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Abstract: Within the context of civil structures, a monitoring system supported by an intelligent diagnostic 

features extraction allows to keep under observation the overall health state of a building. In most cases, the 

diagnostic features are influenced by Environmental and Operational Variations (EOVs) which cause 

fluctuations that can be confused with the appearance of damage, or worse, hide it. A useful strategy to get rid 

of those confounding effects consists in modelling the structural behaviour of the system, considering and 

predicting these harmless and reversible fluctuations. However, a model approximates a much more complex 

reality and therefore it is based on a reasonable number of components whose selection might turn out 

complicated. In this research, a large amount of heterogeneous experimental data is systematically analysed 

to investigate which have the greatest influence on structural behavior and therefore, could contribute for 

modelling the behaviour of a historic building for Structural Health Monitoring (SHM) purpose. 

Environmental data, measurements of static sensors and modal natural frequencies collected in more than 10 

years are scanned and crossed in order to discover any correlations. The analysis of these time series, treated 

with mathematical and statistical tools, has led to some mechanical interpretations of the observed behaviour 

of the system, i.e. the Sanctuary of Vicoforte, a monumental Italian church which houses the largest masonry 

oval dome in the world. The results obtained, especially in terms of correlations between different factors 

affecting measurements, are deemed relevant in the practice of long-term monitoring of cultural heritage and 

existing buildings in general. 
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1. INTRODUCTION  

The growing interest in preserving and protecting the architectural heritage has encouraged the development 

and the application of modern structural monitoring techniques based on the analysis and the interpretation of 

data acquired from sensors [1-4]. Monitoring the health state of this type of buildings is an ingenious approach 

as it allows to evaluate the condition of conservation with minimal invasiveness and enable to readily establish 

the safety condition after sudden events such as earthquakes [5-8]. Furthermore, in presence of data from 

continuous time monitoring systems, symptom-based approaches [9-11] may prove suitable for perceiving 

anomalies in the structural behaviour, especially when models are strongly affected from a high level of 

uncertainty regarding the effective properties of materials, their current state, the construction techniques, the 

possible interventions stratified over the years, the structure-soil interaction and so on [12-14].  

Innovative techniques in SHM often involve the study and analysis of dynamic response signals using 

statistical tools and machine learning algorithms [15]. In their strongest sense, they aim to predict the future 

response of the system and to identify occurrence, type, entity and/or location of possible damage in real time 

or near real time. When working on architectural assets, these techniques are particularly appreciated as they 

prove to be practically non-invasive and reversible and in addiction, helping to increase the level of knowledge 

[16-19], they lead to compliance with the minimum intervention principle, as that introduced in the 

International Council on Monuments and Sites (ICOMOS) guidelines [20].  

In some of these procedures [21-26], damage detection is based on the analysis of variations in the trend of 

structural frequencies over time. In fact, since a significant damage affects the global stiffness of a system and 

the modal parameters depend on it, checking that the parameters are stable over time and do not present 

unexpected variations is a good way to investigate the health of the system. Complications arise because, in 

addition to damage, also several EOVs influence the data recorded on the structure [27-31], although they are 

actually harmless and reversible. Therefore, discriminating them from real damage is important to avoid 

wrong diagnoses. Previous studies [32-38], some concerning the behaviour of bridges, have pointed out the 

importance of the effects of EOVs on real structures in SHM approach. 

In this paper, the quantities that most affect the structural behaviour of architectural heritage buildings are 

assessed by systematically investigating dependencies and correlations with environmental phenomena; 



knowing how monitoring data depend on environmental phenomena allows to shed light on their annual 

fluctuations, giving us the extent of the values attributable to seasonal variations and actual anomalies which 

could be associated with changes in the structural system, i.e. damage. The information thus obtained are 

given as input of regression models, to assess whether the involvement of those correlated environmental 

measures could bring an advantage in the prediction of structural behavior, compared to models (which will 

be referred to as reference models), based only on homogeneous measurements, i.e. concerning same type of 

diagnostic feature. 

The benchmark of this research is represented by the Sanctuary of Vicoforte, Piedmont, Italy, a masterpiece 

of Baroque architecture. This monumental 17th century church, covered by the world's largest masonry oval 

dome, 37.23 by 24.89 m, is equipped with a permanent static [39] and dynamic [40] monitoring system, which 

over the years have recorded long series of data, useful for the purposes of this analysis. 

The layout of this paper is as follows. Section 2 discusses the relevant theoretical background behind 

correlation and the regression analysis exploiting one of the most common machine learning algorithms; in 

Section 3 the case study is described with particular focus on its monitoring systems; Section 4 refers to the 

processing of experimental data. The correlation analysis is exposed in Section 5 and its results are used in 

Section 6 to improve the prediction of structural behavior. Finally, conclusions are drawn in Section 7. 

 

2. CORRELATION AND REGRESSION ANALYSIS 

In the first part of this chapter, reference is made to theoretical notions useful for explaining subsequent 

elaborations. They are simple and consolidated concepts of statistics, effective in analysing experimental data. 

The last sub-paragraph briefly reports the theory underlying Support Vector Machine (SVM), a machine 

learning tool already used in the literature for SHM purpose [41-48], which will be used here to model two 

diagnostic variables of the structure on the basis of different predictor variables.  



2.1 Correlation analysis 

Correlation analysis is a method of statistical evaluation used to study the strength of a relationship between 

continuous variables. This particular type of analysis is useful when establishing possible connections between 

variables [49-51]. 

