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Abstract

This work focuses on the assessment of a novel so-called ”homogenization method” allowing to trans-
form a heterogeneous material with inclusions or holes into an equivalent homogeneous material with
equal mechanical behavior. The aim is to avoid meshing holes of the real material in finite-element
codes, thus improving computation time for further analysis of the material. Typical periodic structure
of passive acoustic metamaterial plates is here considered, with inclusions/holes that should improve the
acoustic performances in the low-frequency range. The 3D homogenization method, based on Carrera
Unified Formulation [20] and Mechanics of Structure Genome, is assessed for a perforated plate made of
a linear elastic material with periodic arrangement of holes. Different configurations of the metamate-
rial plate are considered, changing the number of the holes. The results obtained from the free-vibration
analysis of the homogenized plates, performed by higher-order 2D models contained in Carrera Unified
Formulation, are compared with ABAQUS results and both numerical and experimental results provided
in literature.

1 Introduction

In the last decade, a new research field has emerged to study Metamaterials [1]. This term refers to ma-
terials whose properties are ”beyond” those of conventional materials. They are made from assemblies
of multiple elements fashioned from composite materials such as metals, foams or plastics. The core
concept of metamaterial is to replace the molecules with man-made structures called unit cell. They
can be viewed as “artificial atoms”, usually arranged in repeating patterns on a scale much less than
the relevant wavelength of the phenomena they influence. Metamaterials derive their properties not
from the properties of the materials they are composed of, but from their newly designed structures
with repeating patterns, hence the need for homogenization. Indeed, if it is possible to treat them like
homogeneous materials with outstanding properties, their analysis becomes faster and more convenient
as few adaptation to existing codes and softwares are required.
Several types of metamaterials can be found: Electromagnetic metamaterials [2, 3, 4, 5], Mechanical
metamaterials [6, 7, 8]. Some are artificial three-dimensional structures which, despite being a solid,
ideally behave like a fluid. Thus, they have a finite bulk modulus but vanishing shear modulus, ie.
they are hard to compress yet easy to deform. And finally, Acoustic metamaterials [9, 10, 11], whose
effective properties like compressibility or density can be negative. Negative density or compressibility
can only be achieved dynamically. For instance, Helmholz Resonators driven just above their frequency
of resonance lead to negative dynamic compressibility [12].

According to the same principles of wave propagation in periodic structures [13, 14, 15], acoustic
metamaterials are tuned to the acoustic wavelength and consist of a periodic arrangement of inclusions
or cylindrical pores embedded within a material matrix, that are typically spaced less than a wave-
length apart. These materials disrupt the propagation of waves by scattering and refraction effects. In
Acoustics, low frequencies are especially difficult to absorb with conventional materials, as the order of
magnitude of the wavelength is 1 m, which is much greater than the reasonable thickness of damping
materials [16]. Acoustic metamaterial are able to perform better than conventional materials because
their structure is such that they do not respect physical properties like positive density or bulk modulus
on a global scale at resonance - although they obviously respect physical laws at any time locally.

Finite Element Method (FEM) is well-established and yields accurate results for the structural
analysis of any geometrical shape. However, it requires a mesh of all the details of the constituent
material. Therefore, when dealing with plates having great numbers of holes or inclusions - such as

2



metamaterials, this method becomes very costly in calculations and time, especially when the macro-
scopic dimensions of the plate need to be much greater than the characteristic size of the holes. Thus,
some homogenization methods have been investigated on the last two decades [17, 18]. In particular,
Langlet et al. [19] have studied homogenization of passive periodic materials such as a plate periodically
perforated across its thickness as seen in Figure 1a.

In this work, a homogenization method based on the Carrera Unified Formulation (CUF) [20]
and Mechanics of Structure Genome (MSG) [21] is investigated. CUF is used to solve the governing
equations of MSG for periodically heterogeneous materials. The MSG provides a tool to obtain the
complete effective stiffness matrix in a straightforward manner without relying on ad-hoc assumptions
and minimizing the loss of information between the original heterogeneous cell and the equivalent
homogeneous body. This CUF-MSG based homogenization method has successfully been used to find
the homogenized mechanical properties of composites [22], in which the unit cell, ie. the building block
of the composite, is a cube containing the fiber and the matrix surrounding it. In the present article, the
method is tested for another type of material: a plate with doubly periodic array of cylindrical holes.
Once the effective 3D mechanical properties of the metamaterial are obtained, free-vibration analysis of
the homogeneous effective material is performed by means of higher-order 2D models contained in CUF
[23], to obtain its modal frequencies. The results from the CUF-MSG-based method are compared to
numerical and experimental results provided by Langlet et al. [19].

