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Abstract.  Hyperspectral imaging is a technique used to collect the same scene with different wavelengths, achieving 
both high spectral and spatial resolution. Hyperspectral imaging plays an important role in several scenarios involving 
target detection, among which landmine detection is a very challenging one. In this work, we developed a procedure 
based on pixel similarity measures to detect rare pixels present in a scene. The method can be combined with most of 
the existing detection algorithms in order to reduce the complexity and improve the performance. The developed 
method was tested on various types of hyperspectral images where the spectra of the landmines were simulated in 
different parts of the scenes with different mixing factors. The performance of the proposed method is also confirmed 
by tests made in real scenarios. Comparisons with state-of-the-art existing algorithms demonstrate that the method 
achieves excellent detection performance, with a reasonable computational complexity. 

Keywords: Hyperspectral Imaging, Pixel Similarity Methods, landmine detection, Remote Sensing, 
Dimensionality Reduction. 

 

1 Introduction 

Third world countries have long suffered from the problem of landmines that threaten citizens 

(Zucchetti et al. 2017; UNICEF., Children, and Conflict 2009). This problem damages the 

development of social and economic regions, for example affecting cultivated areas (Hulme 2009). 

Currently, more than 110 million mines are present in 70 countries (MacDonald et al. 2003). The 

manufacturing cost does not exceed $3 per mine, but the demining costs are about $1100 per mine 

(MacDonald et al. 2003). In 2017, the Landmine Monitor recorded 7239 casualties by landmines, 

2793 people were killed, 4431 people were injured (Makki et al. 2017; Monitor, Policy, and Action 

2010; Makki et al. 2018; Zucchetti et al. 2017). Different techniques have been used in order to 

detect landmines. Each of these methods have its advantages and inconveniences. The most used 
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methods are electromagnetic methods (MacDonald et al. 2003), Ground Penetrating Radar (GPR; 

MacDonald et al. 2003; Kale, Ratnaparkhe, and Bhalchandra 2013) Acoustic/Seismic method 

(Mukhopadhyay and Gupta 2007), Nuclear Quadruple Resonance (NQR; Robledo, Carrasco, and 

Mery 2009). These methods are dangerous because they require the presence of demining units in 

the minefield, or like the metal detector suffer from high false alarm rate caused by tiny amount of 

metals (Cardona, Jiménez, and Vanegas 2014).  For these reasons, we are searching for a new 

solution that can be safer and faster based on hyperspectral imaging. 

 

1.1 State of the art 

In the literature, we found different algorithms used for target detection using hyperspectral images 

(Manolakis and Shaw 2002; Zou and Hastie 2005). Generally, we can classify those algorithms in 

two types: supervised algorithms where we search for a known spectrum that characterizes the 

target; unsupervised algorithms, known as anomaly detectors, where pixels different from their 

surrounding are marked as targets. The latter type could be used in a preliminary stage to reduce 

the working area before identifying the target using a supervised method. In this paper, we will 

use some rare event detectors in the first step to detect the suspected pixels and then apply in the 

second step a target detection algorithm. We are considering different cases of full-pixel and 

subpixel targets. 

 Numerous algorithms were proposed for target detection in hyperspectral imaging. Even if target 

detection in Hyperspectral images is not limited to the following algorithms, these algorithms are 

the most commonly used ones: Adaptive Coherence Estimation (ACE; Scharf and McWhorter 

1996), Matched Filter (MF; Manolakis et al. 2013), Constrained Energy Minimization (CEM; Ren 

et al. 2003), Multiple target CEM (MTCEM; Ren et al. 2003), Winner take all CEM (WTACEM), 



Orthogonal Subspace Projection (OSP; Harsanyi and Chang 1994), Spectral Angular Mapper 

(SAM; Wang and Zhao 2016), Spectral Information Divergence (SID; Chang 1999). 

These algorithms do not support the detection of several targets at the same time. So, the algorithm 

should be applied several times, each run searching for a specific target. But this will be a time-

consuming process especially if the number of targets is high. Few algorithms have been extended 

to the multitarget case, like CEM. This algorithm is able to estimate the abundance of a target in a 

hyperspectral image. Many algorithms are extended from CEM e.g. MultiCEM, SumCEM, 

WTACEM and others (Yin et al. 2010).  

