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Abstract: The performance of a monitoring system for civil 

buildings and infrastructures or mechanical systems depends 

mainly on the position of the deployed sensors. At the current 

state, this arrangement is chosen through Optimal Sensor 

Placement (OSP) techniques that consider only the initial 

conditions of the structure. The effects of the potential damage 

are usually completely neglected during its design. 

Consequently, this sensor pattern is not guaranteed to remain 

optimal during the whole lifetime of the structure, especially 

for complex masonry buildings in high seismic hazard zones. 

In this paper, a novel approach based on Multi-Objective 

Optimisation (MO) and Genetic Algorithms (GAs) is proposed 

for a damage scenario-driven OSP strategy. The aim is to 

improve the robustness of the sensor configuration for damage 

detection after a potentially catastrophic event. The 

performance of this strategy is tested on the case study of the 

bell tower of the Santa Maria and San Giovenale Cathedral in 

Fossano (Italy) and compared to other classic OSP strategies 

and a standard GA approach with a single objective function. 
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1 INTRODUCTION 

Due to the importance that buildings and infrastructures 

occupy within our society, their structural integrity is not only 

indispensable to limit possible economic losses, but also 

fundamental for the safeguard of human lives. Structural 

Health Monitoring (SHM) is the discipline dedicated to this 

task. Specifically, vibration-based SHM techniques (such as 

e.g. in Rafiei & Adeli (2017)) resort to the dynamic response 

of the structure of interest to extract useful damage-related 

features. Real-time online monitoring is particularly essential 

for frail, valuable buildings of historical and architectural 

relevance in zones of elevated earthquake risk. One of the most 

relevant practical issues in this regard concerns the proper 

placement and direction of the acquisition channels – that is to 

say, where and in which direction to record the acceleration 

time histories to better capture the dynamic behaviour of the 

target structure. This problem goes under the definition of 

Optimal Sensor Placement (OSP) (Worden & Burrows, 2001; 

Gutierrez Soto & Adeli, 2013; Chang & Pakzad, 2014). OSP is 

a well-known, decade-long issue for the dynamic monitoring of 

any kind of structures ranging from civilian habitations to 

spacecraft; the task becomes not trivial for real-life structures 

with complex geometries and different materials involved. 

Improper sensors placement may generate unreliable data and 

important changes in the structural responses may go 

undetected; an optimal layout of the sensor, on the other hand, 

allows adequate and reliable monitoring (Tondini et al., 2015). 

Several difficulties arise when OSP principles are translated 

from the theory to real-life applications. This is particularly true 

for masonry buildings, where the main difficulties arise from 

several factors such as the heterogeneous material quality, the 

large variety of structural components, the limited knowledge 

of its aged mechanical properties, etc. In these cases, Finite 

Element (FE) modelling and model updating are the only 

practical way of dealing with so many practical issues (Chiorino 

et al., 2011). However, OSP is generally performed only once 

in a structure’s lifetime, achieving a sensor configuration tailor-

made on its initial conditions. This sensor pattern is not 

guaranteed to remain optimal when large structural changes 

occur – e.g., in the case of buildings severely damaged after 

seismic events (Zanotti Fragonara et al., 2017). A design that 

does not account for potential damage may fail to capture some 

relevant changes in the modal components. This would affect 

noticeably the capability of the monitoring system for early 

damage detection. Thus, two competing aims exist: the 

impelling need to deploy a sensor network well-suited for the 

current structural form and the long-run requirement to make it 

robust in case of serious damage. The monitoring system is then 

required to be still operative after damage while being able to 

recognise this novel configuration as a damage condition; these 

are two distinct tasks which make the problem intrinsically 

multi-objective. 

In this paper, a novel approach based on Multi-Objective 

Optimisation via a Genetic Algorithm (MOGA) is proposed. 
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Two distinct objective functions (OFs), both concerning the 

baseline structural configuration and some potential damaged 

conditions, are set and simultaneously minimised. The 

obtained sensor pattern represents an optimal compromise 

between the two instances mentioned above. The approach is 

tested on the case study of the bell tower of the San Giovenale 

church in Fossano, Piedmont, Italy, which has been largely 

damaged by an earthquake in 2012. A predictive FE model, 

experimentally calibrated accordingly to the current best 

practices (Bursi & Wagg, 2009), was utilised to this aim. The 

damage already present in the current structural condition has 

been modelled to provide the baseline model; several kinds and 

extensions of further damage have been considered to simulate 

the aftermaths of possible future seismic events. The results are 

then firstly compared to classic OSP strategies (namely, the 

Eigenvalue Vector Product (EVP), the Effective Independence 

(EI), and the Average Driving Point Residue (ADPR)) and the 

sensor pattern currently in use. A second comparison is then 

carried out against a single cost function-based Genetic 

Algorithm (SOGA) alternative. The MOGA results are 

consistent with what the several other well-established 

techniques returned for the baseline structure and more 

efficient when damaged conditions are included, even with 

respect to the simpler single cost function GA. The rest of the 

article is organised as follows. In Section 2, a preliminary 

discussion about Optimal Sensor Placement is presented. The 

OSP problem is described in Section 3; some recalls about the 

theoretical background of Multi-objective Optimisation are 

provided as well. Section 4 describes the Case Study of 

interest. The Results are enlisted and commented in Section 5; 

the Discussion and Conclusions follow. 

2 METAHEURISTIC ALGORITHMS IN OPTIMAL 

SENSOR PLACEMENT 

Numerous metaheuristic algorithms have been proposed in 

the field of OSP and structural dynamics. Trajectory-based 

algorithms, such as Simulated Annealing (SA), Tabu Search 

(TS), and other iterated, stochastic or guided local search 

algorithms have been reported in the literature for structural 

System Identification (SI) and SHM problems (e.g. in Tong et 

al. (2014)). Population-based procedures encountered even 

more success: several variations of Ant Colony (ACO), Particle 

Swarm Optimisation (PSO), and Differential Evolution (DE) 

algorithms have all been often applied. Other procedures exist, 

almost all nature-inspired and derived from some sort of 

Swarm Intelligence (SI) (e.g. in Sun and Betti (2015)). 

However, it is difficult to have a completely updated panorama, 

as new variants are constantly devised; for instance, the 

parameters self-adaptivity, introduced in Qin and Suganthan 

(2005) and extensively utilised for SHM applications – see, 

e.g., Martucci at al. (2018) –, can be arguably considered 

already overtaken by more recent developments (Zhang and 

Sanderson, 2009).  

In this study, a Genetic Algorithm (GA) was applied. As the 

name itself clarifies, this family of algorithms mimics the 

Darwinian selection of the fittest. A classic reference can be 

found in Goldberg (1989). This kind of metaheuristic has been 

applied intensively in Civil Engineering and specifically for 

SHM instances, e.g. by Papadimitriou et al.(2000). GAs were 

also applied for single- and multi-criteria structural 

optimisation by Adeli & Cheng, (1994a); Sarma & Adeli, 

(2000a, 2000b). Parallel computing was also found to be 

especially convenient in this regard by Saleh & Adeli (1994a, 

1994b); Adeli & Cheng (1994b); Adeli & Kumar (1995a, 

1995b). The interested audience may refer to the book of Adeli 

& Sarma (2006). A review of evolutionary algorithms for 

structural optimisation (including GAs) can be found in Munk 

et al. (2015). Several improvements were found in more recent 

years; for instance, Serpik et al. (2017) proposed a genetic 

algorithm for the optimisation of trusses’ shape, size, and 

topology. Zawidzki & Jankowski (2019) proposed the 

multicriterial optimisation of the mechanical and geometrical 

properties of modular structures. In this work, a Multi-

Objective (MO) extension of the GA procedure was used, as it 

will be discussed in more detail in the following Subsection. 

