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Abstract

We provide sharp analytical upper and lower bounds for Value-at-Risk and sharp bounds

for Expected Shortfall of portfolios of any dimension subject to default risk. To do so,

the main methodological contribution of the paper consists in analytically finding the

convex hull generators for the class of exchangeable Bernoulli variables with given mean

and for the class of exchangeable Bernoulli variables with given mean and correlation in

any dimension. Using these analytical results we first describe all possible dependence

structures for default, in the class of finite sequences of exchangeable Bernoulli random

variables. We then measure how model risk affects Value-at-Risk and Expected Shortfall.

keywords: Exchangeable Bernoulli distribution; risk measures; model risk, credit risk,

default risk.



1 Introduction

Models for default risk are prone to so-called model risk because of the difficulty of

describing the causes of default or even of enumerating them 1. The issue is particularly

relevant when considering the joint default of specific obligors or particular categories

of obligors, because beyond the model risk for marginal defaults there is also model risk

in their joint distribution. We focus on joint modeling.

The issue of model risk in default modeling has been known ever since credit risk

appears in the academic literature. Professionals are well aware of its importance. The

first purpose of the current paper is to measure model risk by providing the range

of portfolio losses across all possible dependence structures for defaults, in the class of

exchangeable Bernoulli random variables. To this end, we use two popular risk measures,

Value-at-Risk (VaR) and Expected Shortfall (ES).

Univariate models of default belong to two families: structural and reduced-form

models. The structural models, initiated by [2], reconduct default to the fact that the

so-called asset value of a firm goes below a given monetary threshold. Reduced-form

models, on which seminal work is due to [3], estimate the intensity of default from interest

rates on defaultable debt. Intensity of default is then interpreted as a fixed parameter

or a stochastic process. For a survey of the approaches see for instance [4]. Multivariate

models either make use of a copula to aggregate univariate default probabilities (see for

instance [5] or [6]) or use a Bernoulli mixture model (see Chapter 8 in [7]).

The difficulties in choosing a model for univariate modeling and calibrating it have

been shown to be considerable. For structural models, the asset value is unobservable.

For reduced-form models, rates of return on bonds are thought to include also a liquidity

spread, which is difficult to separate from the default spread.

The difficulties in choosing or calibrating a multivariate model are even greater (see

the early recognition in [8]). Structural models can be calibrated, provided that the

correlation matrix of asset values can be calibrated. Multivariate reduced-form models

are usually calibrated using the corresponding structural dependence (see Chapter 10 in

[6]).

The previous literature which assesses model risk in joint default usually takes as

given the marginal probabilities of default, as we do: marginal default indicators are

Bernoulli variables. Existing research tries to explore the range of joint default proba-

bilities, or the possible distribution of the loss from credit risk, which is the weighted

sum of the marginal Bernoulli variables, where the weights are the exposures of the cred-

itor towards different obligors. To do that, the literature uses different copulas (see [9]).

Here we use the fact that all joint distributions or distributions of sums are generated

1For a discussion of the conceptual basis for model risk, with particular attention to derivative

pricing, see [1]
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starting from a finite number of so-called ray densities. Differently from copulas, all the

rays can be found, either numerically or analytically.

The main contribution of the current paper consists in analytically finding the convex

hull generators for the class of exchangeable Bernoulli variables with given mean and

for the class of exchangeable Bernoulli variables with given mean and correlation. The

analytical solution allows us to work in any dimension. The second contribution consists

in describing all the joint distributions of defaults, even for large portfolios, and/or the

possible distributions of the loss. This is because the multivariate Bernoulli variables

represent the default indicators of a portfolio of obligors, through the ray densities, that

we can find analytically. Because we can represent all the possible distributions of the

loss, we can compute the bounds for two synthetic risk measures used in the finance

literature, Value-at-Risk (VaR) and Expected Shortfall (ES). The paper then provides a

third contribution: we show that the sharp - or attainable - VaR bounds are reached on

the ray densities and we find an analytical expression for them. We also explicitly find

bounds for the ES. We then measure the consequence of using a specific model looking at

the range of the possible VaR and ES. Thus, the mathematical contribution consists of

the analytical description of the ray densities in high dimensions. We also contribute to

mathematical finance by measuring the model risk using the multivariate distributions

that incorporate all possible dependence structure for defaults. They obtain as linear

convex combinations of generators that can be found analytically. This solution allows

us to find bounds to measure model risk.

The paper proceeds as follows: Section 2 reviews the background literature. Section

3 introduces the mathematical framework. The notion and properties of rays for ex-

changeable Bernoulli variables are described in Section 4. Section 5 introduces the risk

measures and provides analytical bounds for exchangeable Bernoulli variables. Model

risk is discussed in Section 6. Sections 6.1 and 6.2 provide calibrated examples.

2 Background literature

The paper has two strands of background literature: a purely mathematical one and a

mathematical finance one.

The main reference for the mathematical approach is [10], which develops a simple

method to represent all the Bernoulli variables with some specified moments as a convex

hull of densities belonging to the same class, the ray densities. Rays and extremal rays,

which generate all the convex hull, appear in the theory of convex polyhedra. References

for the theory of convex polyhedra are, e.g., [11] and [12].

The paper [10] provides an algorithm for finding the extreme rays of a given class

of multivariate Bernoulli variables without restrictions either on the number of vari-

2



ables or on the specified moments. The only drawback of the method is the amount of

computational effort required for the numerical solution. In the current paper we show

that the exchangeability assumption allows us to find the extreme rays in an analytical

way. That is crucial for the mathematical-finance application, in which the number of

Bernoulli variables - representing the credit obligors - is usually in the order of several

hundreds.

The background literature in mathematical finance produces risk-measures, e.g. VaR

and their bounds, both in the absence and in the presence of constraints on the variance

of the sum of the losses. The latter constraint is empirically relevant, since realizations

of the aggregate loss from a portfolio of credits are often available, and its variance -

i.e. the variance of the sum of the losses - can be estimated (see [13]). Actually, as

long as the additional constraint improves the bounds, use of the estimated variance is

welcome. In Section 5, we rephrase the variance constraint in terms of a fixed value of

the equicorrelation of the Bernoulli variables, and provide our VaR bounds both in the

absence and in the presence of that bound (see [13]).

Early results on VaR bounds were obtained from the Fréchet bounds, for given

marginal distributions, in the absence of variance constraints on the sum and for the case

in which the marginal distributions are more than two. This case is interesting for VaR

applications and it is our reference in the current paper. The bounds were not sharp (see

for instance [14]). Using duality theory, [15] provided the sharp lower VaR bound for the

case in which the marginal random variables are more than two, identical, continuous

and satisfy a monotonicity - namely non-decreasing or non-increasing - property. The

bound is analytical. An extension for the case of identical, continuous margins was

provided by [16]. The bounds obtained there are sharp, are derived under three different

conditions - called mixing, attainment and ordering conditions - but have to be computed

numerically. An effective method to compute them is provided. [17] instead extended

the result of [15] to marginal distributions which are neither continuous, nor identical

and monotone. The bounds are neither sharp nor analytical, but numerical results are

provided for the case in which restrictions on the dependence structure of the marginal

distributions - restrictions on the joint distributions of couples, triplets etc - are given.