 

The amount of data captured with hyperspectral imaging is very large (August et al. 2013). 

Moreover, the processing of this amount of data can be very complex and time consuming. 

Therefore, the need for dimensionality reduction in hyperspectral imaging motivated many 

researches in this field. Since in hyperspectral imaging neighboring bands appear similar and may 

contain the same information (Guo et al. 2008) many researchers have proposed dimensionality 

reduction using band selection methods (Chen, Jiang, and Yoshihira 2006; Guo et al. 2006; Du 

and Yang 2008). Some of these methods are supervised and some of them are unsupervised. Many 

of the methods do not preserve rare objects after reduction, while some of them do not preserve 

the local/global geometric structure on reduced data volumes. In the following, we consider two 

methods based on band selection that preserve rare objects after reduction: Multicriteria 

classification method (Khoder et al. 2017) and the Net Analyte signal method (NAS; Grahn and 

Geladi 2007).  



1.2 Our contribution 

Some of the existing algorithms are characterized by a high false alarm rate during target detection 

and some of them have high computational complexity (Camacho Velasco, Vargas García, and 

Arguello Fuentes 2016). To solve these problems, in this paper we propose a technique based on 

anomaly detection. 

We detect anomalies using a pixel intensity similarity measured at the pixel level in order to reduce 

the number of pixels, before applying the best performing detection algorithm. In addition, we 

study the ability to reduce the size of the hypercube at the band level by using two dimensionality 

reduction methods based on band selection in order to retrieve the most representative bands to 

detect all the types of landmines, and we evaluate the performance of each method by evaluating 

detection performance and false alarm rate after reduction. 

1.3 Organization 

This article is organized as follows: in Section 2, the proposed methodology is presented. The 

experimental setting and the adopted criteria are shown in Section 3. In Section 4 we discuss the 

results of the best performing classification algorithm and the pixels intensity method when applied 

on AVIRIS hyperspectral images in which we simulate landmines using real landmine signatures. 

We also compare the performance of two band selection methods in order to verify the ability of 

reducing the number of image bands without losing performance in target detection. The best 

performing algorithm is finally tested on a realistic hyperspectral image taken in the lab. 

Conclusions and future research directions are drawn in Section 5. 

 



2 Proposed Methodology  

 In this section, we first introduce the main idea of the developed procedure, then we give a detailed 

description of each step. First, we use Pixel Intensity (PI) method at the pixel level to detect objects 

that appear rarely in the images. 

If PI value is greater than a certain threshold, we decide that the pixel is rare, and we save it. This 

strategy is repeated for all pixels in all the bands. After storing all the rare pixels, we obtain a new 

data structure containing only the rare pixels in the original hyperspectral image, thus decreasing 

the image size.  

In order to discriminate the rare objects resulting from the previous step, we apply one of the 

existing detection methods in hyperspectral imaging, which are described in the next section. This 

will decrease the complexity of the existing detection methods and, in some cases, may improve 

their performance in terms of false alarm and detection probability. 

2.1 Pixel Intensity Method 

Some rare objects or targets appear only in a limited number of bands (Yu, Song, and Chang 2018; 

Guo, Pu, and Cheng 2016). Therefore, we choose to analyze each pixel value in each band instead 

of the average value of a pixel in all bands, in order to be able to detect the presence of rare events 

even in few bands. When considering the average value of a pixel in all bands, small rare objects 

having a small difference with respect to their neighbors can be difficult to detect. Also, 

experimental results confirm that working on a single pixel value for each band performs better 

than the average value in terms of detection of rare objects. 

We can define an anomaly or a rare event as an object in the scene that differs in a substantial way 

from the surrounding objects, as shown in Fig. 1. (Khoder and Younes 2013; Khoder et al. 2015).  



 

 

 

 

 

 

 

PI represents the amount of gray level in the pixel, i.e., its brightness (Kumar and Verma 2010). 

Using this method, we compute how much the intensity of a pixel is different from that of 

surrounding pixels. Also, PI is the square root of the squared error criterion (Wang et al. 2004). 

The equation is given by:  

PI= ⃒(𝑎𝑎𝑖𝑖 − �̅�𝜇)⃒                         ( 1) 

Where ai is the pixel value and μ� is the average of the pixel values in a neighborhood of ai. 