2 Preliminary notions

In this paper, the linear analysis of elastic anisotropic materials will be performed. Therefore, it is
mandatory to recall some preliminary notions regarding the description of the 3D strain and stress
fields of the structure before presenting the models used.

2.1 Geometrical relations

According to Carrera Unified Formulation, the stresses and strains are conveniently split into in-plane
and normal components, which are denoted by the subscripts p and n, respectively. The strains can be
related to the displacement field u = {u, v, w} via the linear geometric relations:

εp = Dp u εn = (Dnp +Dnz)u (1)

wherein the differential operator arrays are defined as follows:

Dp =

∂x 0 0
0 ∂y 0
∂y ∂x 0

 Dnp =

0 0 ∂x
0 0 ∂y
0 0 0

 Dnz =

∂z 0 0
0 ∂z 0
0 0 ∂z

 (2)

with εp = (εxx, εyy, εxy) and εn = (εxz, εyz, εzz) and ∂x, ∂y, ∂z are the partial derivatives with respect to
x, y, z, respectively.

2.2 Constitutive equations

The second step towards the governing equations is the definition of the 3D constitutive equations that
permit the stresses to be expressed by means of the strains. The generalized Hooke’s law is considered,
by employing a linear constitutive model for infinitesimal deformations.

Therefore, the stress-strain relations are:
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(b) Periodic Unit Cell: cube of PVC with a cylindrical
void through the thickness

Figure 1: PVC material investigated. For 2D unit cell, the unit cell in the z-direction is assumed to be
infinite

σp = {σxx, σyy, σxy} = Cpp εp +Cpn εn

σn = {σxz, σyz, σzz} = Cnp εp +Cnn εn
(3)

where

Cpp =

c11 c12 c16

c12 c22 c26

c16 c26 c66

 Cpn =

0 0 c13

0 0 c23

0 0 c36



Cnp =

 0 0 0
0 0 0
c13 c23 c36

 Cnn =

c55 c45 0
c45 c44 0
0 0 c33


(4)

The material coefficients cij depend on the Young’s moduli E1, E2, E3, the shear moduli G12, G13,
G23 and Poisson moduli ν12, ν13, ν23, ν21, ν31, ν32 that characterize the material of the layer. Note that
(1, 2, 3) is the reference system of the material, in this case coincident with the global reference system
(x, y, z).

3 Homogenization method

In this work, a perforated plate of PVC is investigated (Figure 1a). This plate can be divided into
unit cells, smallest building blocks of the structure, each unit cell containing one cylindrical pore and
a small part of the surrounding material as shown in Figure 1b.
The pores of the unit cell are chosen as cylindrical and set parallel to the z-axis as shown in Figure 1b.
In Section 5, the pores are infinite in the z-dimension. Therefore the problem is bidimensional and only
depends on the x and y coordinates. In Section 6, a thickness is given to the pores. In both cases, the
same methods are compared: the method of Langlet et al. [19] explained in 3.1 and the CUF-MSG
based method [22] is explained in details in 4.

3.1 Description of the homogenization method by Langlet et al.

In Langlet et al.[19], the material is excited by a plane, monochromatic wave characterized by a real
wave vector k, the modulus of which is denoted k, wave number. The natural frequency of the incident
wave is ω. The boundary conditions around the unit cell verify Bloch relations.
In order to obtain the mechanical properties of the homogenized plate, the following steps are taken:
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• Finite element modeling of the 2D Unit Cell for incident waves with various wave vectors k, in
order to find the eigenvalues ω(k).

• A dispersion curve ω = f(k) is plotted. At low frequencies, its lowest two slopes correspond to
the transversal and longitudinal velocities cT and cL, which are function of the porosity P and
the incident angle θ.