The numerical approach is shown to be highly simplified when the marginal distributions

are identical. From this literature, the last result is the closest to ours, since our marginal

distributions are discrete and identical. We do not consider the dependence structure

of n-tuples while we assume exchangeability. In contrast with [17], our VaR bounds,

provided for Bernoulli margins, are sharp and analytical. They are derived from a

different mathematical approach, since we do not use duality, but rather, as mentioned

above, the theory of polyhedral cones and their generation through ray densities.

A further improvement in the numerical approach of [17] is provided in [18]. This is

useful for the case in which the marginal distributions are continuous, even non identical,

and the number of marginal distributions is high, as in the credit risk case. The con-
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dition for applying it is that the marginal distributions can be divided into subgroups,

each containing identically distributed (i.d) random variables. A fortiori the numerical

approach applies to iid random variables. The algorithm provides sharp bounds, but

requires continuity of the marginal distributions, so it does not apply to our set-up.

A similar comment applies to [19], which uses the notion of positive dependence to

improve on the VaR bounds, computed numerically. The easily-computable version of

their non-sharp bounds can be adopted when the marginal distributions are identical

and continuous with decreasing density and symmetric copula bounds. Because of the

continuity requirement, the numerical approach they suggest cannot be adopted in the

case examined in this paper. So, even if we wanted to compute the VaR bounds numer-

ically instead of analytically, we could not adopt the approach of [18] or [19], because

their assumptions on the marginal distributions and on the dependence structure are

not consistent with our set-up. Their achievements are mentioned here to provide the

reader with a possible comprehensive picture of the related literature on VaR bounds.

Results on VaR bounds, for given marginal distributions, in the presence of variance

constraints on the sum are in [13]. The variance constraint is an upper bound on the

variance value. The bounds are analytical, but are not sharp all the time. The paper

provides a numerical algorithm to approximate the sharp bounds. Our bounds for this

case are instead sharp and analytical.

3 Default indicators: mathematical set-up

We consider a credit portfolio P with d obligors.

Some notation is needed. Let the random variable X = (X1, . . . , Xd) be the default

indicators for the portfolio P and let us assume that the indicator X is exchangeable,

i.e. X ∈ Ed, where Ed is the class of d-dimensional exchangeable Bernoulli distributions.

Let Ed(p) be the class of exchangeable Bernoulli distributions with the same Bernoulli

marginal distributions B(p), where p is the marginal default probability of each obligor.

If X = (X1, . . . , Xd) is a random vector with joint distribution in Ed(p), we denote

• its cumulative distribution function by Fp and its probability mass function (pmf)

by fp;

• the column vector which contains the values of fp over Xd := {0, 1}d, by (fp(x) :

x ∈ Xd) respectively; we make the non-restrictive hypothesis that the set Xd of

2d binary vectors is ordered according to the reverse-lexicographical criterion. For

example X2 = {00, 10, 01, 11} and X3 = {000, 100, 010, 110, 001, 101, 011, 111};

• we denote by Pd the set of permutations on {1, . . . , d};
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Recall that the expected value of Xi is p, E[Xi] = p, i = 1, . . . , d. We denote

q = 1− p. We assume that vectors are column vectors.

3.1 Exchangeable Bernoulli variables

Let us consider a pmf fp ∈ Ed(p). Since fp(x) = fp(σ(x)) for any σ ∈ Pd, any mass

function fp in Ed(p) defines fi := fp(x) if x = (x1, . . . , xd) ∈ Xd and #{xj : xj =

1} = i. Therefore we identify a mass function fp in Ed(p) with the corresponding vector

f p := (f0, . . . , fd). Furthermore, by exchangeability the moments depend only on their

order, we therefore use µα to denote a moment of order α = ord(α) =
∑d

i=1 αi, where

α ∈ Xd. For example we have µ1 = p. We also observe that the correlation ρ between

two Bernoulli variables Xi ∼ B(p) and Xj ∼ B(p) is related to the second-order moment

µ2 = E[XiXj] as follows

µ2 = ρpq + p2. (3.1)

3.2 Joint defaults, loss distribution and risk measures

To model the loss of a credit risk portfolio P of d obligors we consider the sum of the

percentage individual losses

L =
d∑
i=1

wiXi,

where wi ∈ (0, 1] and
∑d

1=1wi = 1. In this paper we consider the case wi = 1
d
, i ∈

{1, . . . , d}. The extension to unequal weights can be done numerically. For equal weights,

L = Sd

d
, where

Sd =
d∑
i=1

Xi

represents the number of defaults. Therefore, the distribution of Sd represents the distri-

bution of the loss. Since the vector of default indicators X is assumed to be exchange-

able, there is a one-to-one correspondence between the distribution of the number of

defaults and the joint distribution of X. In fact, as said in the preliminaries, since

fp(x) = fp(σ(x)) for any σ ∈ Pd, any mass function fp in Ed(p) defines fi := fp(x) if

x = (x1, . . . , xd) ∈ Dd and #{xj : xj = 1} = i. We can define a one-to-one correspon-

dence between Ed(p) and the class of the distributions on the number of defaults.

Let Sd(p) be the class of distributions pS on {0, . . . , d} such that Sd =
∑d

i=0Xi with

X ∈ Ed(p). Let pS(j) = pj = P (Sd = j) and pS = (p0, . . . , pd).
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The map:

E : Ed(p)→ Sd(p)

fj → pj =

(
d

j

)
fj.

(3.2)

is a one-to-one correspondence between Ed(p) and Sd(p). Therefore we have

Ed(p)↔ Sd(p) (3.3)

We now prove that the class of distributions Sd(p) coincides with the entire class of

discrete distributions with mean dp, say Dd(dp). This fact is useful to simplify the

search of the generators of Ed(p). The class Dd(dp) is not of special interest in this

context, but it is introduced for technical reasons.

Proposition 3.1. It holds Sd(p) = Dd(dp).

Proof. 1) Sd(p) ⊆ Dd(dp). This is trivial.

2)Dd(dp) ⊆ Sd(p). Let {p0, . . . , pd} ∈ Dd(dp). Let us define fi = pi

(d
j)

and p(x1, . . . , xd) =

fi for all (x1, . . . , xd) ∈ Xd such that
∑d

j=1 xj = i. The mass function p is the mass

function of a d-dimensional Bernoulli random vector, which is exchangeabe by

contruction. By exchangeability E[X1] = . . . = E[Xd]. We have

E[X1] = P (X1 = 1) =
∑

(x1,...,xd):x1=1

p(x1, . . . , xd) =
d∑
i=1

∑
(x1,...,xd):x1=1,∑d

i=1 xi=i

p(x1, . . . , xd)

=
d∑
i=1

∑
(x1,...,xd):x1=i,∑d

i=1 xi=1

fi =
d∑
i=1

(
d− 1

i− 1

)
pi(
d
i

)
=

d∑
i=1

(d− 1)!