Let us consider a hyperspectral image I(x, y, λ) having nλ spectral bands. In the context of our 

algorithm we consider the following steps: 

  Scan each pixel in each band. 

 Compute the similarity measure between pixel and neighborhood (figure 2). 

 If the similarity measure is above a certain threshold, the pixel is rare and then we store its position. 

 Finally, after all bands are scanned, we get a dataset containing the rare pixels positions. 

 

 

 

 

 

Figure 2. Representation of pixel Aij and its neighborhood Nk. 

Figure 1. Image Containing a Rare Event. 
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When using this neighborhood, we are assuming that the size of rare objects is just a single pixel. 

In our scenario this is fine because the size of a landmine usually does not exceed one pixel. 

However, if the resolution of images increases and targets become larger than a single pixel, we 

can compute the similarity considering a larger window for the target and a subsequently larger 

neighborhood. 

The above algorithm returns only rare objects in the image, without any indication concerning the 

type of each target. Therefore, we apply one of the best performing existing detection algorithms 

to the set of rare pixels to classify them.  

2.2 Adaptive coherence estimator (ACE) 

As discussed in the background section, there are several available algorithms for target detection 

in hyperspectral images. Several studies demonstrate that ACE is the best performing algorithm in 

terms of probability of detection and false alarm rate (Camacho Velasco, Vargas García, and 

Arguello Fuentes 2016; Basener, Nance, and Kerekes 2011). However, ACE has a high 

computational cost compared to other methods. In this study, ACE method is applied after the PI 

method. This will reduce the complexity of ACE and may improve its performance in terms of 

false alarm and probability of detection. 

ACE is based on the statistical approach. It is derived from the generalized maximum likelihood 

ratio test (Broadwater and Chellappa 2007): 

The problem is posed as a hypothesis testing problem between the two hypotheses:  

H0: Mine absent (Background material)  
H1: Mine present 
 

𝐻𝐻0:𝑥𝑥~𝑁𝑁(0, 𝜎𝜎0 
2 Σ𝒃𝒃)                                    (1)                                                                                       



                                                                        𝐻𝐻1:𝑥𝑥~𝑁𝑁(𝑎𝑎s,𝜎𝜎1 
2Σ𝒃𝒃) 

Where 0 is the background mean vector, s is the target spectrum, Σ𝑏𝑏 is the covariance matrices of 

background, a and 𝜎𝜎 are scaling factors. The covariance matrix of the background is estimated from 

the data surrounding the pixel under test. The likelihood ratio will be: 

 𝐿𝐿(𝒙𝒙) = 𝑓𝑓(𝒙𝒙 𝐻𝐻1)⁄
𝑓𝑓(𝒙𝒙 𝐻𝐻0)⁄

             ( 2) 

In practice, for evaluating the above likelihood ratio, the values of the scaling factors are replaced 

by their maximum likelihood estimates, which gives the following generalized likelihood ratio test 

known as the ACE detector: 

𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴 = 𝒙𝒙𝑻𝑻𝜮𝜮𝒃𝒃
−𝟏𝟏𝒔𝒔�𝒔𝒔𝑻𝑻𝜮𝜮𝒃𝒃

−𝟏𝟏𝒔𝒔�
−𝟏𝟏
𝒔𝒔𝑻𝑻𝜮𝜮𝒃𝒃

−𝟏𝟏𝒙𝒙
𝒙𝒙𝑻𝑻𝜮𝜮𝒃𝒃

−𝟏𝟏𝒙𝒙
                   ( 3) 

Where x is a vector representing the reflectance spectrum of the pixel under test, s is a vector 

containing the signature of the target, 𝚺𝚺𝒃𝒃 is the covariance matrix of the background. 

 

3 Materials and Methods 

3.1 Simulated landmine experiment 

Our dataset consists of 17 hyperspectral image scenes acquired using AVIRIS sensor and 

processed as in Makki et al. (2018). The scenes are originally composed of 224 bands between 394 

nm and 2500 nm with spectral resolution of 10 nm and spatial resolution of 20 m. We applied 

several image preprocessing steps including the elimination of water absorption bands and low 

pass filtering to remove the bands that have a spectral response above 1nm. We simulated in 

different locations of the scenes the spectral signatures of the 6 types of landmines (figure 3) shown 

in figure 4. These signatures were collected using an ASD field spectroradiometer. Acquisitions 



were made in our laboratory using a special source of illumination. This source is specified by the 