• The plate with cylindrical holes is considered as an homogeneous anisotropic medium, with an
effective density ρ̃ which depends on the porosity P :

ρ̃ = (1− P )ρ (5)

The Christoffel’s equations are able to link cT (θ) and cL(θ) for any angle of incidence θ, to the
effective stiffness coefficients of the effective stiffness tensor c̃ of the homogenized material - which
are independant from θ:

c̃ =

 ˜c11 ˜c12 0
˜c12 ˜c11 0
0 0 ˜c66

 (6)

The Christoffel’s equations are particularly simple for two wave incident angles, θ = 0◦ and
θ = 45◦. Thus, the finite element method yielding the transversal and longitudinal velocities
needs to be used only for these two incident angles. Christoffel’s equations then give the effective
stiffness coefficients for the homogenized material.

• This process is repeated for various porosities in order to plot the effective stiffness constants as
a function of porosity. Results are shown in Figure 3 in dotted lines. WebPlotDigitizer has been
used to extract the data from the curves of Ref [19] for means of comparison.

4 A novel homogenization method based on CUF and MSG

Classical theories like First-Order Shear Deformation Theory (FSDT) based on the plate theories
developed by Reissner [24] and Mindlin [25] account for shear deformation effects but are not precise
enough to predict higher order shear effects. On the other hand, 3D solid finite elements methods are
very common to simulate complex materials like composites, but their computational cost is often too
high to be used for accurate analysis of the laminated structures.

The method investigated is based on a novel higher-order component-wise beam theory in the
framework of the Carrera Unified Formulation (CUF) and yields good results for composites with few
calculations [22]. To overcome the limitations of classical models and to deal with complex phenomena,
such as torsion, warping, or in-plane deformation, the displacement fields of beam theory are enriched
with an arbitrary number of higher-order terms [26].

4.1 Mechanics of Structure Genome

The main feature of the method investigated which leads to think it could be used to study acoustic
metamaterials is the fact that it recalls the concept of the repeating unit cell (hereinafter RUC), just like
other homogenization methods for metamaterials (Parallel Transfer Matrix Method, [27]). Moreover
it is fast and simple to use, as it is able to homogenize the material only by knowing the unit cell
geometry and the material properties of its components.

These capabilities are enabled by the use of the Mechanics of Structure Genome (MSG), developed
by Yu et al. [21] as a unified theory for the study of multiscale structural problems. MSG is a
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Figure 2: Reference system for the beam modeling of the RUC.

highly efficient tool to obtain the complete effective stiffness matrix of heterogenous materials in a
straightforward manner without relying on ad-hoc assumptions. In particular, the method lays on
the concept of Structure Genome (SG), defined as the smallest mathematical building block of the
structure, which for the purposes of the present study is equivalent to the Unit Cell.

The macroscopic properties are defined in a global coordinate system, xxx = {x, y, z} (see Figure 1),
whereas yyy = {y1, y2, y3} defines the local reference system of the RUC (see Figure 2). These approach
is based on the assumption that yi = xi/δ, where δ is the scaling parameter, which means that the
RUC is much smaller than the whole structure. Subsequently, the information extracted from the RUC
analysis is decoupled from the macroscopic problem. Also, it is possible to define an average value of
the local fields over the RUC volume:

1

V

∫
V
ui(xxx,yyy) dV = ūi(xxx) (7)

where V is the total volume of the cell. ui are the local displacements depending on xxx and yyy respectively,
and ūi are the averaged displacements that are only a function of the global coordinates. The periodicity
of the RUC is therefore imposed as:

ui(x, y, z;
d1

2
, y2, y3) = ui(x+ d1, y, z;−

d1

2
, y2, y3)

ui(x, y, z; y1,
d2

2
, y3) = ui(x, y + d2, z; y1,−

d2

2
, y3)

ui(x, y, z; y1, y2,
d3

2
) = ui(x, y, z + d3; y1, y2,−

d3

2
)

(8)

The mathematical foundation of MSG is the Variational asymptotic method (VAM), introduced by
Berdichevskly [28] for the study of periodic systems. VAM can be used for the analysis of stationary
value problems in which certain terms are smaller than others. This method is well-known in the
mechanics field, where problems featuring heterogeneities at different scales are very common. For
instance, in beam structures, the cross-section is usually smaller than the length, and in shell problems
the thickness is often negligible in comparison to the global dimensions. In the case of metamaterials
and composite materials, VAM is a powerful mathematical tool due to the several geometrical scales
that must be accounted in the analysis.
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In MSG, the constitutive information is extracted from the RUC by minimizing the difference in
terms of elastic energy between the original heterogeneous cell and the equivalent homogeneous material,
which can be written as the following functional:

Π =
〈1

2
Cijkl εij εkl

〉
− 1

2
C∗
ijkl ε̄ij ε̄kl (9)

where 〈•〉 denotes the volume average 1
V

∫
V • dV . The first term of the functional Π is the strain energy

of the heterogeneous body, whereas the second term is the strain energy of the homogeneous material.
Cijkl is the fourth-order elastic tensor and εij is the second-order strain tensor. C∗

ijkl and ε̄ij are those
of the homogenized body.