The existence of a correlation between series of values implies that if there is a systematic variation in one, it 

is also found on the other. The search for a possible correlation between the variables passes through the 

supposition, in the specific case, of the existence of a linear relationship between them. In general, variables 

may also exhibit a more complicated than linear relationship. As a matter of fact, two series that have a small 

or no linear correlation might have a strong nonlinear relationship. However, checking for linear correlation 

before fitting any model is a useful way to identify variables that have a simple relationship. In addition, a 

small deviation from linearity, to be detected from the scatter plot of the data, will not generally affect the 

magnitude of the linear correlation coefficient.  

In cases when an estimate of uncertainties is available, it could be assessed whether the measurements 

approach the linear relationship, and in the positive case, the hypothesis of the linear relationship between the 

variables would be confirmed. Unfortunately, in many experiments it is impossible to have an a priori estimate 

of the uncertainty and one must use the data themselves to determine if they are linearly related. The linear 

correlation coefficient (or Pearson correlation coefficient) measures the extent to which a set of points 

(𝑥1, 𝑦1), … (𝑥𝑛, 𝑦𝑛) supports the hypothesized relationship. It is expressed by: 

𝑟 =
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
 

(1) 

where 𝜎𝑥𝑦 is the covariance and 𝜎𝑥 and 𝜎𝑦 are the variances of variables. By considering the definitions of 

variance and covariance the formula can be written in this form: 

𝑟 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) 

√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2 
 

(2) 

𝑟  is a measure of how well the supposed 𝑦 function approximates the data, being defined in the range −1 and 

+1. The closer 𝑟 is to the limits of the range, the closer the measured points are to the supposed line. On the 

contrary, if |𝑟| is very small, close to 0, it means that the points are linearly uncorrelated. The sign of 𝑟 

indicates the slope of the line: a positive and closer to the unit coefficient implies a positive correlation, i.e. 



one variable increases simultaneously with the other; in the opposite case, a negative correlation is observed 

when a variable decrease while the other increases. Even if a strong linear relationship exists between 𝑥 and 

𝑦 variables of the system, there is no expectation that the experimental measurements will be placed exactly 

on a line. Therefore, unit values will never be achieved. Similarly, as a discrete number 𝑁 of points is 

contemplated, it is not expected to obtain perfectly 0 as a correlation coefficient between uncorrelated 

variables: if the variables are really uncorrelated, this coefficient will decrease as the number of points 

increases.  

While a significant relationship may be identified by correlation analysis techniques, this cannot reveal 

causation. The cause cannot be determined by the analysis, nor should this conclusion be attempted. A 

significant relationship implies that there is more to understand and that there are extraneous or underlying 

factors that should be explored further in order to look for a cause.  In this paper, the correlation analysis 

allows to identify which aspects and variables depend on each other, information that can generate usable 

insights as they are or starting points for further investigations. 

If a large number of variables are associated with the system, a pre-processing via Principal Component 

Analysis could streamline the computational burden needed to perform correlation analysis. 

2.2 Principal Component Analysis  

Principal Component Analysis (PCA), also known as Karhunen-Loève transform, Hotelling transform or 

orthogonal decomposition, is a technique mathematically defined as an orthogonal linear transformation that 

turn the data to a new coordinate system such that the greatest variance, by some scalar projection of the data, 

comes to lie on the first coordinate (called the first principal component), the second greatest variance on the 

second coordinate, and so on [52]. This technique was first proposed in 1901 by Karl Pearson and then 

developed by Harold Hotelling in 1933, and it is part of the factor analysis. The aim is to reduce the number 

of variables describing a data set to a smaller number of latent variables, limiting the loss of information as 

much as possible. This technique can identify the most influencing set of data through the Singular Value 

Decomposition (SVD) algorithm, a factorization that generalizes the eigen-decomposition for any 𝑚 × 𝑛 

matrix through an extension of the polar decomposition. 

https://en.wikipedia.org/wiki/Eigendecomposition
https://en.wikipedia.org/wiki/Polar_decomposition#Matrix_polar_decomposition


In particular, given a matrix of n variables and m observations [𝑂]𝑚×𝑛, the SVD decomposes it in three 

matrices, as: 

[𝑂] = [𝑈][𝑆][𝑉]𝑇 (3) 

 

Where [𝑈]𝑚×𝑚 and [𝑉]𝑛×𝑛 are unitary matrices which stores the left-singular vectors and right-singular 

vectors of [𝑂] respectively, and [𝑆]𝑚×𝑛 is a rectangular matrix with real and non-negative terms on the 

diagonal known as the singular values, sorted in descending order.  

For instance, when a very large number of sensors are installed on a structure, the SVD algorithm can be used 

to choose the most representative time series of the system for each type of sensor. In particular, as many [𝑂] 

as the types of devices in the monitoring system are assembled, which collects the time series in columns. 

This avoids processing a large number of series containing the same information, thus reducing data 

elaboration burden. For the actual problem, for example, SVD was used to extract the singular values of the 

temperature sensors setup. Then, the most representative temperature sensors have been chosen starting from 

the Proper Orthogonal Mode (POM) with highest singular value. A representative sensor was thus selected by 

the channel with highest absolute amplitude of the first POM. 

