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Article 
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Abstract: Liquid metal breeding blankets are extensively studied in nuclear fusion. In the main pro-
posed systems, the Water Cooled Lithium Lead (WCLL) and the Dual Coolant Lithium Lead 
(DCLL), the liquid metal flows under an intense transverse magnetic field, for which a magnetohy-
drodynamic (MHD) effect is produced. The result is the alteration of all the flow features and the 
increase in the pressure drops. Although the latter issue can be evaluated with system models, 3D 
MHD codes are of extreme importance both in the design phase and for safety analyses. To test the 
reliability of COMSOL Multiphysics for the development of MHD models, a method for verification 
and validation of magnetohydrodynamic codes is followed. The benchmark problems solved regard 
steady state, fully developed flows in rectangular ducts, non-isothermal flows, flow in a spatially 
varying transverse magnetic field and two different unsteady turbulent problems, quasi-two-di-
mensional MHD turbulent flow and 3D turbulent MHD flow entering a magnetic obstacle. The 
computed results show good agreement with the reference solutions for all the addressed problems, 
suggesting that COMSOL can be used as software to study liquid metal MHD problems under the 
flow regimes typical of fusion power reactors. 

Keywords: liquid metal blanket; MHD benchmarking; COMSOL multiphysics; magneto-convec-
tion; turbulent MHD; large eddy simulations 
 

1. Introduction 
In the nuclear fusion framework, the breeding blanket is a key system devoted to 

power extraction, shielding and tritium production. Among the different designs of the 
blanket, in the Water-Cooled Lithium-Lead (WCLL) breeding blanket of DEMO [1] and 
in the WCLL test blanket module of ITER, the liquid, electrically conducting LiPb is 
adopted as working fluid to address the above-mentioned functions. The intense mag-
netic field used in fusion reactors to confine the burning plasma has a strong influence on 
the flow behavior, producing a magnetohydrodynamic (MHD) effect. In addition, serious 
temperature gradients are present in the breeding blanket, giving rise to buoyancy forces. 
The presence of the external magnetic field produces an additional MHD pressure drop, 
and although rougher MHD studies can predict the ∆p [2], other phenomena, such as 
turbulence and buoyancy-driven convection, have a drastic impact on blanket perfor-
mance and require a deeper analysis. In addition, tritium transport mechanisms [3–5] are 
influenced by the magnetic field; therefore, a detailed solution of magnetohydrodynamics 
is necessary, and it is obtainable with 3D multiphysics models for the breeding blanket. 
Smolentsev et al. [6] proposed activity for verification and validation of MHD codes for 
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fusion applications, consisting of a series of benchmark problems whose results are 
known from experimental data or trusted analytical and numerical solutions. In particu-
lar, the five problems cover a wide range of magnetohydrodynamic flows which are of 
interest for fusion applications: 
1. 2D fully developed laminar steady flow; 
2. 3D laminar, steady developing flow in a nonuniform magnetic field; 
3. Buoyancy-driven flow in a square cavity; 
4. Quasi-two-dimensional (Q2D) turbulent flow; 
5. 3D turbulent flow. 

In this work, a verification and validation procedure of the developed 3D codes is 
performed, taking as reference [6]. Verification and validation activities of MHD codes 
were conducted by different authors for 1D codes [7], 3D codes under the COMSOL envi-
ronment [8] and other codes [9–12]. Here, in order to further extend the analysis per-
formed by [8], two benchmark cases involving unsteady flows are solved. The Q2D tur-
bulence case proposed by Burr [13] was solved by adopting a modified version of the k -
ε model, derived by [14], while the fully 3D turbulent problem was tackled using the Large 
Eddy Simulation (LES) Residual Based Variational Multiscale (RBVM) method [15–17]. 
For the magnetoconvection case, the problems selected are the ones proposed by Di Piazza 
and Buhler [18], which are of particular interest for liquid metal breeding blanket technol-
ogies. In effect, in the first problem, the non-isothermal condition is due to differentially 
heated boundaries, while in the second case, temperature gradients are produced by in-
ternal heat generation. Both conditions are typical in breeding blanket systems, where 
strong temperature gradients and intense volumetric heat generation are present. 

2. Governing Equations 
The flow of liquid metal in breeding blanket conditions is characterized by a small 

magnetic Reynolds number 𝑅௠ = 𝜇𝜎𝐿𝑈 (−). Here, 𝜇 (Pa s) and 𝜎 (S m−1) are, respec-
tively, the dynamic viscosity and the electrical conductivity of the fluid, 𝐿 (m) and 𝑈 (m 
s−1) are the characteristic length and velocity of the flow. The magnetic Reynolds number 
represents the ratio between induction and diffusion of the magnetic field, so, in the low-𝑅௠ approximation, the magnetic field transport can be considered purely diffusive [19]. 
For an incompressible fluid under an imposed time-independent magnetic field with 𝑅௠ 
<< 1 the MHD equations, mass conservation Equation (1), momentum conservation Equa-
tion (2), current conservation Equation (3) and Ohm’s law Equation (4) are presented. ∇ ⋅ 𝑢ሬ⃗ = 0 (1)

