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Abstract

This work focuses on the study of heterogenous acoustic metamaterials to be employed as soundproofing
treatment in aircrafts. According to the aeronautical requirements, a composite metamaterial made
of a melamine foam matrix with a periodic distribution of cylindrical alluminium inclusions has been
considered. The volume fraction of the inclusions is chosen in order to obtain an equivalent density of
the metamaterial near to the density of classical aeronautical materials, such as Nomex. The dispersion
relations are derived by applying the Bloch-Floquet theory to the unit cell of periodic material. Advanced
beam finite elements based on Carrera Unified Formulation are here extended, for the first time, to the
dynamic characterization of metamaterials. Moreover, transmission curves are computed to validate
the band gaps encountered in the analysis of dispersion behavior. The finite element model is first
assessed by evaluating the dispersion behavior of some acoustic metamaterials proposed in literature.
Subsequently, the model is applied to the characterization of the metamaterial with melamine matrix and
alluminium inclusions. The results show that it is possible to tune the band gaps of the metamaterial
to lower frequencies, without increasing the weight of the material, by simply varying the dimensions of
the unit cell.

1 Introduction

To compete in the global market, the design of modern aircrafts is driven by the continuous improve-
ment of the cabin comfort. In this context, airliners have paid great attention, over the past twenty
years, to the influence of noise and vibrations on the comfort of passengers due to longer trips and to
passenger expectations, viewing the comfort as one of the main aircraft quality indicators. One aspect
has a fundamental importance to define the internal noise requirements and it is related to the acoustic
treatments that are all the means/technical solutions that are installed on board to increase the noise
reduction through the fuselage wall and to control the internal noise sources, as anticipated in the
paper by Nichols et al. (1947). Some technologies proposed in the past are resumed in the work by
Dobrzynski (2010). The acoustic treatments configuration needs to be optimized taking into account
different parameters, particularly the weight and the cost.

Since low frequencies are especially difficult to absorb with conventional materials, due the order
of magnitude of the wavelength, Metamaterials have been recently proposed for the broadband sound-
proofing of fuselage. This term refers to materials whose properties are ”beyond” those of conventional
materials. They are made from assemblies of multiple elements fashioned from composite materials
such as metals, foams or plastics. The core concept of metamaterial is to replace the molecules with
man-made structures called unit cell. They can be viewed as “artificial atoms”, usually arranged in
repeating patterns on a scale much less than the relevant wavelength of the phenomena they influ-
ence. Acoustic metamaterials [1, 2, 3] is a category of metamaterials whose effective properties, like
compressibility or density, can be negative. Negative density or compressibility can only be achieved
dynamically. For instance, Helmholz Resonators driven just above their frequency of resonance lead
to negative dynamic compressibility [4]. According to the same principles of wave propagation in pe-
riodic structures [5, 6, 7], acoustic metamaterials are tuned to the acoustic wavelength and can be
categorized into non-resonant and resonant materials. Resonant metamaterials can be conveniently
applied to aircraft interior, airframe noise in naval vessels, and controlling noise in automobiles as
the order of magnitude of the wavelength is around 1 m and this is much greater than the reason-
able thickness of classical damping materials [8]. Work in studying the properties of a heterogeneous
material has been carried out at Virginia Tech in the past two decades [9], and has evolved into what
is now termed a heterogeneous (HG) metamaterial that will be described better in the following section.
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Metamaterials are designed media with periodic units comprised of tailor-made geometry and pat-
tern aimed at accomplishing exceptional bulk properties which are unprecedented in conventional ma-
terials. One of the biggest challenges for the field of mechanical and acoustic metamaterials is the
ability to identify, in a systematic and efficient way, structural geometries that endow metamaterials
with desired functionalities. Many experimental studies have demonstrated unconventional properties
through fabrication and testing of metamaterials designed ad-hoc. However, to design and predict
the response of metamaterials, computational methods play a key role. The use of numerical models
can provide a concise description of complex phenomena, such as dynamical behavior and/or large,
quasi-static deformations. In particular, the Finite Element Method is a well-established approach in
mechanics and yields accurate results for structural analysis of arbitrary geometrical shapes. The the-
oretical characterization of any periodic medium from a wave propagation standpoint, independently
from the type of waves being studied, boils down to the computation of a ‘dispersion relation’, i.e.
a relationship between wave properties, e.g. frequency and wavenumber. Its importance comes from
the fact that one can capture the dispersion behavior of a periodic structure by simply analyzing the
wave propagation behavior of its single repetitive volume element (RVE) under proper periodic bound-
ary conditions [10, 11, 12, 13]. This is fundamental, for example, if one wants to understand which
frequencies are allowed to propagate and which ones are forbidden. Various techniques to obtain a dis-
persion relation are available in the literature, their common denominator being that they all leverage
the Floquet-Bloch’s principle. In simple terms, enforcing Bloch’s principle is equivalent to imposing
periodic boundary conditions to the wave problem: the unknowns (displacement or in the context of
elastic/acoustic waves, electric field for electromagnetic waves) at certain locations on the boundary of
the RVE are related to the same unknowns at different locations of the boundary via a complex expo-
nential function of the components of the wave vector. Due to these boundary conditions, the periodic
medium being treated has infinite dimensions: as a consequence, only structures in which the RVE is re-
peated “enough times” are accurately represented by these theoretical dispersion relations. Most of the
methods provide the solution of an eigenvalue problem for the frequency as a function of the wavenum-
ber. The finite element method, in conjunction with Bloch’s periodic boundary conditions, leads to
approximate results, but its main advantage with respect to analytical methods is that it automati-
cally enforces continuity of the degrees of freedom at material interfaces, if these coincide with elements’
boundaries, allowing for the treatment of complicated one-, two- and three-dimensional geometries [14].

