS, and the Android Development Framework does not need many mandatory
modifications in code (either belonging to the AUT or to the test suites) for the app
to remain working. New features offered by the new OS releases, furthermore, can
be considered as new functionalities offered by the application, or added/changed
widgets in the GUI, and not as mere modifications for guaranteeing compatibility.

GUI Interaction changes proved to be the most frequent modification cause
among those that are GUI-related. The most relevant among them was the change
in the navigation inside the current tested activity, i.e., the order of the operations
performed on the existing widgets. The overall percentages of occurrence of causes
collected under the GUI Interaction Change macrocategory were high for all the
sets of tools, except for the set of diff files pertaining Robolectric test methods,
that in general exposed very small percentages of occurrence for all GUI-related
modification causes. Often, especially for the set of diff files regarding projects
featuring Espresso, tests had to be modified because of changes in the way the
individual graphic elements were accessed. For instance, a high number of methods
had to be modified due to the different ways Action Bars and Drawer Menus had
to be interacted with, in order to access the elements that they contained.

Modifications in GUI Views Arrangement were significantly less common than
the ones pertaining changed operations performed on unmodified views and wid-
gets. The lower occurrence of such causes can be justified with the fact that we
focused on the examination of modified existing test methods. Instead, the addi-
tion or removal of individual widget may be more frequently linked to added or
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deleted test methods, reflecting changes in the set of possible use cases traversing
the GUI of the app.

Among the changes in the way views are identified, ID Change is the most rele-
vant modification cause for the set of diff files of test classes written with Espresso:
this is due to the fact that most of the times Espresso test methods identify widgets
directly based on IDs, as opposed, for instance, to what is shown by UI Automator
test methods. In general, the problem of ID changes is less relevant for Android
(or mobile) applications than it is for web applications, where the IDs are often
derived programmatically and/or randomly, and possibly changed in every release.
In addition to that, the development of test suites in the same IDE of the mobile
app (as it is typically done with Espresso, UI Automator, and Robotium) allows to
leverage the automated refactoring tools provided by the IDE for the adaptations
of IDs used in test methods. The same cannot apply for modifications of plain text
used for populating (and later identifying, in the test methods) the elements of
the user interfaces. Even though the use of string resources for any textual content
is a recognised best practice for Android development, the cases in which plain
text is modified and requires parallel intervention in test code proved to be still
frequent (up to 15.25% of frequency in diff files of UI Automator test classes).

The changes in Access to Resources (e.g., modifying the application in order
to use shared preferences or String resources, instead of plain text, for the content
of textual widgets), instead, were not so common as causes of modifications in test
methods: the relative frequency of occurrence ranged from 1.41% for Robolectric
to 4.27% for Espresso for what concerns the retrieval of text resources, and from
none for UI Automator to 1.41% for Robotium for what concerns the retrieval of
other resources. Also in this case, a good practice for developers to avoid this type
of fragility to changes in the AUT would be the adoption from early releases of
the application of stable identifiers of the text or media elements in the ”res” Xml
files designated in the Android project hierarchy.

Pure Graphic Changes were a significantly rare macrocategory of modifica-
tion causes. Individual graphic modifications that led to modified methods in test
classes varied from changes in the dimensions and exact coordinates of the draw-
ables used for the GUI composition, to details like the padding, color, transparency
and animations applied on individual widgets. The frequency of occurrence of mod-
ifications due to Graphic Changes in the GUI of the AUT ranged from 0.48% (for
the set of diff files of Robotium test classes) to 2.59% (for the set of diff files of
Robolectric test classes). This very low occurrence was expected, and is linked to
the fact that all the considered GUI Testing Frameworks are – according to the
classification of testing tools given by Alegroth et al. [1] – second-generation or
component-based GUI testing tool, that strongly focus on properties (e.g., ids,
text, and positions in the layout hierarchies) to identify elements of the GUI, and
that best work when having full access to the production code. Obviously, tools
that are more focused on graphic characteristics of the interface or that perform
any kind of visual recognition of elements (namely, image recognition based testing
tools) would have suffered more from pure graphic changes.