𝜌 𝜕𝑢ሬ⃗𝜕𝑡 + 𝜌(𝑢ሬ⃗ ⋅ ∇)𝑢ሬ⃗ = −∇𝑝 + 𝜇∇ଶ𝑢ሬ⃗ + 𝐽 × 𝐵ሬ⃗  (2)

∇ ⋅ 𝐽 = 0 (3)𝐽 = 𝜎൫−∇𝜙 + 𝑢ሬ⃗ × 𝐵ሬ⃗ ൯ (4)

where 𝑢ሬ⃗  (m s−1) is the velocity vector, 𝑝 (Pa) is the pressure, 𝜌 (kg m−3) is the density of 
the fluid, 𝜇 (Pa s) is the dynamic viscosity, 𝐽 (A m−2) is the current density vector, 𝐵ሬ⃗  (T) 
is the magnetic flux density, 𝜎 (S m−1) is the electrical conductivity and 𝜙 (V m−1) is the 
electrostatic potential. 

For non-isothermal problems, the buoyancy force contribution must be added to mo-
mentum conservation Equation (2), which, under the Boussinesq hypothesis, becomes: 𝜌଴ 𝜕𝑢ሬ⃗𝜕𝑡 + 𝜌଴(𝑢ሬ⃗ ⋅ ∇)𝑢ሬ⃗ = −∇𝑝 + 𝜇∇ଶ𝑢ሬ⃗ + 𝐽 × 𝐵ሬ⃗ + (𝜌଴ + ∆𝜌)𝑔⃗ (5)

where 𝜌଴ (kg m−3) is the reference density, ∆𝜌 = 𝜌 − 𝜌଴ is the density variation with re-
spect to the reference density 𝜌଴ and 𝑔⃗ (m s−2) is the gravity vector. ∆𝜌 can be further 
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expressed as −𝜌଴𝛽(𝑇 − 𝑇଴), where 𝛽 (T−1) is the thermal expansion coefficient and 𝑇଴ (K) 
is the reference temperature. The general heat transfer equation must be solved simulta-
neously: 𝜌𝑐௣(𝜕𝑇𝜕𝑡 + 𝑢ሬ⃗ ⋅ ∇𝑇) + 𝛻 ⋅ (−𝜆∇𝑇) = 𝑄ሶ  (6)

where 𝑇 (K) is the temperature, 𝑐௣ (J kg−1 K−1) is the specific heat at constant pressure, 𝜆 
(W m−1 K−1) is the thermal conductivity and 𝑄ሶ  (W m−3) is the volumetric heat generation 
rate. 

The MHD flow is characterized, in addition to the magnetic Reynolds number, by 
additional nondimensional numbers. Some of the most important is the interaction pa-
rameter: 𝑁 = 𝜎𝐿𝐵ଶ𝜌𝑈  (7)

that expresses the ratio of the Lorentz force to inertia force and the Hartmann number: 𝐻𝑎 = 𝐿𝐵(𝜎/𝜇)ଵ/ଶ (8)

whose square represents the ratio of the Lorentz force to viscous forces. The Hartmann 
number and the interaction parameter are related to the Reynolds number, 𝑅𝑒 = 𝜌𝐿𝑈 =𝐻𝑎ଶ/𝑁. For the thermal problems, it is interesting to recall the Grashof number that ex-
presses the square of the ratio between buoyant and viscous forces in the fluid: 𝐺𝑟 = 𝐿ଷ𝜌ଶ𝛽∆𝑇𝑔𝜇ଶ  (9)

where ∆𝑇 is a characteristic temperature difference, depending on the problem consid-
ered. 

3. Verification and Validation of COMSOL Code 
The procedure proposed by [6] was followed in order to verify the applicability of 

COMSOL models, and in the next sections, the benchmark cases are presented, as well as 
the results of the computations. The first problem is the 2D fully developed MHD flow in 
a rectangular duct analytically addressed by Shercliff [20] and Hunt [21] (Section 3.1). The 
second is an experimental case, proposed by Picologlou et al. [22–24], involving the study 
of flows under a fringing magnetic field that investigates the transition from magnetohy-
drodynamics to ordinary hydrodynamics, presented in Section 3.2. Then, two non-iso-
thermal flow problems are considered, solved numerically by Di Piazza and Bühler [18] 
(Section 3.3). Lastly, two experimental turbulent flow cases [13,25] are resolved, presented 
in Sections 3.4 and 3.5, respectively. 

The equations introduced in Section 2 were implemented in COMSOL, exploiting the 
single-phase flow, heat transfer and electric current modules. 