2.1 Multi-Objective GA Optimisation 

Differently from standard Single-Objective (SO) 

optimisation, MO optimisation procedures work by looking for 

the better compromise between two or more distinct OFs (Deb 

et al., 2002). For a SO search problem, the three main 

characteristics are that (i) a best candidate exists, and it is 

implicit in the model; (ii) the optimisation procedure should 

discover it or come very close to it; (iii) no supplementary 

decision making is required after the procedure is completed. In 

MO, instead, (i) and (ii) remain valid; nevertheless, due to the 

heterogeneity of objectives, multiple equivalently efficient – 

i.e., Pareto optimal (Censor, 1977) – alternatives may exist. 

This is more adherent to real-world problems, where the merits 

of potential solutions involve multiple perspectives and the 

decision context of the optimisation task is characterised by 

multiple criteria. However, this is not a constant rule, and a 

unique solution for the two or more OFs applied may be found.  

Several MO approaches have been reported in the scientific 

literature for OSP and Structural Health Monitoring purposes, 

even if with fundamental differences respect to this work; to the 

best of the Authors’ knowledge, there are no precedents of 

MOGA approaches applied to several damaged scenarios 

combined with the structural condition ‘as it is’. A very 

complete and thorough examination of Pareto-optimal sensors 

and excitation layout was carried by Raich and Liszkai (2012). 

They used an input-output procedure to define the Frequency 

Response Functions (FRFs) as features of simple case studies, 

while in this work, an output-only approach and mode shapes 

have been used. Moreover, they considered two different 

objectives, i.e., minimising the number of sensors utilised while 
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maximising the diagnostic information collected by the sensor 

set, imposing several damage scenarios but treating them 

separately, rather than combining them as done in this work. In 

this sense, one could decompose a MOGA approach in more 

single-OF GA tasks, performed in series or added together. 

However, this will return different results, as will be shown 

later. Two works closely related to this investigation can be 

found in Lenticchia et al. (2017, 2018). In those cases, SO 

optimisation was performed, but using a compounded OF. The 

objective function was made up by both the error in modal 

analysis for the pristine structure of the Hall C of Turin 

Exhibition and the error for the same FE model without infill 

walls. The aim was the same as this investigation, i.e., to define 

an OSP criterion robust to damage. 

3 METHODS. 

3.1 The OSP Problem. 

It is possible to figure the optimisation task as a decision 

problem. Consider a discrete grid made up by a finite set of 𝑄 

potential sensor locations and 𝑅 acquisition directions for any 

possible location, both defined a priori. If 𝑅 is constant for any 

𝑄, then 𝑁 =  𝑄𝑅 channels are theoretically available. One can 

either choose to switch on or off any single channel, so there 

exist only two options for each one. Thus, the problem can be 

reduced to a combination of yes/no binary decision variables 

𝑞𝑖𝑗  , defined as 𝑞𝑖𝑗 = 1 if the sensor is allocated at position 𝑗 

and oriented along the 𝑖-th acquisition direction and 0 

otherwise (for 𝑖 = 1,2, … , 𝑅 and 𝑗 = 1,2, … , 𝑄). If order does 

not matter, it is then possible to define the number of all the 

possible combinations by summing them up. If also the number 

of the selected sensors is let free to float, this can be done for 

all the different lengths of the final subset. Hence, only one 

combination of length zero exists (the empty set). Then, 𝑁 

combinations of one sensor can be considered, 𝑁(𝑁 − 1)/2 

subsets of two sensors, and so on, until only one group of 

𝑁 sensors (the full set) remains, for a total of 2𝑁 possible 

combinations. The search space can be therefore defined as 

𝑿 ≡ {0,1}𝑁 ⊂ ℜ𝑁.  

Being the set of candidate solutions finite, it can theoretically 

be solved by brute force, testing all the possible combinations. 

Yet this is not practically doable in real-life cases, where the 

FE models of large-scale structures can have hundreds or 

thousands of degrees of freedom, due to limited computational 

capability (Adeli & Saleh, 1997). Even if viable, a complete 

sampling of the search space would never be the most efficient 

approach. Indeed, the optimisation task is not verifiable in 

polynomial time, as its complexity grows exponentially – being 

𝑂(2𝑁 ). In the example of the case study analysed here, 31 

different options make up the complete set of the possible 

(arbitrarily) pre-selected locations. For any location, there are 

two possible directions for recording, along the two horizontal 

x- and y- axes (the vertical response along with the z-axis being 

of limited interest). This makes up 𝑁 =  62 channels and circa 

4.61 ⋅ 1018 possible combinations. 

In principle, any sort of search algorithm (i.e., any heuristic 

procedure), can be used to explore the search space partially and 

to find a near-optimal solution. However, metaheuristic 

approaches are, by general consensus, the aptest strategy from a 

cost/benefit point of view. Even if their results cannot be proved 

mathematically to be optimal, it is a fact recognised by decades 

of intensive use that their sub-optimality is generally limited, 

and the returned combination is never too distant, in the search 

space, from the actual optimum. For these reasons, they have 

been proposed for the OSP of historical masonry structures with 

localised cracks and/or diffuse material deterioration (Barontini 

et al., 2017).  

3.2 Theoretical Definition of the MO Procedure. 

The MO procedures are still an area of current research, but it 

is known that non-dominated solutions can be approximated 

with good results through population-based meta-heuristics. 

Some basic concepts about the MO theoretical background are 

here briefly recalled to provide the context of this work; one can 

find a more detailed discussion in any related textbook such as 

e.g. Antunes and Alves (2016). Everything is presented here for 

a maximisation problem (considering fitness functions) but can 

be easily mirrored to minimisation problems (assuming cost 

functions, as actually done here and often occurring in practice). 

The MO optimisation process is equivalent to mapping the N-

dimensional decision variable space 𝑿 ⊆ ℜ𝑁, where all 

potential solutions are confined, onto the objective function 

space 𝒁 ≡ {𝒇(𝒙) ∈ ℜ𝑝: 𝒙 ∈ 𝑿}, defined by 𝑝 ≥ 2 OFs. The 

objective functions dimensionality is generally much lower 

than the dimensionality of the decision variables (i.e. there are 

much more variables than OFs, 𝑁 ≫ 𝑝). Thus, each potential 

candidate 𝒙 ∈ 𝑿 has an image vector 𝒛: = 𝒇(𝒙), whose 

components 𝑧𝑖 = 𝑓𝑖(𝒙), 𝑖 = 1,2, … 𝑝, are the values of each 

corresponding OF for that point of the feasible region. The MO 

optimisation can, therefore, be also referred to as vectorial 

optimisation, as the more than one OFs are arranged into a 

vector, which is the quantity to be optimised. This can lead to 

one or more non-dominated solutions, each one corresponding 

to a vector composed of the respective OF values. Hence, the 

optimisation task can be formulated as 

max
𝒙

(𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑝(𝒙)). (1) 

If 𝑿 is non-empty and a maximum for all the OFs being 

maximised exists and is included in 𝑿, the frontiers of 

feasibility for 𝒁 can be defined by mapping the edge of such an 

enclosed region. The non-dominated components of the so-

defined frontier of 𝒁 form what is generally known as the 

Pareto front. Non-domination is here assumed as a synonym of 

non-inferiority, i.e., it requires that no other feasible solution 

improves simultaneously all OFs. Any non-dominated / non-

inferior solution in the objective function space corresponds to 
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an equivalently efficient solution in the decision variable 

space. This ensemble can be analytically described as: 