2.3 Regression Models for SHM 

 Various damage detection procedures provide for the creation of a model of the system that reproduces its 

structural behaviour [53-57]. This turns out to be an acute strategy because the comparison of monitoring data 

with those produced by the model, which simulates the healthy condition, would allow to understand if any 

anomaly is taking place in the real system. For the definition of the model, some studies exploit the dependence 

of the diagnostic feature on environmental factors, especially temperature, sometimes measured in different 

positions of the system. Other researches instead, provide to model one of the diagnostic features through 

machine learning algorithms, using analogous features as predictors. For example, in [41,54] a model is built 

on the one frequency of the structure, based on the trend of the others. The idea is that the relationship between 

these features remains unchanged under the effect of EOVs, and that it changes when damage occurs. The 

warning is manifested by a departure of the monitoring data from the model data. It seems clear that the more 

precise and realistic the model, the easier it is to notice a difference between the two trends.  

https://en.wikipedia.org/wiki/Singular_value


In this research, a model of a diagnostic variable is built by exploiting both dependencies on environmental 

factors and on a similar diagnostic feature, seeking an improvement over the model that considers only one of 

them. The correlation analysis could be useful to understand which of all the available environmental variables 

can improve the prediction and therefore, bring a potential advantage for damage detection: in this regard, in 

section 6, different regression models of two diagnostic feature of the sanctuary are built by changing the input 

variables which have been selected based on the results of the correlation analysis. To create the 

aforementioned models, it was decided to use SVM, harnessing all the benefits of a machine learning based 

approach.  

2.3.1 Support Vector regression  

SVM analysis is a popular machine learning tool for classification and regression, introduced by Vapnik et al. 

[58,59]. Both learning problems are based on the same idea with the difference that in a classification problem, 

much more commonly used in SHM, the output is represented by class labels (i.e. it has a discrete domain), 

while in a regression problem, such as the one addressed here, the output is a continuous variable.  

Given a training dataset composed of N P-dimensional observations 𝒙𝑖 ∈ 𝑅𝑃 and their scalar outputs  𝑦𝑖 ∈ 𝑅 , 

the goal of a regression problem is to find the function 𝑦 = 𝑓(𝒙) that better generalizes a new data set, different 

from the training one. To do this, SVM considers a linear function, as: 

𝑦 =〈𝒘, 𝒙〉 + 𝑏 (4) 

where 𝒘 and 𝑏 are the parameters to be adjusted to reach the best fit. The regression problem is based on the 

Structural Risk Minimization (SRM) principle, i.e. the use of an appropriate risk functional, which not only 

involve the minimization of the error on the training data set -Empirical Risk Minimization (ERM) principle- 

but also the minimization of an upper bound on the generalization error. This allows to avoid over-fitting and 

thereby improves the generalization performance on an unknown dataset. The structural risk also depends on 

a loss function. In the case of SVM a ε-Insensitive Loss-Function is used, which derives from the concept of 

robust regression introduced by Huber, to which an insensitive zone is added, defined by ε, named insensitive 

parameter. This implies that the loss function will be set equal to ε if the discrepancy between the expected 

and actual value is less than ε. Introducing some slack variables and Lagrange multipliers and considering the 

above-mentioned characteristics of the algorithm, the optimization problem is solved by maximizing an 



objective convex functional. It depends on a constant C, called box-constraint, which is a positive value that 

controls the penalty imposed on observations that lie outside the margin defined by ε. These two parameters, 

which should be defined a priori, are usually selected by implementing a cross validation procedure.  

The linear formulation can be easily generalized to the case of non-linear regression using the so-called kernel 

methods: through a mapping function, the data of the original space (in which they are difficult to separate) 

are mapped into a high-dimensional space, where they can be separated more simply. The linear SVM 

algorithm is then conducted in the feature space, which represents nonlinear SVM operation in the original 

space and thanks to the popular kernel trick, the computational burden is reduced as the calculation of the high 

dimensional coordinates of the points can be avoided. 

2.3.2 Measures of goodness of fit 

Regardless of the regression technique used, the regression model that best fits data can be defined using some 

measures of goodness of fit [60-64], which describe how well the model fits a set of experimental data. One 

of the most used measures is the Root Mean Square Error (RMSE) that is the standard deviation of 

the residuals, i.e. prediction errors. Residuals are a measure of how far from the regression line data points 

are. In other words, RMSE indicates how concentrated the data is around the line of best fit. This measure is 

commonly used in climatology, forecasting, and regression analysis to verify experimental results. RMSE is 

defined by the following equation: 

𝑅𝑀𝑆𝐸 = √
𝟏

𝒏
∑(𝒚𝒋 − 𝒚𝒋̂)

𝟐
𝒏

𝒋=𝟏

 (5) 

Where n is the number of 𝑦𝑗 and 𝑦𝑗̂ is the predicted data. Then, in general, the lower the RMSE, the better the 

model fits the data. The higher the RMSE, the more the data moves away from the model, which in this 

specific case means that something unexpected is happening in the system such as damage or an anomaly in 

general. 

 



3. CASE STUDY: CONTINUOUS DATA MONITORING ACQUIRED ON THE 

SANCTUARY OF VICOFORTE      

The Sanctuary of Vicoforte, a monumental church of the 17th century, is a unique case in terms of importance 

in the Italian Cultural Heritage framework. The majestic dome that covers the structure, is the largest masonry 

oval dome in the world with the axes of 37.15 and 24.80 m (Figure 1) [65].  

     

Figure 1: The Sanctuary of Vicoforte: external and internal views of the dome. 

 

The construction of the Sanctuary began in 1596 and ended in 1735. Since the first years of its construction, 

this stunning masonry building has suffered from significant structural problems, partly due to the settlement 

of the foundations. In this regard, in 1983, concerns over the structural health state of the building prompted 

the decision to undertake analysis, monitoring activities and strengthening interventions [66].  