3.1. Two-Dimensional Fully Developed Laminar Steady MHD Flow 
The laminar, fully developed, incompressible flow of a conducting fluid driven by a 

pressure gradient along a rectangular duct under an imposed transverse magnetic field is 
considered. Shercliff [20] and Hunt [21] solved this problem analytically, using different 
boundary conditions. Particularly, for Shercliff’s case, the four walls of the duct are non-
conducting, while for Hunt’s case, the two walls perpendicular to the magnetic field, 
called Hartmann walls, are conducting, while the walls parallel to 𝐵ሬ⃗ , called side walls, are 
electrically insulated. The wall conductance ratio: 𝑐௪ = 𝜎௪𝑡௪𝜎𝐿  (10)
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expresses the ratio between the electrical conductivity 𝜎௪ (S m−1) and thickness 𝑡௪ (m) of 
the walls and the electrical conductivity of the fluid and the characteristic length of the 
flow. For Shercliff’s case 𝑐௪ = 0 for all the four walls, for Hunt’s case 𝑐௪ = 0 for the side 
walls, while is non-null for the Hartmann walls. As suggested by [6], the wall conductance 
ratio considered is 𝑐௪ = 0.01. Four values of the Hartmann number were selected: 𝐻𝑎 =500, 5000, 10,000, 15,000. 

The problem was solved in dimensionless form, using a hexahedral, structured mesh, 
analog to the one proposed by Sahu et al. [8], shown in Figure 1. To minimize the compu-
tational cost, considering that the solution is symmetric with respect to 𝑥 and 𝑦 axis, just 
a quarter of the domain is considered, applying proper boundary conditions. Elements 
are generated in 𝑥 and 𝑦 direction with a geometric distribution, maximizing the num-
ber of cells in the side and Hartmann layers. The mesh, selected following a grid conver-
gence study [5], consists of 50 elements in the 𝑥-direction and 75 in the 𝑦-direction for 𝐻𝑎 = 500, 64 × 100 for 𝐻𝑎 = 5000 and 78 × 125 for 𝐻𝑎 = 10,000 and 15,000; eight 
cells were always ensured in the Hartmann and side layers. Although the problem is in-
variant in 𝑧-direction, one element is generated in the direction of the flow to consider the 
vector products involving the magnetic field. The velocity boundary conditions adopted 
in the study are non-slip at the duct walls and periodic flow conditions at the inlet and 
outlet of the duct. The electrical boundary conditions are electrical insulation for the side 
walls and thin wall condition 𝐽 ∙ 𝑛ො = 𝑐௪∇ଶ𝜙, with 𝑛ො unit vector perpendicular to the wall, 
which represents conservation of electric charge in the plane of the wall. 

 
Figure 1. Example of mesh adopted for Shercliff’s and Hunt’s cases, corresponding to 𝐻𝑎 = 5000. 
The elements are distributed, increasing the cell size moving inward to the duct. 

Solutions obtained are compared to those reported by Smolentsev, choosing the di-
mensionless flow rate 𝑄෨  as comparison parameter, defined as 𝑄෨ = 4𝑏ଶ ⋅ 𝜇𝑢(− 𝜕𝑝 𝜕𝑥⁄ ) (11)

where 𝑢 (m s−1) is the 𝑥-component of the velocity vector, 𝑏 (m) is half the Hartmann 
wall length and 𝜕𝑝 𝜕𝑥⁄  (Pa m−1) is the imposed pressure gradient in the direction of the 
flow. The relative error between COMSOL results and the analytical solutions by Shercliff 
and Hunt is evaluated as: 
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𝜀௥௘௟ = ቤ1 − 𝑄෨𝑄෨௔௡ቤ (12)

where 𝑄෨  (−) is the COMSOL solution and 𝑄෨௔௡ (−) is the analytical solution. The calcula-
tions are reported in Table 1. The presented table shows good agreement between analyt-
ical and numerical values. 

Table 1. Comparison between the results of Shercliff’s case and Hunt’s case for 2D fully developed 
laminar steady flow. Results in terms of 𝑄෨  (−). 

Shercliff Case 𝑯𝒂 (−) Analytical 𝑸෩  (−) COMSOL 𝑸෩  (−) 𝜺𝒓𝒆𝒍 (%) 
500 7.680 × 10ିଷ 7.690 × 10ିଷ 0.130 

5000 7.902 × 10ିସ 7.906 × 10ିସ 0.0456 
10,000 3.965 × 10ିସ 3.946 × 10ିସ 0.478 
15,000 2.648 × 10ିସ 2.660 × 10ିସ 0.453 

Hunt Case 𝑯𝒂 (−) Analytical 𝑸෩  (−) COMSOL 𝑸෩  (−) 𝜺𝒓𝒆𝒍 (%) 
500 1.405 × 10ିଷ 1.406 × 10ିଷ 0.0356 

5000 1.907 × 10ିହ 1.904 × 10ିହ 0.184 
10,000 5.169 × 10ି଺ 5.163 × 10ି଺ 0.118 
15,000 2.425 × 10ି଺ 2.410 × 10ି଺ 0.635 

3.2. Three-Dimensional Laminar, Steady Developing MHD Flow in a Nonuniform Magnetic 
Field 

In the second benchmark case, a conducting fluid flows in two different ducts, with 
rectangular and circular cross sections, in the presence of a nonuniform magnetic field at 
the exit from a magnet. This case was experimentally investigated at the Argonne National 
Laboratory on ALEX (Argonne’s Liquid metal EXperiment) facility [22–24]. The system 
employed eutectic NaK as a working fluid in a room temperature closed loop. 