(i− 1)!(d− 1− i+ 1)!

i!(d− i)!
d!

pi

=
d∑
i=1

i

d
pi =

1

d
pd = p.

Then X ∈ Ed(p).

Now let Sd :=
∑d

i=1Xi. We have P (Sd = j) =
(
d
j

)
fj = pj and {p0, . . . , , pd} ∈ Sd(p).

Therefore the three classes Ed(p), Sd(p) and Dd(dp) are essentially the same class,

i.e.

Ed(p)↔ Sd(p) ≡ Dd(dp) (3.4)

6



Thanks to the above proposition to find the generators of Sd(p) we can look for the

generators of Dd(dp). This simplifies the search. The generators we find are in one-to-

one relationship with the generators of Ed(p).

4 Exchangeable Bernoulli generators

We build on the results in [10], where the authors represent the Fréchet class of mul-

tivariate d-dimensional Bernoulli distributions with given margins and/or pre-specified

moments as the points of a convex hull. The generators of the convex hull are mass

functions in the class and they can be explicitly found. We show here that under the

condition of exchangeability we analytically find the ray densities. We focus on two

classes: the class Ed(p) and the class Ed(p, ρ), i.e. the class of exchangeable Bernoulli

vectors with given p and given correlation ρ. The one-to-one correspondence E between

the distributions pS ∈ Sd(p) and f p ∈ Ed(p) is also a one-to-one correspondence between

the distributions pS ∈ Sd(p, ρ) and f p ∈ Ed(p, ρ).

In Section 3.1 we represent the class Ed(p) as a convex hull of mass functions in the

class, which we call ray densities, so that each mass function is a convex combination of

ray densities belonging to Ed(p). We analytically find the ray densities and their number,

that depends on the dimension d and the mean value p. The one-to-one map between

Ed(p) and Sd(p) and Proposition 3.1 are crucial.

In Section 3.2 we represent the class Ed(p, ρ), as well as Sd(p, ρ), as a convex hull of ray

densities. We analytically find them using the one-to-one correspondence between the

class Ed(p) and the class Sd(p) and between the relative subclasses Sd(p, ρ) and Ed(p, ρ).

We prove that the ray densities in Sd(p, ρ) have support on at most three points. By so

doing, also in this case the dimension d is not an issue.

4.1 Generators for given marginal default probabilities

Using the equivalence Sd(p) ≡ Dd(pd) stated in Proposition 3.1 a pmf in Sd(p) is a

pmf on {0, . . . , d} with mean pd. Thanks to the map E in Equation (3.4) this is also

equivalent to finding a set of conditions that a pmf of a multivariate Bernoulli has to

satisfy for being in Ed(p). This fact is crucial in the following proposition.

Proposition 4.1. Let Y be a discrete random variable defined over {0, . . . , d} and let

pY be its pmf. Then

Y ∈ Sd(p) ⇐⇒
d∑
j=0

(j − pd)pY (j) = 0.
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Proof. Let Y be a discrete random variable defined over {0, . . . , d}. By Proposition 3.1

Y ∈ Sd(p) iff E[Y ] = pd. It holds

E[Y ] = pd⇐⇒ E[Y − pd] = 0⇐⇒
d∑
j=0

(j − pd)pY (j) = 0.

Using Proposition 4.1 we can find all generators of Sd(p). Thanks to the map E,

that is equivalent to finding all the generators of Ed(p).

We have to find the solutions pS = (p0, . . . , pd) of

d∑
j=0

(j − pd)pj = 0. (4.1)

with the conditions pj ≥ 0, j = 0, . . . , d and
∑d

j=0 pj = 1. From the standard theory

of linear equations we know that all the positive solutions of (4.1) are elements of the

convex cone

Cp = {z ∈ Rd+1 :
d∑
j=0

ajzj = 0, Iz ≥ 0}, (4.2)

where aj = j− pd and I is the (d+ 1)× (d+ 1) identity matrix. We recall that a subset

C of Rd is called a cone if 0 ∈ C and x ∈ C implies λx ∈ C for every non-negative real

scalar λ. The particular cones consisting of a non-zero vector x and all its multiples

λx, λ ≥ 0 are rays. A cone which contains at least one non-zero vector is therefore just

the union of the rays it contains.

Definition 4.1. A ray x of a convex cone C is an extreme ray of C if x is not a positive

linear combination of two linearly independent vectors of C .

Classical result in the theory of convex polyhedra is that every convex cone can be

expressed as a convex combination of extreme rays (see [11] and [12]). Therefore the

solutions of (4.2) can be generated as convex combinations of a set of generators which

are referred to as extremal rays of the linear system. A first step to analytically find the

extremal rays is to find their support. In this particular case we can deduce that the

support has at most two points because the binding constraints are d + 2, i.e. pj ≥ 0,

j = 0, · · · , d and equation (4.1). However, in the following proposition we consider the

support of the extremal rays of a cone defined by a general m-dimensional homogeneous

linear system. We give the general result because it applies also to the case, discussed

in the next section, of given default correlations and can also be applied to find ray

densities for any set of given moments.
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Proposition 4.2. Let us consider the linear system

Az = 0, z ∈ Rd+1
+ (4.3)

where A is a m × (d + 1) matrix, m ≤ d and rank(A) = m. The extremal rays of the

system (4.3) have at most m+ 1 non-zero components.

Proof. Let CA = {z ∈ Rd+1 : Az = 0, Iz ≥ 0} be the convex cone of all the positive

solutions of (4.3). From Lemma 2.3 in [20] it follows that a solution r of (4.1) is an

extremal ray of CA iff I∗z = 0 for a submatrix nI∗ × (d+ 1), I∗ of I and

rank

[
A

I∗

]
= d.

Therefore it must be rank(I∗) ≥ d−m and then r has at most (d+1)−(d−m) = m+1

non-zero components.

Corollary 4.1. The extremal rays of the convex cone Cp in (4.2) have at most two

non-zero components.

Proof. Let aj = j − pd, j = 0, . . . , d. The matrix A = [a0, . . . , ad] is the row vector of

the coefficients. Since rankA = m = 1 then an extremal ray r has at most two non-zero

components.

Proposition 4.3. The extremal rays of the convex cone Cp in (4.2) are

pj1,j2(y) =


j2−pd
j2−j1 y = j1
pd−j1
j2−j1 y = j2

0 otherwise

, (4.4)

with j1 = 0, 1, . . . , jM1 , j2 = jm2 , j
m
2 + 1, . . . , d, jM1 is the largest integer less than pd and

jm2 is the smallest integer greater than pd.

If pd is integer the extremal rays contain also

ppd(y) =

{
1 y = pd

0 otherwise
. (4.5)

Proof. Let aj = j − pd and consider the case pd not integer. Equation (4.1) becomes

d∑
j=0

ajpj = 0.

