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Abstract—Real-time health monitoring of mechatronic 

onboard systems often involves model-based approaches 

comparing measured (physical) signals with numerical models 

or statistical data. This approach often requires the accurate 

measurement of specific physical quantities characterizing the 

state of the real system, the command inputs, and the various 

boundary conditions that can act as sources of disturbance.  

In this regard, the authors study sensor fusion techniques 

capable of integrating the information provided by a network 

of optical sensors based on Bragg gratings to reconstruct the 

signals acquired by one or more virtual sensors (separately or 

simultaneously). With an appropriate Fiber Bragg Gratings 

(FBGs) network, it is possible to measure directly (locally) 

several physical quantities (e.g. temperature, vibration, 

deformation, humidity, etc.), and, at the same time, use these 

data to estimate other effects that significantly influence the 

system behavior but which, for various reasons, are not 

directly measurable. In this case, such signals could be 

"virtually measured" by suitably designed and trained 

artificial neural networks (ANNs). The authors propose a 

specific sensing technology based on FBGs, combining suitable 

accuracy levels with minimal invasiveness, low complexity, and 

robustness to EM disturbances and harsh environmental 

conditions. The test case considered to illustrate the proposed 

methodology refers to a servomechanical application designed 

to monitor the health status in real-time of the flight control 

actuators using a model-based approach. Since the external 

aerodynamic loads acting on the system influence the operation 

of most of the actuators, their measurement would be helpful 

to accurately simulate the monitoring model's dynamic 

response.  Therefore, the authors evaluate the proposed sensor 

fusion strategy effectiveness by using a distributed sensing of 

the airframe strain to infer the aerodynamic loads acting on 

the flight control actuator. Operationally speaking, a structural 

and an aerodynamic model are combined to generate a 

database used to train data-based surrogates correlating strain 

measurements to the corresponding actuator load. 

Keywords— ANN, distributed optical sensing, Fiber Bragg 

Gratings, FBG, load estimation, on-board fault detection, optical 

fibers, prognostics, smart sensor 

 

I. INTRODUCTION 

The use of a fiber-optic based structural sensing system 
derives form the need to evaluate the health condition of a 
complex system, such as an aircraft, in a less expensive 
way, given the fact that aircrafts maintenance costs are one 
of the main expenditure items for airlines [1]. It thus follows 
that the use of an integrated system for structural 
monitoring, possibly capable of processing data in real time, 
is considerably advantageous in terms of overall cost 
reduction [2]. As briefly described in the abstract, optical 
fibers and thus optical sensors, such as Fiber Bragg Gratings 
(FBGs) possess many advantages over traditional electrical 
sensors, such as minimal invasiveness, low complexity, 
electro-magnetic disturbances insensitivity and ability to 
operate in harsh environmental conditions. In the framework 
of prognostics, the availability of accurate data (or signals) 
is fundamental to evaluate the current health status of a 
system or component, thus it is of crucial importance that 
the data used is as accurate and reliable as possible. These 
signals [3-4] can be directly representative of the current 
state of the monitored system or used as input signals to the 
surrogate model, which simulates the physical system 
response and allows the implementation of model-based 
monitoring. However, it should be noted that not all the 
signals required by the surrogate model are necessarily 
actually acquired onboard by physical sensors. Some of 
them, used i.e. for controlling or monitoring the system 
itself, will be available, but others (e.g. aerodynamic load 
acting on control surfaces) may be missing. In this case, 
rather than implementing other dedicated sensors network 
(with possible problems of complexity, maintenance costs, 
and reduced reliability), it is advisable to evaluate the 
possibility of obtaining the missing information using 
virtual sensors [5-6]. The approach presented, based on low-
cost, robust, non-invasive sensors compatible with harsh 
environments [7], is promising and could be used in 
structural applications (e.g. Structural Health Management) 
and extended to less common areas as diagnostic or 
prognostic monitoring of mechatronic or electrohydraulic 
systems [8-10]. 

 

 



 

Fig. 1. Schematic of the information flow of the proposed method. 

 

Fig. 2. Schematic configuration of the final optical sensor network. 

In the particular application case of standard flight 
controls, actuator loads are not usually directly available as 
measured signals; this is due to the reliability and 
complexity penalties often associated with installing 
dedicated sensors and transducers, and thus an indirect 
approach based on a virtual sensor is easily favorable.  

II. SCOPE OF THE WORK 

The aim of this work is to present a novel method to 
evaluate, in real-time, the hinge moment of an aircraft 
aileron; the workflow is shown in Figure 1. There are two 
branches in this process: offline and online. This paper 
focuses on the offline branch, i.e. the creation of a database 
that will then be used in the online process as data source for 
a suitable data-driven surrogate model. In order to do so, a 
number of various different conditions has to be simulated, 
considering different environmental parameters but also 
varying deflection of the surface of interest, since the final 
aim of the work is to have an estimation of the hinge 
moment of said surface. Operatively, a battery of CFD 
(Computational Fluid Dynamics) and FEM (Finite Elements 
Method) simulation has been carried out, in order to obtain 
aerodynamic loads and structure deformation. In fact, the 
pressure field obtained for a given set of operating 
conditions using CFD, is used as external load for FEM 
analyses. The pressure distribution on the control surface is 
then integrated to calculate the force acting on the 
servoactuator.  