A novel approach based on finite element method (FEM) is here proposed for the micromechanical
analysis of periodic and heterogeneous materials. It is based on the use of refined beam theories for
the modeling of the microstructure and the derivation of the governing equations of the RVE. The
Carrera Unified Formulation (CUF) is employed to generate higher-order beam models that show the
same accuracy as conventional solid elements with reduced computational efforts. Accordingly, the
main direction of the constituents (e.g. cilindrical inclusions in acoustic metamaterials) is discretized
by means of one-dimensional finite elements whereas the cross-section is hierarchically enriched with
a set of interpolation polynomials with non-local capabilities. In addition, the implementation of a
non-isoparametric mapping technique permits a ‘parametric’ representation of the exact geometry of
the constituents (e.g. the diamater and length of cylindrical inclusion are the parameters identifying the
geometry of the RVE). The validity and efficiency of the proposed model is assessed through comparison
with some benchmark solutions of dispersion relations in mechanical and acoustic metamaterials.

1.1 Heterogeneous metamaterial

A heterogeneous (HG) metamaterial is a class of acoustic metamaterial defined as a composite sys-
tem consisting of multiple small masses embedded within a passive poro-elastic matrix material. The
embedded masses create an array of resonant mass-spring-damper systems within the material that
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Figure 1: Heterogeneous metamaterial panel with cylindrical through-the-thickness inclusions.

operate at low frequencies where the passive poro-elastic material is no longer effective. By employing
the poro-elastic material to provide the stiffness for the embedded masses, the HG metamaterial utilizes
two passive control schemes: damping at high frequencies, and dynamic absorption at low frequencies,
into a single device for broadband noise reduction. The displacement of the masses against the foam
stiffness at their low frequency resonance leads to an increase in mechanical damping losses and ab-
sorption. An increased effect of the embedded mass on the poro-elastic material is due to a mismatch
in the impedance between the two materials. For optimum absorption a larger impedance mismatch is
desired [15].
HG metamaterials can be used for controlling low frequency sound radiation, improving low frequency
transmission loss when attached to vibrating structures, and is a lighter and thinner replacement to
conventional materials [16, 17]. These materials have shown to significantly reduce interior noise with
only a marginal increase in the overall mass of the structure. It has been demonstrated that HG meta-
materials can be used as lightweight blanket treatments for effectively controlling low frequency sound
radiating from structures [18, 19]. Kidner et al. concluded that HG metamaterial is more efficient when
placing the masses to target certain modes by varying the depth, weight, or shape. Proper tuning will
result in a mode split of the targeted resonance into two damped peaks above and below the original
peak [20]. It was also demonstrated that porous materials having porous inclusions, called composite
porous materials, show increased performance in sound absorption and sound insulation [21].
Figure 1 illustrates the arrangement of periodically distributed masses acting as a series of mass-spring-
damper systems embedded in a poro-elastic material. There is a wide range of applications available
for poro-elastic HG metamaterials. One broad application includes the placement of these materials
on aircraft for the damping of sound and vibration. This application is largely dictated by the choice
of the poro-elastic matrix material and the material of inclusions.