𝒁𝑬: {𝒛 = 𝒇(𝒙) ∈ 𝒁: 𝒙 ∈ 𝑿𝑬}, (2) 

which is the analytical definition of the Pareto front. 𝑿𝑬 

indicates the set of the efficient solutions; a general solution 𝒙′ 

is considered efficient if there are no other feasible solution 𝒙 

such that 𝑓𝑘(𝒙) ≥ 𝑓𝑘(𝒙′) for all 𝑘 = 1,2, … 𝑝 and being the 

inequality strict for at least one  𝑘, i.e. 𝑓𝑘(𝒙) > 𝑓𝑘(𝒙′). All the 

other options are, by definition, (Pareto) dominated and would 

result in a non-efficient, sub-optimal sensor placement. In 

particular, if the domain is discrete (as it is in this case), it is 

possible to define a nondomination ranking, such as that rank 

1 solutions are non-dominated or dominated by another rank 1 

individuals only; rank 2 elements are dominated only by 

themselves or by rank 1 solutions; and so on (a general rank k 

element is therefore dominated by all rank k-1 or lower 

elements, at least, and by all the other rank k combinations or 

lower, at most). It is also possible to distinguish between 

weakly and strictly non-dominated solutions; in the first case, 

only a subset of all dimensions is non-dominated. In a 2-

dimension problem, this can only happen if one dimension is 

dominated, while the other is inferior to other points belonging 

to the frontier of the feasibility region in 𝒁; their equivalent 

points in 𝑿 are denominated weakly efficient solutions.   

3.3 The Two Cost Functions 

The most critical choice for any optimisation procedure is the 

definition of one or more appropriate objective functions. The 

sum of the off-diagonal elements of the Modal Assurance 

Criterion (MAC) matrix is one of the most recurrent 

approaches for the quantitative measure of the goodness-of-fit 

of a sensor network and is often used in combination with GA, 

as e.g. in Yi et al. (2011)). In formal terms, the MAC between 

any two mode shapes 𝝋𝑨, 𝝋𝑩 can be stated as  

𝑀𝐴𝐶(𝝋𝑨, 𝝋𝑩) =
|𝝋𝑨

𝑇  𝝋𝑩|2

(𝝋𝑨
𝑇  𝝋𝑨)(𝝋𝑩

𝑇 𝝋𝑩)
 (3) 

and can assume any value in between zero (no correlation) and 

1 (perfect correlation). From Eq (3) several variants have been 

developed over the years (Allemang, 2003). The two of interest 

here are the AutoMAC and the Cross-MAC. The difference 

lies only in that the AutoMAC compares the modes of a 

structure among themselves, while Cross-MAC compares the 

modes of two different structures or the same structure in two 

different structural configurations. These two definitions are 

here used to reflect the two criteria. Consider a baseline 

structure and M known, possible damaged configurations of 

the same, supposedly caused by a seismic event. It is possible 

to consider 𝑁𝑚 mode shapes for each configuration. For the 

baseline model, that means 𝚽 
𝒃𝒂𝒔𝒆 = [𝝋𝟏

𝒃 𝝋𝟐
𝒃  … 𝝋𝑵𝒎

𝒃  ]. The 

same applies to the first damage scenario 𝚽 
𝑫 𝟎𝟏, and so on. The 

set of all the mode shapes of all configuration is then given by 

𝚽 = [𝚽 
𝒃𝒂𝒔𝒆 𝚽 

𝑫 𝟎𝟏 𝚽 
𝑫 𝟎𝟐  … 𝚽 

𝑫 𝐌], (4) 

such that 𝚽𝒑
𝟏 = 𝝋𝒑

𝒃 is the p-th mode shape of the baseline 

structure and 𝚽𝒒
𝐣+𝟏

= 𝝋𝒒
𝑫 𝐣

 is the q-th mode shape of the j-th 

damage scenario (𝑗 = 1,2, … , 𝑀). Consider that the mode 

shapes contained in 𝚽 are defined from the whole set of the 62 

channels from the calibrated FE model; 𝚽̂ is then made up by 

the same components as 𝚽 but this time, only considering an 

arbitrarily large subset of the channels available, so that the 

components that correspond to the omitted channels are zeroed. 

The main aims are, therefore, (I) to have 𝚽̂ ≅ 𝚽 for the desired 

number of channels – i.e., the classic OSP problem, but 

extended to include the damaged configuration –, and (II) to be 

able to discern the set of mode shapes in 𝚽̂ 
𝒃𝒂𝒔𝒆 from any other 

set 𝚽̂ 
𝑫 𝐣 – i.e., the classic mode shape-based Structural Health 

Monitoring problem. It is thus possible to mathematically 

formulate the generic term in position (p,q). For the 𝑀 + 1 

AutoMAC matrices, this becomes 

𝑀𝐴𝐶 (𝚽𝒑
𝒊

, 𝚽̂𝒒
𝒊

) =
| 𝚽𝒑

𝒊  
𝑇

 𝚽̂𝒒
𝒊

|

2

( 𝚽𝒑
𝒊  

𝑇
  𝚽𝒑

𝒊
)(  𝚽̂𝒒

𝒊
 
𝑇

 𝚽̂𝒒
𝒊

)

  (5) 

for 𝑖 = 1,2, … , 𝑀 + 1, while for the 𝑀 Cross-MAC matrices 

between the baseline model and any j-th damage scenario it is  

𝑀𝐴𝐶 (𝚽̂𝒑
𝟏

, 𝚽̂𝒒
𝐣+𝟏

) =
|𝚽̂𝒑

𝟏𝑻

  𝚽̂𝒒
𝐣+𝟏

|

2

(𝚽̂𝒑
𝟏𝑻

 𝚽̂𝒑
𝟏

)(𝚽̂𝒒
𝐣+𝟏𝑻

𝚽̂𝒒
𝐣+𝟏

)

  (6) 

for 𝑗 = 1,2, … , 𝑀. The multi-optimisation GA is here 

performed simultaneously as the minimisation of the off-

diagonal terms of the (normalised and weighted) AutoMACs, 

named here 𝑓1, and of all terms, diagonal and off-diagonal as 

well, of the Cross-MACs, again normalised and weighted. This 

second function is named 𝑓2. The rationale is quite 

straightforward. Consider the baseline and the M damaged 

AutoMACs. These are all supposedly diagonal for an optimal 

(orthogonal) set (Worden & Burrows, 2000). Hence, 

minimising the off-diagonal terms assures an optimal sensor 

placement on the current structure and the damaged scenarios. 

As mentioned above, the AutoMAC is a classic OSP strategy, 

the main novelty resides in (1) its parallel optimisation on 

several structural conditions at once and (2) its pairing with 𝑓2 

in a MO optimisation framework. On the other hand, for the M 

Cross-MACs, the minimisation of the off-diagonal terms 

guarantees, again, a clear distinction between different modes; 

while by minimising also the diagonal terms, the modal 

distinction with respect to the current structural configuration is 

ensured, such that the so-optimised sensor placement 

distinguishes at its best the baseline and damaged mode shapes. 