70-watt quartz-tungsten-halogen light source with integrated reflector, creating stable illumination 

over the 350 to 2500 nm range. The targets were simulated in different proportions using the 

following formula: 

𝒑𝒑𝒔𝒔 = 𝛼𝛼 ∗ 𝒕𝒕 + (1 − 𝛼𝛼)𝒃𝒃                (4) 

where ps is the simulated spectrum in the image, t is the target reflectance spectrum represented 

as a vector, b is the reflectance of background material and α is the abundance factor of the target, 

which varies between 0.1 and 0.9. Since, the spatial resolution of the AVIRIS image is much larger 

than the landmine size, the image is upsampled in order to increase the spatial resolution and have 

pixel size equivalent to the size of the mine. 

 

Figure 3. 6 different landmines. 



Using these scenes, we tested the performance of ACE method and ACE method combined with 

the pixel intensity measure. We will evaluate the performance of these two algorithms based on 

three criteria: 

 Detection Rate (DR): which is the ratio between the number of detected targets and the 

number of targets in the scene. In the landmine scenario missing detection can be very 

dangerous, so the detection rate should ideally be one. 

False positive rate (FPR): this is the number of false positives per unit area. This value counts 

the average number of non-target pixels detected as target per unit area (m²). This value is 

dependent on the image size. To be more general, and to remove the effect of image resolution, 

we use also the Relative False Positive Rate (RFPR). This value is the ratio between the 

number of false positives and the sum of true positives and false positives. 

FPR= 𝐹𝐹𝐹𝐹
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟∗(𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑟𝑟 𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖)²

                                          (5) 

                 RFPR=  ( 𝐹𝐹𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹

) ∗ 100                                                                        (6) 

                        True positive (TP): target pixel correctly detected as target      

                        false positive (FP), non-target pixel wrongly detected as target                      

                   

Figure 4. 6 Landmine Spectra. 



Computation time (CT): CPU time registered in seconds needed to execute the algorithms. 

The measurement of the detection rate and FPR depends on the threshold chosen in the 

classification phase to discriminate between target and non-target pixels. When comparing 

different detection methods, the Receiver Operating Curve (ROC), visualizes the detection rate in 

terms of FPR for different choices of the threshold. However, in our scenario, due to the low 

presence of targets, ROC curve is not the ideal method of evaluating the detection performance.  

Since in our scenario missing a target can be very dangerous, the threshold is set in such a way as 

to detect all targets and then the FPR is calculated. Therefore, an algorithm is more efficient if it 

has a lower FPR and lower computational time when all targets are detected (DR=1). It is worth 

noting that, since the two type of errors in hypothesis testing are dual, according to the Neyman-

Pearson lemma a detector based on the likelihood ratio test is also guaranteed to minimize the 

probability of false alarm in this setting. 

3.2  Real Landmine Experiment 

 

 

 

 Figure 5. (a) presented scene (b) schematic figure for data acquisition and processing. 

(a) (b) 



This experiment consists in a scene presented in figure 5 (a). An area containing soil, grass, wood, 

water, and multiple materials is prepared to be more realistic. Figure 5(b) represents the data 

acquisition and processing steps and materials of the experiment. 

A computer numerical control (CNC) router (Jayachandraiah et al. 2014) is used to handle the 

spectrometer and scan the whole area. A Hamamatsu spectrometer (Shibayama 2009) is used with 

a spectral range between 350 and 1700 nm and a spectral resolution of 3 nm. 

In the reproduced scene, 2 types of landmine are used (Figure 6): a plastic landmine and a metal 

landmine for a realistic simulation we used two containers with the same material as the real 

landmines (the metal landmine represents the cluster bomb and the plastic one represents the vs50 

landmine). In addition, the same explosive powder is used in the two types of landmines. This 

powder is a type of TNT explosive with nitrating mixture (conc. sulfuric & conc. nitric acid). 

 

 

 

 

 

 

  

 

Figure 7 shows some landmine distribution cases, where landmines are deployed in different 

positions in order to mimic a realistic scenario. Using the explosive powder is important in our 

experience because in most cases, when the landmines stay a long time in the area, the powder 

material may seep from landmines. 