1.2 Identification of material constituents

The acoustic metamaterials here investigated are made of a frame of poro-elastic material with good
acoustic properties in the high-frequency domain and a periodic array of cylindrical inclusions inte-
grated inside the foam.
An investigation is carried out to find materials that obey several criteria according to aviation stan-
dards, namely: excellent sound-transmission loss properties in the widest frequency range; lightness;
fire-repellent properties; good mechanical strength; easy to manufacture; and cost-effectiveness.
The poro-elastic material chosen for the frame is Melamine foam because of its lightness, sound ab-
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Figure 2: Periodic Unit Cell of the Metamaterial with matrix of melamine foam and cylindrical inclu-
sions of Aluminium.

sorption and fire-repellant properties, while Aluminium has been taken for the inclusions because of
its good stiffness and mismatch with the density of the foam (Figure 2). By adding the Aluminium
cylinders, we aim at increasing the damping properties of the melamine in the low-frequency range
without increasing the thickness of the materials and adding as little weight as possible.
The periodic unit-cell of the metamaterial is shown in Figure 2. The cylindrical inclusion is made of
Aluminium with isotropic properties E = 6.75 × 1010 Pa and ν = 0.34. The density of Aluminium is
ρAl = 2700 kg/m−3.
Since this material has been conceived to be used as core of the sandwich lining panels of aircrafts and
its lightness is an aeronautical requirement, the equivalent density of the metamaterial is here imposed
to have a value near the density of the Nomex, commonly used in aeronautics.
The melamine density is approximated to be ρM = 8 kg/m3 which appears to be the low average for
this material; the mechanical properties will be provided in the Results section. The equivalent density
ρeff of the metamaterial is given by ρeff = ρM (1− Vf ) + ρAlVf . For a unit cell of side a, the diameter

of the cylindrical inclusion can calculated with the following formula: d =

√
Vf
π × 2a.

2 CUF modelling

The modelling approach here adopted is based on novel higher-order beam theories in the framework
of the Carrera Unified Formulation and yields very accurate results with few calculations [22, 23]. The
main advantage of CUF is that it allows to write the governing equations and the related finite element
arrays in a compact and unified manner, which is formally an invariant with respect to the choice of the
kinematic model. In this section, the mathematical derivation of the fundamental nuclei (the invariant)
of the stiffness matrix and mass matrix in the case of CUF beam models is provided.

2.1 CUF beam models

To overcome the limitations of classical models and to deal with complex phenomena, such as wave
propagation, the displacement field of a beam theory can be enriched with an arbitrary number of
higher-order terms. The Carrera Unified Formulation, see [24, 25]) exploits this possibility by describing
the kinematic field in a unified manner that allow us to derive the governing equations in a very compact
way. The displacement field of one-dimensional models in CUF framework is, in fact, described as a
generic expansion of the generalized displacements (in the case of displacement-based theories) by
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arbitrary functions of the cross-section coordinates:

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, ...,M (1)

where uτ (y) is the vector of general displacements, M is the number of terms in the expansion, τ
denotes summation and Fτ (x, z) defines the 1D model to be used. In fact, depending on the choice
of Fτ (x, z) functions, different classes of beam theories can be implemented. Among these, Lagrange
Expansions (LE) beam theories are employed in this work. LE theories use Lagrange-type polynomials
as generic functions over the cross-section. The cross-section is therefore divided into a number of
local expansion sub-domains, whose polynomial degree depends on the type of Lagrange expansion
employed. Three-node linear L3, four-node bilinear L4, nine-node cubic L9, and sixteen-node quartic
L16 polynomials can be used to formulate refined beam theories (see Carrera and Petrolo [26]). For
example, the interpolation functions of a L9 expansion are defined as:

Fτ = 1
4(r2 + r rτ )(s2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1
2s

2
τ (s2 + s sτ )(1− r2) + 1

2r
2
τ (r2 + r rτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(2)

where r and s vary over the cross-section between −1 and +1, and rτ and sτ represent the locations of
the roots in the natural plane. The kinematic field of the single-L9 beam theory is therefore

ux = F1 ux1 + F2 ux2 + F3 ux3 + ...+ F9 ux9
uy = F1 uy1 + F2 uy2 + F3 uy3 + ...+ F9 uy9
uz = F1 uz1 + F2 uz2 + F3 uz3 + ...+ F9 uz9

(3)

Refined beam models can be obtained by adopting higher order Lagrange polynomials or by using a
combination of Lagrange polynomials on multi-domain cross-sections. More details about Lagrange-
class beam models can be found in [27, 26, 28, 29].

2.2 Finite element formulation

Let the 3D displacement vector be defined as:

u(x, y, z) =


ux(x, y, z)
uy(x, y, z)
uz(x, y, z)

 (4)

According to classical elasticity, stress and strain tensors can be organized in six-term vectors with
no lack of generality. They read, respectively:

σσσT =
{
σyy σxx σzz σxz σyz σxy

}
εεεT =

{
εyy εxx εzz εxz εyz εxy

} (5)

Regarding to this expression, the geometrical relations between strains and displacements with the
compact vectorial notation can be defined as:

εεε = Du (6)

where, in the case of small deformations and angles of rotations, D is the following linear differential
operator:

D =



0 ∂
∂y 0

∂
∂x 0 0

0 0 ∂
∂z

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x 0


(7)
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On the other hand, for isotropic materials the relation between stresses and strains is obtained
through the well-known Hooke’s law:

σσσ = Cεεε (8)

where C is the isotropic stiffness matrix

C =



C33 C23 C13 0 0 0
C23 C22 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (9)

The coefficients of the stiffness matrix depend only on the Young’s modulus, E, and the Poisson ratio,
ν, and they are:

C11 = C22 = C33 = (1−ν)E
(1+ν)(1−2ν)

C12 = C13 = C23 = νE
(1+ν)(1−2ν)

C44 = C55 = C66 = E
2(1+ν)

(10)

The discretization along the longitudinal axis of the beam is made by means of the finite element
method. The generalized displacements are in this way described as functions of the unknown nodal
vector, qτi, and the 1D shape functions, Ni.

uτ (y) = Ni(y)qτi, i = 1, 2, ..., nelem (11)

where nelem is the number of nodes per element and the unknown nodal vector is defined as

qτi =
{
quxτi quyτi quzτi

}T
(12)

Different sets of polynomials can be used to define FEM elements. Lagrange interpolating poly-
nomials have been chosen in this work to generate cubic one-dimensional elements. For the sake of
brevity, their expression is not provided, but it can be found in the book by Carrera et. al [25], in
which two-node (B2), three-node (B3) and four-node (B4) elements are described.

The governing equations for free vibration analysis are obtained via the Principle of Virtual Dis-
placements (PVD). This variational statement sets as a necessary condition for the equilibrium of a
structure that the virtual variation of the internal work (left hand side) has to be the same as the
virtual variation of the inertial work (right hand side), or:∫

l

∫
Ω
δεεεTσσσ dΩ dy =

∫
l

∫
Ω
δuuuT ρ ü̈üu dΩ dy (13)

where l stands for the length of the beam and Ω is the cross-section domain; ρ stands for the density
of the material, and ü̈üu is the accelerations vector. By adopting the geometrical relation (Eq. (6)), the
constitutive law (Eq. (8)), the CUF kinematic field (Eq. (1)) and the FEM discretization (Eq. (11)),
the equilibrium equations can be rewritten as:

δqkτi : Kkτsijqksj = Mkτsij q̈ksj (14)