This enforces that 𝚽 
𝒃 ≠  𝚽 

𝑫 𝐣 ⇒ 𝚽̂ 
𝒃 ≠  𝚽̂ 

𝑫 𝐣. Note that, 

differently from the AutoMACs, this second task is performed 
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exclusively considering the selected channels, denoted by the 

hat symbol ‘^’, since there is no need to compare the whole 

baseline and damaged mode shapes, which are known to differ 

from each other. The two functions can be written analytically 

as  

𝑓1(𝒙) = ∑
𝑤(𝑖)

n1

∑ ∑ 𝑀𝐴𝐶 (𝚽𝒑
𝒊

, 𝚽̂𝒒
𝒊

)

𝑁𝑚

𝑞=1,
𝑝≠𝑞

𝑁𝑚

𝑝=1

𝑀+1

𝑖=1

  
(7) 

and 
 

𝑓2(𝒙) = ∑
𝑤(𝑗)

n2

∑ ∑ 𝑀𝐴𝐶 (𝚽̂𝒑
𝟏

, 𝚽̂𝒒
𝐣+𝟏

)

𝑁𝑚

𝑞=1

𝑁𝑚

𝑝=1

𝑀

j=1

 (8), 

where 𝑁𝑚 and M are set to 10 and 12 in this study. n1 = 𝑁𝑚 ∙

(𝑁𝑚 − 1) and n2 = 𝑁𝑚
2  are utilised to normalise the error 

functions between 1 (worse condition) and 0 (ideal optimum). 

The weights in the array 𝑤 are all varied between [0,1] to 

express the significance attributed to each specific scenario 

(baseline included). Since the envisioned damage scenarios 

reflect some real crack patterns as surveyed in similar high-rise 

masonry building, it is also possible to calibrate the weighting 

factors accordingly to their expected probability. This point 

will be better detailed in the next Sections.  

It must be said that it would be possible to define M OFs as 

𝑓2 and further M+1 OFs as 𝑓1 for M damage scenarios. 

However, adding too many OFs would make the problem a so-

called Many Objective Optimisation (Ishibuchi et al., 2008), 

which is inherently more challenging to handle, due to 

difficulties in the scalability of the algorithms, and without the 

certainty of effective improvements in the results. Finally, the 

MOGA problem becomes  

min
𝒙

(𝑓1(𝒙), 𝑓2(𝒙)), (9) 

while for the SOGA, it was used the sum of the two functions, 

similar to what has been done in Lenticchia et al.(2017). and 

Lenticchia et al. (2018), i.e.  

min
𝒙

(𝑓1(𝒙) + 𝑓2(𝒙)). (10) 

In Eq (9), the use of a MOGA approach allows keeping 

distinct the Cross-MACs from the AutoMACs. Noteworthy, 

the two OFs are closely related and share a common 

measurement unit, thus no incommensurability issue arises. 

Results were compared against several well-established, non- 

stochastic methods as well. Both energy-based and information 

matrix-based approaches were considered, as they are 

experimentally known to produce comparable and satisfactory 

results in real-life large structures. The Eigenvalue Vector 

Product (EVP) (Doebling, 1995), the Average Driving Point 

Residue (ADPR) (Penny et al., 1994), and the Effective 

Independence (EI) (Kammer, 1991) were all considered. The 

ADPR method selects the grid points with the highest average 

driving point residue, defined as (for 𝑁𝑚  vibrational modes)  

ADPRj = ∑
𝜑

𝑖𝑗
2

𝜔𝑖

𝑁𝑚

𝑖=1
, (11) 

referred to the j-th coordinate of the i-th eigenvector 𝜑 (and 

respective natural frequency 𝜔). The rationale is that the 

selected coordinates are the ones which contribute the most to 

the mode shape. The EVP value is defined at any coordinate by 

the product of the eigenvector component at that grid point, for 

all the modes considered (Worden & Burrows, 2001), that is to 

say,  

EVPj = ∏ 𝜑
𝑖𝑗

𝑁𝑚

𝑖=1
; (12) 

the coordinates with the highest EVP are then considered. 

Finally, the EI algorithm is iterative and works by deleting, at 

any iteration, the acquisition channel with the lowest fractional 

contribution to the independence of the target modes. In turn, 

these fractional contributions correspond to the terms on the 

diagonal of the matrix  

E = Φ ∙ {ΦTΦ}−1 ∙ ΦT, (13) 

where Φ is the matrix of the target modes. In this case, the 

concept is that the procedure tends to maintain unvaried the 

determinant of the Fisher Information Matrix (FIM), thus 

preserving information while deleting the less relevant 

channels. This approach is not too dissimilar from one of the 

two methods investigated. by Reichert er al (2019). The EI 

approach is arguably one of the most used methods for 

benchmarking novel proposal in OSP as its theory has been 

deeply investigated throughout the years (Li et al., 2007). 

 

3.4 The MO Genetic Algorithm 

The elitist MO Genetic Algorithm specifically used here is an 

implementation of the well-known Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) (Deb et al., 2002) which is an 

improved version of the NSGA method (Srinivas and Deb, 

1994) applied by Raich & Liszkai (2012). With respect to the 

NSG Algorithm, NSGA-II includes an elitist strategy to speed 

up the process and is computationally less expensive, plus other 

ameliorations. NSGA-II was also recently proved by Ciro et al. 

(2016) to be a benchmark for Multi-Objective Optimisation 

with few OFs (e.g. 2, as here) and successfully applied for 

structural optimisation by Zawidzki and Jankowski (2019). The 

specific details of the algorithm can be found in the original 

work of Deb et al. (2002); here, the main steps are briefly 

reported for completeness. The algorithm consists of three 

phases: Initialisation, Iterations, and Ending. Specifically: 

1. The Initialisation phase defines the initial population of 

candidates.  
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2. The Iteration phase can be split into eight sub-steps, that is 

to say: (a) parents selection via binary tournament 

selection; (b) children generation via gene mutation and 

crossover; (c) scoring of the children combinations 

according to their OFs values; (d) definition of the extended 

population matrix; (e) computation of the domination ranks 

among all the elements in the extended population matrix; 

(f) computation of the crowding distance 𝑑𝑟 (see Deb et al. 

(2002) in the OF space by ranks, for all elements in all 

ranks; (g) trimming of the extended population matrix to 

match the number of elements of the pre-set population; (h) 

the maximal finite crowding distance measure among the 

points of rank 1 d is calculated. The loop is interrupted 

when one of the stopping criteria is reached. 

3. The Ending phase returns the selected winner(s) of the 

genetic competition, or the remaining population of the last 

generation if the maximum number of generations is 

exceeded, if no feasible combination is found, or if, 

considering some last consecutive generations, the change 

of spread in the Pareto Front stalls (Rudenko & 

Schoenauer, 2004). 

The specific settings used in this study are as follow. For the 

Initialisation phase, the population size was set to 50 with all 

elements selected via uniform random sampling. The 

procedure was run 52 times with the number of channels to be 

included ranging from 10 to 62. Regarding (step b) of the 

Iteration phase, a uniform crossover was applied between two 

parents, as this technique is proved to show the best exploration 

characteristics among the common crossover options, also for 

structural optimisation purposes (Hasançebi & Erbatur, 2000). 

The crossover rate was set at 80%. Gaussian gene mutation was 

enforced with a mutation rate of 0.01, which was considered 

small enough to exploit the regions found by the crossover 

operator. Regarding (step g), an elite group of individuals, set 

equal to 35% of the elements included in the Pareto front at 

that iteration, was guaranteed to survive to the next 

generation). For the ending phase, the number of maximum 

generations was set to 400. The performances of the code were 

tested on two well-known benchmark problems, the test 

function #1 from Schaffer (1985) and the test case #2 from 

Binh & Korn (1997). In both cases, results comparables to the 

ones reported by the original papers were found after 192 and 

286 generations, respectively. 

4 THE CASE STUDY 

The bell tower of the Santa Maria and San Giovenale 

Cathedral in Fossano (Italy) was built in the XIV century. The 

bell tower reaches an overall height of 46 meters considering 

the octagonal belfry on its top and has a square cross-section; 

the thickness of the wall is constantly 1.5 meters up to 35 m 

and decreased at 0.5 meters at the belfry. In the whole 

structure, three slabs are present. The first one (at 9.9 m from 

the ground floor) is made of masonry. The second one is at 28.2 

m and made of wood. The last one separates the main structure 

from the belfry at level 35 m and it is a composite slab, with a 

lower web of arched beams and an upper layer made of wood. 