Table 7 gives a higher-level result for the sets of diff files considered, showing
the percentages of diff files that featured modifications that were related or not to
changes in the AUT, and among the latter ones the fraction that was related to
changes influencing the graphical appearance of the app. The last column in the
table reports the average value for the three fractions, obtained as an average of the
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Table 7 Frequency of occurrence of modification causes

Espresso UI Automator Robotium Robolectric Average

Causes not related to the AUT 32.80% 44.07% 53.53% 65.80% 46.36%

Causes related to the AUT 72.07% 69.49% 56.37% 39.86% 60.23%
of which GUI-related 69.07% 70.72% 46.44% 31.35% 54.32%

values for the individual GUI Automation Frameworks weighted by the number of
diff files examined for each of them. Also in this table, the values reported in each
column do not necessarily sum to 100%, because the causes of modifications are
not mutually exclusive in modified test cases (i.e., modifications that are AUT-
related and others that are not AUT-related may be spotted in the examination
of the same diff file).

We have considered only the modifications filed under the category Test Code
Change as not related to changes in the AUT. Non-AUT related changes were
rather frequent for all the sets of projects considered, with an average 46.36%
fraction measured, the 32.80% frequency for Espresso being the lowest measured
value, and 65.80% for Robolectric the highest. Those modifications, according to
the definition we provided, are not related to fragility, since there is no evident
connection between them and prior changes in the AUT; hence, they are related
to the test code only and do not respond to maintenance needs triggered by the
evolution of the underlying app. The lower value for Espresso and UI Automator
test cases may suggest that those GUI Automation Framework are typically used
for higher level test cases strictly tied to activities or widgets of the app, that are
less prone to changes in their logic during the evolution of the application.

At the same time, in fact, around 70% of diff files of classes linked to Espresso
and UI Automator contained modifications linked to changes in the AUT of the
application – and hence, by our definition, pertaining to fragile test code – with
around 70% of them due to changes related to the GUI of the app or its arrange-
ment and definition. Those results suggest that the Espresso GUI Automation
Framework is the most strictly tied to the AUT appearance of those considered
for this evaluation, closely followed by UI Automator.

The values measured for Espresso and UI Automator are very far from those
measured for Robolectric and Robotium, for which we measured, respectively,
a frequency of modifications related to changes in the AUT of near 40% and
56.37% (just 31.35% and 45.44% of them concerning the GUI). This rather low
frequency of occurrence in test classes featuring such tool was indeed expected,
being Robolectric used often for traditional unit testing and not for system tests
traversing the GUI. Respectively 65.80% and 53.53% of modifications in tests
associated to Robolectric and Robotium were not related to the AUT, and hence
– according to our definition – were not induced by test fragility.

It must also be considered that, according to the manual validation described
in section 4.3, only 70% of a sample of mined test classes were actually performing
operations on the GUI of the app. This result suggests that many of the diff files
considered were of test classes that were not interacting with the GUI in the first
place, and that hence would never need maintenance for modifications to the GUI
of the app or to its definition and description.
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In general, however, high values for non GUI-related causes were expected,
even for testing frameworks specialized for GUI testing: GUI tests are by nature
affected not only by changes in the user interface itself, but by changes performed
on all levels of abstraction of the AUT.

Answer to RQ4: Examining diff files of test classes containing changes in test
methods, we measured a percentage of about 60% of modifications due to changes
in the AUT, and hence of classes that are categorized as fragile according to our
definition. On average upon all the diff files examined, more than 50% of the
modifications on test classes triggered by changes in the AUT were connected
to the GUI of the app or to its appearance. However, test suites were modified
often for reasons that were not connected to changes in the AUT: 46.36% of the
modified diff files that were examined featured changes that were local to test
code and that could not be backtracked to variations in production code.