The extended network of cracks that affects a large portion of the buildings becomes particularly severe in the 

drum-dome system, where the cracks are oriented along typical meridian directions with maximum openings 

at window locations and an increased density next to the buttress. In 1987, because of a severe cracking 

configuration and the possible yielding or rupture of the original three levels of circumferential iron rings 

located between dome and drum, a new strengthening system was put in place. The intervention consisted of 

56 tie-bars tensioned, slightly stressed by jacks, placed within holes drilled in the masonry along 14 tangents 

of the perimeter. The interface between two adjacent bars consists of a steel frame placed in the masonry, to 

ensure continuity. The bars were equipped with tensioning devices and load cells for an instantaneous reading 

of the load values, placed at both ends. Bars were re-tensioned 10 years after installation, in 1997. 



During the last decades, several non-destructive investigations were conducted, including some geophysical 

tests [67] and a dynamic identification campaign which allowed the updating of a first FE model of the 

structure [68,69]. 

In 2004 a static monitoring system was installed to check the effectiveness of the strengthening system and 

the propagation of the crack [39]. However, the static monitoring system provides only local information about 

the health state of the structure. In order to solve this shortcoming and to investigate the seismic behaviour of 

the Sanctuary, a permanent dynamic monitoring system was installed 10 years later [70]. 

3.1 Static monitoring system 

In 1983 a first instrumentation to check the evolution of the significant crack patterns was installed. In the 

following decades, several upgrades of the static monitoring system followed. In 2004 the latest monitoring 

system was installed and the acquisition procedure was automated. 

The devices composing the static monitoring system can be grouped into two main categories depending on 

the measurements recorded: sensors of strains, stresses and crack width and instruments that acquire 

measurements of environmental conditions. The static monitoring system includes 12 crack meters (of which 

2 are damaged), 20 pressure cells to determine the stress in the masonry, 56 load cells to control the load 

condition of the bars, 2 orthogonal wire gauges to measure the axis of the dome, 24 temperature sensors and 

3 piezometric electric cells. The layout of the thermometers, wire gauges, load cells and crack meters are 

reported in Figure 2. 

  



 
 

 

Figure 2: Layout in plan of thermometers, wire gauges, load cells and crack meters  

 

The crack meters (LVDTs) check the evolution of the main cracks and are placed at the bottom of the dome. 

The temperature sensors are installed inside and outside the Sanctuary, in the hole of the staircases, on the tie 

bars and in the extrados of the dome. The load cells monitor the structural efficacy of the strengthening 

interventions. The two wire gauges measure the deformation of the minor and major axes of the dome.  

The static monitoring system began collecting data in 2004 and all data acquired until 2015 were regularly 

processed and analysed, showing the substantial efficacy of the tie-bar system in containing displacements but 

also revealing measurement anomalies in some instruments [39]. The renewal of the static monitoring data 

acquisition and management system is now scheduled, also for integration with the dynamic one.   

3.2 Dynamic monitoring system 

In order to have a global perspective on the structural behavior of the Sanctuary, a permanent dynamic 

monitoring system was installed in December 2015. Nevertheless, the data acquisition started only in 

December 2016, after a calibration process of the procedure. The position of the 12 mono-axial piezoelectric 

accelerometers (PCB Piezotronic, model 393B12, seismic, high sensitivity, ceramic shear ICP® accel., 10 

V/g, 0.15 to 1k Hz, Resonant Frequency ≥10,000 Hz, Overload Limit ±5000 g pk, Temperature Range −50 to 

+180 °F) were defined through sensor placement techniques [40]. As shown in  Figure 3, three orthogonal 

accelerometers are located at the base of the crypt to record ground accelerations, and a set of nine 

accelerometers are located at different levels of the lantern-dome-drum system. 



 

  Figure 3: Location of accelerometers in plane and in sections A-A and B-B 

 

The recorded accelerations are continuously processed to extract the modal parameters of the Sanctuary, using 

an automatic modal identification procedure [70] which include an algorithm belonging to the family of 

Stochastic Subspace Identification (SSI) techniques. 

 

4. PROCESSING OF THE EXPERIMENTAL DATA 

The first step in analysing the factors influencing static and dynamic structural behaviour of the Sanctuary is 

the collection, the organization and the processing of the experimental data: environmental measurements, 

data acquired from the static monitoring system and frequencies obtained by the dynamic monitoring system. 

These operations are covered in the next 3 paragraphs. 

4.1 Environmental data 

The environmental phenomena that are considered most significant for this case study, also based on the 

results of previous research [27-38], are involved in the correlation analysis. In particular, the time series of 

temperature and its daily excursion, humidity, wind, rain and snow have been selected. These have been 

requested and obtained from the ARPA Piemonte website [71] and refer to measurements recorded in 



Mondovì (CN), the closest station to Vicoforte (about 8 km), in the period from 01/01/2004 to 22/06/2019. 

Their trend over time with a daily sampling is reported in Figure 4. 

 

Figure 4: Environmental parameters. From the top to the bottom: rainfall, average temperature, maximum 

temperature, minimum temperature, snow, wind, humidity. 

 

The graphs clearly show the seasonal trend of temperatures, which seems to follow an almost sinusoidal 

function. As it is reasonable to expect, snowfall occurs purely during the winter months, unlike rain, which 

also peaks during the warmer seasons. Wind and humidity also seem to imply a seasonal trend, even if much 

less than that shown by the temperature. Snowfall appears to intensify at minimum humidity values. To 

analyse the influence of water on the system (in the ground or in the pores of the masonry) two lines were 

drawn at 0 and 4°C as these represent two important points for the properties of the water: in the case of 

atmospheric pressure, at 0 ° C water shows the liquid/solid phase transition , whereas at 4 ° C it reaches its 

maximum density and minimum volume (these are properties of pure water but they can be considered a fairly 

reliable reference also for the water contained in the system) [72]. 