In this problem, the magnetic field changes in the direction of the flow 𝑥, 𝐵ሬ⃗ = 𝐵(𝑥)𝑦ො, 
with 𝑦ො unit vector in the 𝑦-direction, and this requires, considering the previously ana-
lyzed 2D case, the additional discretization of the domain in the 𝑥-direction. The velocity 
boundary conditions adopted in the study are non-slip at the duct walls and imposed 
average velocity at the inlet. The electrical boundary condition is a thin wall condition on 
the walls. 

3.2.1. Rectangular Duct 
The symmetry of the problem is exploited, and only a quarter of the duct cross section 

is considered. The mesh is constituted by a symmetric distribution of elements in the di-
rection of the flow, maximizing the number of cells in the central region, where the mag-
netic field is changing the most. In 𝑦 and 𝑧 directions, the mesh is analog to the one pro-
posed in Section 3.1. The total number of elements is 2.79 × 10ହ. The equations are solved 
in dimensionless form. 

The parameters adopted for the study are 𝐻𝑎 = 2900, 𝑁 = 540 and 𝑐௪ = 0.07. The 
quantity selected for the comparison with the experimental results is the dimensionless axial 
pressure difference, that is, the pressure difference developed in the axis of the duct, scaled 
by 𝜎𝑈𝐵଴ଶ. The results are presented in Figure 2, where the magnetic field profile scaled by 𝐵଴ and the axial pressure difference obtained by Picologlou et al. [22] are shown in the pre-
sent work. Good agreement between the curves can be appreciated. The biggest discrepancy 
appears in −5 < 𝑥/𝐿 < 0, where COMSOL tends to overestimate the pressure difference. 
This behavior is also found in work by Sahu [8] and from the HIMAG Code calculations 
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[26,27]. The difference between the two solutions is calculated using the integral of the 
curves with the following relation, called integral error index: 

𝜀௜௡௧ = ቮ1 − ׬ Δ𝑝(𝑥)d𝑥௫೘ೌೣ௫೘೔೙׬ Δ𝑝஺(𝑥)d𝑥௫೘ೌೣ௫೘೔೙ ቮ (13)

where ∆𝑝஺ (−) and ∆𝑝 (−) are, respectively, the ALEX experiment and the present work 
nondimensional axial pressure difference. The integrals are computed numerically, using 
the trapezoidal rule, and the resulting error is 1.10%. 

 
Figure 2. Comparison of the COMSOL code results against ALEX experiment at Argonne National 
Laboratory [22], rectangular duct. 

3.2.2. Circular Duct 
In 𝑥-direction the mesh adopted is equivalent to the previous case, whereas, in the 𝑦  and 𝑧  plane, 25 boundary layers are considered, generated from the first layer of 

thickness 10ି଺ m, with a growth rate of 1.3. The total number of elements is 3.03 × 10ହ. 
The parameters adopted for the study are 𝐻𝑎 = 6600, 𝑁 = 10,700 and 𝑐௪ = 0.027. 

In Figure 3, the results are presented. The curves are matching very well, and the error is 0.913%. 
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Figure 3. Comparison of the COMSOL code results against ALEX experiment at Argonne National 
Laboratory [22], circular duct. 

3.3. Magneto-Convection 
The following benchmark cases were developed with the aim to include also repre-

sentative cases for the liquid metals breeding blankets, such as the WCLL, being charac-
terized by non-isothermal conditions and internal volumetric heating. 

The flow of an electrically conducting fluid in a long vertical channel of the rectan-
gular cross section was considered [16]. The flow is promoted by buoyancy forces arising 
from non-isothermal conditions; hence, we refer to this as magnetoconvection. With ref-
erence to Figure 4, the imposed magnetic field is 𝐵ሬ⃗ = 𝐵଴𝑦ො and the gravitational accelera-
tion 𝑔⃗ = −𝑔𝑥ො, with 𝑥ො unit vector in 𝑥-direction, is aligned with the channel axis. Within 
this frame, two cases are considered: a differentially heated duct and a uniformly heated 
duct, solved by Di Piazza and Bühler [18] with the CFX commercial code (currently Ansys 
CFX). For both the problems, the Hartmann number is 𝐻𝑎 = 100. 