The bell tower (depicted in Figure 1.a, on the left) suffered large 

seismic damage along the centuries and it is currently reinforced 

with 11 levels of steel ties-rod systems on the external façades. 

Its current structural condition – which is already damaged – is 

referred to as the ‘baseline’ condition in this study.  

The FE model of the structure ‘as it is’ has been developed on 

ANSYS ® Mechanical APDL ™, compounded by 7439 

elements (quadrangular 8-Node SHELL 281 where preferably 

applied wherever possible) and totalling 15233 nodes. To better 

reconcile the dynamic response of the model to the 

experimental evidence, considering that the mechanical 

properties of the building materials are non-homogeneous and 

that they are locally deteriorated, the model has been subdivided 

into six macro-elements. As represented in Figure 1.a (on the 

right side), the mechanical properties of each macro area 

(Young’s modulus 𝐸, Poisson ratio 𝜈, and density 𝛿) have been 

calibrated separately to match the behaviour of the structure, 

based on the acquired vibrational data and on a core drilling 

campaign as described in Ceravolo et al. (2016). It can be 

noticed that levels #1 and #2 were found to be less resistant due 

to poorer building material and thus more prone to develop 

damage in the future. The connection walls with the attached 

church of San Giovenale were modelled with a fictitious 

material with 𝐸 = 500 MPa to simulate the weak connection 

state with the nearby church, as evidenced by the in-situ survey 

(Ceravolo et al., 2016). The damage was modelled by reducing 

the equivalent Young’s modulus of specific elements; this is a 

common procedure, commonly used for considering the 

reduced properties of cracked masonry of structures in post-

earthquake conditions. More details about the modelling of the 

damage, also according to experimental investigations, can be 

found in Ceravolo et al. (2016). An example of the recorded 

acceleration time history is depicted in Figure 1.b as captured 

by the current sensor network using ambient vibrations (road 

traffic, wind, microtremors etc) as an input excitation. Uniaxial 

PCB Piezoeletronics capacitive accelerometers (Model 

3701G3FA3G; see Figure 1c,) are utilised. Each one is 

characterised by a resolution of 30 μg, a sensitivity of circa 

1V/g, and a measuring range between 0 and 3 g. The monitoring 

system includes also a Difa-LMS SCADAS data logger and a 

laptop hard-drive with the acquisition software. The modal 

parameters were then extracted from the accelerometric data 

using a stochastic subspace identification algorithm developed 

at the Department of Structural, Geotechnical and Building 

Engineering of Politecnico di Torino (Ceravolo & Abbiati 

2013). 

For the sake of this study and some previous works (Ferraris 

et al., 2020; Civera et al., 2019), 12 hypothetical damage 
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scenarios were considered. The pattern of the damaged 

configurations, enlisted in Table 1, comes from the personal 

experience of the Authors and from the most recurrent crack 

patterns and failure modes of masonry towers (especially the 

medieval ones) found in the literature; it is therefore 

considered descriptive of typical post-earthquake effects on 

similar masonry tall buildings. In more detail, the damage at 

level 0 (considered in different degrees of severity for D01-

D05) is very commonly encountered, due to crushing and the 

high dead load stress values (Pineda, 2016). Diffuse crack 

patterns in between openings such as windows are also normal 

in historical masonry structures, due to the concentration of 

loads (see e.g. Anzani et al. (2000)) and were thus included in 

D03-D05. 

D06 (and to a less extent D07 and D04) considers damage at 

the belfry. This can be a particularly vulnerable element since 

there are large windows that can lead to the failure of the 

relatively slender portions of masonry between them due to 

shear forces. D07 and D08 were defined accordingly to the 

dynamic investigation of the current structure, which showed 

wall local modes at low frequencies associated with low 

mechanical resistance in the middle part of the building 

(between level 1 and 2), due to the poor conditions of the 

masonry and connections between the walls (Ceravolo et al., 

2016). D09 represents a widespread worsening of the whole 

structure overall, while D10-D12 focus on the possible loss of 

rigidity of the bell tower-church connections along the two 

main directions. 

 Figure 2 reports the variations of the natural frequencies as 

induced by these damaged conditions. Figure 3 shows 

similarly how the mode shapes are affected, especially for the 

higher modes. Due to space limitations, only the case for the 

damage scenario D04 is reported. In the MAC matrix, the 

general term on the p-th row and q-th column represents the 

comparison between the p-th mode shape of the current 

structure with the q-th mode shape of the D04 model. The 

matrix is non-symmetric as 𝑀𝐴𝐶(𝝋̂𝒑
𝒃 , 𝝋̂𝒒

𝑫 𝟎𝟒) ≠

𝑀𝐴𝐶(𝝋̂𝒒
𝒃, 𝝋̂𝒑

𝑫 𝟎𝟒). As it can be seen on the main diagonal, the 

first five modes remained more related than the other modes 

with higher natural frequencies. This was noticed for all the 

cases where extensive damage has been inserted in the model. 

This point is essential for this discussion, as large damaged 

areas make the vibrational modes of the structure too different 

from their original shape to be accurately captured by the initial 

arrangement of sensors. All the damage scenarios are visualised 

in Figure 4. 

5 RESULTS 

The dimension of the problem was set to range from 10 to 62 

possible alternatives, to inspect the results for a different 

number of channels. In the following subsections, the results 

are reported firstly for 20 sensors, to directly compare the 

results with the sensor network currently deployed and then for 

less than 20 sensors; the comparison with the classic 

methodologies described in Section 1 is also reported. The 

weights were here set as 𝑤𝑖 = 1 ∀𝑖, i.e. all damage scenarios 

were assumed as equally probable to happen. Figure 5.a shows 

the positions and directions of all the candidate acquisition 

channels considered. Figure 5.b shows the layout of the sensor 

currently in use; the coordinates of the 20 sensors and 

correspondence with the closest channel ID is explicated in 

Table 2. This current setting can be directly compared to the 

results reported in the following Subsection 5. As it will be 

shown in more detail in the next Subsections, a single solution 

was found on the Pareto front in all considered MOGA 

optimisation cases. 

 

(a) 
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                                                                  (b)                                                                                              (c) 

Figure 1. The investigated case study. (a) Left: front view of the bell-tower after the provisional safety measure (2012). Right: FEM with 

the mechanical properties of the macro-elements after the model updating (adapted from (Ceravolo et al., 2016)). (b) Example of 

acceleration time history from ambient vibrations (only 12 out of 20 channels displayed). (c) Two uniaxial PCB Piezoeletronics capacitive 

accelerometers (Model 3701G3FA3G), directed along the x- and the y-axes, with metal anchorage. 

 
(a) 

 
(b) 

Figure 2. Boxplots of the absolute values of the variation of the natural 

frequencies: (a) for all modes accordingly to the damage scenario and 

(b) for all damage scenarios according to the mode number. The central 

line indicates the median value, the bottom and top edges of the box 

indicate the 25-th and 75-th percentiles, and the whiskers the largest and 

smallest data points not considered outliers. The plus symbol indicates 

the outlier values. 

 

 

 

 

Figure 3. Cross-MAC between actual structure and structure with 

the damage D04. 

Table 1 

Case Description 

BASE As it is, no Young’s modulus reductions. 

D01 10.00% reduction of the E modulus at level 0, front façade. 

D02 10.00% reduction of the E modulus at level 0, all façades. 

D03 

10.00% reduction of the E modulus at level 0, front façade, 

and at level 1, front and rear façades between the window 

openings. 