Kkτsij and Mkτsij are 3 × 3 matrices, called fundamental nuclei of stiffness and mass matrix,
respectively, and their explicit expression is given in previous authors works [30]. This are the basic
elements from which the stiffness matrix and mass matrix of the whole structure is computed. The
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fundamental nuclei are expanded on the indexes τ and s in order to obtain the matrices of each element.
Then, the matrices of the elements are assembled according to the classical finite element procedure.
For more details about the derivation of governing equations, the reader can refer to the article [31].
The final form of the free-vibration problem can be written as it follows:

−Mq̈ + Kq = 0 (15)

where q is the vector of the nodal displacements. Introducing harmonic solutions, it is possible to
compute the natural frequencies ωl, by solving an eigenvalues problem:

−(ω2
lM + K)ql = 0 (16)

where ql is the l-th eigenvector.

3 Dispersion relations

The finite element (FE) method, in conjunction with Bloch’s periodic boundary conditions, leads to
a formulation that allow us to calculate the dispersion relations of the discretized RVE. The main
advantage of the FE-based method is that it automatically enforces continuity of the degrees of free-
dom at material interfaces, if these coincide with elements’ boundaries, allowing for the treatment of
complicated one-, two- and three-dimensional geometries.

Let start the derivation of dispersion relations by grouping the degrees of freedom of the discretized
RVE in the following vector:

qqq = {qqq0, qqqi, qqqL}T (15) (17)

where qqq0 are the nodal displacements at left-side of the RVE and qqqL are the nodal displacements at
right-side. [qqqi] contains all the degrees of freedom of the internal nodes (all the nodes apart from the
boundary ones). The displacements qqq0 and qqqL are related through the Bloch condition qqqL = e−ikkk qqq0,
where kkk is the wave vector with components (kx, ky, kz). This allows to formulate the reduced vector
of degrees of freedom:

qqqr = {qqq0, qqqi}T (18)

qqq and qqqr are then related through qqq = Wqqqr, where W is defined as:

W =

 I1×1 01×in
0in×1 Iin×in

e−ikkkI1×1 01×in

 (19)

where I and 0 are identity and null matrices, respectively. The dimensions of the sub-matrices are
reported as pedices and in is the number of internal degrees of freedom. A reduced eigenproblem is
now formulated as:

(WHKW− ω2WHMW)qqqr = 0 (20)

where the H apex stands for Hermitian transpose. Eq. (20) represents the eigenvalue problem to be
solved to determine the dispersion relation. In particular, values of ω will be obtained by specifying
values for the wavenumbers kx, ky, kz. Due to periodicity, it is enough to specify values of wavenumers
that belong to the First Brillouin zone of the RVE [32].
The straight-forward applicability of this method to higher-dimensional problems is what makes it very
powerful. If a 2D or 3D periodic medium is considered, one has to choose the RVE properly and has to
identify the lattice vectors, i.e. the vectors that are used to connect any point in the RVE to the same
point in a neighboring cell. Moreover, when applying Bloch’s conditions, the components of the wave
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vector along these lattice vectors have to be considered. Taking into account the FEM approximation,
the lowest-frequency branches of dispersion relations are well-characterized by a relatively coarse model;
refining the mesh leads to a dispersion relation that, also at high frequencies, converges to the exact
one.

4 Assessment of the model

The aim of this study case is to assess the proposed modeling technique for the detection of band gaps
in locally resonant metastructures. For this purpose, the well-known example of Wang et al. [33] is
studied first. The metamaterial consists of a 2D array of ternary locally resonant phononic crystals.
This class of periodic structure was introduced for vibration control and noise insulation, and it is
composed by cylindrical scatterers with uniform coatings in their exterior. It is found that a complete
band gap is generated at low frequencies where the elastic wave propagation is prohibited. Contrarily
to the band gaps that appear due to Bragg scattering effects, local resonances induce this effect at
the low frequency spectrum, which can be interesting for certain structural and acoustic applications.
Indeed, the authors show that the frequency ranges of the band gap can be tuned by varying the elastic
modulus of the coating.