 
Figure 4. Geometry sketch for the two benchmark cases related to magneto-convective motion. 
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The problem is 2D, and the COMSOL solution is obtained for the nondimensional 
problem, expressed in depth in [28]. For the cases considered, 𝐺𝑟 ≪ 𝐻𝑎ସ, from which re-
sults that the inertial term of the Navier–Stokes equation became negligible. The mesh 
adopted is analog to the one shown in Figure 1, where only one element is generated in 
the direction of 𝑔⃗. The total number of elements for the mesh selected is 5120, with 64 
elements in the 𝑥-direction and 80 in the 𝑦-direction; eight cells were always ensured in 
the Hartmann and side layers. The velocity boundary conditions adopted in the study are 
non-slip at the duct walls and period flow conditions at the inlet–outlet. The electrical 
boundary condition is a thin wall condition on the walls. The temperature boundary con-
ditions are defined, for the two different cases, in the next sub-sections. 

3.3.1. Differentially Heated Duct 
The two boundaries placed in the side walls (𝑧 = −𝑏 and 𝑧 = +𝑏) are kept at differ-

ent temperatures, while the Hartmann walls are thermally insulated, and there is no in-
ternal heat generation. 

A sensitivity analysis, with wall conductance ratio 𝑐௪ as a changing parameter, was 
carried out, and the nondimensional velocity profile at 𝑦 = 0 as a function of 𝑧 for half 
duct is shown in Figure 5 for 𝐻𝑎 = 100. 

 
Figure 5. Numerical solutions of differentially heated duct case from [18] and from the COMSOL 
model. 

It is interesting to notice that for the lower values of 𝑐௪, the damping effect of mag-
netohydrodynamics is less evident, while in the core region, the solution is still dominated 
by buoyancy and Lorentz forces and exhibits a linear behavior, with a slope of ∼ 𝐻𝑎 for 
the perfectly insulating walls case [29]. In the lower conductivity cases, jets are not present. 
This is due to the fact that for low values of 𝑐௪ the side layer becomes better conducting 
than the side walls, and high current jets are now present in the layers parallel to the side 
walls. They are also parallel to 𝐵ሬ⃗ , so they do not interact with the magnetic field; therefore, 
the electromagnetic forces in the side layers become negligible, and the dominant effect is 
due to viscous dissipation. 

For these cases, a comparison was made with respect to the numerical solutions [18] 
obtained with the CFX code. The integral of the curves is selected as a comparison param-
eter, and the relative difference is calculated with the integral error index: 
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𝜀௜௡௧ = อ1 − ׬ 𝑢(0, 𝑧)d𝑧௭೘ೌೣ௭೘೔೙׬ 𝑢஻(0, 𝑧)d𝑧௭೘ೌೣ௭೘೔೙ อ (14)

where 𝑢஻(0, 𝑧) (−) is [18] 𝑥-direction dimensionless velocity profile and 𝑢(0, 𝑧) (−) is the 
current work profile, both taken at 𝑦 = 0. The error comparison is reported in Table 2. As 
can be appreciated, for all the cases, the maximum difference is lower than 2%. 

Table 2. Comparison between COMSOL code and Di Piazza and Buhler solutions for 𝐻𝑎 = 100. 
Results in terms of integral error index. 

 Differentially Heated Duct Uniformly Heated Duct 𝒄𝒘 (−) 𝜺𝒓𝒆𝒍 (%) 𝜺𝒓𝒆𝒍 (%) 0 0.957 1.50 0.01 0.326 4.78 0.1 1.77 0.585 ∞ 1.36 0.770 

3.3.2. Uniformly Heated Duct 
For the internally heated duct case, a volumetric heat generation 𝑄ሶ  is present, and 

the boundary at the side walls is kept at a fixed and equal temperature, while the Hart-
mann walls are thermally insulated. 

The nondimensional velocity profiles at 𝑦 = 0 and as a function of 𝑧-coordinate, a 
result of an analog sensitivity analysis to the one presented for the differentially heated 
duct case, are shown in Figure 6 for 𝐻𝑎 = 100. For high wall conductivity ratios, the ad-
ditional forces damp the velocity profile in the core region, and velocity jets are present in 
the side layers. For small values of 𝑐௪, jets are no more present, and the solution at the 
side layers is dominated by viscous effects. 

The error comparison is reported in Table 2, where the maximum difference is related 
to the analysis with 𝑐௪ = 0.01, that, nevertheless, presents a value below 5%. It should be 
recalled that in both differentially heated duct and uniformly heated duct cases, the com-
parison was addressed on the numerical solutions of the codes. 

 
Figure 6. Numerical solutions of uniformly heated duct case from [18] and from the COMSOL 
model. 
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3.4. Quasi-Two-Dimensional MHD Turbulent Flow 
This case regards a quasi-two-dimensional MHD turbulent flow as proposed in [6]. 

Burr et al. [13] developed an experimental setup consisting of a rectangular stainless steel 
channel of side length 0.04 m and wall thickness 6 mm where the eutectic sodium–po-
tassium alloy is circulated under the presence of a magnetic field. NaK, with density 865 
kg m−3 and kinetic viscosity 9.5 × 10ି଻ m2 s−1, flows in the 𝑥-direction, and 𝐵ሬ⃗  is oriented 
in 𝑧  and can be varied from 0.25  T to 2.5  T. The electric conductivity of the wall 
is 1.39 × 10଺ S m−1, whereas the one of the NaK is 2.8 × 10଺ S m−1, from which it results 
in wall conductance ratios of the side and Hartmann walls of 𝑐௪,ௌ  =  0.0714 and 𝑐௪,ு  = 0.0119, respectively. The Hartmann numbers investigated are 600, 1200, 2400 and 4800 
for Reynolds numbers between 3.3 × 10ଷ and 1.0 × 10ହ. 

