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Abstract

Rapid-eye movement (REM) sleep, or paradoxical sleep, accounts for 20–25% of total
night-time sleep in healthy adults and may be related, in pathological cases, to parasomnias.
A large percentage of Parkinson’s disease patients suffer from sleep disorders, including
REM sleep behaviour disorder and hypokinesia; monitoring their sleep cycle and related
activities would help to improve their quality of life. There is a need to accurately classify
REM and the other stages of sleep in order to properly identify and monitor parasom-
nias. This study proposes a method for the identification of REM sleep from raw single-
channel electroencephalogram data, employing novel features based on REM microstruc-
tures. Sleep stage classification was performed by means of random forest (RF) classifier,
K-nearest neighbour (K-NN) classifier and random Under sampling boosted trees (RUS-
Boost); the classifiers were trained using a set of published and novel features. REM detec-
tion accuracy ranges from 89% to 92.7%, and the classifiers achieved a F-1 score (REM
class) of about 0.83 (RF), 0.80 (K-NN), and 0.70 (RUSBoost). These methods provide
encouraging outcomes in automatic sleep scoring and REM detection based on raw single-
channel electroencephalogram, assessing the feasibility of a home sleep monitoring device
with fewer channels.

1 INTRODUCTION

Human sleep, according to the Rechtschaffen and Kales (R&K)
scoring criteria [1], is divided in stages N1 to N4 (from light to
deep) and stage R (rapid eye movement – REM [2]). This lat-
ter exhibits mixed frequency, low voltage, skeletal muscle atonia
and bursts of rapid eye movements [3]. It accounts for 20–25%
of total night-time sleep in healthy subjects, and plays a funda-
mental role in the processing and consolidation of memories
[4] and in the regulation of emotional states [5]. On the other
hand, the REM behaviour disorder (RBD) [6] is a parasomnia
featuring loss of physiological muscle atonia during REM sleep
and abnormal sleep behaviour, manifested by dreams enactment
and increased violence [7]. RBD is related to poor quality of life
(QoL) and psychological disorders such as anxiety [8]. Evidence
shows that RBD is a precursor to Parkinson’s disease (PD)
and other neurodegenerative diseases [9], and about 40% of
PD patients complain of RBD and nocturnal hypokinesia, [10].
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More in general, sleep disorders are increasing in the aging pop-
ulation worldwide, and simple sleep monitoring systems would
help improving their QoL. The gold standard to diagnose and
monitor sleep disorders is polysomnography (PSG), a collec-
tion of recordings that include electroencephalogram (EEG),
electrooculogram (EOG), electromyogram (EMG), electrocar-
diogram, as well as pulse oximetry and photoplethysmogra-
phy. However, PSG is costly, impractical and inconvenient for
patients, because of the high number of electrodes employed
and the non-familiar environment. Actually, the test should be
performed over two nights, as the first one is affected by the
}}first night effect′′, that is very low sleep quality. Moreover, PSG
recordings are scored manually by a sleep expert, and the rating
process is subjective and time-consuming (the medical score is
often available after many working days). Different studies in
literature aim at providing automatic multi-stage sleep classifi-
cation using several PSG signals [11–13], with results compara-
ble to expert annotations, but considerable complexity. Other
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studies address only EEG channels to perform multi-stage or
stage-specific classification, achieving good performance [14,
15]. Some of these works adopt a feature-based approach [16,
17], while more recent ones address deep learning (DL) [18, 19]
and attention mechanisms [20] on data from one or two EEG
channels [21], with good performance. Hence, even though
PSG and visual scoring of sleep epochs remain the clinical
gold standard, automatic sleep scoring represents a promising
approach for sleep disorder follow-up and longitudinal stud-
ies. The main contributions of this work are the implementa-
tion of algorithms for automatic sleep scoring (with a focus on
REM sleep identification) from a single-channel raw EEG, and
the definition of novel features based on REM sleep micro-
structures. It represents a feasibility test for sleep monitor-
ing based on a single electrode, possibly to be performed at
home, thus alleviating the inconvenience for the subject and the
sleep expert.