One problem that arises is now the optimal placement of 
a limited number of FBG sensors on the wing, in order to 
maximize the accuracy of the system; in fact, FBGs sense 
the deformation only at a particular spatial point [11] - this 
concept has been already explored in [12]; all of these 
measurements will then be used as input for an ANN 
(Artificial Neural Network), including other relevant data 
such as atmospheric data and attitude information obtained 
by other on-board instruments. In this sense, this is a sensor-
fusion approach. After training, the ANN output will be the 
hinge moment using present-time flight conditions. Given 
the complexity of the method, in this paper only the first 
part of the process will be explored, i.e. databases 
generation and sensors optimal placement. 

III. MODEL DEFINITION 

The aircraft used in this work is an electric, solar- 
powered UAV (Unmanned Aerial Vehicle), RA, 
conceptualized and designed (Fig. 3) by students team 
Icarus at Politecnico di Torino. The vehicle adopts a 
conventional high wing configuration, with a 5 m wingspan. 
Fuselage is bubble shaped, with a length of 2 m; the tail is 
T- shaped, with 0.5 m height. Propulsion is achieved using a 
single 50 cm propeller placed in the front of the fuselage, 
actuated by one electric motor. External surfaces and main 
structural components are made using composite materials. 
In Fig. 4 a CAD model of the wing is shown. The battery 
pack (red), that is used for storing energy, is placed inside 
the wing in order to maximize the moment of inertia on the 
roll axis of the aircraft, thus improving controllability.  
In the main structure, three main elements are visible: 

 Skin (light blue), made of laminated carbon fiber 
(two  ±45° layers), holding the aerodynamic shape of 
the wing; 

 Wingbox (yellow), made of laminated carbon fiber 
(two ±90° layers), that is the main structural element; 

 Ribs (gray), made of sandwich composite, with the 
faces made of three layers of laminated carbon fiber 
and Rohacell core, used for longitudinal strengthening 
and skin shaping. 

Further dimensional details are visible in Fig. 5. 

IV. FLIGHT CONDITIONS 

As previously said, a database of different combinations 
of flight conditions and command inputs has to be 
generated. To limit the number of simulations to a 
reasonable level, the assumption of constant temperature, 
pressure and density is made, considering ISA standard 
atmospheric conditions, i.e. p = 1.01 · 10

5
 Pa, T = 15 °C, at  

zero altitude, i.e. density  ρ = 1.225 kg/m
3
. The variables 

that have been varied to obtain different combinations are 
speed V, angle of attack α and surface deflection δa.  
In particular, values around nominal flight conditions  
(V = 15 m/s, α = 3.5°) will be considered. In total, the 
number of combinations selected is 41, that are distributed 
in the following way (expressed in condensed form): 

(1) V = 15 m/s 
(a) α = 2° : δa = [0, ±5, ±10, ±15, ±20]°; 
(b) α = [5, 8]° : δa = [0, ±5, ±10, ±15]°;  

(2) V = [5, 10] m/s 
(a) α = [2, 5, 8]° : δa = [0, ±5]°;  



 

Fig. 3. Overall view of the model aircraft. 

 

Fig. 4. Aircraft wing view. 

 

Fig. 5. Geometrical detail of the wing. 

V. CFD ANALYSIS 

After the creation of a suitable number of test conditions, 
the following step is to evaluate the stress condition on the 
wing deriving from the particular operation point. In order 
to do so, CFD analysis will be carried out firstly to evaluate 
the pressure field on the wing and thus the distributed load 
acting on it. Furthermore, the integration of the pressure 
field on the aileron surface gives an estimation of the load 
acting on the servoactuator shaft. The software used for 
CFD simulations is Star-CCM+. 

A. Simulations details 

Given the symmetrical nature of the problem along the 
longitudinal axis, the computational domain has been 
chosen as an hemisphere rather than simulating the whole 
spherical domain. The radius of the domain is Rd = 20 m, 
which is 8x the wing span. The elements chosen are 
polyhedral cells, which have more interfaces compared to 
traditional cells. In presence of a complex flow field, such as 
the one generated in proximity of a wing, polyhedral cells 
show better residual at convergence and generally require 
less iterations. Cell size is variable, as visible in Fig.6, with 
smaller size in proximity of the profile itself; furthermore an 
inflation layer is present on the profile itself, composed by 
25 prism cell stacked normally to the boundary. The scope 
of these layers is to better capture the boundary layer. 

 
Fig. 6. Mesh view in proximity of the wing. 

Regarding boundary conditions, a free stream condition 
is imposed along the external boundary of the computation 
domain, while a symmetry condition is imposed on the 
longitudinal plane; finally, a wall condition is imposed on 
all vehicle surfaces in contact with the airflow.  
The fluid modeling adopted is a RANS (Reynolds Averaged 
Navier Stokes) solution model, since the detailed temporal 
evolution of the flow is not of interest (i.e. steady-state 
solution is of importance). For turbulence, an approach 
called SST k − ω with γ – Reθ transition is adopted, which 
is a hybrid method that mixes two different turbulence 
models using different weights depending on wall distance 
[13]. 