4.2 Dynamic data 

The accelerometric signals acquired by the permanent dynamic monitoring system installed on the Sanctuary 

were processed through the automatic identification procedure described in [70]. In particular, each 

accelerometer records signals about 21 minutes long starting from the sixth minute of each hour. The signals 

are stored and subsequently loaded into the identification code. After a pre-processing of the acquired data, 



which includes signal decimation, average and trend removal, band pass filter, low frequency component 

removal, signal normalization, the code selects the 5-minute signal range with higher RMS and supplies it as 

input for the dynamic identification process. Working with signals of 5 instead of 20 minutes allows to reduce 

processing times without having any influence on the quantity of identified modes: for the dynamics of the 

Sanctuary, 5 minutes is a time long enough to contain a suitable number of oscillations of the low structural 

frequency and not too long, in order to keep the calculation time at a reasonable level. It uses a time domain 

technique, the Stochastic Subspace Identification (SSI) algorithm. At the end, a statistical analysis of the 

results obtained in several identification session is carried out, evaluating the stability of the modes by varying 

the order of the system, as illustrated in Figure 5. 

  
Figure 5: Example of stabilisation and cluster diagrams, output of the identification procedure 

As it has been observed that the identifications from 18:00 to 6:00 return a much lower number of modes, 

probably due to the low level of excitement at night, the procedure processes only the daytime hours. 

Exclusively for the correlation analysis, only one observation per day was considered as the aim was to 

evaluate the relationship of the frequencies with the environmental quantities and the static parameters, both 

having daily sampling. It was established to use the data acquired at 12:10, because that is the time when the 

first and second frequencies were identified more in 2018. Figure 6 shows the trend of the first two frequencies 

of the Sanctuary during the year 2018, from 01/02/2018 until 31/01/2019. The first one (range 1.892-1.989 

Hz), corresponds to the first bending mode in the Y direction (the direction of the minor axis of the dome 

oval), the second one (range 2.025-2.143 Hz) to the first bending mode in the X direction (the direction of the 

major axis). The gaps in the trends correspond to missing identifications, as it is quite common that some 

modes are not identified under general operational conditions. As the following analyses require almost 

continuous data, the higher modes have not been considered as they are more difficult to identify and 

consequently have sparsest trends. 



 

Figure 6: Annual fluctuation of the first two frequencies of the Sanctuary 

 

Like the environmental parameters, the frequencies also seem to show a seasonal trend. At first glance it seems 

that the value of 𝑓1  and 𝑓2 increases in view of the summer and decreases in the colder months. The clearly 

non-stationary trend of the first two frequencies makes it difficult to recognize a possible appearance of 

damage and this is what arouses the need to create a predictive model. In fact, the reduction of stiffness (and 

consequently of frequency) associated with damage could be hidden by seasonal fluctuations and therefore 

could be catastrophically ignored.  

4.3 Static data 

As said, the static monitoring system began collecting data in 2004 and the analysis of data acquired in the 

following decade has been already performed and discussed in another paper [39]. Since the system has 

experienced periodic malfunctions over the years, mainly due to storms and lightning, the analysis has required 

some further elaboration to be used. In order to ground this study on verified data, only static monitoring 

information acquired until May 2015 was used in the present study, with the consequence that there is no 

contemporaneity between static and dynamic data. The plots in Figure 7 refer, respectively from top to bottom, 

to the data of the thermometers applied inside the structure, piezometers installed in the ground, LVDTs 

applied on the most significant cracks (above: all the time series; below: a single time series to better show 

the seasonal trend), convergence of the axes of the dome, pressure cells inserted into the masonry (as before, 

above: all the time series; below: a single time series to better show the seasonal trend) and load cells on the 

hooping system. Most of the static parameters also show seasonal fluctuations. This is certainly true for the 

temperature measurement of the internal walls of the Sanctuary, which is influenced by the external one. The 



various thermometers seem to have a very similar temperature trend but shifted of some degrees as they are 

installed at different heights both internally and externally. The piezometer data are sparse. In most of the 

observations, no piezometric height data were recorded, probably due to sensor malfunction: for this reason, 

it was decided not to consider the piezometric data in subsequent evaluations. The crack meter data are very 

interesting: all LVDTs show seasonal data in which the cracks tend to open with the arrival of summer and to 

close again approaching the cold months. A very clear seasonal trend is described by the deformation records 

of the axes of the dome. The expansion of the axes is in line with that observed in the first two frequencies: it 

has peaks in correspondence with the summer months and minima in the cold seasons. In particular, although 

the static data acquisition is performed on a daily basis, it can be observed that the major axis deforms more 

than the minor one: it has been noticed that in the summer months, when the elongation of the axes is 

maximum, the ratio between the elongation of the minor and the major axis oscillates in the range 0.6÷0.7, in 

accordance with the ratio between the length of the axes, which is about 0.67. The pressure cells seem to have 

recorded coherent data up to about 2009. After this date, some sensors have trends completely discordant from 

the others, which could be due to local phenomena or sensor malfunction. For this reason, it was decided not 

to involve them in the correlation analysis. The recordings of the load cells in the bars appear to have credible 

trends with the exception of an anomalous time series (LC44) and some unusual data of another sensor in 

spring of 2009 (LC4). These series also seem to repeat the same cycle every year. 

https://context.reverso.net/traduzione/inglese-italiano/approaching


 

Figure 7: Static monitoring system. From the top to the bottom: thermometers, piezometers, crack meters (all 

and a selected time series), convergence, pressure cells (all and a selected time series), load cells.  