By Corollary 4.1 the extremal rays have at most two non zero components, say j1, j2.

Therefore the extremal rays can be found considering the equations

9



aj1pj1 + aj2pj2 = 0,

where we make the non restrictive assumption j1 < j2. The equation (4.1) has positive

solutions only if aj1aj2 < 0. We observe that aj1 < 0 for 0 ≤ j1 ≤ jM1 and aj2 > 0 for

jm2 ≤ j2 ≤ d . In this case we have jm2 = jM1 + 1. It follows that for 0 ≤ j1 ≤ jM1 and

jm2 ≤ j2 ≤ d we have aj1aj2 < 0. A positive solution of Equation (4.1) is

{
p̃y(j1) = xj1 = j2 − pd
p̃y(j2) = −xj2 = pd− j1

.

We have p̃y(j1) + p̃y(j2) = j2 − pd+ pd− j1 = j2 − j1 and then the normalized extremal

rays corresponding to j1 and j2 are given by (4.4). If pd is integer we have apd = 0. It

follows that (4.5) is also an extremal solution.

We denote by R(j1,j2) and Rpd the random variables whose pmf are r(j1,j2) and rpf
respectively. We will refer to r(j1,j2) and rpf as extremal ray densities and R(j1,j2) and

Rpd as extremal ray random variables. We will omit extrema for the sake of simplicity.

Notice that r(0,d) = (1− p, 0, . . . , 0, p).

Corollary 4.2. If pd is not integer there are np = (jM1 + 1)(d− jM1 ) ray densities.

If pd is integer there are np = d2p(1− p) + 1 ray densities.

Note that there are roughly d2p(1− p) extreme rays for large d. This is numerically

manageable in mathematical-finance applications, where large investment banks typi-

cally deal with several hundreds of default indicators. For example with d = 1000 and

p = 0.1 we obtain 90000 extreme rays. Nevertheless, we will provide analytical expres-

sions for VaR and this avoids numerical search, and makes any dimension d possible.

We have proved the following.

Theorem 4.1. The following holds. Sd ∈ Sd(p) iff there exist λ1, . . . , λnp ≥ 0 summing

up to 1 such that

pS =

np∑
i=1

λiri,

where ri are the ray densities of Cp as defined in (4.2) and np is their number.

4.1.1 Second order moments

Let X ∈ Ed(p) and let µ2 = E[XiXj] its second order cross moment.

10



Proposition 4.4. Let X ∈ Ed(p). It holds

µ2 =
d∑

k=0

k(k − 1)

d(d− 1)
pk. (4.6)

Proof. By exchangeability we can fix any pair i, j ∈ {1, . . . , d}. It holds

µ2 = P (Xi = 1, Xj = 1) =
d∑

k=0

P (Xi = 1, Xj = 1|Sd = k)P (Sd = k)

=
d∑

k=2

(
d−2
k−2

)(
d
k

) pk =
d∑

k=2

k(k − 1)

d(d− 1)
pk

=
d∑

k=0

k(k − 1)

d(d− 1)
pk,

We straightforward obtain the formula for the moment of order α,

µα =
d∑

k=α

(
d−α
k−α

)(
d
k

) pk.

Thanks to the one-to-one map E we can find the bounds for the second order moments

of Ed(p) using the second order moments of Sd. We have

E[S2
d ] = E[(X1 + . . .+Xd)

2] = pd+ d(d− 1)µ2. (4.7)

Proposition 4.5. Let X ∈ Ed(p). Then if pd is not integer

1

d(d− 1)
[−jM1 (jM1 + 1) + 2jM1 pd] ≤ µ2 ≤ p.

If pd is integer
p(pd− 1)

(d− 1)
≤ µ2 ≤ p. (4.8)

Proof. From (4.7) we have µ2 = 1
d(d−1)

[E[S2
d ] − pd]. Since Sd ∈ Sd(p), its density is a

convex linear combinations of the ray densities. In [10] it is proved that the moments of

Sd are linear combinations of the moments of the ray variables. We obtain

E[R2
(j1,j2)

] = j21
j2 − pd
j2 − j1

+ j22
pd− j1
j2 − j1

= −j1j2 + (j1 + j2)pd, (4.9)

and if pd is integer

E[R2
pd] = (pd)2. (4.10)

11



To maximize µ2 we have to maximize E[S2
d ]. From (4.9) and (4.10) we easily get

that the ray variable for which the second order moment is maximum is R(0,d) and we

have E[R2
(0,d)] = pd2. Then, after some computations, the maximum second moment is

µM2 = p.

To minimize µ2 we have to minimize E[S2
d ]. We consider two cases. If pd is not

integer, from (4.9) we have that the ray variable for which the second order moment is

minimum is R(jM1 ,jm2 ) = R(jM1 ,jM1 +1), for which we have E[R2
(jM1 ,jM1 +1)

] = −jM1 (jM1 + 1) +

(2jM1 + 1)pd and the assert follows. If pd is integer the ray variable for which the second

order moment is minimum is Rpd. Since E[R2
pd] = (pd)2, (4.8) follows.

Notice that the lower bound for µ2 goes to p2 for large d, which is a likely practical

case in the credit risk framework. In fact p(pd−1)
(d−1)

→ p2 for d → ∞. The case µ2 = p2

corresponds to incorrelation, thus for d large we essentially have positive correlation.

Thanks to equation (3.1), the next corollary to the above proposition provides bounds

for the correlation coefficient.

Corollary 4.3. Let X ∈ Ed(p). Then if pd is not integer

1
d(d−1)

[−jM1 (jM1 + 1) + 2jM1 pd]− p2

p(1− p)
≤ ρ ≤ 1.

If pd is integer

− 1

d− 1
≤ ρ ≤ 1. (4.11)

Remark 1. The above corollary improves previous results (see e.g. [21]) for the lower

bound of correlation for non-integer pd. It is indeed known that for a finite sequence of

exchangeable random variables ρ ≥ − 1
d−1

, therefore we show that

ρmin =

1
d(d−1)

[−jM1 (jM1 + 1) + 2jM1 pd]− p2

p(1− p)
≥ − 1

d− 1

. Since jM1 is the largest integer less than pd, we have jM1 = pd − ε, with ε ∈ (0, 1). It

holds:

ρmin =

1
d(d−1)

[−jM1 (jM1 + 1) + 2jM1 pd]− p2

p(1− p)

=

1
d(d−1)

[−(pd− ε)(pd− ε+ 1) + 2(pd− ε)pd]− p2

p(1− p)

=

1
d(d−1)

[p2d2 − pd+ ε− ε2]− p2

p(1− p)
=
−pd+ p2d+ ε− ε2

d(d− 1)

1

p(1− p)

= − 1

d− 1
+

ε− ε2

d(d− 1)p(1− p)
≥ − 1

d− 1
,
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in fact 0 < ε ≤ 1 implies ε− ε2 < 1. We notice that, if pd is integer, then jM1 = pd− 1,

i.e. ε = 1 and we find the lower bound in (4.11).