D04 

10.00% reduction of the E modulus at level 0, front façade, at 

level 1, front and rear façades between the window openings, 

and at the base of the belfry, all façades. 

D05 

10.00% reduction of the E modulus at level 0, all façades, 

and at level 1, front and rear façades between the window 

openings. 

D06 
10.00% reduction of the E modulus at the base of the belfry, 

all façades. 

D07 
10.00% reduction of the E modulus at level 2, all façades, 

and the base of the belfry, all façades. 

D08 10.00% reduction of the E modulus at level 2, all façades. 

D09 
10.00% global reduction of the E modulus of all levels, all 

façades 

D10 
50.0% reduction of spring stiffness at the linking with the 

Cathedral, x- and y- directions  

D11 
50.0% reduction of spring stiffness at the linking with the 

Cathedral, x-direction only 

D12 
50.0% reduction of spring stiffness at the linking with the 

Cathedral, y-direction only 
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Figure 4. The position of the damaged area for the different investigated scenarios.        Young Modulus reduced of 10% from 2690 MPa 

to 2367 MPa;        Young Modulus reduced of 10% from 1320 MPa to 1161 MPa;        Young Modulus reduced of 10% from 2470 MPa 

to 2173 MPa;         Young Modulus reduced of 10% from 1250 MPa to 1100 MPa;        Young Modulus reduced of 50% from 500 MPa to 

250 MPa (connection walls).  

 

(a)                                 (b) 

Figure 5. (a) The bell tower (left) with the location and direction of all potential acquisition channels (right, superimposed to the structure in 

transparency); (b) current sensor placement (numbered i to xx). Channels along y displayed in italic. Channels along x in plain font. 
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Table 2.  

Current Sensor Placement and corresponding channel coordinates. 

Sensor 

ID  

 

corresponding 

channel ID # 

(direction) 

x 

[m] 

y 

[m] 

z  

[m] 

Sensor  

ID  

 

corresponding 

channel ID # 

(direction) 

x 

[m] 

y 

[m] 

z  

[m] 

i  6 (y) 7.08 2.09 39.64 xi  19* (y) 2.29 7.20 31.35 

ii  5 (x) 7.08 2.09 39.64 xii  20** (x) 2.29 7.20 31.35 

iii  7 (y) 2.29 7.20 39.64 xiii  27 (y) 2.29 7.20 24.59 

iv 8 (x) 2.29 7.20 39.64 xiv  28 (x) 2.29 7.20 24.59 

v  10 (y) 7.08 2.09 37.18 xv  42 (y) 7.08 2.09 12.45 

vi  9 (x) 7.08 2.09 37.18 xvi  41 (x) 7.08 2.09 12.45 

vii  11 (y) 2.29 7.20 37.18 xvii  43 (y) 2.29 7.20 12.45 

viii  12 (x) 2.29 7.20 37.18 xviii  44 (x) 2.29 7.20 12.45 

ix  18* (y) 7.08 2.09 31.35 xix  46 (y) 7.08 2.09 9.47 

x  17** (x) 7.08 2.09 31.35 xx  45 (x) 7.08 2.09 9.47 

*: sensors ix and xi can be both approximated by channels #18 and #19. 

**: sensors x and xii can be both approximated by channels #17 and #20. 

 
5.1 Results with 20 Sensors 

Table 3 reports the MOGA results for 20 acquisition 

channels compared with the OSP obtained from the SO genetic 

algorithm. The results obtained by applying the non-genetic 

methods (EI, EVP, ADPR) to the baseline scenario and the 

damage scenario D03 are also shown for comparison. It can be 

noticed that these latter sensor patterns are different from what 

obtained from the same procedures when applied to the 

baseline model and from what obtained by performing SOGA 

and MOGA on the baseline and all damaged cases. In 

particular, EVP and ADPR returned two identical 

configurations (yet distinct from EI and GA results). When 

applied to the baseline structure, the selected output channels 

clustered on the belfry and the top half of the tower.  When 

applied to the damage scenario D03, probably due to the 

stiffness reduction localised in the bottom half of the tower, the 

sensors were slightly less clustered on the belfry, even if still 

mostly located in the top half of the structure  

Considering the non-genetic options when optimised on the 

baseline model, only the EI method returned a sensors pattern 

that produced an adequately low sum of the off-diagonal 

AutoMAC and Cross-MAC terms if the damage scenarios are 

taken into account. Indeed, through this method it was still 

possible to further reduce the number of sensors required while 

maintaining suitably low off-diagonal values on the AutoMAC; 

a layout of 14 sensors was obtained (this will be better 

discussed in the next subsection). EVP and ADPR returned 

higher off-diagonal AutoMAC terms. Only with many more 

channels (about 30) they reached a goodness-of-fit comparable 

with EI results. By way of illustration, Table 4 details the sum 

of the diagonal and of the off-diagonal terms obtained by fitting 

the EI, SOGA, and MOGA algorithms on the damage scenarios 

D03 and D04. As expected, for the EI algorithm, the sensor 

patterns optimised over the baseline structure struggle to 

recognise the mode shapes of the damaged cases, especially 

D04, and vice versa. SOGA and MOGA performed 

comparably in this study. It must be remembered that the 

optimisation task was set to minimise the off-diagonal elements 

of the AutoMAC and to minimise both the off-diagonal and the 

diagonal terms of the several Cross-MAC matrices. As it can 

be inferred, the GAs fit better the different damage scenarios, 

resulting in a lower sum of both the diagonal and the off-

diagonal terms in Cross-MAC matrices and thus highlighting 

the differences between the damaged and the baseline mode 

shapes, as required for damage detection. Regarding the 

AutoMAC, the results are still comparable to the ones of the EI 

method fitted on the current model. Noteworthy, the diagonal 

terms of the Cross-MAC matrices obtained by fitting the EI 

algorithm on the damage scenarios are lower than their 

counterparts from genetic algorithms. However, their off-

diagonal elements are much higher. That indicates that this 

lowering is not produced by a better discerning of the damaged 

mode shapes respect to their corresponding baseline ones, but 

rather by an overall inefficiency of the arrangement to 

distinguish both damaged or baseline eigenshapes. Hence, it is 

important to stress that both the off-diagonal and the diagonal 

terms of the Cross-MAC matrices must be minimised 

simultaneously.  
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5.2 Results with Less than 20 Sensors 

The techniques applied showed that it was possible to reduce 

the number of sensors without losing performance (in terms of 

off-diagonal error) with less than the 20-channels configuration 

currently deployed. Specifically, both the EI technique and 

SOGA still outperformed the current configuration with as low 

as 14 channels for the baseline scenario. These resulting 

arrangements are reported in Table 5 and compared with 

MOGA-produced OSP with the same number of sensors. In the 

arrangement found employing EI, all the 14 sensors are 

clustered together in a delimited area of the bell tower, with the 

risk of multiple sensor failures in case of damage.  

 

5.3 Results Considering the Likelihood of the Potential 

Damage Scenarios 

Here, different values of the weights have been assigned. By 

zeroing some of them it is possible to focus on a subset of the 

12 cases reported in Table 1, thus investigating the importance 

of adding or neglecting a potential damage scenario. On the 

other hand, considering 0 < 𝑤 < 1 can be used to reflect the 

different likelihood of the several cases, or to model any other 

designer’s choice. For 𝑤 = [𝑤0, 𝑤1, 𝑤2, … , 𝑤𝑀], considering 

𝑤0 related to the baseline model, four cases have been analysed 

for both MOGA and single-OF GA:  

(I) 𝑤0 = 𝑤1 = 1, 𝑤𝑘 = 0 ∀ 𝑘 ≠ 0,1; 

(II) 𝑤0 = 𝑤4 = 1, 𝑤𝑘 = 0 ∀ 𝑘 ≠ 4;  

(III) {
𝑤𝑘 = 1  if 𝑘 = 0,1,3,4

𝑤𝑘 = 0  otherwise
 ; 

(IV) 𝑤 = [1.00,0.92,0.75,1.00, … 

… ,0.83,0.67,0.17,0.50,0.58,0.08,0.42,0.25,0.34]. 