6 Threats to Validity

Threats to internal validity. We have identified the following threats to the findings
exposed in the present paper:

– The test class identification process is based on some keywords specific to each
testing tool: any file containing one of those keywords and containing the word
“test” in its absolute path is considered as a test file without further inspection.
This procedure may miss some test classes, or consider a file as a test class
mistakenly. Evaluated on a sample of 100 classes that were manually examined,
the proposed heuristic guaranteed a precision (measured as the amount of
true positives, i.e. classes extracted with the code search that were actual test
classes, over the amount of classes extracted using the heuristic) of about 90%,
while slightly less than 70% of those test classes contained code that exercised
the GUI of the AUT. This suboptimal heuristic may lead to misleading values
for what regards the ratio of modifications due to changes in the AUT and
specifically in the GUI of the AUT (table 7), with lower values that those
that would have been obtained by taking into consideration exclusively test
classes traversing the GUI. Better procedures for test class extraction can be
used, taking into account the presence (or absence) of calls to specific methods
that are proper of a specific GUI Automation Framework (e.g., the use of the
onView function, or similar ones, for the Espresso framework). Also, the code
of identified test classes can be parsed in order to find calls to methods that are
proper of the Activity or Fragment graphical lifecycle (e.g., setContentView())
or that contain references to layout or graphical resources, to exclude test
classes that do not interact in any way with the GUI of the AUT. The way
the test classes of our study were generated was also not evaluated. This may
introduce bias to our computed metrics, because test classes are re-generated
in each versions using automated tools (e.g., Capture & Replay tools) higher
amounts of modified LOCs are expectable, with respect to manual editing of
existing test classes.

– The number of tagged releases is used as a criterion to identify a project as
worth to be considered for our investigations; it is not assured that this check
is the most dependable one for pruning negligible projects.
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– The metrics we defined have not been tested outside the scope of this study,
hence we cannot ensure the correctness of the assumptions we based on them.

– Our evaluations are based only on files that contain pure Java code. Hence, code
in other languages, that may be part of test suites as well as of production code
of Android applications, does not contribute to the computations we performed.
This may add biases to the presented results.

– Java files containing keywords pertaining to each tool were entirely associated
to the tool, and all their lines were counted for the defined metrics. In addition
to that, no discrimination has been made about the use that was made of
the individual tools, while some of the considered testing frameworks can be
used to perform not only GUI testing. A manual validation of our heuristics,
performed on a set of 100 classes, resulted in about 70% precision in finding test
classes testing the GUI of the respective AUT. Both threats may add biases to
the results, if multiple different testing frameworks are used in the same Java
classes, and if the testing tool to which the code is associated is not used to
perform GUI testing.

– Structure, provided coverage and quality of the developed test cases have not
been controlled and taken into account by the automated procedure for com-
puting the metrics. Hence, the effects that low-quality tests have on mainte-
nance effort are not taken into consideration in the discussion we provide. The
study was also conducted in a static way, meaning that test scripts were not
executed before and after the transition between subsequent releases of the
projects. Hence, the evaluation of the needed effort in test code modifications
is based on the measurement of the modifications that were actually performed,
without evaluating whether those were sufficient to adapt to the evolution of
the app or not.

– Currently, the taxonomy of modification causes is based on the examination of
diff files of test classes only, and hence it takes into account the most superficial
modifications that are ultimately performed to test methods. This can cause
some overlaps between different categories of the taxonomy, especially if the
objective is to identify the real root cause of each modification: e.g., changes
in the test logic may be backtracked to prior modifications in the AUT.

– Researcher bias is a possible threat to the validity of this study. The different
steps of the adopted procedure that required manual inspections of testing code
(i.e., the derivation of the qualitative findings, the validation of the heuristic
for the identification of test cases, and the open coding phase of the grounded
theory technique) were performed by an author of the paper only. This may add
bias to the reported results. However, no author of the manuscript is involved
in the development or support of any of the investigated tools, hence there is
no inclination to support any particular tool nor to demonstrate any specific
result.

Threats to conclusion validity. These threats concern the derivation of the
correct conclusion based on the results.