4.2 Generators for given marginal default probabilities and de-

fault correlations

In this section we consider the class of multivariate exchangeable Bernoulli mass func-

tions with given margins p and given correlation ρ, i.e. the class Ed(p, ρ). We now find

the generators of Sd(p, ρ).

Since Sd ∈ Sd(p, ρ) iff E[Sd] = pd and E[S2
d ] = dp + d(d− 1)µ2 (see equation (4.7)),

we can define an homogeneous linear system whose solutions are the pmf in Sd(p, ρ).

Similarly to the procedure which we adopted to obtain Theorem 4.1 we can prove the

following result.

Theorem 4.2. Sd ∈ Sd(p, ρ) iff there exist λ1, . . . , λnp ≥ 0 summing up to 1 such that

pS =

np∑
i=1

λirρ,i,

where rρ,i are the normalized extremal rays of the cone Cp,ρ defined by the linear system:

{ ∑d
j=0[j − pd]pj = 0∑d

j=0[j
2 − (pd+ d(d− 1)µ2)]pj = 0.

(4.12)

The following corollary of Proposition 4.2 characterizes the ray densities of Sd(p, ρ).

Corollary 4.4. The extremal rays of Sd(p, ρ) have support on at most three points.

Proposition 4.6. Let αj := j − pd and βj := j2 − (pd + d(d − 1)µ2) and let Aij =

det

[
αi αj
βi βj

]
. If 

Ajk ≥ 0

Aik ≤ 0

Aij ≥ 0.

(4.13)

the extremal rays of (4.1) are rρ = (p0, . . . , pd), where pl = 0, l 6= i, j, k,

pi =
jk − (j + k − 1)dp+ d(d− 1)µ2

(k − i)(j − i)

pj = −ik − (i+ k − 1)dp+ d(d− 1)µ2

(k − j)(j − i)

pk =
ij − (i+ j − 1)dp+ d(d− 1)µ2

(k − j)(k − i)
,

(4.14)

with i < j < k.
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Proof. The extremal rays of (4.1) can be found as follows. Let αj := j − pd and

βj := j2 − (pd+ d(d− 1)µ2), we can write system (4.12) as follows:{ ∑d
j=0 αjpj = 0∑d
j=0 βjpj = 0,

(4.15)

Let now A =

[
α0 . . . αd
β0 . . . βd

]
. From Corollary 4.4 we have to find the positive solutions

(xj, xj, xk), for i < j < k , of

{
αixi + αjxj + αkxk = 0

βixi + βjxj + βkxk = 0,
(4.16)

Then, from a positive solution, we find pl = xl
xi+xj+xk

, l ∈ {i, j, k}. Letting xk = 1 the

system 4.16 becomes {
αixi + αjxj = −αk
βixi + βjxj = −βk,

and its solution can be determined by standard computation using Cramer’s formula.

We have 
xi =

Ajk

Aij

xj = −Aik

Aij

xk = 1.

(4.17)

It immediately follows that the positive solutions can be obtained if conditions (4.13)

hold. By standard computation (4.14) follows from (4.17). We observe that if rank(A) =

1 then the extremal rays have support on two or one point.

Corollary 4.5. Conditions (4.13) are equivalent to{
µ2 ≥ max{µi,j2 , µ

j,k
2 }

µ2 ≤ µi,k2
(4.18)

where µj,k2 is the second order moment of the extreme ray density r(j,k).

Proof. The expression for second order moment of the ray density r(j,k) is

d(d− 1)µjk2 = (j + k − 1)dp− jk. (4.19)

As a consequence Aij = d(d− 1)(j − 1)[µ2 − µj,k2 ] and conditions (4.18) follow.

We conclude this section with the following proposition that gives necessary and

sufficient conditions for a ray density in Sd(p) to be also a ray density in Sd(p, ρ) .

Proposition 4.7. A ray density r ∈ Sd(p, ρ) has support on two points iff it is a ray

density in Sd(p) and µr
2 = µ2, where µr

2 is the second order cross moment of r.
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Proof. If r is a solution of (4.12) it is also a solution of (4.1) and since it has support on

two points by assumption, it is an extremal solution. Thus r ∈ Sd(p) is a ray density.

Viceversa if r ∈ Sd(p) it satisfies the first equation of (4.12) by definition and if µr
2 = µ2

it satisfies the second equation by construction. Since it has mass on two points it is an

extreme solution of (4.12).

5 Financial risk measures and their bounds

As measures of portfolio risk we consider the Value-at-Risk (VaR) and the Expected

Shortfall (ES) of Sd. We recall their definition for a general random variable Y . See [22]

for the definition of Expected Shortfall for discrete variables.

Definition 5.1. Let Y be a random variable representing a loss with finite mean. Then

the VaRα at level α is defined by

VaRα(Y ) = inf{y ∈ R : P (Y ≤ y) ≥ α}

and the expected shortfall at level α is defined by

ESα(Y ) =
1

1− α
(E[Y ;Y ≥ VaRα(Y )] + VaRα(Y )(1− α− P (Y ≥ VaRα(Y )))).

The following proposition provides the bounds for the VaRα and ESα of Sd, for Sd
in a given class.

Proposition 5.1. 1. Let Sd ∈ Sd(p)[Sd(p, ρ)] and let VaRα(Sd) be its value at risk.

Then

min
R

VaRα(R) ≤ VaRα(Sd) ≤ max
R

VaRα(R),

where R are the ray densities of Sd(p)[Sd(p, ρ)].

2. Let Sd ∈ Sd(p)[Sd(p, ρ)] and let ESα(Sd) be its expected shortfall. Then

min
R

VaRα(R) ≤ ESα(Sd) ≤ d,

where R are the ray densities of Sd(p)[Sd(p, ρ)].

Proof. 1. Let τS = VaRα(Sd) = inf{y ∈ R : P (Sd ≤ y) ≥ α}. Let τi = VaRα(Ri),

τM = maxi τi and τm = mini τi. It holds

P (Sd ≤ τM) =
∑
y≤τM

pS(y) =
∑
y≤τM

np∑
i=1

λipRi
(y)

=

np∑
i=1

λi
∑
y≤τM

pRi
(y) ≥

np∑
i=1

λiα = α,
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thus τS ≤ τM . It holds

P (Sd ≤ τm) =

np∑
i=1

λi
∑
y≤τm

pRi
(y) =

np∑
i=1

λiβi,

with βi ≤ α therefore we have P (Sd ≤ τm) ≤ α. Thus τS ≥ τm and τm ≤ τS ≤ τM .

2. ESα ≥ τm and ESα ≤ d are trivial.

The above proposition shows that, in Sd(p) [Sd(p, ρ)], VaRα reaches the maximum

and minimum values on the ray densities and therefore we are able to explicitly find

them.

Remark 2. The bounds for ESα are weak and trivial. Nevertheless, at least in some

cases, they cannot be improved. In fact, consider the ray density r = (1−p, 0, . . . , 0, p) ∈
Ed(p). If 1 − p ≤ α then ESα = d. As a consequence for marginal default probabilities

higher then 1− α the bound is reached.