Case I focuses on the simple damage scenario D01, with only 

one external façade cracked at the tower bell bases. As 

explained before, this is very common in this kind of structures. 

It was also considered that the investigated bell tower is 

relatively higher than similar structures found elsewhere in 

northern Italy. This makes the development of cracks at the 

base and lower levels more probable. Case II considers again a 

unique damage case, D04, but with the cracked masonry more 

spread throughout the whole length of the structure. Case III 

includes a subset of three damage scenarios considered very 

likely to happen and discard the other ones. Finally, Case IV 

exemplifies a potential ranking of likelihoods, with the damage 

scenario deemed as the most probable one, D03, taken at full 

weight (1) and the other ones in descending order (with 

constant steps equal to 1/12). The baseline configuration is 

assumed at full weight in all cases. Any other arrangement of 

the weights can be applied, according to the preferences of the 

designer; the ones reported here serve as an example of this 

potentiality. 

 Table 7 reports the resulting OSP for cases (I)-(IV) for both 

SOGA and MOGA, with 20 and 14 sensors. The results in 

Table 7 can be compared to the ones in Table 3 and Table 5. It 

can be noticed that the resulting sensor placements are 

generally different, particularly for the MOGA, even if the 

sensors tend to cluster in the same areas; on the other hand, the 

SOGA method returned the same sensor placement for the Case 

(I) with 14 sensors. In Table 6 the diagonal and off-diagonal 

terms for the MAC matrices corresponding to cases (I)-(IV) are 

reported, considering 20 acquisition channels. The results 

follow the same behaviour previously described in Table 4. 

Case (I) struggles to recognise the mode shapes belonging to 

the fourth damage scenario, resulting in low diagonal terms but 

high off-diagonal elements in the BASE -D04 Cross-MAC. 

Case (II) suffers even more for both the Cross-MAC matrices 

BASE -D01 and BASE -D03. Only Cases (III) and (IV) 

produce results comparable to the ones of Table 4 

(remembering that even in the best case the sensor placement 

was never totally able to recognise the higher modes of D04, 

which deviate the most from the intact structure). These 

findings point out how the optimisation provides reliable 

results only for the selected damage scenarios or from cases 

which do not deviate extremely from the ones included (e.g. 

Case (I) still performed relatively well for D03 without being 

optimised for it). The MOGA has lower diagonal values on the 

Cross-MAC cases, i.e. it distinguishes better the damaged 

mode shapes from their baseline counterparts. For illustrative 

purposes, some results are reported in Figure 6; the sensor 

placement changes noticeably with respect to the classic 

methods (e.g. EVP), while the GAs generally return more 

uniformly spread sensor networks. 
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Table 3.  

Resulting OSP with 20 sensors. 

channel ID # 

 

 Channels along the x-direction Channels along the y-direction 

MOGA1 9-13-16-20-21-24-28-37-44-45-53 10-19-23-27-31-38-39-46-47 

SOGA1 5-8-12-20-21-24-28-33-41-48-49-52-53 11-14-15-27-43-46-47 

EI2 1-4-12-20-21-28-29-33-36-44 2-3-14-18-19-23-26-27-34-35 

EVP2 1-4-5-8-12-16-17-20-24-28 2-3-6-7-10-11-18-23-26-31 

ADPR2 1-4-5-8-12-16-17-20-24-28 2-3-6-7-10-11-18-23-26-31 

EI3 1-4-16-20-21-28-33-36-40-44 2-3-18-19-26-31-34-35-39-43 

EVP3 1-4-5-12-20-24-28-36 2-3-6-10-11-18-23-26-27-31-35-39 

ADPR3 1-4-5-12-20-24-28-36 2-3-6-10-11-18-23-26-27-31-35-39 
1 optimised on all scenarios (‘as it is’ and damaged ones).  
2 applied to the current structural situation.  
3 applied to the damaged scenario D03  

 

Table 4.  

Diagonal and off-diagonal terms for the MAC matrices. 

Sum of 

diagonal 

terms 

Sum of  

off-diagonal 

terms 

EI 

algorithm 

(optimised 

on BASE ) 

EI 

algorithm 

(optimised 

on D03) 

EI 

algorithm 

(optimised 

on D04) 

MOGA SOGA 

AutoMAC 

BASE  

10.00 

13.38  

9.71 

10.52 

6.37 

10.70 

10.00 

4.08 

10.00 

4.26 

Cross-MAC 

BASE - D03 

9.72 

13.94 

10.00 

11.21 

6.12 

11.3 

9.64 

4.39 

9.69 

4.46 

Cross-MAC 

BASE - D04 

6.72 

13.25 

6.08 

12.33 

10.00 

7.04 

6.16 

6.06 

6.44 

5.66 

 

Table 5  

Resulting OSP with 14 sensors. 

channel ID # 

 

 Channels along the x-direction Channels along the y-direction 

MOGA1 9-17-20-29-36-37-44-45-48 10-14-15-23-39 

SOGA1 17-20-25-37-49 7-10-14-15-22-31-39-46-51 

EI2 1-4-17-28-29-33-36 18-19-23-26-27-34-35 

EI3 1-4-16-29-33-44 18-19-26-27-34-35-38-39 

1 optimised on all scenarios (‘as it is’ and damaged ones). 
2 applied to the current structural situation. 

3 applied to the damaged scenario D03 
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Table 6. 

Diagonal and off-diagonal terms for the MAC matrices (cases I-IV, with 20 channels). 

 MOGA  SOGA  

I 

 

II  III  

 

IV I 

 

II  III  

 

IV 

AutoMAC  

BASE 

10.00 

4.10 

10.00 

4.28 

10.00 

4.18 

10.00 

4.60 

10.00 

4.25 

10.00 

4.71 

10.00 

4.28 

10.00 

4.91 

Cross-MAC 

BASE - D01 

9.99 

4.11 

6.14 

6.81 

9.81 

4.29 

9.9 

4.314 

10.00 

4.20 

9.99 

4.69 

9.99 

4.30 

9.97 

4.49 

Cross-MAC 

BASE - D03 

9.31 

4.67 

6.03 

6.43 

9.69 

4.63 

9.71 

4.67 

8.67 

5.43 

9.66 

4.70 

9.77 

4.06 

9.71 

4.04 

Cross-MAC 

BASE - D04 

6.07 

6.67 

8.09 

4.35 

6.77 

6.16 

6.56 

4.63 

6.15 

6.72 

8.65 

6.95 

6.94 

5.54 

7.11 

5.44 

 

 
(a) (b) (c) (d) (e) 

Figure 6. Some illustrative example of sensor patterns with 20 channels. (a) EVP optimised on the undamaged scenario (very 

clustered to the top); (b) EVP optimised on D03; (c) and (d) MOGA and SOGA optimised on all cases (baseline and damaged); (e) 

MOGA optimised on the baseline, D01, D03, and D04 (Case III) 
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Table 7.  