2 DATA

The data employed in this work belong to the DREAMS Sub-
jects Database [22], available online. It is a collection of PSG
recordings from 20 healthy individuals (four males) with neither
underlying neurological pathology nor sleep disorders. At the
time of recording they were taking no medication. Most subjects
are aged 18–25, but 25% of the participants belong to the 45+
class (age 33.5 ± 14 years). The mean recording time is 8h 30m.
All PSG recordings were annotated by an expert, according to
both the R&K and the American Academy of Sleep Medicine
(AASM) criteria [23]. The AASM annotation, used in this paper,
scores each 30 s epoch in one out of five stages: awake (AWA),
non-rapid eye movement sleep (arranged in stages N1, N2, N3,
from light to deep) and REM. Ten subjects have been included
in our study, for which regular sleep cycles can be identified,
and at least 50 min REM periods are indeed present. The other
PSGs have been discarded due to the irregularity of the sleep
cycle or the absence of REM and N3 epochs, possibly due to
the first-night effect [24]. According to the AASM criteria, non-
classifiable sleep stages are labelled either 0, −1 or −2. These
epochs are discarded too as they are not relevant. The final
dataset is made of N= 8.382, 30 s epochs. As detailed in Table 1,
the dataset is quite imbalanced towards the N2 class, a common
situation because N2 accounts for 45–55% of the total sleep
cycle [25]. On the other hand, N1 is very little represented, as it
represents a transitional stage from AWA to N2. The EEG sig-
nals have been re-sampled at 256 Hz. All recordings have been
pre-processed to reduce high-frequency noise and remove slow
drifts. The signals were high-pass filtered with an IIR Cheby-
shev type I, order 1, cut-off frequency 0.5 Hz, and low-pass fil-

TABLE 1 Number of epochs for each sleep stage

AWA REM N1 N2 N3

951 1347 555 3791 1738

tered with an IIR Chebyshev type I, order 11, cut-off frequency
40 Hz. In both cases an anti-causal filter (zero lag) has been
used to avoid delay. Since the algorithm is based on raw EEG
data, no further processing has been performed (e.g. no artefact
removal, no spatial filtering).

3 THE MICRO-STRUCTURE OF REM
SLEEP

Even though it is commonly treated as a homogeneous state, the
first evidence of the presence of two micro-states in paradoxical
sleep dates back to the 1960s [26]. Such micro-states, denoted
as phasic and tonic periods, represent markedly different brain
states as regards cortical activity and information processing [3],
and alternate during REM sleep. The tonic stage (TREM) is the
longest and most quiescent one. It consists of segments with no
significant ocular movements (EOG depolarizations lower than
25 𝜇V in a 4 s range) and features muscle atonia. On the other
hand, the phasic stage (FREM) is characterized by bursts of
rapid-eye movements (at least two consecutive depolarizations
in a 4 s range), sawtooth waves, and irregular cardiac and respi-
ratory activity. In automatic classification based on EEG signals
only, REM sleep can be mistaken for AWA or N1 as it exhibits
low-amplitude and mixed frequency components. Hence, given
that TREM and FREM show very recognizable characteristics,
a key idea of this paper is to define features typical of either
micro-state, and use them, in addition to others, to feed the clas-
sification algorithms. In this way, the classification performance
should improve, especially as regards REM stage. In more detail,
it is known that the micro-states differ in terms of power spec-
tral density (PSD): TREM (FREM) exhibits increased power in
the alpha and beta (delta and theta) frequency ranges respec-
tively [27]. Hence, we define two frequency bands significant
for extracting features specific of either REM micro-structure:
FREM and TREM bands. First of all, we estimate the PSD
for each REM epoch. Then, we evaluate the median frequency
(SEF50) and the spectral edge frequency at 95% (SEF95), that is
the frequency below which 95% of total power lies. Finally, the
FREM (TREM) frequency bounds are obtained by averaging
SEF50 and SEF95 values belonging to the 25th and 75th per-
centiles of the related distributions, respectively. The obtained
FREM and TREM bands turned out to be 2 – 8 Hz and 7 –
16 Hz, respectively. In Figure 1, sample SEF50 and SEF95 are
shown as functions of the epoch number; the frequency bounds
are reported as dotted lines. A similar approach is described
in [28] and used to distinguish REM sleep from AWA and S1.
Moreover, in [14] similar results are obtained based on the
epoch PSD. As an example, in Figure 2 the power spectrum
of two different REM epochs is depicted. The spectrum of
Figure 2(A) is skewed towards the lower frequencies, suggesting
a FREM behaviour whereas in Figure 2(B) the spectrum is more
peaked and centred in the alpha and beta bands, suggesting
a TREM micro-state. The values of SEF50 and SEF95 are
reported as dotted lines and reveal a good accordance with the
frequency bands defined in the present work.
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FIGURE 1 Sample (A) SEF50 and (B) SEF95 as functions of the epoch
number