The local displacements over the RUC can be written as the sum of the global displacements, ūi,
plus the difference between both, as follows

ui(xxx;yyy) = ūi(xxx) + δ χi(xxx;yyy) (10)

where χi are denoted as fluctuation functions, which are scaled down using δ.
Making use of the derivative of a field at different scales of the type f(xxx;yyy),

∂f

∂xj
+

1

δ

∂f

∂yj
(11)

and discarding the smaller terms, the strain field results:

εij(xxx;yyy) = ε̄ij(xxx) + χ(i,j)(xxx;yyy) (12)

where

ε̄ij(xxx) =
1

2

(∂ūi(xxx)

∂xj
+
∂ūj(xxx)

∂xi

)
(13)

and

χ(i,j)(xxx;yyy) =
1

2

(∂χi(xxx;yyy)

∂yj
+
∂χj(xxx;yyy)

∂yi

)
(14)

By means of Eq. (10) and Eq. (12), the fluctuation unknowns, χi, that minimize the information
loss of the RUC are obtained by minimizing the following functional:

Π1 =
1

2

〈
Cijkl (ε̄ij + χ(i,j)) (ε̄kl + χ(k,l))

〉
(15)

One can notice that the second term of Eq. (9) does not vary with χi, so it can be discarded.
Finally, according to Eq. (7), one can write

ūi = 〈ui〉 ε̄ij = 〈ε〉 (16)

which lead to the following constrains of the problem:

〈χi〉 = 0 〈χ(i,j)〉 = 0 (17)

4.2 CUF 1D models

The Carrera Unified Formulation allows to develop refined models in which the theory order and
approximation type become free parameters, introduced as input of the problem. The CUF describes
the kinematic field in a unified manner which is then used to describe the governing equations in a
hierarchical and compact way.
Consider a local coordinate system for the micro-scale problem as the one shown in Figure 2. The beam
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axis, y3, is chosen to be the pore direction, whose total length is equal to L, whereas the heterogeneities
over the section lie on the y1y2-plane, in correspondence with the cross-section of the beam, Ω. Classical
beam models are not a suitable choice to solve the RUC problem. CUF sets a framework in beam
modeling in which the kinematic assumptions are axiomatically introduced in the structural analysis,
in such a way that higher-order effects can be represented by the theory of structure. For the present
purposes, the fluctuation unknowns can be expanded over the cross-section by means of arbitrary
functions of the y1 and y2 coordinates, as follows

χχχ(xxx; y1, y2, y3) = Fτ (y1, y2)χχχτ (xxx; y3) τ = 1, 2, ...,M (18)

where χχχ is the vector of the fluctuations, Fτ are the expanding functions and χχχτ is the vector of
the generalized fluctuations of the beam along the fibre-direction. The repeated subscript τ denotes
summation and M is the total number of expansion terms assumed for the kinematic field. The choice
of Fτ defines the beam theory of the analysis.

At the same time, the pore direction is discretized by means of standard beam elements. Lagrange-
class shape functions are used to interpolate the fluctuation unknowns, χχχτ , along y1

χχχτ (xxx; y3) = Ni(y3)χχχτi(xxx) i = 1, 2, ..., n (19)

where χχχτi(xxx) is the nodal unknown vector and n is the total number of beam nodes.
In order to capture all the information of the RUC, the beam theory must be able to represent the

exact geometry of the body and enable the application of the periodic boundary conditions over the
edges. For this, the Hierarchical Legendre Expansions (HLE) is chosen to expand the unknowns over
the cross-sectional coordinates.