The problem is solved numerically using a RANS 𝑘 − 𝜀 turbulence model that in-
cludes two transport equations for the turbulent kinetic energy 𝑘 (m2 s−2) and for the dis-
sipation of turbulent kinetic energy 𝜀 (m2 s−3). For 𝑘 − 𝜀, Equation (2) becomes: 𝜌 𝜕𝑢ሬ⃗𝜕𝑡 + 𝜌(𝑢ሬ⃗ ⋅ ∇)𝑢ሬ⃗ = −∇𝑝 + (𝜇 + 𝜇்)∇ଶ𝑢ሬ⃗ + 𝐽 × 𝐵ሬ⃗ ଴ (15)

where 𝜇் [Pa s] is the eddy viscosity. The two closure equations of the model are: (𝑢ሬ⃗ ⋅ ∇)𝑘 = ∇ ∙ ൤൬𝜇 + 𝜇௧𝜎௞൰ ∇𝑘൨ +𝑃௞ − 𝜌𝜀 + 𝑆௞௅ (16)

𝜌(𝑢ሬ⃗ ⋅ ∇)𝜀 = ∇ ∙ ൤൬𝜇 + 𝜇௧𝜎ఌ൰ ∇𝜀൨ +𝐶ఌଵ 𝜀𝑘 𝑃௞ − 𝐶ఌଶ𝜌 𝜀ଶ𝑘 + 𝑆ఌ௅ (17)

Here, 𝑃௞ (W m−3) is a source term, 𝜎௞ (−), 𝜎ఌ (−), 𝐶ఌଵ (−) and 𝐶ఌଶ (−) are turbulent 
model parameters. 𝑆௞௅ (W m−3) and 𝑆ఌ௅ (W m−3) are source terms that include the damping 
of the turbulent kinetic energy and the dissipation of the turbulent kinetic energy due to 
the Lorentz force and were modeled by different authors [30–32]. The relations selected 
are the ones proposed by Meng et al. [14], expressed by the following equations: 𝑆௞௅ = −𝜎𝐵ଶ𝑘𝑒ି஼భಾටఙఘ஻మఔ௞ (18)

𝑆ఌ௅ = −𝜎𝐵ଶ𝜀𝑒ି஼భಾටఙఘ஻మఔ௞ (19)

where 𝐶ଵெ (−) is a constant with value 30, and 𝜈 (m2 s−1) is the kinematic viscosity. In 
these relations, ඥ𝜎 𝜌⁄ 𝐵ଶ 𝜈 𝑘⁄  is the characteristic turbulence damping time, and exp൫−𝐶ଵெඥ𝜎 𝜌⁄ 𝐵ଶ 𝜈 𝑘⁄ ൯ is the decay rate of the turbulent kinetic energy. 

The comparison parameters between Burr and the current study are the mean veloc-
ity profiles and turbulent kinetic energy of two-dimensional turbulence 𝑘ଶ஽ (m2 s−2), de-
fined as 𝑘ଶ஽ = 12 ൫𝑢ᇱଶതതതത + 𝑤ᇱଶതതതതത൯ (20)

where 𝑢ᇱ (m s−1) and 𝑤ᇱ (m s−1) are the fluctuating term of the velocity for the 𝑥-th and 𝑧-th components. 
The mesh refinement was carried out until an appropriate wall lift-off in viscous units 𝛿௪ା was obtained. In particular, 𝛿௪ା = 11.06 for every case analyzed, that is the lower limit 

for COMSOL 𝑘 − 𝜀 turbulence model [33]. This value corresponds to the dimensionless 
wall distance 𝑦ା, where the viscous sublayer meets the logarithmic layer. The total num-
ber of elements is 1.28 × 10଺. The velocity boundary conditions adopted in the study are 
non-slip at the duct walls and imposed average velocity at the inlet. The electrical bound-
ary condition is a thin wall condition on the walls. 
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The mean velocity in 𝑥-direction 𝑢, calculated for 𝐻𝑎 = 4800 and various Reynolds 
numbers, is now compared with Burr results. In Figure 7, the COMSOL solutions and Burr 
experimental results are displayed. 

The main characteristics of the flow are well expressed, and the influence of the Reyn-
olds number on the flow is evident. This is a characteristic of turbulent MHD flows, while 
the velocity distribution of laminar MHD flows is governed only by 𝐻𝑎 . Turbulence 
smoothens out velocity peaks in the side walls that are reduced for increasing Reynolds 
numbers, and the width of the side layer increases with 𝑅𝑒 due to turbulent transfer of 
momentum. 