4 FEATURE EXTRACTION

In this work, a total of 164 features have been extracted from
the dataset and divided in four categories: time, frequency, time-
frequency and non-linear. A combination of features already
proposed in literature and novel ones is employed. Time fea-
tures have been calculated for each 30 s epoch, whereas fea-
tures belonging to the other three classes have been evaluated in
each 1 s sub-epoch and then averaged across the 30 s epoch.
This approach is widely adopted in sleep stage classification,
with typical sub-epochs of 2, 5 or 10 s [12, 14]. In fact, given
that the EEG signal is not stationary, shorter windows guaran-
tee wide-sense stationarity. Furthermore, the method provides
an adequate spectral resolution (1 Hz). A list of the extracted
features is described in Table 2, possibly along with the refer-
ence of the paper(s) where they have been proposed. Many fea-
tures are self-explaining. The discrete wavelet transform (DWT)
was applied to the EOG signal in [13] and [31]. In this work
it is applied to the EEG signal, and several related numerical
and statistical measures are used as features. The Teager–Kaiser
energy operator (TKEO) has been calculated for the whole
spectrum (0 – 40 Hz) and its numerical and statistical measures
adopted as features, whereas in [31] only two power bands were
taken into account. All features have been subjected to min-max
scaling, setting the normalized range in [−1,1]. As already dis-
cussed, the novel features proposed in this work are based on
the REM sleep micro-structure and encompass the absolute and
relative power in FREM and TREM bands, along with the
energy density in these frequency bands, the spectral features
SEF50, SEF95 and the differential frequency (SEFd), which
consists in the difference between SEF95 and SEF50 [14]. As
for feature selection, we have evaluated the variance of the
extracted features and removed those with negligible variance;
a threshold of 0.2 (heuristically selected) was applied and all the

FIGURE 2 Power spectral densities of typical (A) FREM and (B) TREM
micro-states. Median frequency (in red) and spectral edge frequency at 95%
(orange) are shown

features not meeting this criterion removed. The 87 remaining
features have been used to train supervised models, as described
in the following section.

5 AUTOMATIC SLEEP STAGE
CLASSIFICATION

We applied a non-parametric classification method (K-NN) and
two ensemble learning methods (RF, boosted trees), described
in the following, along with the main relevant parameters.

K-NN classifies observations based on their similarity to a
given metric. It assigns a weight to each observation, depend-
ing on its distance to the other points in the dataset. Then,
it selects the K-top observations, that is closest to the exam-
ple, and chooses the most recurrent label. In this work, after
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TABLE 2 Adopted features, along with proper references

Category Name and description Ref.

Time Numerical and statistical measures (mean,
standard deviation, skewness, kurtosis, range,
max, min)

various

Hjorth parameters (signal and its derivative) [29]

Zero crossing rate [30]

25th, 75th, 95th percentile and their differential various

Envelope: number of peaks, peak prominence,
peak width

**

Coastline (first and second derivative) [13]

Frequency Power percentage for each clinically relevant
band

various

SEF50, SEF95, SEFd, absolute power, relative
power (TREM)

*[14]

SEF50, SEF95, SEFd, absolute power, relative
power (FREM)

**

Entropy and approximate entropy **

Fast Fourier transform: numerical and statistical
measures

various

Relative power for each clinically relevant band various

Energy density in tonic and phasic REM **

Time-frequency Short time Fourier transform: magnitude and
maximum value of its density (0 – 40 Hz)

**

Discrete wavelet transform coefficients:
Daubechies order ouri and Haar filter wavelet

[13]

Non-Linear Teager-Kaiser energy operator: numerical and
statistical measures

*[31]

*adapted from the indicated study
**novel features proposed in this study

heuristic optimization, the classification parameters are set as
follows:

∙ Number of neighbours K = 10;
∙ Distance measure: Euclidean distance.

RF is an ensemble learning classification method, and con-
sists of a high number of decision trees. Each tree is provided
with a random subset of the available observations; each node of
the tree uses a randomly selected subset of the provided features
– thus reducing the risk for overfitting. The chosen parameters
are:

∙ Number of learners: 30;
∙ Maximum number of nodes: 0.2 ⋅ NF, with NF being the

number of features used to train the model.