4.2.1 Hierarchical Legendre Expansion

The choice of Fτ (x, y) determines the class of beam theory adopted. The method investigated employs
a HLE model, i.e. a set of hierarchical Legendre-like polynomials as Fτ (x, y) generic functions of the
cross-section domains [22]. In the code at hand, the polynomials used in HLE beam theory can be
chosen from the first to eighth order. This hierarchical set is used in quadrilateral nodal, edge and
internal expansions.
The hierarchy of this model implies that the set of functions of a given order also contains the poly-
nomials of lower degrees. For example, the sixth-order HLE model contains M = 30 terms in the
expansion. As a result, the accuracy of the approximation can be enhanced by the polynomial order of
the theory, which allows to use coarse discretization at the cross-sectional level.

Usually, conventional finite elements use isoparametric formulations to map the geometry of the
structure, so that the shape of the physical boundaries of the domain is described by the same functions
that are used to interpolate the unknown variables. When elevated expansion orders of HLE are used,
the domain discretization of the cross-section surface can be very coarse. Therefore, using isoparametric
formulation would lead to very inaccurate geometry. For this reason, the proposed method makes use of
a non-isoparametric mapping technique based on the blending function method, introduced by Gordon
et al. [29]. The blending function method allows a description of the geometry independent of the
expansion functions Fτ (x, y). Curved boundaries (as the cylindrical holes described in the previous
section) of large domains are represented accurately even with coarse cross-section discretization. Thus,
this method allows significant reduction of the error related to the geometrical approximation, and
a reduction on the computational efforts. For more details about HLE beam elements applied to
microstructures, the reader can refer to [30].
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Figure 3: Porosity variation of the homogenized coefficients of the stiffness matrix c11,eff/c11,PVC,
c12,eff/c12,PVC, c66,eff/c66,PVC and porosity variation of the anisotropic coefficient A.

5 Comparison of the homogenisation methods for 2D unit cells

For the sake of comparison, the unit cell (UC) investigated to assess the quality of the homogenization
process with this new method is chosen as in Langlet et al. [19] as shown in Figure 1b, i.e. a matrix
surrounding a cylindrical void. As in [19], the material is PVC with E = 3.78 × 109 Pa, ν = 0.4 and
ρ = 1430 kg.m−3. In [19], it is assumed that the unit-cell is infinite in the z-direction.
The code is able to accommodate this unit cell geometry as it is similar to a fiber-reinforced composite
material, with the material properties of the fiber set up as zero. Porosity of the material is defined as
P = πr2

d2 where r is the radius of the void cylinder and d is the side of the unit cell, and can vary from
0 to π

4 .
Figure 3 presents the porosity variation of the normalized homogenized stiffness coefficients c11,eff/c11,PVC,

c12,eff/c12,PVC, c66,eff/c66,PVC where c11,PVC, c12,PVC and c66,PVC are the PVC stiffness constants. The

anisotropic coefficient A is defined as A =
2c66,eff

c11,eff−c12,eff
. Results obtained with the CUF-MSG-based

method are in accordance with Langlet et al. [19], thus validating the method for 2D Unit-cells.

6 Effective properties of a 3D perforated plate

It is now assumed that the plate is not infinite in the z-direction anymore. The Unit-Cell remains the
same but the plate has a given thickness as in Figure 1a.
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Figure 4: Example of free vibration modal analysis for the 600-holes homogenized plate on ABAQUS
with 4 elements layers in the thickness. Modal frequency f = 646.7 Hz.

In the CUF-MSG based method, the periodicity of the array of void-cylinders has to be respected
and the size of the unit cell has to be small compared to the dimension of the plates. If so, at a given
porosity the results should stay the same, no matter the shape of the UC and its actual size compared
to the plate. Inputs of the code are only geometry of the unit cell (cylinder or inclusion), material
engineering constants, porosity and highest polynomial order of the Hierarchical Lagrange Expansion
model. Outputs are the stiffness matrix of the orthotropic equivalent material, and the engineering
constants.

As mentioned previously, the method was originally designed and tested for composites where the
scale of the UC is much smaller than the dimensions of the plate and the pores or the fibers are in the
longitudinal direction. Our aim is to verify if the homogenization process is also efficient for a plate
such as Figure 1a, where the pores are visible, open, and oriented in the normal direction of the plate.
Langlet et al. [19] conducted experiments on one full plate of PVC and two perforated plates of PVC
with 300 holes (P = 0.192) and 600 holes (P = 0.385).

Experimental resonance frequencies are measured using an accelerometer applied on the plates ex-
cited by a harmonic sound. The plate are 20 mm thick (z-direction), 309 mm long (x-direction) and
206 mm wide (y-direction). The hole diameter is 7 mm.