 

5. CORRELATION ANALYSIS  

In this section, the possible existence of correlation, i.e. any statistical relationship, is verified between 

heterogeneous data described in the previous chapter.  

A first step before calculating the correlation coefficient and also a useful system to detect the possible 

dependence between variables is a visual examination of the data within a scatter plot. This operation gives 

the possibility of making a check on the value of 𝑟 obtained, both in terms of sign (positive or negative 

dependence) and value (measure of the strength of relationship) and allows you to immediately notice any 

strongly non-linear dependencies that would be difficult to identify from the correlation coefficient, implicitly 

suggesting to use another type of approach. For slightly nonlinear relationships, the linear correlation 

coefficient is still an effective index since it generally does not change in magnitude. In addition, a visual 

examination enables you to identify any outliers and evaluate whether to eliminate them (if they are physically 

unachievable) as they could significantly influence the correlation coefficient. 



First, environmental data were combined with static monitoring data. Not all sensors have been used in this 

analysis: for each type of data, one or a subset of representative sensors of the system was selected, through 

engineering and mathematical (PCA) assessments.  

For example, as regards the 28 thermometers installed on the structure, they have been classified by level and 

exposure (inside or outside the building) and only one per category has been selected via PCA. In particular, 

thermometers 4, 7, 11 and 15 have been chosen, which are positioned respectively on the external and internal 

ellipse above the drum, inside the dome and on the hooping system. The hooping system is made up of 56 

post-tensioned bars distributed over 4 levels in 14 positions of the oval. Of these, only 5 time series have been 

examined: with reference to the highest ring, the LC48 was selected by applying the PCA among the 14 cells 

and in addition, the cells adjacent to the attachment of strain gauges (i.e. LC04, LC16, LC32, LC44) have 

been involved. The PCA has also been applied to the data concerning the opening of the cracks, and the series 

of one of the most important cracks, placed on the West side has been selected. All the possible combinations 

have been scatter-plotted and the correlation coefficient has been calculated for each (Table 1). For reasons of 

space, only the most significant dependencies are reported in Figure 8. 

Table 1: Correlation between environmental parameters and each type of static sensor 

Combination 𝑟 

Thermometer 

4, 7, 11, 15 

 

Text,med 0,94 0,94 0,93 0,89 

Text,max 0,92 0,93 0,91 0,86 

Text,min 0,89 0,9 0,87 0,87 

Snow -0,53 -0,53 -0,56 -0,57 

Rain -0,10 -0,13 -0,08 -0,06 

Humidity -0,16 -0,17 -0,17 -0,12 

Wind 0,07 0,07 0,10 0,08 

Convergence 

minor and major axis 

Text,min 0,80 0,43 

Text,med 0,80 0,40 

Text,max 0,76 0,37 

Snow -0,46 -0,27 

Humidity -0,03 0,06 

Rain -0,01 0,15 

Wind -0,007 -0,08 

Crack meter 

Text,med 0,72 

Text,min 0,71 

Text,max 0,69 

Snow -0,42 

Humidity -0,06 

Rain 0,04 

Wind -0,001 

Load cell Text,med -0,34 -0,87 -0,75 -0,70 -0,73 



LC04, LC16, LC32, LC44, 

LC48 
Text,min -0,34 -0,86 -0,75 -0,67 -0,73 

Text,max -0,32 -0,83 -0,70 -0,66 -0,69 

Snow 0,13 0,53 0,45 0,11 0,49 

Rain 0,09 0,08 0,04 0,04 0,05 

Wind 0,04 0,05 0,03 0,05 0,06 

Humidity 0,02 0,01 -0,02 0,01 0,01 

 

   

Figure 8: Correlation between static sensors and Text,med  

 

The same procedure was repeated on the dynamic data, and the respective results are shown in Table 2. As 

above, in Figure 9 the scatter plots with the most significant dependencies are reported. 

Table 2: Correlation between environmental parameters and frequencies 

Combination 𝑟 

frequency 1 

Text,max 0,72321 

Text,med 0,72063 

Text,min 0,64754 

Wind 0,2715 

Humidity -0,2642 

Snow -0,0877 

Rain 0,08523 

frequency 2 

Text,med 0,85214 

Text,max 0,84094 

Text,min 0,79134 

Wind 0,27 

Rain 0,13577 

Snow -0,1181 

Humidity -0,0285 



 

 

 

Figure 9: Stronger correlation between environmental parameters and frequencies. 

  

The results of correlation analysis suggest that both static and dynamic behaviour of the Sanctuary are mostly 

affected by environmental temperature fluctuations. In fact, static and dynamic data series do not show a 

significant correlation with other environmental parameters taken into consideration, such as humidity, wind 

and rain; a weak correlation between snow and recorded data series is attributed to a secondary effect of 

temperature fluctuations. The most significant results among the static data are related to the analysis of 

masonry temperature, load in the bars and crack meters. The coefficients show that the increase in the external 

temperature corresponds to an increase of internal temperature in the masonry with a time lag that range from 

10 up to 30 days depending on the position of the sensor, due to the thermal inertia of the material. The increase 

in temperature results in crack opening at the level of the drum-dome system, which is accompanied by a 

decrease of the load in the tie-bars. This is predictably due to the fact that the steel of the bars expands more 

than the masonry does, due to the difference in their thermal expansion coefficients. In this situation, the bars 

tend to compress and therefore the tension decreases [39]. The recordings of the wire gauges on the dome 

suggest that the masonry of the structure expands in the summer months and shrinks in cold periods, i.e. the 

elongation measurement shows a directly proportional trend to the external temperature. 