RUSBoost is a particular division of boosted trees, in the
form of random-under-sampling. This class of random forests
has proved to perform well when learning from imbalanced
datasets [32], a common situation in sleep stage classification
patterns. The algorithm takes N as the basic unit for sampling.
N is picked as the number of observations of the least repre-

TABLE 3 Performance of Random Forest classification

AWA REM N1 N2 N3

Accuracy 0.977 0.927 0.940 0.869 0.954

Sensitivity 0.900 0.910 0.190 0.900 0.860

Specificity 0.980 0.950 0.960 0.840 0.976

Precision 0.880 0.760 0.540 0.840 0.900

F1-score 0.890 0.828 0.281 0.869 0.880

sented class – in our database, this corresponds to N1 class.
Classes with more observations are under-sampled to N, in
order to obtain a balanced dataset. The number of learners is
again set at 30.

6 RESULTS OF 5-STAGE
CLASSIFICATION

We have employed the described algorithms to address the 5-
stage sleep classification problem (N1–N3, AWA, REM) using
data from healthy subjects. Performance is evaluated in terms of
sensitivity, specificity, accuracy, precision, and F1-score. Table 3
reports the micro-averaged performance of the RF classifier;
micro-averaging was chosen in order to take dataset imbalance
into proper account, and k-fold cross validation (k = 10) is
addressed. The performance is generally satisfactory, with the
exception of N1 stage, which exhibits low sensitivity (hence,
precision and F1-score). This behaviour is shared by all the
tested algorithms. As already discussed, this is due to the pecu-
liarity of N1, which is poorly recognizable and can be better
described as a transition between AWA and N2 than an inde-
pendent stage; this makes the opportunity of its inclusion in
the classification task questionable. The impaired performance
on N1 is also related to the dataset imbalance, as this class is
very little represented (about 6% of the total sleep epochs), and
under-sampling is not recommended, as it would waste most
information. In any case, it can be appreciated that RF achieves
an average accuracy of 83.3%, evaluated as in Equation (1) with
TP, TN, FP, FN being true positives (negatives) and false posi-
tives (negatives) respectively:

accuracy =
TP + TN

TP + TN + FN + FP
(1)

Table 4 shows the micro-averaged performance of K-NN;
again, k-fold cross validation (k = 10) is employed. It can be
noticed that K-NN scored an overall accuracy of 83.5%, com-
parable to RF. Both models achieve very good performance on
REM stage classification (F-1 score > 0.75), with high precision
and recall. As for RUSBoost, the dataset has been divided in
80% training and 20% test subsets. The epochs are randomly
selected. The algorithm performance, summarized in Table 5,
yielded an overall accuracy of 70.1%, impaired with respect to
RF and K-NN. This is not surprising, given the under-sampling
approach followed by this method and the small available data
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TABLE 4 Performance of K-NN classification

AWA REM N1 N2 N3

Accuracy 0.979 0.925 0.943 0.871 0.953

Sensitivity 0.890 0.850 0.200 0.880 0.880

Specificity 0.989 0.940 0.990 0.861 0.971

Precision 0.910 0.740 0.570 0.850 0.880

F1-score 0.900 0.791 0.296 0.865 0.880

TABLE 5 Performance of RUSBoost classification

AWA REM N1 N2 N3

Accuracy 0.921 0.890 0.854 0.822 0.897

Sensitivity 0.498 0.872 0.436 0.579 0.984

Specificity 0.988 0.899 0.892 0.973 0.892

Precision 0.864 0.568 0.269 0.930 0.758

F1-score 0.632 0.688 0.333 0.714 0.856

set. However, RUSBoost provides encouraging performance
in terms of accuracy (89%), specificity (89.9%) and sensitivity
(87.2%) on REM class, as can also be inferred by the confu-
sion matrix reported in Figure 3. The REM stage is mistaken
with N2 (3.7%), N1 (3.6%) and AWA (2.0%).A comparison
between manual scoring and automated RUSBoost scoring is
reported in Figure 4. It is worth noticing that the automatic
scoring exhibits a more fluctuating trend if compared to man-
ual annotation. This is quite reasonable, as manual annotation
of hypnograms is driven by the human interpretation, which,
for example, tends to rule out short AWA periods embedded in
REM stages. In most papers addressing automatic hypnogram
scoring, this phenomenon is by-passed by adding a smoothing
stage after the automatic scoring [33]. Finally, the performance