Thanks to Proposition 4.3 that gives the analytical expression of the ray densities of

Sd(p), the following proposition provides the analytical sharp bounds for VaRα in Sd(p).

Proposition 5.2. Let us consider the class Sd(p). Let jM1 be the largest integer smaller

than pd, jm2 be the smallest integer greater than pd and jp1 = (p−(1−α))d
α

.

1. If p < 1 − α, min VaRα(R(j1,j2)) = 0 and max VaRα(R(j1,j2)) = [ pd
1−α ] if pd

1−α is not

integer and max VaRα(R(j1,j2)) = pd
1−α − 1 if it is integer.

2. If 1 − α ≤ p ≤ 1 − α + α
d
jM1 , min VaRα(R(j1,j2)) = j∗1 , where j∗1 is the smallest

integer greater or equal to jp1 and max VaRα(R(j1,j2)) = d.

3. If p > 1−α+ α
d
jM1 , min VaRα(R(j1,j2)) = jm2 = jM1 +1 and max VaRα(R(j1,j2)) = d.

In this case, if pd is integer jM1 + 1 = pd.

Proof. Let us consider first the case pd not integer. The ray densities are given in (4.4)

with 0 ≤ j1 ≤ jM1 and jM1 + 1 ≤ j2 ≤ d. From the definition of VaRα we have

VaRα(R(j1,j2)) = j1 ⇐⇒ r(j1,j2)(j1) ≥ α.

It follows

r(j1,j2)(j1) =
j2 − pd
j2 − j1

≥ α,
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then

j2 ≥ −
α

1− α
j1 +

pd

1− α
.

We also know that j2 ≤ d, so let us determine the point P of intersection of j2 =

− α
1−αj1 + pd

1−α and j2 = d. The solution of

{
j2 = − α

1−αj1 + pd
1−α

j2 = d

is P = (jP1 , j
P
2 ) = ( (p−(1−α))d

α
, d). We distinguish three cases, depending on jP1 .

1. jp1 < 0. In this case it will follow that VaRα(R(0,j2)) = 0 for all pd
1−α < j2 ≤ d

and then the minimum value of VaRα(R(j1,j2)) = 0. With respect to the maximum

value of VaRα(R(j1,j2)) it will be obtained by VaRα(R(0,j∗2 )
), where j∗2 is the largest

integer smaller than pd
1−α .

2. 0 ≤ jp1 ≤ jM1 . Let us define j∗1 as the smallest integer greater or equal to jP1 . It

follows that VaRα(R(j∗1 ,j2)
) = j∗1 , j∗2 < j2 ≤ d with j∗2 is the smallest integer greater

or equal to − α
1−αj

∗
1 + pd

1−α . Then the minimum value of V aRα(R(j1,j2)) = j∗1 . The

maximum value of VaRα(R(j1,j2)) is d.

3. jp1 > jM1 . In this case VaRα(R(j1,j2)) = j2. Then the minimum value of VaRα(R(j1,j2)) =

jm2 = jM1 + 1 and the maximum value of VaRα(R(j1,j2)) = d. If pd is integer we

also have jM1 + 1 = pd.

Using a different approach and considering Bernoulli mixture models, the problem of

finding bounds for VaRα under variance constraints is also addressed in [13]. Differently

from [13], we prove that in our case the bounds are attained, thus they are sharp bounds.

Also note that for small marginal default probabilities (p < 1− α) the minimum VaRα

is zero and the maximum VaRα is lower than pd
1−α .If p ≥ 1−α the maximum VaRα is d,

corresponding to the case where all names default together.

We do not have analytical bounds for the problem with given marginal and correla-

tion, but we can explicitly find the bounds in Sd(p, ρ) by browsing over all the extremal

rays, described in Proposition 4.6.

6 Model risk analysis

The theory developed so far allows us to perform model risk analysis for large portfolios.
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Consistently with it, let us suppose we have a credit portfolio P with 100 obligors.

Let the random vector X = (X1, . . . , X100) collect the default indicators for the portfolio

P and assume X ∈ E , where E := E100. The variable S := S100 represents the number of

defaults and the distribution of S represents the distribution of the loss. We analytically

find bounds of VaRα and ESα, for α = 0.90, α = 0.95 and α = 0.99 for two classes of

multivariate exchangeable Bernoulli variables - E(p) and E(p, ρ) - and different levels of

the parameters p and ρ.

The analysis of these two classes of models allows us to study the model risk for given

margins and for given margins and correlation. For a specific correlation coefficient we

perform a sensitivity analysis of their behavior when ρ changes. For each correlation,

we also consider the VaRα and ESα associated to a specific joint model (the Bernoulli

mixture one), to show how the method can be used to assess the risk of a specific model,

considering how far its VaRα and ESα are from the bounds.

To complete the picture, for any p we provide the range of admissible moments

including correlation, for the hundred Bernoulli variables.

In all cases we consider three scenarios corresponding to three marginal default prob-

abilities p = 0.3%, p = 1.7% and p = 26.6%, which are the 1-year marginal default prob-

abilities for the rating classes A,BBB and B of Moody’s, as resulting from [23] table

13 page 40. We do not investigate the correctness of the marginal default probability,

which would be the case if we were investigating marginal model risk.

6.1 Model risk for given margins

Here we deal with E(p) in the three scenarios p = 0.3%, p = 1.7% and p = 26.6%. All the

results in this section are analytical, both for the moments and the risk measure. The

VaRα bounds are given by Proposition 5.2 and the ESα bounds are given by Proposition

5.1. Indeed, bounds for the all moments of the distributions in the class are reached

on the ray densities, as proved in [10]. The bounds for the second order moment and

correlation are analytical too, and their expressions are given in Section 4.1.1.

6.1.1 Scenario 1: p = 0.3%

Before computing VaRα and ESα for the class S(0.3%), corresponding to Moody’s A

rating, let us describe it. As proved in Corollary 4.2, since pd = 0.3 is not integer, the

number of rays is np = (jM1 + 1)(d− jM1 ) = 100, being jM1 = 0 and d = 100. The second

order moment and correlation are given in Table 1. Obviously, the first moment coincides

with p and its range is a singleton. Notice that all positive correlations and some negative

are allowed. This is possible since we consider finite sequences of Exchangeable Bernoulli

variables and not only the mixing models, i.e. the De Finetti’s sequences. So, per se,
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independently of any model, a hundred Bernoulli default indicators with p = 0.3% and

equicorrelation cannot span all negative dependence, but are able to span any level of

positive dependence, zero correlation and negative down to −0.3%.

Order Min moment Max moment

2 0 0.003

ρ -0.003 1

Table 1: Bounds of the moments for the E(0.3%) class of multivariate Bernoulli

Table 2 shows the bounds for the VaRα for the three levels α = 0.90, α = 0.95 and

α = 0.99. They are obtained applying Proposition 5.2, case 1.