Resulting OSP with weighted damage scenarios. 

channel ID # 

 

With 20 

sensors 
Channels along the x-direction Channels along the y-direction 

(I) 
MOGA 5-8-9-16-17-21-40-41-49-57 7-15-18-22-35-38-42-50-51-54 

SOGA 9-13-16-21-24-33-36-40-48-53 11-18-19-26-27-35-42-50-54-62 

(II) 
MOGA 12-13-17-20-25-36-37-41-44-48-49 14-18-22-23-30-31-38-46-55 

SOGA 5-9-13-20-21-29-37-40-48-52-56-60  7-11-35-38-43-46-51-55 

(III) 
MOGA 8-16-28-29-36-44-45-48-49-53  14-15-18-19-22-26-27-31-39-47 

SOGA 12-13-17-20-24-29-33-40-48-49-52  18-19-30-38-39-42-43-54-55 

(IV) 
MOGA 8-13-20-21-29-37-45-48-49  14-15-23-26-30-31-34-38-39-43-46 

SOGA 5-8-12-16-24-28-37-45-53-56  15-18-19-26-30-38-42-43-50-51 

With 14 

sensors 
Channels along the x-direction Channels along the y-direction 

(I) 
MOGA 12-17-20-28-33-40-52-53 14-19-22-26-27-39 

SOGA 17-20-25-37-49 7-10-14-15-22-31-39-46-51 

(II) 
MOGA  5-9-21-28-37-40-56-60 10-14-18-19-46-47 

SOGA  5-8-16-44-45-57-60-61 11-19-22-47-51-54 

(III) 
MOGA  9-16-24-29-37-44-45-52 15-22-30-38-51-55 

SOGA 5-9-16-20-21-37-52 10-38-39-43-46-51-62 

(IV) 
MOGA 17-20-29-36-37-40-48-60 6-7-14-19-43-47- 

SOGA 13-16-21-44-57-60-61 7-10-23-31-39-51-55 

 

5.4 Selected Optimal Sensor Placement 

By applying the MOGA approach, it was found that a setup 

with 16 channels (for which a unique solution exists) provided 

good results, with 𝑓1(𝒙) = 0.04 and 𝑓2(𝒙) = 0.27 

(considering all the weights equal to 1). These were the best 

results compared to any other sensor pattern with the same 

number of channels. By further reducing the number of sensors 

deployed, it was observed that both cost functions grew higher 

(especially 𝑓1(𝒙) became larger than 5%), making the 

candidate sensor patterns too imprecise. Several other practical 

issues, such as the easiness of accessibility, the requirement of 

redundancy in case of sensor failure, and a preference to install 

biaxial accelerometers at the same location rather than more 

uniaxial accelerometers at distinct yet nearby positions, were 

considered when validating this choice. In detail, the proposed 

network is composed of 2 biaxial and 12 monoaxial 

accelerometers, 9 oriented along the x-axis and 7 along the y-

axis. The selected channels and corresponding coordinates are 

enlisted in Table 8. The sensor network is portrayed in Figure 

7. By comparing this solution with the current layout (Figure 

5.b) it is evident how the sensors are much less clustered at the 

tower top and more uniformly spread along the whole tower.  

 

Figure 7. Resulting OSP with 16 sensors (MOGA approach). 
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Table 8. 

Optimal Sensor Placement (MOGA approach, 16 sensors). 

Sensor 

ID # 

 

channel ID 

# 

(direction) 

x [m] y [m] z  

[m] 

1  9 (x) 7.08 2.09 37.18 

2  11 (y) 2.29 7.20 37.18 

3  14 (y) 7.08 2.09 34.58 

4  16 (x) 2.29 7.20 34.58 

5  17 (x) 7.08 2.09 31.35 

6  19 (y) 2.29 7.20 31.35 

7  21 (x) 7.08 2.09 27.97 

8  26 (y) 7.08 2.09 24.59 

9  27 (y) 2.29 7.20 24.59 

10  28 (x) 2.29 7.20 24.59 

11  31 (y) 2.29 7.20 21.21 

12  32 (x) 2.29 7.20 21.21 

13  33 (x) 7.08 2.09 18.41 

14  37 (x) 7.08 2.09 15.43 

15  43 (y) 2.29 7.20 12.45 

16  48 (x) 2.29 7.20 9.47 

 
5.5 Final Discussion 

The MOGA approach has been benchmarked against the 

currently deployed sensor network, a single-OF GA approach, 

and three classic (non-GA-based) methodologies, 

specifically: 

- ADPR and EVP have been applied to the baseline 

model, considering 20 acquisition channels; they were 

both outperformed by the other genetic and non-

genetic alternatives. 

- EI has been applied to the baseline and damaged 

models, considering 20 or fewer channels and 

providing better results than ADPR and EVP. 

- Single-OF (classic) GA and MOGA have been applied 

to the baseline and damaged models, considering the 

whole set of the damage scenarios or a subgroup of it, 

for 20 or fewer channels. 

The MOGA results were comparable to the ones of EI and 

classic GA for the AutoMAC of the current structural condition 

and the single damage scenarios and more robust of the other 

options for the Cross-MAC on the several baseline-damaged 

combinations. The MOGA function returned a unique solution 

for all the damages considered. This seems to indicate that, for 

these specific damage scenarios and application, the two OFs 

are so closely correlated that the Pareto front of the equivalent 

solutions is reduced to a 0-dimensional point. This can be most 

probably explained by the resemblance between the pre- and 

the post-damage mode shapes. Damage severity plays an 

important role in this, but the damage pattern is also very 

relevant.  

6. CONCLUSIONS 

The performance and the reliability of an SHM system are 

related to the capability of the sensors to identify any deviation 

from a baseline model. Extensive damage can alter the structure 

of interest, causing an OSP suited for the initial structural 

conditions to eventually become less, or not at all, effective. To 

overcome this issue, a Multi-Objective GA approach has been 

proposed in this paper, including both information from the 

current structure and some potential damage scenarios. The aim 

was to define a pre-emptive arrangement of the sensors, able to 

preserve its functionality in case of damage-related changes in 

the structure of the target building. The problem is multi-

objective, as the aim is to optimise the sensor network over 

different structural configurations and to make the mode shapes 

of the damaged structure clearly recognisable from their 

equivalent of the baseline model.  The calibrated FE model of 

the bell tower of the Santa Maria and San Giovenale Cathedral 

in Fossano (Piedmont, Italy), was investigated as a case study.  

The major limitation of the proposed approach is that the 

potential damage scenarios have to be envisaged a priori, thus 

the method requires a certain knowledge of the most likely 

damage scenarios. Nevertheless, by combining the historical 

records of surveys taken from similar structure damaged after 

seismic events and extensive testing of the target structure, some 

educated guesses can be made. Relatively simple structures 

such as bell towers generally undergo some very specific 

damage patterns, which are frequently encountered. Damage 

may nevertheless occur in a non-foreseeable way, with losses of 

material stiffness in unexpected locations. Yet, the proposed 

approach still guarantees a certain degree of robustness in case 

of seismic events, much larger than for standard procedures, 

where potential damage-induced structural changes are 

completely disregarded from the OSP problem. Rearranging the 

sensor network as proposed will not cause any worsening of the 

performance on the current case, while it has more probability 

of remaining efficient in the case of future seismic damage, 

which is plausible in the seismically active area. 

The work presented here leaves large room for 

improvements. The economic and practical considerations not 

related to damage have not been considered. For instance, 

channels with different orientations but sharing the same 

position would be preferred rather than distinct locations, as it 

is more convenient to install one tri- or bi-axial accelerometers 

rather than two or more uniaxial sensors. On the other hand, less 

clustered sensors would be preferable in case of local structural 

failures. Locations that are more difficult to access may be 
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marked by a penalty function as well. All these considerations 

can be fit in a more complicated, larger-dimensional multi-

optimisation task. Finally, the two OFs were assumed here as 

equally important. However, it may be acceptable to consider 

a loss in one aspect, if this brings improvement in another one 

which is considered more important. All these aspects will be 

analysed in future works. 
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