 
Figure 7. Comparison of the numerical results against Burr experiment [13]. Mean velocities at the 
midplane 𝑦 = 0 for 𝐻𝑎 = 4800. 

In Table 3, the local relative errors between COMSOL and the experimental results, 
calculated with the following equation, are presented. 𝜀௥௘௟ = ห1 − 𝑢/𝑢௘௫௣ห (21)

Here, 𝑢 (−) is the 𝑥-direction velocity magnitude calculated with COMSOL code 
and 𝑢௘௫௣ (−) by the experiment, both evaluated at 𝑧 = 0.45, that is, the closest point to the 
side layer, obtained in the experiment. As it can be observed, values agree very well, with 
a maximum error of about 3.52%. Comparing the velocity at 𝑧 = 0, there is a relative dif-
ference of about 12% between the numerical and experimental values. The code overesti-
mated the bulk velocity, and the same behavior is reported in [14], which uses the same 
strategy to model the dissipation of the turbulent kinetic energy due to Lorentz forces. 

Table 3. Local error for the quasi-two-dimensional turbulent flow for 𝐻𝑎 = 4800 and different 𝑅𝑒. Results in terms of 𝑢 (−). 𝑹𝒆 (−) Experimental 𝒖 (−) COMSOL 𝒖 (−) 𝜺𝒓𝒆𝒍 (%) 3.3 ⋅ 10ଷ 1.638 1.644 0.368% 3 ⋅ 10ସ 1.547 1.492 3.52% 6 ⋅ 10ସ 1.442 1.482 3.31% 1 ⋅ 10ହ 1.405 1.447 2.98% 

In Figure 8, the comparison between the distributions of the turbulent kinetic energy 
of two-dimensional turbulence 𝑘ଶ஽ reported by Burr [13] and calculated with COMSOL are 
presented for 𝑅𝑒 = 1.0 × 10ହ and Hartmann numbers between 600 and 4800. The values 
are captured along the 𝑧-axis at the midplane 𝑦 = 0. The increase in the turbulent kinetic 



Energies 2021, 14, 5413 12 of 17 
 

 

energy as 𝐻𝑎 increases can be appreciated, proving that turbulence is promoted by the 
magnetic field. In both [14] and COMSOL results, turbulence is restrained to the side layers, 
decreasing fast moving towards the core region, where, in the experimental results, the flow, 
although weakly, remains turbulent. The anisotropicity of the turbulent flow is particularly 
evident for the high Hartmann number cases, where 𝑘ଶ஽ ≈ 𝑘ଷ஽. 

As shown by the results, the code can tackle quasi-two-dimensional MHD flow prob-
lems, giving reliable results, particularly in the side layer region. Further improvements 
are needed to better compute the bulk turbulence that is underestimated by the code. 

 
Figure 8. Comparison of the numerical results against Burr experiment [13]. Turbulent kinetic en-
ergy of two-dimensional turbulence 𝑘ଶ஽ at the midplane 𝑦 = 0 for 𝑅𝑒 = 1.0 × 10ହ. 

3.5. Three-Dimensional Turbulent MHD Flow 
The benchmark problem on 3D turbulent MHD flow addressed is the one proposed 

by Smolentsev et al. [6]. The eutectic GaInSn, with density 6360 kg m−3, the electrical con-
ductivity of 3.46 × 10ି଺ S2 m−1 and kinetic viscosity of 3.4 × 10ି଻ m2 s−1, flows with a 
maximum flow rate of 2 × 10ିଷ m−3 s−1 in plexiglass (insulating) rectangular channel of 
length 0.5 m and 100 mm × 20 mm cross section, and starting from pure hydrodynam-
ics conditions, is subjected to a nonuniform magnetic field generated by a magnetic ob-
stacle. This is an experimental problem addressed by Andreev et al. [25]. The flow direc-
tion is 𝑥-oriented, and the magnetic field is in the 𝑧-direction. Starting from a zero value, 
the magnetic field monotonically increases until it reaches the maximum value of 𝐵଴ =0.504 T at the center of the duct, corresponding to 𝐻𝑎 = 400, then it decreases to zero. 
The magnetic field is slightly nonuniform also in the 𝑦-direction, but this feature is ne-
glected in the COMSOL model. Further information on the B profile can be found in [25]. 
The Reynolds number selected is 𝑅𝑒 = 4000; therefore, the interaction parameter is equal 
to 𝑁 = 40. 

The problem was solved using the Large Eddy Simulation (LES) model [34,35], as 
suggested by Smolentsev et al. [6]. In particular, the Residual Based Multiscale Variational 
(RBMV) method [16,34,35] was implemented. In this model, the velocity and pressure 
fields are decomposed into resolved and unresolved scales: 𝑈ሬሬ⃗ = 𝑢ሬ⃗ + 𝑢ᇱሬሬሬ⃗  (22)𝑃 = 𝑝 + 𝑝ᇱ (23)
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where 𝑢ሬ⃗  (m s−1) and 𝑢ᇱሬሬሬ⃗  (m s−1) are the resolved scale and the unresolved scale velocities, 
respectively, and 𝑝 (Pa) and 𝑝ᇱ (Pa) are the resolved scale and the unresolved scale pres-
sures. In the RBMV method, the unresolved velocity and pressure scales are modeled in 
terms of the equation residuals for the resolved scales. Further information on RBMV LES 
modeling can be found [33]. 