– In the result section, analyses were performed based on the NTR (i.e., the
Number of Tagged Releases of a given GitHub Repository), and TD (i.e.,
Tool Diffusion) metrics. Those results may be significantly impacted by the
time frame in which the study has been performed (until the end of Decem-
ber 2016), because of the evolution of the considered frameworks and possible
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migrations from one framework to another after the last mining of reposito-
ries from GitHub. Even though the relative adoption of testing frameworks is
confirmed by other studies in literature (e.g., by those performed by Kochhar
et al. [25] and Linares-Vasquez et al. [32]), measures collected in more recent
times may exhibit different values of penetration of the considered testing tools
among open-source repositories.

Threats to external validity. We identify the following threats to the generaliz-
ability of our work:

– Testing tools and techniques adopted by relevant industrial players may vary
significantly from the ones discussed in this work, and by the related ones
discussed in earlier sections. It is not assured that our findings, based on a very
large repository of open-source projects, can be applicable to the development
of commercial or closed-source projects.

– We have collected measures for just six scripted GUI automation frameworks.
It is not certain that such selection of tools is representative of other cate-
gories of testing tools or even different tools of the same category, which may
exhibit different trends and fragilities throughout the history of their AUT.
The same reasoning applies to the causes of fragility that we defined and the
percentages of occurrence we measured for them: other testing frameworks and
techniques may exhibit different motivations for maintenance of test code, or
the prominence of different causes with respect to the six considered ones.

– The metrics we defined can be applied only to testing tools who produce scripts
in Java. Other tools producing test scripts in other languages cannot be evalu-
ated using the provided metrics, neither the results of the application of similar
metrics on them can be compared to the results we provide in the paper.

7 Related Work

In this section we discuss related work investigating the topic of mobile testing and
its difficulties. We compare the outcomes of our study with them, and highlight
the differences in the approach and methodology that we followed.

The testing tools we searched for in Android projects hosted on GitHub re-
flect the selection we made for another previous study [7], in which we developed
manually a test suite for an open-source Android application, and explored the
need for modifications in such test suite transitioning between selected releases of
the app. With respect to this former study, the current work extends the sam-
ple to the whole population of Android applications hosted on GitHub that are
provided with a release history and with manifest files, and evaluates the needed
modifications in all tagged releases of a given project.

The present manuscript is conceived as a complement and an extension of our
previous work presented to PROMISE ’17 [8]. The work introduced our set of met-
rics, that we have now complemented with a more in-depth discussion, with some
modifications to the way they are measured and with running examples of their
computation. The work has also been complemented with a taxonomy of which
we have presented a preliminary version in a previous paper. With respect to the
first presentation of the taxonomy [9], in this work we detailed in a more rigorous
way the way the taxonomy was built – using the grounded theory principles –
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and extended our manual examinations to all the diff files of the studied projects,
while our previous efforts only considered diff files of Espresso test classes.

Linares-Vasquez et al. performed several studies that are related to our cur-
rent work. In an empirical studies aimed at identifying how Android developers
test their applications [31], they surveyed developers and testers to understand
what automated testing practices they follow, and the perception they have of
quality metrics that can be used to evaluate their test suites. The results provided
in the study confirm the ones that we gathered from the raw inspection of the
presence of source code attributable to automated GUI testing tools: the authors
find that the participants mostly rely on manual testing for their applications,
giving several motivations for such lack, from fastly changing requirements to lim-
ited time for performing testing. The authors also found that mobile developers
heavily rely on usage models for designing and documenting test cases, that au-
tomatically generated test cases expressed in natural language are preferred by
the surveyed developers, and that the most adopted tools by developers for mo-
bile application testing are JUnit, Robolectric and Robotium. The authors found
the respondents for their survey among the contributors of 102 different Android
open-source projects hosted on GitHub, hence their findings can be considered
applicable to the developers of the applications of our context.