In Langlet et al. [19], a tridimensional unit cell is meshed containing one pore of arbitrary thick-
ness along the z-direction, therefore there is only one layer of elements in the thickness. The finite
elements method explained in Section 1 yields quasi-transverse and quasi-longitudinal velocities, and
the Christoffel’s equations give the homogeneous material stiffness tensor. Using these effective prop-
erties, the perforated plates are meshed as homogeneous and anisotropic plates so that the meshing of
300 or 600 holes is avoided. A modal analysis is then conducted providing the resonance frequencies
of the plates in free-boundary conditions. These results are compared to the experimental resonance
frequencies.

In order to obtain the resonance frequencies corresponding to the homogenized materials obtained
with the CUF-MSG based method, two methods are used. On the one hand, the commercial software
ABAQUS is used to analyze a tridimensional model of the plate with the homogenized mechanical
properties and the efficient density calculated as in Eq. 5. The mesh used holds approximately 10000
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3D quadratic elements, with four layers of elements within the thickness of the plate. The seeds in the
x and y directions are set so that the elements are approximately cubic, as shown in Figure 4. 62 and
41 elements are inserted in respectively the x-direction and the y-direction.
On the other hand, a finite element code also based on the Carrera Unified Formulation, called MUL2,
is used to calculate the resonance frequencies of the homogenized plate. Following, a brief description
of this model.

7 CUF 2D models

In the framework of CUF 2D models, the displacement field is written by means of approximating
functions in the thickness direction as follows:

u(x, y, z) = Fτ (z)uτ (x, y) τ = 0, 1, ..., N (20)

Fτ are the so-called thickness functions depending only on z. uτ are the unknown variables de-
pending on the coordinates x and y. τ is a sum index and N is the order of expansion in the thickness
direction assumed for the displacements.

In particular, the displacement is defined as:

u = Ft ut + Fb ub + Fr ur = Fτ uτ , τ = t, b, r , r = 2, ..., N. (21)

where Fτ are linear combinations of Legendre polynomials:

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2. (22)

Pj = Pj(ζ) is the Legendre polynomial of j-order defined in the ζ-domain: −1 ≤ ζ ≤ 1. The top (t)
and bottom (b) values of the displacements are used as unknown variables.
If FEM approximation is introduced for the general displacements in the plane of the plate, one has:

uτ (x, y) = Ni(ξ, η)qτi, i = 4, 8, 9 (23)

where Ni are the Lagrangian shape functions, (ξ, η) are the non-dimensional local coordinates in the
plane of the plate, qTτi = {qxτi , qyτi , qzτi} are the nodal displacements.
A thorough description of the CUF method for general finite elements formulations and plate theories
introduced in the past years can be found in the book of Carrera et al. [20].

7.1 Free-vibration analysis

This section presents the derivation of the governing finite element stiffness matrix and mass matrix
based on the Principle of Virtual Displacements (PVD) in the case of free-vibration analysis of plates.

The PVD can be written as follows:∫
Ω

∫
A

{
δεp

Tσp + δεn
Tσn

}
dΩdz =

∫
Ω

∫
A

ρ δu ü dΩdz (24)

where Ω and A are the integration domains on the midsurface and in the thickness direction,
respectively. The member on the left hand side of the equation represents the variation of the internal
work, while the member on the right hand side of the equation represents the kinetic energy due to the
inertia. ρ stands for the density of the material, and ü is the acceleration vector.

Substituting the constitutive equations (3), the geometrical relations (1) and applying the Unified
Formulation (20) and the FEM approximation (23), one obtains the following governing equations:
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δqτi : Kτsijqsj = M τsij q̈sj (25)

where the indexes s and j are analogous to τ and i, respectively, and they are introduced for the
approximation of displacements virtual variation δu.
Kτsij and M τsij are 3×3 matrix, called fundamental nuclei, and their explicit expressions are provided
in the book [20]. These are the basic elements from which the stiffness matrix and mass matrix of the
whole structure are computed. The final form of the free-vibration problem can be written as it follows:

−Mq̈ +Kq = 0 (26)

where q is the vector of the nodal displacements. Introducing harmonic solutions, it is possible to
compute the natural frequencies ωl, by solving an eigenvalues problem:

−(ω2
lM +K)ql = 0 (27)

where ql is the l-th eigenvector.