The first natural frequency tends to increase as the external temperature rises, except for low temperature: a 

bilinear behaviour with slope change for low temperatures is suspected, as observed in other case studies too 

[73] (this aspect is the subject of current research of the authors). A simple normalization (each distribution 



has been centred and scaled to have mean equal to 0 and standard deviation equal to 1, to get its z-score) and 

superimposition of the frequency and temperature data (Figure 10) allows us to make some observations. 

 

Figure 10: Above: normalized time series of frequencies with superimposed external temperatures. Below: Measured 

external temperature.  

 

These are also data belonging to 2018, but considering seven frequency data per day, as they were obtained 

with the automatic procedure. The trend of frequencies seems to follow quite precisely that of temperatures in 

almost the whole set except in the first part. Around observation 200 the two frequencies show a peak while 

temperatures seem to display the same shape but reversed: note that in all the other peaks the two quantities 

seem to move parallel, but in these observations, they have the opposite behaviour. By placing a plot of non-

normalized temperatures below the one just described, it was seen that this is the only range in which 

temperatures drastically drop below 0°C. This is a further indication of the bilinearity of the frequency-

temperature behaviour when the latter approaches negative values. A possible interpretation, already 

suggested in a previous study on dynamic monitoring of the same building [41], is that related to the effect of 

ice, which is known to increase appreciably the structural stiffness [73]. An explanation of this effect could 

be found in the different values taken by the coefficient of thermal expansion of water/ice and solid material 

as the temperature changes. The differential values would be able to create a kind of "stress stiffening" effect 

at the micro scale, which would determine an increase of the elastic modulus at bigger scales. Then, because 

the coefficient of thermal expansion of liquid is much higher than that one of solid materials, all the changes 

in stiffness (and thus in natural frequencies), could be explained by the variation of the coefficient of thermal 



expansion of water with temperature. However, this behaviour is still argument of study by the authors and 

the hypothesis will be verified once greater set of dynamic data will be available. 

Figure 10 also exhibits a greater dispersion of the frequencies when the three temperatures diverge, that is, 

there is a greater thermal excursion during the day. Even more importantly, the increase in frequency seems 

to be in some contradiction with the observed increase in crack opening: generally, if the cracks open, a system 

should become weaker and therefore register a decrease in frequencies, yet the opposite would seem to happen. 

Probably other factors such as the stiffness of the ground, the depth of groundwater and the effect of the 

temperature on material parameters as mentioned above, etc. influence the dynamics of the Sanctuary, 

especially lower vibration modes.  

 

 

6. APPLICATION OF THE RESULTS OF THE CORRELATION ANALYSIS TO 

STRUCTURAL BEHAVIOR MODELS 

A model is always a simplification of reality as it is impossible (for both a perceptual and computational limit) 

to take into account all the phenomena that influence a system; on the other hand, some phenomena which 

seem to influence the system but which are actually unrelated, could deviate the model if considered. The 

careful selection of predictors also serves to avoid making a model unnecessarily too complex, by 

incorporating variables that contain the same information. For these reasons, the study of the most significant 

phenomena and the accurate selection of the most influencing predictors could lead to a model that more 

faithfully reproduces the real system behaviour without being too complicated (both from a computational 

and data acquisition point of view). In this chapter, the relationships discovered among the variables are used 

to strengthen the model of two diagnostic features: the first frequency of the sanctuary and the measurement 

of the load inside the circling system of the dome. 

6.1  𝒇𝟏 regression model 

A regression model of the first frequency, created on a subset of data collected on the undamaged structure, 

is intended to reproduce the "healthy" behaviour of the sanctuary as the environmental / operational conditions 

vary. Theoretically, a model that reproduces in a very precise way the healthy behaviour of the structure, 



should have less difficulty in recognizing an anomaly, even the most modest, and for this reason, building a 

performing model represents a challenge of great interest in the field of SHM and damage detection.  

In this section the performances of different SVM regression models of the first frequency of the sanctuary 

will be compared. In particular, the model based on a single predictive variable, i.e. 𝑓2 is compared with 

models that consider additional predictors, i.e. some environmental variables examined in the previous 

chapters. The data collected in 2018 were considered and observations in which the first or second modes 

were not identified were neglected. In Table 3, the different models with their combinations of predictor 

variables were reported together with their regression quality indicators. The training set of all the models 

consists of the range of observations between 280 and 700 (period from 28 March to 01 July), as the most 

significant oscillations of the whole data set occur in it. For each model, the SVM parameters (insensitive 

parameter, box constraint, Kernel function and its parameters in case of nonlinear regression) were selected 

through a five-fold cross validation. For reasons of space only the regression model with the best performance 

has been reported in Figure 11, and in order to facilitate comparison, it is overlapped on the reference model, 

which has 𝑓2 as single predictor.  

Table 3: goodness of fit indices of the regression models of 𝑓1 

Predictors of 𝑓1,𝑆𝑉𝑀 𝑅𝑀𝑆𝐸 

𝑓2 0,007 

𝑓2 , Text,med 

 
0,0061 

𝑓2 , Text,max 

 
0,0064 

𝑓2 , Text,min 0,0061 

 

 

Figure 11: Comparison between the measured value of 𝑓1 (gray), the reference model (red) and the model with the 

lower RMSE (green). 

 



The residue of the models obtained with the addition of predictors from the correlation analysis is generally 

smaller than that obtained with the only predictor 𝑓2: the RMSE has decreased. This means that the information 

(or simply, the data) selected through the correlation analysis, has led to a more precise prediction of the 

dynamics of the system under normal conditions.  