Linares-Vasquez et al. also conducted a survey about automated mobile app
testing [32], highlighting again that the state of the art of automating testing tools
has some limitations, inducing developers to grow a preference towards manual
testing in practice. In this work, the scripted testing tools that we considered
in our paper are considered among a set of GUI Automation Frameworks, along
with UI Automation (for iOS), Ranorex, Calabash, Quantum and Qmetry. The
authors found that GUI level tests utilizing those frameworks are very expensive
to maintain as the application evolves (the concept that has been described as
fragility throughout this manuscript), and thus are rarely adopted by developers.

Kochhar et al. performed a study to understand the Test Automation Culture
of Android Developers [25]. In addition to a survey for Android developers, they
also performed a quantitative analysis on a set of 600 open-source Android appli-
cations, mined from the F-Droid repository. The study classifies the application in
terms of number of lines of code, contributors, test suites and test coverage, and
concludes – from the results of the survey – that most of the developers resort
to manual testing or completely neglect testing. In particular, the authors found
that 14% of the applications they examined contained test cases, and that only
9% of them had executable test cases with a coverage over 40%. The mostly cited
testing tools by the surveyed developers were JUnit, Monkeyrunner, Robotium
and Robolectric. Our study also finds a lack adoption of GUI testing frameworks
(or, at least, the six ones that we selected) among Android applications, extending
the context to a larger (the largest up to now) set of studied open-source projects.

8 Conclusion and Future Work

We analyzed the use of some of the most widely adopted GUI Automation Frame-
works for GUI testing of Android applications – namely, Espresso, UI Automator,
Selendroid, Robotium, Robolectric, and Appium – among Android open-source
projects hosted on the GitHub portal.
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Overall, automated GUI testing frameworks do not appear to be widely adopted
by Android projects hosted on GitHub: only 9% of the examined apps had files
that were identified as test classes associated to any of the six GUI Automation
Frameworks that we considered. On average, when present, the GUI testing code
represent about 11% of the whole project code.

Test code proved to be rather important during the lifespan of the considered
apps, weighing for about 9% of the total project code. Concerning its evolution in
each release, on average, about 5% of the changed lines are in the GUI test code
and about 4.5% of test code is modified. Also classes that were associated to the
considered GUI Automation Frameworks were subject to frequent modifications,
with almost one fifth of test classes being modified in each release transition. In
general, this amount of modification in test code was expected, especially for code
developed with GUI Automation Frameworks, which – since they work at system
level – are influenced by changes on any level of the AUT that is tested.

Through Grounded Theory and Open Coding, based on a set of diff files con-
taining fragilities in test methods, we identified a set of 28 causes of modifications,
subdivided in 9 different macrocategories. We also identified macrocategories that
were related to the test only (Test Code Change), to the AUT in general (Ap-
plication Code Change, Execution Time Variability, Compatibility Adaptations) or
more directly to its GUI (GUI Interaction Change, GUI Views Arrangement, View
Identification, Access to Resources, Graphic Changes).

We also evaluated the frequencies of those modification causes, finding that
when GUI Automation Frameworks are used for testing Android applications, up
to the 50% of the modifications to test methods can be due to changes in the GUI
arrangement or definition only. At the same time, many of the modifications in
test methods developed with the selected GUI Automation Framework proved to
be due to modifications performed to the non-graphical functionalities of the AUT,
with a frequency of occurrence of non GUI-related modification causes that reached
the 66% in one of the sets of diff files that we considered. Testware developed with
the studied GUI Automation Frameworks proved, hence, to be rather fragile to
changes in the AUT. During the normal evolution of an Android open-source
app, the amount of changes needed to cope with the changes in the AUT code is
comparable to the changes performed to test code with no specific connection to
the AUT features or appearance.