4.1 Dispersion curves of the infinite metamaterial

The ternary phononic crystal studied here consists of a 2D periodic array of cells made of a cylindrical
metal core coated by rubber and embedded in the polymer matrix. The material properties used for
the analysis are enlisted Table 1. The geometry of the cell is shown in Fig. 3 (a), where: r1 is the
core radius and r2 is the outer diameter of the coating. The dimension of the cell respect the following
relations:

r1

a
= 0.27

r2

a
= 0.4. (21)

The effective geometrical dimensions used in this example are provided in Table 2.

Core Coating Matrix

E[Pa] 2.1 · 1011 1 · 105 3.5 · 107

ν 0.29 0.47 0.49

ρ[kgm−3] 8950 1020 1200

Table 1: Phononic crystal materials properties [33]

a[mm] r1[mm] r2[mm]

20.1 5.427 8.04

Table 2: Phononic crystal geometry properties

The dispersion properties of the metamaterial are computed using the Bloch boundary conditions
and varying the wave vector over the first Brillouin zone, which is marked by the red path (Γ−X−M)
in Fig. 3 (b). Due to the double symmetry of the lattice, this triangular area is sufficient to describe
the wave propagation behavior of the metamaterial. Figure 4 shows a detail of the dispersion curves
accounting for the first modes only, showing the existence of a broad band gap. The results are in very
good agreement with those of the reference paper [33]. The locally resonant nature of this band gap
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(a) Phononic crystal (b) First Brillouin zone

Figure 3: Geometry of the phononic crystal and representation of the first Brillouin zone [34]

is demonstrated by the fact that the lower and upper edge frequencies are shifted. The correspondent
modes of the extreme frequencies are also shown in Fig. 4. As described in the reference paper, at the
lower edge of the band gap the core oscillates as a rigid sphere and the coating acts as a spring. On
the other hand, at the upper edge of the band gap the core and the matrix oscillate in a reverse phase.
For the sake of completeness, Fig. 5 reports the complete dispersion curve including also higher-order
modes.

4.2 Elastic wave transmission

In order to complement the dynamic analysis of the infinite metamaterial performed in the previous
step, a frequency response analysis is now carried out over a finite strip of eight cells placed over the
x -direction. This exercise serves also as a further verification of the existence of the lower band gap
for the locally resonant structure under study. Figure 6 shows the section mesh of the model and the
boundary conditions. A unitary displacement is imposed over the nodes of the left-end edge, denoted as
edge 1, and the displacement transmitted is evaluated at the opposite end, denoted as edge 2. Periodic
conditions are imposed over the top and bottom edges. The transmission coefficient is calculated as

TC = log10

(∫ a
0 |u2|dz∫ a
0 |u1|dz

)
(22)

where:

• |u2| is the amplitude of the transmitted wave;

• |u1| is the amplitude of the incident wave.

Two excitations are accounted for: an x -polarized wave, i.e. pressure wave; and a z -polarize wave,
i.e. shear wave. These two excitations are modeled numerically by imposing horizontal and vertical
unitary displacements, respectively. Figure 7 shows the transmission curves for both pressure and shear
waves for a range of frequencies between 0 and 5000 Hz. It is possible to observe that for the section
between 500 to 820 Hz there is a clear decay of the transmission for both wave types. The agreement
of these results with the band gap shown by the dispersion curves in the infinite metamaterial is
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Figure 4: Detail of the dispersion curves showing band-gap edge modes.

demonstrated. In addition, the transmission curves provide information about the effectiveness of the
structure to mitigate the propagation of elastic waves.

A detail of the transmission curves with some relevant modes for the pressure and shear excitations is
shown in Figs. 8 and 9, respectively. The contour of the right-hand side plots represent the displacement
amplitude over the finite strip of metamaterial. For the pressure wave, the transmission coefficient shows
a sharp peak at 537.5 Hz. At that frequency, it can be seen that most of the energy is contained at the
first cell through the local resonance of the core. After the peak, the propagation of the excitation is
steadily recovered. A similar behavior is observed for the shear wave, although in this case the decay
of the transmission coefficient begins at slightly lower frequencies and the propagation is recovered
abruptly after a wider zone of decay peaks.