To ensure adequate space discretization, the resolution of wall layers was checked 
by ௨ഓ௛ೢఔ < 1, where the left term is the dimensionless wall distance evaluated at the first 
mesh cell next to the wall. Here, 𝑢ఛ is the friction velocity, ℎ௪ is the thickness of the first 
mesh cell next to the wall, 𝜈 is the kinematic viscosity. Time discretization was checked 
using the relation 𝐶 = ௎୼௧௛ೆ < 0.5, where 𝐶 is the Courant number, with 𝑈 flow velocity 
magnitude, Δ𝑡 time step and ℎ௎ mesh size in the streamline direction. The total number 
of elements of the selected mesh is 1.8 × 10଺. The velocity boundary conditions adopted 
in the study are non-slip at the duct walls and imposed average velocity at the inlet. The 
electrical boundary condition is a thin wall condition on the walls. 

The selected comparison parameter is the mean velocity profile and the mean electric 
potential, evaluated at different distances along the channel. In particular, the selected 
locations correspond to the main flow regions, as described by Andreev. In Figure 9, a 
comparison between COMSOL and Andreev’s velocity profile at ௫ு = −5.3, with 𝐻 chan-
nel height in 𝑧-direction, is presented. 

 
Figure 9. Comparison of the numerical results against Andreev experiment [25]. Velocity profile at 𝑧/𝐻 = 0 and 𝑥/𝐻 = −5/3 (turbulence suppression region). 

The profile is referred to as the first region indicated by the author, characterized by 
the increasing magnetic field that influences the flow and damps its perturbations, called 
“turbulence suppression region”. As evident, the agreement between the curves is good, 
and the integral error index is 0.947%. In Figure 10, the electric potential profile, placed 
at ௫ு = 0, is shown. 
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Figure 10. Comparison of the numerical results against Andreev experiment [25]. Electric potential 
profile at 𝑧/𝐻 = 0 and 𝑥/𝐻 = 0 (vortical region). 

This region, around the center of the duct where 𝐵 is maximum, is called “vortical 
region”. The magnetic field suppresses the fluctuations in the direction parallel to the 
magnetic field, and the flow becomes quasi-two-dimensional. The integral error index is 4.21%. In Figures 11 and 12, the results for the last region, named “wall jet region”, are 
reported. 

 
Figure 11. Comparison of the numerical results against Andreev experiment [25]. Velocity profile at 𝑧/𝐻 = 0 and 𝑥/𝐻 = 3 (wall jet region). 
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Figure 12. Comparison of the numerical results against Andreev experiment [25]. Velocity profile at 𝑧/𝐻 = 0 and 𝑥/𝐻 = 6 (wall jet region). 

This region is located on the remaining part of the channel, where the magnetic field 
decreases. As observable, the velocity in the middle plane increases greatly, going from 𝑥/𝐻 = 3 to 𝑥/𝐻 = 6 thanks to the drop of the intensity of the magnetic field, and the 
quasi-two-dimensional profile stretches to the core of the flow. The agreement between 
the velocity fields is quite good, and the relative errors in percentage are 6.72% at 𝑥/𝐻 =3 and 7.81% at 𝑥/𝐻 = 6. 

As presented, the code is capable of representing the characteristic regions of the ex-
perimental problem, and the errors obtained are, for every case, well below 10%. The 
results are summarized in Table 4, and they provide confidence in the capabilities of 
COMSOL to simulate fully 3D turbulent flows. 

Table 4. Comparison between COMSOL code and [25] experiment. Results in terms of integral 
error index. 𝒙 𝑯⁄  (−) −𝟓. 𝟑 𝟎 𝟑 6 𝜀௥௘௟ (%) 0.947% 4.21% 6.72% 7.81% 

4. Discussion 
In this paper, a verification and validation procedure was followed, as proposed by 

Smolentsev et al. [6], and different liquid metal MHD problems were solved, with the aim 
of verifying the developed models using the commercial software COMSOL Multiphys-
ics. For the magnetoconvection case, the considered benchmarks were the ones tackled by 
Di Piazza and Bühler [18], presenting the typical conditions that are expected in liquid 
metal breeding blankets. 

The compared parameters showed great agreement for laminar flow problems, both 
isothermal and non-isothermal. As far as the turbulent cases are concerned, Q2D and 3D, 
a modified version of the RANS 𝑘 − 𝜀 and the LES RBMV models were adopted, respec-
tively, and the deriving results, in terms of relative errors and the capability of describing 
the flow features, are very promising. 

Author Contributions: Conceptualization, C.A., L.C. and R.T.; methodology, C.A.; software, C.A.; 
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