8.1 Contributions for practitioners and researchers

The taxonomy of test case modification reasons can be used, as it is, as a valuable
source of information for predicting a fragility of a test case, and in general for
the effort needed by its maintainance. In particolar, the frequency of occurrence of
modification causes reported in the current manuscript can be paired with static
analysis of test code already developed, to identify what are the test commands
and methods that involve characteristics that may be prone to fragility. Developers
may also leverage the statistics about the average maintenance effort required by
the inspected test suites to decide whether they can afford the average effort for
maintaining a test suite. The averages reported in this paper can finally be used
as a benchmark to understand whether the amount of maintenance needed by
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already developed test suites is in line with typical values for a considerably big
amount of open-source tested projects.

The results of this paper also provide hints for additional studies and more
empirical understanding of test suite maintenance. A first possible addition may
take into consideration evolutionary analytics of the considered repositories and
the measured metrics, to investigate how the usage and maintenance of testing
code produced with Automated GUI testing frameworks varies with time. As done
in recent studies [12], applications can be automatically categorized – with the
use of static analysis – under different categories, to investigate how the testing
maintenance varies with the type of AUT. The type of investigated open-source
app can be considered as a factor in future investigation, to correlate the nature
of the AUT with the measured metrics and with the evolution of testware.

The evolution metrics defined in this paper may be used by researchers to find
correlations with other measurements on test code, e.g. coverage metrics of test
suites or measures of their effectiveness in finding bugs or defects. Diffusion and
Size metrics hereby defined are fit for being correlated with measures about the
perceived quality of open-source applications, e.g., ratings on the stores where the
apps are eventually released, sentiment analysis of the users’ comments (a practice
already explored in literature [20]), or repository activity and/or popularity on
GitHub.

Fragility and Maintenance metrics can be object of additional comparisons
with the required maintenance by other techniques of testing tools for Android
apps (e.g., model based test suites, or visual test suites). A more quantitative
measurement of the maintenance effort (e.g., in terms of person hours) evaluated
for different testing techniques would provide significant added value for practi-
tioners in finding the right testing technique for the type of applications that they
are developing.

8.2 Future work

As our immediate future work, we plan to provide a set of guidelines to help
developers in reducing the impact that modifications in production code have on
testing maintenance, and to categorize also modifications to production code, to
understand how they can be traced to maintenance in test code and to find to what
changes test code proves to be fragile the most. Regarding the fragility issue, we
plan to monitor also the distribution of fragility occurrences for a project during
time, and to take into consideration also the concept of fragility frequence for the
same test class or method in the evolution of the AUT.

We plan to develop automated tools, capable of recognizing patterns that are
related to fragility when modifications are performed in production code (e.g.,
changes of GUI arrangement, renaming of widgets, changes in text presented to
the user), and signal potential fragile classes/methods in the test suite at develop-
ment time; such tools can be also implemented as plug-ins for popular IDEs (e.g.,
Android Studio). We also aim at applying the evolution and fragility measurements
to different testing tools, frameworks, and platforms, and to take into considera-
tion the testing of Android applications developed with hybrid frameworks (e.g.,
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Flutter or Cordova). Finally, we plan to generalize the taxonomy of test mainte-
nance causes to any kind of GUI-based software, and not only for Android (or
mobile, in general) apps.
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A Absolute number of modification causes

Table A shows the absolute number of occurrences of the categories of modification causes
among the examined diff files; each column shows the number of occurrences for the set of diff
files that are associated to a given GUI Automation Frameworks.

Table 8 Absolute number of occurrences of modification causes

Espresso UI Automator Robotium Robolectric

Total Classes 948 237 465 550

Test Code Change Test logic change 130 10 87 126
Assertions Change 21 4 19 23
Test refactoring 41 3 76 76
Logging 20 1 2 5
Screenshots 20 0 4 0
Test syntax corrections and comments 49 9 52 53

Application Code Change Application functionalities change 146 0 42 57
Application startup / intents 56 2 15 19
Application data change 4 1 1 14
Application code refactoring 24 3 49 35

Execution Time Variability Sleeps add 29 8 33 0
Sleeps change 28 1 12 0
Sleeps removal 22 2 9 1