FIGURE 3 Confusion matrix yielded by the RUSBoost classifier. The
class labels (1–5) represent, in order, N3, N2, N1, REM, AWA

FIGURE 4 An example of comparison between hypnogram manual
annotation and RUSBoost classification results

TABLE 6 Performance comparison: RF, K-NN, and RUSBoost
(proposed) and already published methods

Study 1* Study 2 This study

Classifier Threshold RF RF K-NN RUS

Accuracy 0.885 0.96 0.927 0.925 0.89

Sensitivity 0.823 0.83 0.91 0.85 0.872

Specificity 0.893 0.98 0.95 0.94 0.899

Precision N/A 0.84 0.76 0.74 0.568

F-1 score N/A 0.81 0.828 0.791 0.688

*same dataset as our study

yielded by our classifiers have been compared to those of already
published methods. Study 1 [14] employs the same dataset as the
present work (DREAMS Subjects Database), whereas Study 2
[12] was trained and tested on combined datasets of healthy con-
trols (HC) and RBD patients (MASS, CAP and proprietary data
collected at John Radcliffe Hospital, not publicly available). This
dataset showed male predominance, while 80% of the partici-
pants in the DREAMS Subjects Database were female. More-
over, it employs features extracted from EEG, EOG and EMG
signals; for all these reasons, only indirect comparisons can be
done in this case.

The results related to REM class are shown in Table 6. It can
be noticed that all the three methods proposed in this paper
outperform Study 1 [14], which is based on the same dataset,
as for accuracy, sensitivity and specificity. Data regarding pre-
cision and F1-score of Study 1 are not provided; nevertheless,
RF and K-NN exhibit reasonable precision and a good F1-
score. The performance of Study 2 refers to the HC group.
It can be appreciated that, even though the proposed meth-
ods do not outperform [12] in overall accuracy of REM class,
both RF and K-NN exhibit higher sensitivity and comparable
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TABLE 7 Performance of RF classification on RBD subjects

AWA REM N1 N2 N3

Accuracy 0.881 0.895 0.948 0.826 0.866

Sensitivity 0.852 0.581 0.411 0.650 0.761

Specificity 0.893 0.955 0.986 0.881 0.903

Precision 0.757 0.715 0.683 0.620 0.733

F1-score 0.802 0.641 0.513 0.635 0.747

specificity and F1-score. We deem these results quite remark-
able, as our method is very simplified with respect to Study 2,
and employs a single EEG channel for classification. Moreover,
the combined dataset used in [12] encompasses 6360 observa-
tions for REM class, against only 1347 ones available in our
data.

7 RESULTS ON RBD DATASET

The final objective of our work is to study pathological subjects,
in particular those affected by RBD, with a single channel EEG.
Hence, besides the preliminary test on the capability of our
algorithms to correctly classify the five sleep stages in healthy
subjects, we have considered the PSG of 22 subjects affected
by RBD (19 males, aged 71 ± 6 years) enclosed in the CAP
Sleep Dataset [34] available on PhysioNet [35]. EEG recordings
related to the C3-A2 channel (C4-A1, if not available) were seg-
mented into 30-s epochs for feature extraction (cf. 4). The total
number of available epochs was 14583; however, data exhibited
a vast prevalence of the N2 class, with more than 5000 observa-
tions versus 688 of the least represented class, N1. As this could
cause classification bias, our choice was to undersample the N2
observations to N = 2965, that is the mean number of obser-
vations in the other three classes. The total number of available
epochs for feature extraction was 12277. The extracted features
match those formerly implemented (cf. Table 2). Dimensional-
ity reduction was performed, excluding NaNs and low-variance
features (cf. Section 4). Sleep stage classification is addressed
by means of the three already introduced classifiers, trained
on available data and validated through k-fold cross-validation,
(k = 5). For the sake of brevity, Table 7 reports the results
of the RF classifier only. The results of this model are rather
satisfactory, with an overall accuracy of 87.11%.