5 Melamine-Aluminum metamaterial

After the previous assessment, this section shows the numerical study of a vibro-acoustic metamaterial
with interesting absoprtion properties at low frequencies for applications in aircrafts. As mentioned in
Section 1.2, the final design of the proposed metamaterial with these characteristics were chosen from a
conservative standpoint using well-known materials in the aircraft industry. For this reason, the current
analysis is focused on the dynamic behavior of a melamine plate with cylindrical aluminum inclusions.
Due to the high differences in elastic moduli and density between the melamine foam and the aluminum
inclusions, a elastic band gap due to local resonances is expected at low frequencies (0-1000 Hz).

This material system presents some complexities that must be carefully addressed before starting
with the analyses. The melamine foam is usually modeled as a viscoelastic orthotropic material, which
is characterized by frequency-dependent real and imaginary moduli. However, for simplicity reasons, in
this preliminary design the melamine is defined as a elastic orthotropic foam with zero viscosity. This
choice is supported by the fact that, as it is observed in many works such as [34], the increase of the
viscosity exhibits an almost negligible effect on the band-gap frequencies, which is the main target of
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Figure 5: Full reduced dispersion curves obtained by MUL2 micromechanics code.

this research. As a consequence of this assumption, a direct solver can be used and only the real part
of the system is studied. Therefore, the mechanical properties of the melamine foam as used in the
subsequent analyses are included in Tables 3, 4, 5, which are calculated as an average over a range of
frequencies between 0 Hz and 4000 Hz. Note that, according to several studies [35, 36], the variation
of the real part of the melamine properties at low frequencies is fairly small. On the other side, the
Aluminum properties are enlisted in Table 6.

ρ[Kg/m] E1[Pa] E2[Pa] E3[Pa]

8.0 4.590 · 105 2.161 · 104 1.742 · 105

Table 3: Density and Real Young modulus for Melamine.

G12[Pa] G23[Pa] G13[Pa]

1.037 · 105 1.063 · 105 1.270 · 105

Table 4: Real Shear modulus for Melamine.

Note that the metamaterial plate is constructed over the (2,3)-plane, and the axis 1 corresponds to
the thickness direction, as shown in Figure 2. The volume fraction between the inclusions and the foam
was chosen in order to obtain the same density of standard honeycomb plates of aerospace applications.
An initial dimension of the cell of 3 cm. The corresponding geometrical characteristics of the unit
cell and the volume fraction of the inclusions are shown in Table 7. The equivalent density of the
metamaterial is 37.8Kg/m3.
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Figure 6: Transmission curves analysis set up

ν12 ν23 ν13

0.445 0.433 −0.514

Table 5: Poisson coefficient for Melamine.

The beam model generated for the present simulation consists of a single element in the thickness
direction and a mesh of 52 quadratic domains (L9 elements) over the section, which is shown in Fig. 10.
The same analyses described in the previous example are performed. The aim is to first demonstrate
the existence of local resonance behaviors in the material system and to characterize the resultant band
gaps. Secondly, the cell dimension is modified to prove the design flexibility of such metamaterials for
elastic wave absorption. The idea is to vary parameter it is possible to shift the band-gap to different
frequency ranges while keeping the same density of the structural plate.

5.1 Dispersion Curves

The dispersion curves obtained with the melamine-aluminum cell are plotted in Fig. 11 together with
the images of the most relevant modes. Note that, due to the orthotropy of the melamine foam, the
metamaterial behaves differently in the x and z directions. For this reason, the first Brillouin zone must
be enlarged to account also for the variation of the wave vector over the z -axis. Thus the dispersion
curves are computed over Γ−X1 −M −X2, as it is shown in the detail of Fig. 11.

From the graph it is possible to observe that the 3rd mode is almost constant across the entire
Brillouin zone, meaning that it barely propagates. Indeed, the correspondent mode shape shows that
it consists of an internal rotation of the aluminum inclusion with a local deformation of the melamine
foam. Therefore the effective band gap is due to the local resonance of the inclusion and is located
between modes 2 and 4, which are also shown in Fig. 11 (bottom and top, respectively). The range of
frequencies in which the elastic wave propagation is expected to be mitigated goes from 1040 Hz up to

E[Pa] ν ρ[Kg/m]

6.75 · 1010 0.34 2700

Table 6: Properties for Aluminum.
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Figure 7: Transmission curves for both pressure and shear waves

a 3 cm

Vf 0.01396

d 4 mm

Table 7: Geometrical properties of the metamaterial cell.