Compatibility Adaptations 8 3 0 9

GUI Interaction Change Navigation change 76 12 43 11
Changed operations performed on views 14 0 4 2
Changed keyboards / input methods 12 1 1 0
Changed checked properties 15 0 3 2
Changed way of accessing widgets 63 0 16 0

GUI Views Arrangement View Addition 14 2 4 1
View substitution 6 2 4 5
View removal 3 1 0 0
Screen orientation change 3 0 1 0
Hierarchy change 2 1 7 0

View Identification ID Change 62 0 2 12
Text Change 41 9 18 4
Changed way of identifying elements 31 4 15 0

Access to Resources Changed retrieval of text resources 35 1 12 6
Changed retrieval of other resources 10 0 6 5

Graphic Changes 14 1 2 11
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B Running Sample of Metric Computations

Table 9 Intermediate measures for project WheresMyBus/android

Metric 1.0.0 1.1.0 1.2.0 1.3.0 1.4.0 master

Plocs 981 4254 8417 8516 9031 9031
Tlocs 0 0 485 647 699 699
TLR 0 0 0.58 0.76 0.78 0.78

Pdiff - 3599 5907 1531 733 0

Tdiff - 0 0 224 74 0

MTLR - - - 0.46 0.11 0
MRTL - - 0 0.15 0.10 -

NTC 0 0 4 4 4 4
AC - 0 4 0 0 0
DC - 0 0 0 0 0
MC - 0 0 3 3 0

NTM 0 0 19 25 25 25
AM - 0 19 7 0 0
DM - 0 0 1 0 0
MM - 0 0 4 10 0
MCMM - 0 0 3 3 0
MCR - - - 0.75 0.75 0
MMR - - - 0.21 0.4 0
MCMMR - - - 1.0 1.0 -

Table 10 Test class statistics for project WheresMyBus/android

1.2.0 app/src/androidTest/java/UITests/TestAlertForumActivity.java 80 - 3 - - -
1.2.0 app/src/androidTest/java/UITests/TestCatalogPage.java 272 - 8 - - -
1.2.0 app/src/androidTest/java/UITests/TestHomePage.java 68 - 5 - - -
1.2.0 app/src/androidTest/java/UITests/TestSubmitAlert.java 65 - 3 - - -
1.3.0 app/src/androidTest/java/UITests/TestAlertForumActivity.java 80 0 3 0 0 0
1.3.0 app/src/androidTest/java/UITests/TestCatalogPage.java 273 31 8 0 0 2
1.3.0 app/src/androidTest/java/UITests/TestHomePage.java 67 3 5 0 0 1
1.3.0 app/src/androidTest/java/UITests/TestSubmitAlert.java 227 190 9 7 1 1
1.4.0 app/src/androidTest/java/UITests/TestAlertForumActivity.java 85 7 3 0 0 1
1.4.0 app/src/androidTest/java/UITests/TestCatalogPage.java 274 5 8 0 0 3
1.4.0 app/src/androidTest/java/UITests/TestHomePage.java 67 0 5 0 0 0
1.4.0 app/src/androidTest/java/UITests/TestSubmitAlert.java 273 62 9 0 0 6
master app/src/androidTest/java/UITests/TestAlertForumActivity.java 85 0 3 0 0 0
master app/src/androidTest/java/UITests/TestCatalogPage.java 274 0 8 0 0 0
master app/src/androidTest/java/UITests/TestHomePage.java 67 0 5 0 0 0
master app/src/androidTest/java/UITests/TestSubmitAlert.java 273 0 9 0 0 0

To provide samples of metric computations, we resort on reporting all the intermediate
and final measures for a small projects of the sample that we considered, namely Wheres-
MyBus/android14. The project features test classes that are attributable to the Espresso GUI
Automation Framework. During the lifespan of the app, four different test classes are identified.
The GitHub repository has a history of six distinct tagged releases, including the Master.