6.2 Regression model of the load in the cerclage system 

The same procedure done for the first structural frequency was repeated for the load measured in one of the 

bars forming the dome strengthening system. This variable can also be connected to an indicator of the 

structural health since the appearance of a damage most likely causes a redistribution of the loads and therefore 

a variation of the load within the cerclage system (see in [39] the discussion on the LC05 and CM02). 

Unlike the previous case, the variable to be modelled -LC44- shows a trend conditioned not only by EOVs, 

but it exhibits an anomaly already declared in [39]. This represents a good opportunity to test the model also 

on data that deviate from the normal conditions of the structure. The load in the aforementioned cell is 

characterized by a non-monotonous trend, with an increase in tension in the years between 2008 and 2012. 

The same trend, albeit in a much lighter way, was recorded in some of the cells to the east, including the LC48, 

the bar adjacent to 44 (see Figure 2). It should be noted that, although this anomaly is appreciable even just 

by looking at the LC44 trend (see the last graph in Figure 7), here we want to evaluate a possible improvement 

in its prediction, which could be decisive in view of an automatic damage detection procedure (i.e. without an 

operator who visually examines the data but through the definition of appropriate damage thresholds) even in 

cases of more modest anomalies. 

The reference model of the LC44 was created using the LC48 cell as a predictor and training it on the data 

corresponding to the normal condition (i.e. data from 2004 to 2008). Also in this case, the SVM algorithm has 

been applied and the same procedure for the selection of hyperparameters has been adopted. The reference 

model was then compared with models that exploit environmental variables as predictors. The results in terms 

of RMSE, both in the healthy and in the anomalous sections are summarized in the Table 4, while the model 

with lower RMSEhealty is shown in the Figure 12. Unlike the "healthy" section, in the anomalous tract, the 

model that will have the highest RMSEanomaly is considered the one with the best performance, because it 

detects the irregularity of the data more clearly. 



Table 4: Goodness of fit indices of the regression models of LC44 

Predictors of 𝐿𝐶44𝑆𝑉𝑀 RMSEhealty RMSEanomaly 

𝐿𝐶48 0,2661 26,15 

𝐿𝐶48 , Text,med 

 
0,2453 26,22 

𝐿𝐶48 , Text,max 

 
0,2417 26,92 

𝐿𝐶48 , Text,min 0,234 27,01 

𝐿𝐶48 , T7 0,2601 27,58 

𝐿𝐶48 , T8 0,2752 27,34 

 

 

Figure 12: Comparison between the measured value of LC44 (gray), the reference model (red) and the 

model with the lower RMSE (green). 
 

Compared to the case of the first frequency, two further models were created by exploiting the measurement 

of the thermometers applied on the structure, as they refer to the same period. In this case, the data collected 

by T7 and T8 thermometers were selected, which are closest to the LC44. The quality measures relating to 

these two models are shown in the last rows of the table. Both are midway between the reference model and 

the models that depend on the external temperature. It would be reasonable to think that the measurement of 

the thermometers installed directly on the masonry could give a more precise indication of the system 

temperature than the external temperature, because in some way it considers the thermal inertia of the material. 

On the other hand, unlike the load measurement in the cerclage system which reflects a global condition, the 

recordings of the thermometers have a local connotation and are strongly influenced by their location and 

exposure and this probably justifies the results obtained. An analysis of the spatial distribution of temperature 

in the system and the consequent positioning of the sensors could improve the reliability of the data in relation 

to this type of diagnostic analysis. 

However, it must be emphasized that the annexation of the data concerning the temperature, both external and 

of the masonry, brings an improvement compared to the reference model. 



 

7. CONCLUSIONS  

This paper presents the systematic study of heterogeneous monitoring data and their potential application in 

the context of SHM. A theoretical indication of which phenomena can condition the structural behaviour, how 

and in which extent is given through an orderly and systematic interweaving of all the environmental and 

monitoring measures available for a system. Having heterogeneous measures available, coming from static, 

dynamic and environmental sensors, the data analysis was methodically organized setting up a first study by 

category, in which the variables vs. time are examined. In this phase it is also possible to select the data to be 

analysed in the second stage, through mathematical tools and engineering evaluations, in cases where there 

are many sensors of the same type available that return the same information. The intersection of the different 

categories of data constituted the second phase of this study. In particular, the static and dynamic monitoring 

vs. environmental data were studied, bringing to light both correlations that are already encountered in 

literature, such as that between frequencies and temperature, and unexpected ones, such as that between 

temperature and width of the cracks. The annexation of the data selected through the correlation analysis as 

predictors of regression models led to a promising improvement in making the prediction more accurate and 

therefore presumably more performing from the perspective of damage detection. Possible future works will 

include: the crossing of static and dynamic data, as soon as contemporary series are available; the study of the 

spatial distribution of temperature on a structure in relation to the external one, considering its geometry, 

material and phenomena such as thermal inertia and exposure and the consequent optimal positioning of the 

thermometers; in the specific case of the Vicoforte sanctuary, the bilinear behavior between temperature and 

frequencies and the unexpected trend of the opening of the cracks will be studied in depth. 

This research and the correlations found could represent a reference for historical structures with similar 

dimensions. The undertaken procedure has the advantage to be easily generalizable and applicable to data 

other than that treated in the case study of the Sanctuary, depending on the type of monitoring system installed 

on the building. The results obtained could also represent a tool to guide the decision on which instruments to 

install / restore / enhance to optimize the health state monitoring of the specific building, of course by 

integration of economic assessments, and for structures belonging to the same category. 
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