2830 Hz.

5.2 Transmission Curves

In order to confirm the existence of a band gap at low frequencies due to local resonances, the frequency
response analysis of the finite metamaterial is also carried out. As it was done for the first assessment,
a strip of eight cells is modeled to evaluate the propagation of pressure and shear wave excitations over
the 2D pattern. The results are included in Fig. 12, which shows the transmission coefficient (TC)
for a range of frequencies between 0 and 8000 Hz. One can see that the TC decays greatly for both
excitations in correspondence to the band-gap frequencies. For clarity reasons, the band gap computed
from the dispersion curves is included in the plot as a shaded area.

Figure 13 includes some relevant modes which are obtained from the present analysis at two different
frequencies: 792 Hz (below the band gap) and 1592 (inside the band gap). First, one can observe that
all the propagation modes are dominated by the movement of the aluminum inclusion in the melamine
matrix, as shown in Figs. 13 (a) and (c). Moreover, the existence of local resonances in the metamaterial
cell is also proved by Figs. 13 (b) and (d). In fact, for both pressure and shear excitations, at 1592 Hz
the elastic waves stop already at the first cell due to the out-of-phase movement of the inclusion.
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Figure 8: Detail of the transmission curve for a x-polarized plane wave, showing most important modes
shapes

5.3 Parametric study

Finally, a parametric study is performed to study the variation of the band gap size and range for
different values of the cell dimension, a. Note that the volume fraction of the metamaterial system is
maintained constant, thus the diameter of the particle is also increased proportionally. It is expected
that the variation of the local masses of the aluminum will shift the band gap frequencies, while the
overall weight of the plate remains unaltered.

The results of this study are shown in Fig. 14. It includes the lower and upper edges of the band
gap for a values varying from 1 cm to 12 cm. The gap between these two curves is shown in grey for
clarity. Also, the minimum and maximum band-gap frequencies for each test case conducted are written
between brackets. The results show that the total band-gap size diminishes as the periodic pattern is
enlarged. Moreover, it shows that the mitigated frequencies shift to lower values, demonstrating that
it is possible to create band gaps which cover a wide range of frequencies below 1000 Hz.

6 Conclusions

In this work heterogenous acoustic metamaterials for applications in aeronautical field have been dy-
namically characterized by the computation of dispersion relations. The finite element method has been
employed and, in particular, the advanced beam finite elements based on CUF have been extended to
the analysis of dispersion behavior in periodic materials according to the Bloch-Floquet theory. Also
the transmission of waves through a chain of unit cells has been evaluated to validate the band gaps
found. The model has been successfully assessed through the comparison with some study cases from
literature, then it has been applied to the analysis of the metamaterial of out interest. Finally, a para-
metric study has been carried out to demonstrate that the band gap of the metamaterial can be shifted
to lower frequencies by increasing the dimensions of the unit cell and keeping constant the volume
fraction of the inclusions, so the equivalent density of the material.
Therefore, this study shows that there is a real potential for the design of vibro-acoustic metamaterials
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Figure 9: Detail of the transmission curve for a z-polarized plane wave, showing most important modes
shapes

Figure 10: Representation of the metamaterial cell numerical model.

for aerospace applications in which it is very difficult to absorb low frequencies without increasing the
mass of the structures. Such kind of materials can be used for instance to mitigate the structural
vibrations that have a detrimental effect on the levels of comfort inside the cabin. In fact, recent re-
search studies prove that similar structures can be used to increase the sound transmission loss [37] in
air-borne environments. It must also be pointed out that the metamaterial analyzed in this preliminar
design study is rather simple. The introduction of new manufacturing techniques such as 3D-printers
enables the study of more complex configurations and materials, allowing the designers to explore more
efficient solutions from both acoustical and mechanical point of view.
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