8 Results

Engineering constants of the homogeneous equivalent plates of perforated PVC are found in Table 1.
As mentioned before, they are derived from the CUF-MSG-based homogenization method explained in
Subsection 2.2. Full PVC (E = 3.78× 109 Pa, ν = 0.4 and ρ = 1430 kg.m−3) is used as the matrix and
the volume fraction is chosen as in [19] (P = 0.192 and P = 0.385 for resp. 300 and 600 holes), which
yields the density of the homogenized plate thanks to Eq. (5).
The subscripts 1, 2, 3 refer to x, y and z respectively where (x, y, z) is set as in Figure 1a with z in the
direction of the holes and normal direction of the plate.

300 Holes 600 Holes

Density (kg.m−3) 1155.44 879.45

E1 (GPa) 2.442544217 1.624513970
E2 (GPa) 2.442544219 1.624513972
E3 (GPa) 3.053097271 2.322408590

G12 (GPa) 0.7455780024 0.3071786601
G13 (GPa) 0.9143532202 0.5951974724
G23 (GPa) 0.9143532207 0.5951974731

ν12 0.3042371111 0.1954291087
ν13 0.4000000000 0.4000000000
ν23 0.4000000000 0.4000000000

Table 1: Engineering constants of the homogenized materials obtained by the CUF-MSG based code.

8.1 Modal analysis of equivalent homogeneous plates compared to experimental
results

The natural frequencies are shown in Table 5, Table 6 and Table 7.
A convergence study is performed in Table 2, Table 3 and Table 4 for the MUL2 Finite Element code
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6× 6 - 1 L2 12× 12 - 1 L2 46× 30 1 L2 46× 30 2 L2 ABAQUS
(Hz) (Hz) (Hz) (Hz) (Hz)

307.83 306.27 305.83 304.82 304.73
346.72 346.40 346.37 346.08 346.06
709.63 704.78 703.31 700.12 699.84
817.08 816.06 815.88 814.33 814.21
892.24 887.98 887.32 884.40 884.16
1085.78 1079.88 1078.97 1074.83 1074.5
1307.45 1294.14 1291.27 1283.67 1283
1481.41 1470.76 1467.95 1458.29 1457.5
1914.63 1871.91 1868.81 1857.89 1857

Table 2: Full PVC - Convergence Study and comparison with 62x41x4 ABAQUS Mesh
.

6× 6 - 1 L2 12× 12 - 1 L2 46× 30 1 L2 46× 30 2 L2 ABAQUS
(Hz) (Hz) (Hz) (Hz) (Hz)

256.74 254.78 254.30 253.54 253.47
309.43 309.34 309.26 309.03 309.01
601.02 596.26 594.82 592.50 592.29
708.78 709.23 708.99 707.82 707.74
796.05 792.10 791.38 789.10 788.91
920.74 917.80 916.94 914.00 913.78
1127.34 1116.05 1113.38 1107.79 1107.3
1258.93 1249.60 1246.84 1239.78 1239.2
1662.67 1632.66 1629.84 1621.43 1620.8

Table 3: PVC 300 Holes - Convergence Study and comparison with 62x41x4 ABAQUS Mesh
.

6× 6 - 1 L2 12× 12 - 1 L2 46× 30 1 L2 46× 30 2 L2 ABAQUS
(Hz) (Hz) (Hz) (Hz) (Hz)

191.61 190.58 191.61 189.66 189.6
288.86 288.63 288.86 288.39 288.38
480.69 477.95 480.69 475.32 475.17
648.36 647.82 648.36 646.72 646.65
722.87 720.48 722.87 718.13 717.97
810.26 806.11 810.26 803.44 803.27
961.25 953.16 961.25 947.31 946.97
1030.85 1024.73 1030.85 1018.04 1017.6
1416.17 1414.87 1416.17 1414.76 1414.8

Table 4: PVC 600 Holes - Convergence Study and comparison with 62x41x4 ABAQUS Mesh
.