(a) (b) (c) 

Figure 6. (a) explosive powder. (b)metal landmine. (c) 
plastic landmine. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Results and discussion 

4.1 Comparative study between ACE and PI+ACE 

In this part, we show the results obtained when applying the two used methods on all images that 

contain targets with different abundances. We show the average false alarm rate and computation 

time at full target detection rate. The experiments were carried out in MATLAB environment under 

Intel operator (TM) 6276 with 64 CPU and 2.9 GHz processor frequency with 128 GB RAM. 

Comparisons are made between PI+ACE and ACE in the two experimental settings previously 

described. 

Figure 7. Landmines distribution scenarios. 



4.2 Simulated landmine experiment 

As discussed above, the decision threshold used to detect rare pixels and the other thresholds to 

identify the landmine types for the existing detection techniques are set to be the lowest value such 

that all targets are detected (DR=1) and then the FPR is registered. Therefore, a technique is said 

to be more efficient if it has lower FPR when all targets have been detected. In order to set the 

threshold, we use a dataset of 5 images for training and we use the remaining 12 images for testing. 

For each landmine abundance factor, we compute a different threshold. Hence, we measure DR 

and FPR on the testing dataset using the same threshold. 

 

 

 

 

 

 

In Figure 8, the average time needed by each algorithm to detect all the targets in the 12 images is 

shown. As we see in the Figure 8, to detect both types of targets using ACE we needed about 

349.17 seconds while the computation time of PI+ACE is 225.4 seconds. 

 

 

Table  1 . Average DR for each mine with 0.9-0.1 abundance factor. 

TM-46 M411 N°4 VS-50 VS-2.2 PMN Algorithm/target 
1 1 1 1 0.9975 1 ACE 

Figure 8. Average computational time /algorithm. 



 

 

Table 2. Average FPR/m2 and RFPR for each  mine with 0.9-0.1 abundance factor. 

Target PMN VS-2.2 VS-50 N°4 M411 TM-46 
Algorithm ACE 
FPR 0.00001 0.58790 0 0 0.4300 0 
RFPR 0.00122% 72.25% 0 0 58.2% 0 
Algorithm PI+ACE 
FPR 0 0.00032 0 0 0.00058 0 
RFPR 0 0.04% 0 0 0.0077% 0 

 

 

In Tables 1 and 2 we show the detection performance of two tested algorithms, when the landmine 

abundance factor is between 0.9 and 0.1. As we see in Table 2, using the similarity measures before 

ACE, we can decrease the FPR from 0.58 and 0.43 to 0.00032 and 0.000058 in case of VS-2.2 and 

M411 mines, respectively. Similar results can be observed for RFPR. In the other types of mines, 

we measure 0 FPR when applying similarity measures before ACE, indicating that in these cases 

we expect the FPR to be less than 1/number of tested pixels. Overall, PI+ACE method has the 

lowest FPR with the lowest CT compared to ACE with DR=1. It is important to note that some 

targets have 0 FPR while other targets have high FPR. This is due to the material of each target 

and their spectral similarity with the background pixels. 

Concerning the detection rate, ACE has DR or less than one concerning the VS-2.2 landmines 

where it can detect all the other types of landmines with DR=1. When we apply the similarity 

methods before ACE, we get DR=1 in all the types of landmines. 

1 1 1 1 1 1 PI+ACE 



4.3 Real landmine experiment 

Figure 9 shows the RGB representation of the scene acquired in the lab. The spatial resolution is 

0.16m2. The size of obtained image is 25*40 pixels. 

 

 

 

 

 

 

 

 

 Table 3 show the results of FPR and RFPR in the two cases when ACE is used and when PI+ACE 

is used. All the results in this table is with DR=1. 

 

Table 3. Average FPR/m2 and RFPR  for each mine. 

 

 

target Metal Landmine Plastic Landmine Powder 
Algorithm ACE 

FPR 0.009 0.013 0 
RFPR 12.33% 18.1% 0 

Algorithm PI+ACE 
FPR 0 0 0 

RFPR 0% 0% 0% 

Figure 9. RGB representation of real scene. 



From table 3, we can observe that when we use PI+ACE both FPR and RFPR decrease for the two 

types of landmines and we are not able to measure any false positive.  It is important to clarify that 

in this experiment we cannot measure any significant FPR less than 1/1000, since the tested image 

has a size of 1000 pixels. 