α Min VaRα Max VaRα

0.9 0 2

0.95 0 5

0.99 0 29

Table 2: VaRα of the number of defaults for the E(0.3%) class of multivariate Bernoulli

Table 3 shows the bounds for the ESα on the ray densities for the three levels α = 0.90,

α = 0.95 and α = 0.99.These bounds are found by browsing over the extremal rays. The

bounds for the entire class, following Proposition 5.1, are broader: 0 and 100 for all the

levels of confidence under exam.

α Min ESα Max ESα

0.9 1 3

0.95 1 6

0.99 1 30

Table 3: ESα of the number of defaults for the E(0.3%) extremal rays

6.1.2 Scenario 2

Let us assume p = 1.7%. Based on Corollary 4.2 the class S(1.7%) has np = 2 ·99 = 198

ray distributions. By computing the correlations of each ray density we notice that we

have 198 different correlations. Table 4 provides the bounds of the second order moment

and correlation also for this class.

Table 5 shows the bounds for the VaRα for the three levels α = 0.90; α = 0.95 and

α = 0.99. For the first two levels of confidence Proposition 5.2, subcase 1 applies. When

α = 0.99 Proposition 5.2, subcase 2 applies, with jp1 = 0.701 and j∗1 = 1.

Table 6 shows the bounds for the ES on the ray densities for the three levels α = 0.90;

α = 0.95 and α = 0.99. The overall bounds, according to Proposition 5.1, are 0 and
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Order Min moment Max moment

2 1414·10−4 0.017

ρ -0.009 1

Table 4: Bounds of the moments for the E(1.7%) class of multivariate Bernoulli

α Min VaRα Max VaRα

0.9 0 16

0.95 0 33

0.99 1 100

Table 5: VaRα of the number of defaults for the E(1.7%) class of multivariate Bernoulli

100 for α = 0.9 and α = 0.95, 1 and 100 for α = 0.99. Since 1.7% ≥ 1% we have

ES0.99 = 100, as noticed in Remark 2.

α Min ESα Max ESα

0.9 2 17

0.95 2 34

0.99 2 100

Table 6: ESα of the number of defaults for the E(1.7%) extremal rays

6.1.3 Scenario 3

We consider the class E(26.6%). The number of ray densities is much higher relative to

the other two classes considered since it is np = 27 × 74 = 1998. Table 7 shows that

the range of the second order moment and correlation of this class is wider than for the

other classes.

Order Min moment Max moment

2 0.069 0.266

ρ -0.01 1

Table 7: Bounds of the moments for the E(26.6%) class of multivariate Bernoulli

Table 8 shows the bounds for the VaRα for the three levels α = 0.90; α = 0.95 and

α = 0.99. They obtain from Proposition 5.2 subcase 2, with jp1 = 18.44, 22.74 and 25.86

respectively, which gives j∗ = 19, 23, 26.

The following Table 9 shows the bounds for the ESα on the ray densities for the

three levels α = 0.90; α = 0.95 and α = 0.99. The overall bounds would be (19, 100),

(23, 100) and (26, 100). As one can see the maximum ESα is d=100 for each α, since

26.6% > 1− α.
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α Min VaRα Max VaRα

0.9 19 100

0.95 23 100

0.99 26 100

Table 8: VaRα of the number of defaults for the E(26.6%) class of multivariate Bernoulli

α Min ESα Max ESα

0.9 27 100

0.95 27 100

0.99 27 100

Table 9: ESα of the number of defaults for the E(26.6%) extremal rays

6.1.4 Cross scenario comparisons

The bounds for the second order moment are increasing from the first to the third,

according to Proposition 4.5, given that pd is never an integer, and d is equal in the

three scenarios. This happens as a combined effect of the behaviour of p and jM1 . The

lower bound of correlation, because of Corollary 4.3, is decreasing, while the upper bound

is at the maximum, 1. The reader can appreciate how model risk increases, when the

marginal probability does, and when the risk measure is VaRα, by comparing the VaRα

range in Tables 2, 5, 8, or by looking at Figure 1, which represents directly the ranges.

The VaRα and ESα ranges increase with the marginal default probability, and not only

with the level of confidence, which is the standard result. Also, both the minimum and

the maximum are non decreasing with p, there is an exception, namely α = 99% when

p goes from 1.7 to 26.6%.

From the point of view of finance, in all cases model risk, whether it is measured

by a coherent measure (ESα) or by a regulatory one (VaRα), increases exactly when

it matters more, namely when going to worse rating classes, whose marginal default

is more likely. Obviously, the higher the marginal default probabilities, the higher the

maximum VaRα, for any p and α, but also the more it coincides with the worst possible

loss, which has been normalized to 100.

6.2 Model risk for given margins and correlations

In this section we examine the behavior of the loss under the three scenarios above for

the marginal default probability, when, on top of it, a specific value of the equicorrelation

has been selected. We deal with E(p, ρ) in the three scenarios p = 0.3%, p = 1.7% and

p = 26.6% and provide bounds for VaRα for three levels of correlation: ρ = 1
6
; 1
2
; 5
6
.

Here, the ray densities are analytical as well as their VaRα. The bounds are found by

computationally searching the maximum and minimum VaRα among the ray densities.
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We also report the VaRα corresponding to an exchangeable Bernoulli mixing model

from the credit risk literature (for a complete overview see [7]) to give a sense of how a

specific model can enter the bounds and whether it maintains a closedness to the lower

or upper bound independently of the marginal probabilities or other parameters. We

estimate the β-mixing model of each scenario and compute its VaRα. Let us recall that,

if Sβ is the number of defaults of the β-mixing models, we have:

pβ(j) =

(
d

j

)∫ 1

0

pk(1− p)d−kdΨ(p),

where Ψ ∼ β(a, b) is the mixing variable. We have

p = E[Ψ]

µ2 = E[Ψ2].

Therefore we estimate the β parameters a and b by solving the equations

p =
a

a+ b

µ2 =
a(a+ 1)

(a+ b)(a+ b+ 1)
.

Notice that for this model ρ = 0 is not admissible.

6.2.1 Scenario 1

Within the first scenario, p = 0.3% we consider three levels of correlation. Table 10

provides the bounds of VaRα when correlation is assumed or calibrated to be 1
6

and the

single VaRα for the β-mixing model.

Quantile minVaRα max VaRα β -VaRα

0.9 0 2 0

0.95 0 5 0

0.99 1 22 9

Table 10: VaRα of the number of defaults for the β and the E(0.3%, 1
6
) class of multi-

variate Bernoulli

Table 11 provides the bounds of VaRα when correlation is 1
2

and the single VaRα for

the β-mixing model.

Table 12 provides the bounds of VaRα when correlation is 5
6

and the single VaRα for

the β-mixing model.