 

Fig. 7. Pressure field for cruising conditions (V = 15 m/s, α = 2°). 

 

Fig. 8. Longitudinal plane velocity field for cruising conditions  

(V = 15 m/s, α = 2°). 

VI. FEM ANALYSIS 

After having simulated the external flow field in order to 
evaluate the pressure distribution along the wingspan, it is 
now possible to simulate the wing deflection using FEM. 
The model has been suitably simplified from its original 
detail level in order to maintain only the most significant 
features. 



 

Fig. 9. CAD view of the simplified wing model used for FEM analysis. 

All the simulations have been carried out using the 
Altair Hyperworks suite; Hypermesh has been used for 
meshing, material assignment and external load definition. 
Optistruct is the numerical solver itself and Hyperview has 
been used to create the post-processed plots. 

A. Simulations details 

Since the region of interest is the wing structure, the 
FEM simulations will only consider the wing, modeling the 
wing-fuselage insertion as a rigid connection, i.e. imposing 
zero- displacement conditions for all degrees of freedom for 
all nodes laying on the symmetry plane. Regarding loads, 
two types of loads are applied: inertial and aerodynamic. 
Inertial loads are automatically evaluated by the solver and 
accordingly applied to the elements affected; the battery 
pack is not structural mass and thus has to be manually 
added, as distributed loads, for the computation. The two 
battery packs have linear mass of 2.5 kg/m for the internal 
one (800 mm length, 40 batteries) and 1.625 kg/m for the 
external one (650 mm length, 32 batteries). Aerodynamic 
loads have been evaluated in the previous step using CFD, 
and thus are simply transferred on the wing surfaces mesh 
using the field function, mapping the relevant values of 
pressure to each relative element. Furthermore, the 
concentrated loads acting on the shafts of the servoactuators 
have been calculated and applied; the calculation is based on 
an integration of the pressure differential across the aileron 
surface and thus obtaining the hinge moment and the two 
forces acting on the actuator rod (along the x and y 
directions). 

 

Fig. 10. Loads applied for the FEM simulations: the dark blue arrows 

represent the inertial load of the battery packs; the red arrows are the 

concentraed forces acting on the servoactuators rods; the blue-green 
shading is the pressure field. Finally, on the root chord, the yellow elements 

are all the nodes with zero-displacement constraint. 

 

 

Fig. 11. Wing displacement during cruise conditions. 

All the wing structures are made from carbon fiber 
reinforced plastics (CFRP), with different properties 
depending on the function they have. The carbon fabric used 
for all elements is TeXtreme Carbon Fabric 80 g/m2, with 
the following mechanical properties: E = 240 GPa, σbreak = 
4.8GPa, ρ = 1.79 g/cm

3
, d = 7 μm, where d is the fibers 

diameter. The resin used in the composites is the SX10 
epoxy, mixed with a 40% resin to 60% fiber proportion.  
The mechanical properties for a single layer, calculated 
using the Multiscale Designer tool, are Ex = 85 GPa, Ey = 85 
GPa, Gxy = 11.56 GPa, νxy = 4.27 · 10

−3
, ρ = 1.55 · 10

−3
 

g/mm
3
, where E is the elasticity modulus, G is the shear 

modulus, ν is the Poisson ratio and ρ is the density.  
As previously stated, each element is engineered as to 
maximize the required performance while minimizing the 
mass, and this is achieved by optimal layering of the 
composite layers. The following scheme describes the 
lamination scheme for the components: 

 Skin: two layers at ±45°; 

 Wingbox: two layers at ±90°; 

 Ribs: eight layers, four at +45° and four at −45°. 

 

VII. RESULTS AND CONCLUSIONS 

After carrying out all the simulations, the data are logged 

in a single .csv file. All the relevant information obtained 

(stresses, strains, displacements) will be then used, using a 

proper algorithm, to evaluate the optimal FBGs placement 

strategy as to have the best sensitivity to strain conditions 

while minimizing the number of sensors used.  

In Fig. 11 the displacement of the wing in cruise flight is 

depicted. As expected, there are discrete variation of the 

displacement value after each rib, with the highest 

displacement at the wingtip. As described in the 

introduction, this work is only a small part needed to create 

a complex prognostics and diagnostic framework (Fig. 1). 

This work had the task of creating a dataset of external 

conditions and relative stress/displacement statuses of the 

wing structure, whose scope will be to train a neural 

network or suitable alternative machine learning method in 

order to predict the aileron hinge moment given a particular 

set of external condition (velocity, angle of attack) and 

command (aileron deflection angle).  

 



In order to do so, the next step will be to evaluate the 

best possible locations for placing a moderate number of 

FBGs sensors along the wing, in order to have punctual 

evaluation of the strain field and thus, using interpolation, 

an approximation of the wing global strain field. 
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