4.4 Band Selection  

After verifying that PI+ACE method has the best performance concerning FPR, CT and DR, here 

we study the effect of net analyte signal (NAS) and multicriteria band selection methods on the 

performance of PI+ACE method. 

NAS is defined as the part of an analyte spectrum that is singular to that analyte (Lorber 1986). 

This method is supervised, takes the spectrum of the target and the image as input, and returns the 

bands that represent the selected target. 

Multicriteria method is an unsupervised method. It works on classifying the set of neighboring 

bands based on three criteria: Mutual Information (MI), fidelity, and the cross-correlation 

coefficient. If these three criteria between two successive bands are above a certain threshold at 

the same time, these two bands are classified in the same class: this procedure is repeated for all 

the bands. After classifying bands; the more informative (highest entropy) band is selected from 

its class (Khoder 2013; Khoder et al. 2017). 

We apply these two methods before applying PI+ACE. First, we apply the NAS method to 

visualize the representative bands for each landmine and determine the optimal range for the 

detection of all landmine types. Second, the multicriteria method is applied in order to obtain the 

most representative bands in the images. Therefore, we visualize how much we can reduce the 

image size without affecting the performance of PI+ACE: Figure 10 shows the FPR increase as a 



function of the reduction rate, considering the two reduction methods, on the simulated landmine 

dataset. 

Table 4 shows the optimal bands for each type of landmine of the simulated landmine dataset. To 

cover all the types of landmines we need a spectral range between 900 nm and 2500 nm. 

When multicriteria is used we obtain that the optimal range to detect all the landmines types is 

between 1100 nm and 2250 nm. The advantages of multicriteria over the NAS method is that we 

can reduce the image size based on whatever the types of targets present in the image are, 

achieving higher reduction rates. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Optimal range for each landmine for the NAS signal method. 

landmine Optimal Range 
Vs22: 909 nm to 1432 nm 
PMN  685 nmto 1005 nm 
N4 909 nm to 1177 nm 

Figure 10. FAR increase (%) of PI+ACE as a function of reduction rate. 



 

 

 

 

 

 

 

Without affecting the performance of PI+ACE we can reduce the images up to 52% using the 

NAS method and up to 60% using the multicriteria method. 

Using NAS method, Table 5 displays the main range for each landmine type in the real landmine 

case. As can be seen, the most informative frequency range for all the landmines types is 

between 380 and 1700 nm. When multicriteria is applied the selected bands are between 911 and 

1700 nm. 

 

 

 

 

 

 

 

 

 

 

TM46 1629 nm to 2097 nm 
M411 928 nm to 1502 nm 
Vs50 909 nm to 1337 nm 
All types 900 nm 2500 nm 

Figure 11. % of increasing of FAR of PI+ACE after reduction. 



 

Figure 11 shows the FPR increase as a function of the reduction rate on the real landmine image. 

Using NAS method we can reduce the image up to 52% whereas using the multicriteria method 

we can reduce the image up to 66%.  

Table 5. Optimal range for each landmine for the NAS signal method 

 

 

 

 

 Concerning the execution time figure 12 shows the execution time of PI+ACE after 
maintaining the two bands selection methods.  

 

 

 

 

 

 

 

 

 

 

landmine Optimal Range 
Metal 600 to 1700 nm 
Plastic  380 to 1350nm 
Powder 411 to 1120nm 
All types  380 to 1700nm 

Figure 12. Execution time of PI+ACE after the two bands selection methods. 



5  Conclusions 

In this paper, we proposed a pixel similarity method to improve landmine detection in 

hyperspectral images. The rationale is to select only highly dissimilar pixels as potential targets, 

before applying a state of the art target detection algorithm. 

Results obtained on simulated images and realistic images demonstrate that by using the pixel 

similarity methods with ACE, we can reduce both the execution time of ACE and reduce false 

alarm at 100% detection rate. 

In addition, two dimensionality reduction methods based on band selection are used before 

applying PI+ACE method: NAS and multicriteria. We can have up to a 60 % reduction of the 

image without losing the performance of detection method (PI+ACE). The execution time of ACE 

also decreases by about 60%. Moreover, using pixel similarity after the band selection method, we 

can simultaneously decrease the image at the band and pixel levels without affecting the 

performance. 
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