Table 9 shows all the measures computed for the six distinct releases of the project. As
detailed in the later Procedure section, all those metrics are obtained through (i) searches in
the .java source files that are associated to the considered GUI Automation Framework (in
this case, all .java files containing the keyword ”Espresso”); (2) examinations of the differences
between the same files in consecutive releases of the project; (3) examination of the methods
that are featured by each test class in all releases of the project. In the table, when a metric
is not defined for a given release, the symbol ”-” is used. This happens, for instance, in the
transition between release 1.4.0 and master, where no modifications are performed in the
whole project (hence, Pdiff = 0). In this case, the MRTL metric is not defined. All the
derived metrics which require a comparison with the amount of code, classes or methods of
the previous release are not defined for the first tagged release of the project.

14 http://github.com/WheresMyBus/android
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@@ −18,6 +18 ,7 @@ import com . wheresmybus . SubmitAlertAct iv i ty ;
import java . i o . IOException ;

import c o n t r o l l e r s . WMBController ;
+import modules . Route ;

import okhttp3 . mockwebserver . MockResponse ;
import okhttp3 . mockwebserver . MockWebServer ;

@@ −46,7 +47 ,7 @@ publ i c c l a s s TestAlertForumActivity {

@Rule
pub l i c Act iv ityTestRule<AlertForumActivity> ru l e =

− new ActivityTestRule <>(AlertForumActivity . c l a s s ) ;
+ new Activ ityTestRule <>(AlertForumActivity . c l a s s , true , f a l s

@Test
pub l i c void t e s tA l e r tD i sp l ay ( ) throws IOException {

@@ −68,6 +69 ,10 @@ publ i c c l a s s TestAlertForumActivity {
s e rv e r . s t a r t ( ) ;
c o n t r o l l e r . useMockURL( s e rv e r . u r l ( ” /” ) . t oS t r ing ( ) ) ;
Intent s t a r t I n t e n t = new Intent ( ) ;

+ s t a r t I n t e n t . putExtra (”IS ROUTE” , true ) ;
+ Route route = new Route (”123” , ”some route ” , ”1 100224 ” ) ;
+ s t a r t I n t e n t . putExtra (”ROUTE” , route ) ;
+ s t a r t I n t e n t . putExtra (”ROUTE ID” , ”1 100224 ” ) ;

s t a r t I n t e n t . putExtra (”TAB INDEX” , 1 ) ;
r u l e . l aunchAct iv i ty ( s t a r t I n t e n t ) ;

}

Fig. 2 Diff file for test class TestAlertForumActivity.java of WheresMyBus/android, between
releases 1.3.0 and 1.4.0.

Table 10, shows statistics about the test classes that are featured by the examined project,
during its lifespan. The table columns show, for each class, the absolute paths, the versions
in which the class is present, the contained methods, and the total and modified LOCs, and
the total, added, modified and deleted methods. The project features four distinct test classes
during its lifespan. The statistics collected for the classes are finally used to compute the Test
Suite Volatility, i.e., the percentage of classes with at least a modification during their lifespan
upon the total number of classes (in the case of this project, the 100%).

The metrics NTC, AC, DC and MC, respectively the total, added, deleted and modified
test classes, are computed by a raw count of the number of .java files that are associated to
the testing tool under examination. The metrics NTM, AM, DM and MM, respectively the
total, added, deleted and modified test methods, are computed (i) in the case of AM and DM
only, by counting the methods in added or deleted test classes; (ii) by applying the JavaParser
tool on the individual test classes before and after the release transition, and examining the
differences in the lists of methods. Diff files are also examined to identify the position of
modified lines in test classes, in order to compute MCMM (i.e., the number of Modified Classes
with Modified Methods). As an example, we report in figure 2 the modifications in the test
class TestAlertForumActivity.java between release 1.3.0 and release 1.4.0. It is evident from
the diff file that a single test method is modified in the release transition, and that of the 7
modified test LOCs are outside test methods. Having a method modified, the class counts for
the computation of the MCMM metric (i.e., the number of modified test classes with modified
methods).
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C Filtering Procedure

Fig. 3 Number of projects after each step of the filtering procedure