8 RESULTS OF BINARY
CLASSIFICATION

As discussed in Section 3, we propose to exploit the dual
nature of the REM stage (TREM and FREM micro-structure)
to enhance classification. To this end, a set of novel features
describing the two micro-states has been implemented in our
model (cf. Table 2). To acknowledge the contribution of such
features in the classification task, a binary classification prob-
lem has been set up, in order to distinguish between REM

TABLE 8 Performance of binary classification on healthy controls from
the CAP Sleep Database

Accuracy Sens Spec Prec MSE

K-NN 0,926 0,963 0,864 0,923 0,08

DT 0,949 0,979 0,897 0,941 0,05

SVM 0,863 0,935 0,741 0,859 0,13

TABLE 9 Performance of binary classification on RBD subjects from the
CAP Sleep Database

Accuracy Sens Spec Prec MSE

K-NN 0,759 0,779 0,740 0,749 0,24

DT 0,765 0,767 0,763 0,764 0,23

SVM 0,643 0,702 0,582 0,627 0,36

and NREM sleep. The wake stage has been discarded, and
stages N1, N2 and N3 included in the NREM class. As we
are dealing with a binary problem, we have tested K-NN along
with two further classifiers suitable for the problem at hand,
namely Decision Tree (DT) and SVM. Each sample set was
validated through Leave-One-Out cross-validation (LOO-CV),
leaving out one observation at a time. The classification has
been tested on both healthy and RBD subjects from the CAP
Sleep Database. Results are displayed in Tables 8 and 9, in terms
of accuracy, sensitivity, specificity, precision and mean squared
error (MSE), that is test error. Sensitivity measures the per-
formance on the REM class. It can be appreciated that REM
detection efficiency is high in the control group, with DT yield-
ing 97.9% sensitivity and the lowest mean squared error (cf.
Table 8). Likewise, the performance on the RBD subjects is
quite promising. Indeed, all three models yielded sensitivity in
excess of 70%. The performance of K-NN when the novel
features are not implemented, are shown in Table 10. A slight
yet measurable impairment in all the performance metrics can
be appreciated in this case.Finally, feature correlation with tar-
get was computed, by means of Pearson correlation coeffi-
cient. Setting the target to REM class, all implemented fea-
tures displayed good correlation. A set of these is displayed in
Figure 5.

9 CONCLUSIONS

This work proposes an automatic sleep stage classification
based on a single EEG channel. Three classification algorithms
are addressed, namely RF, K-NN and RUSBoost. Novel fea-

TABLE 10 Performance of binary classification on RBD subjects from
the CAP Sleep Database w/o implementation of novel features

Accuracy Sens Spec Prec MSE

K-NN 0,742 0,776 0,708 0,727 0,26
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FIGURE 5 A set of novel features implemented and their correlation
(Pearson) with REM class

tures are proposed, based on the micro-structure of REM sleep.
This represents a novelty, as REM sleep has always been consid-
ered a single, homogeneous stage. The achieved results reveal
that all three methods achieve very good ability in detecting
REM stage, with micro-averaged accuracy of 92.7%, 92.5% and
89.9%, respectively. High sensitivity and specificity – with a sat-
isfactory trade-off between the two – underline good detec-
tion and a low number of false positives. This is demonstrated
again (in RF and K-NN) by the precision value, which is reason-
able for experimental raw data (≈75%). The results outperform
those published in [14] using the same dataset and are compara-
ble with [12], where features from EEG, EOG and EMG signals
are used. Finally, we have explored the capability of classifying
REM versus NREM sleep stages, using data from both healthy
controls and patients affected by RBD. The results are quite
encouraging, and confirm the usefulness of the proposed fea-
tures, based on fine REM sleep classification. In conclusion, the
proposed methods is able to perform 5-stage sleep classification
in healthy controls using only one EEG channel; this a step for-
ward towards the implementation of sleep measures at home,
with a simplified sensor configuration. In fact, PSG is stressful
for patients due to both the high number of electrodes and the
diverse environment; it is costly, being performed in hospital
and implying a time-consuming manual annotation. Moreover,
the performance on REM stage detection are promising in view
of future studies on RBD in PD patients. Future developments
will be in the direction of addressing a larger dataset, in order
to validate the classification performance (in particular, those of
the RUSBoost method, which suffers from data scarcity). More-
over, it is possible that the results are biased by the unbalanced
sex ratio of the sample, as it was suggested that sleep is different
in adults male and female subjects who do not have neurologi-
cal disorders [36]; the verification of this point is left to future

developments. Finally, we are setting up a protocol to train and
validate our algorithm on PD subjects, using PSG signals as a
term of comparison.
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