Within this scenario, the min and max VaRα are weakly increasing with the confi-

dence level, for given ρ, and weakly decreasing with ρ, for any given confidence level. The

range is weakly increasing with the confidence level for given ρ and weakly decreasing

with ρ for any confidence level.
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Quantile min VaRα max VaRα β -VaRα

0.9 0 1 0

0.95 0 3 0

0.99 0 21 4

Table 11: VaRα of the number of defaults for the β and the E(0.3%, 1
2
) class of multi-

variate Bernoulli

Quantile min VaRα max VaRα β -VaRα

0.9 0 0 0

0.95 0 1 0

0.99 0 7 0

Table 12: VaRα of the number of defaults for the β and the E(0.3%, 5
6
) class of multi-

variate Bernoulli

6.2.2 Scenario 2

Within the second scenario, p = 1.7%, we consider the same three levels of correlation.

Table 13 provides the bounds of VaRα when correlation is 1
6

and the β-mixing model

VaRα.

Quantile min VaRα max VaRα β -VaRα

0.9 0 16 5

0.95 1 25 11

0.99 2 55 29

Table 13: VaRα of the number of defaults for the β and the E(1.7%, 1
6
) class of multi-

variate Bernoulli

Table 14 provides the bounds of VaRα when correlation is 1
2

and the single VaRα for

the β-mixing model.

Quantile minVaRα max VaRα β -VaRα

0.9 0 9 0

0.95 0 25 5

0.99 1 93 57

Table 14: VaRα of the number of defaults for the β and the E(1.7%, 1
2
) class of multi-

variate Bernoulli

Table 15 provides the bounds of VaRα when correlation is 5
6

and the single VaRα for

the β-mixing model.

Comments similar to the ones in Scenario 1 apply.
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Quantile min VaRα max VaRα β -VaRα

0.9 0 3 0

0.95 0 8 0

0.99 61 100 94

Table 15: VaRα of the number of defaults for the β and the E(1.7%, 5
6
) class of multi-

variate Bernoulli

6.2.3 Scenario 3

Within the third scenario, p = 26.6%, we consider the same three levels of correlation.

Table 16 provides the bounds of VaRα when correlation is 1
6

and the unique VaRα for the

β-mixing model. With the purpose of showing that the number of generators of a class

vary significantly, and can be very huge, we provide here the number of ray densities of

this class. In this case we do not have a closed formula to find the number of rays, but

since we find them analytically, we enumerate them. They are 32.372.

Quantile min VaRα max VaRα β -VaRα

0.9 21 82 53

0.95 26 100 62

0.99 38 100 76

Table 16: VaRα of the number of defaults for the β and the E(26.6%, 1
6
) class of multi-

variate Bernoulli

Table 17 provide the bounds of VaRα when correlation is known and it is 1
2

and the

single VaRα for the β-mixing model.

Quantile min VaRα max VaRα β -VaRα R

0.9 42 100 82

0.95 56 100 93

0.99 63 100 100

Table 17: VaRα of the number of defaults forthe β and the E(26.6%, 1
2
) class of multi-

variate Bernoulli

Table 18 provide the bounds of VaRα when correlation is known and it is 5
6

and the

single VaRα for the β-mixing model.

Comments similar to scenarios 1 and 2 apply.

6.2.4 Cross scenario comparisons

From the tables above we note that all others equal, the bound range is smaller than

when correlation is not specified (Section 6.1). For a given level of confidence and ρ,
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Quantile min VaRα max VaRα β -VaRα

0.9 81 100 100

0.95 86 100 100

0.99 88 100 100

Table 18: VaRα of the number of defaults for the β and the E(26.6%, 5
6
) class of multi-

variate Bernoulli

as the marginal default probability increases (from scenario 1 to 3) the minimum and

maximum VaRα are non decreasing, and the maximum VaRα reaches the maximum

possible loss when the default is as high as 26.6%, as it happened without an assigned

value of ρ. For given level of confidence and ρ, the VaRα range is decreasing in p.

The choice of a specific model, the popular mixing β one, obviously captures only

one value of VaRα within the range, with no regularity on whether this is closer to

the minimum or maximum. So, even for such a specific model, there is no way to

conclude that it is pessimistic or optimistic in the quantile-based measurement of losses.

This is particularly relevant for applications since, as we know, Value-at-Risk is currently

included in the regulatory provisions for banks and insurance companies. The fact that a

specific model, like the β-mixing one, does not ensure to be pessimistic or optimistic, even

after selection of correlation in evaluating VaRα, is therefore of the utmost importance

in regulatory-based choices of credit-risk models.

To make these conclusions stronger, figures 2, 3 and 4 plot the bounds for VaRα

when ρ takes equi-spaced values in the range [0, 11
12

]. The reader can appreciate how

calibration risk as measured by the range of VaRα weakly increases, for given ρ, when

the marginal probability or the level of confidence does (so, from top to bottom across

figures and from left to right in any given figure). For given level of confidence and p the

maximum VaRα tends to increase with ρ. Nevertheless, for small values of correlation

it happens that the minimum VaRα is decreasing with correlation. This is consistent

with the theory, even if we are spanning positive correlation only, since quantiles are

not linear functions of the variance. To give an example consider the following two ray

densities r1m and r2m in Sd(1.7%) with correlations ρ1 = 1
6

and ρ2 = 1
2

respectively, such

that VaRα(r1m) ≥ VaRα(r2m), α = 0.99.

Let

r1m(y) =


0.4112205 y = 0

0.5789222 y = 2

0.0098574 y = 55

0 otherwise

,
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r2m(y) =


0.2104314 y = 0

0.779779 y = 1

0.0097896 y = 94

0 otherwise

.

Easy calculations shows that they have mean 1.7 and therefore they are in Sd(1.7%).

Since they have mass on three points they are ray densities (they are solutions of the

linear system (4.12)). To verify correlations we first compute E[(r1m)2] = 32.13425 and

E[(r2m)2] = 87.28055. Then µ1
2 = 0.0030742 and µ2

2 = 0.0086445 by using (4.7). Finally

ρ1 = 1
6

and ρ2 = 1
2

are obtained by inverting (3.1). Looking at the densities it is evident

that VaR0.99(r
1
m) = 2 and VaR0.99(r

2
m) = 1.

It also emerges from the figures that the VaRα of the β-mixing model sometimes

reaches the bound and depending on p and ρ its values with respect to the bounds

significantly change. In particular for low (high) p the VaRα of the β-mixing model

coincides with the minimum (maximum) VaRα. Figures 2, 3 and 4 show that, even if

the β-mixing model is calibrated to match the moments of the Bernoulli, it tends to

produce a VaRα close to the minimum one for low p, and close to the maximum for high

p. In any case, the width of the band between the minimum and the maximum, together

with the specific location of the β VaRα within it, give a sense of how stringent is the

choice of a specific multivariate distribution.
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Figure 1: VAR ranges for p = 0.03%; 1.7%; 26.6%

Figure 2: VAR bounds and β-mixing model VAR for p = 0.03% and different ρs

Figure 3: VAR bounds and β-mixing model VAR for p = 1.7% and different ρs

29



Figure 4: VAR bounds and β-mixing model VAR for p = 26.6% and different ρs
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