(9-nodes standard Lagrangian elements are used) with four different meshes and the three types of
plates : 6× 6, 12× 12 and 46× 30 in the (x, y) dimension with a single layer and quadratic expansion
through the thickness. In this case the solution is indicated as 1 L2. The final mesh is 46 × 30 in
the (x, y) with two layers and quadratic expansion through the thickness of each layer, also shown in
Figure 5. In this case, the solution is 2 L2.
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ABAQUS MUL2 46× 30 2 L2 FEM[19] Exp.[19] Rel. Err. [19] Rel. Err. MUL2
(Hz) (Hz) (Hz) (Hz) % %

304.73 304.82 305.60 307 -0.46 -0.71
346.06 346.08 346.30 355 -2.45 -2.51
699.84 700.12 702.80 701 0.26 -0.13
814.21 814.33 815.00 815 0.00 -0.08
884.16 884.40 886.00 902 -1.77 -1.95
1074.5 1074.83 1078.00 1075 0.28 -0.02
1283 1283.67 1290.40 1257 2.66 2.12

1457.5 1458.29 1463.70 1462 0.12 -0.25
1857 1857.89 1873.10 1867 0.33 -0.49

Table 5: Full PVC - Modal frequencies and Relative Errors of FEM [19], ABAQUS and MUL2 code
with refined mesh compared to experimental results of [19]

.

ABAQUS MUL2 46× 30 2 L2 FEM[19] Exp.[19] Rel. Err. [19] Rel. Err. MUL2
(Hz) (Hz) (Hz) (Hz) % %

253.47 253.54 282.00 272 3.68 -6.79
309.01 309.03 288.60 289 -0.14 6.93
592.29 592.50 634.10 621 2.11 -4.59
707.74 707.82 680.20 681 -0.12 3.94
788.91 789.10 755.60 748 1.02 5.49
913.78 914.00 919.40 901 2.04 1.44
1107.3 1107.79 1134.80 1116 1.68 -0.74
1239.2 1239.78 1302.90 1271 2.51 -2.46
1620.8 1621.43 1577.30 1548 1.89 4.74

Table 6: PVC with 300 Holes - Modal frequencies and Relative Errors of FEM [19], ABAQUS and
MUL2 code compared to experimental results of [19]

.

ABAQUS MUL2 46× 30 2 L2 FEM[19] Exp.[19] Rel. Err. [19] Rel. Err. MUL2
(Hz) (Hz) (Hz) (Hz) % %

189.6 189.66 192.20 180 6.78 5.37
288.38 288.39 289.20 273 5.93 5.64
475.17 475.32 480.50 459 4.68 3.55
646.65 646.72 648.20 626 3.55 3.31
717.97 718.13 721.90 690 4.62 4.08
803.27 803.44 807.50 772 4.60 4.07
946.97 947.31 956.10 925 3.36 2.41
1017.6 1018.04 1027.30 1005 2.22 1.30
1414.8 1414.76 1424.30 1442 -1.23 -1.89

Table 7: PVC with 600 Holes - Modal frequencies and Relative Errors of FEM [19], ABAQUS and
MUL2 code compared to experimental results of [19]

.

For the full plate, 300 holes and 600 holes, all results seem to converge towards the results obtained
with ABAQUS. They are close but do not converge toward the experimental results for 300 holes. This
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Figure 5: Example of free vibration modal analysis for the 600-holes homogenized plate with final mesh
46x30 and 2 quadratic beam elements in the thickness. Visualisation on ParaView of the MUL2 FEM
solver results for Modal frequency f = 646.7 Hz.

can be expected as ABAQUS and the MUL2 code consider the same problem with the same geometry,
same approximations and same homogenized engineering constants.

As expected, the results of the CUF-MSG based method are closer to experiments as the number of
holes increases. The more dense is the grid of holes, the more are respected the periodicity assumptions
in which the CUF-MSG method is based. For 600 holes the error in the solutions is similar to that of
the literature.

In all cases, computation time is shorter than with ABAQUS and results are still within 10%
Relative Error with regards to experimental results.

9 Conclusion

The results show that the homogenization method based on CUF and MSG method is efficient to
predict the stiffness matrix and the modal frequencies of the perforated plate while avoiding 2D as-
sumptions and meshing the holes. Relative errors to the experiments are always below 10% and give
the same accuracy as a full FEM homogenization method like [19] with few calculations.

The importance of the periodicity assumption is highlighted with these results. The more dense is
the grid of unit cells, the closer is the homogenization to experiments on plates with holes.

It remains to be verified if this method, which is without losses and doesn’t take into account the
air inside the holes, is sufficient to properly predict the acoustic properties of the material, such as
the Sound Transmission Loss. Future investigation will focus on testing these homogenized materials
acoustically with commercial software Actran.
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