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ABSTRACT
Ontogenesis is the development of an organism from its earliest stage to maturity, including home-
ostasis maintenance throughout adulthood despite environmental perturbations. Almost all cells of a
multicellular organism share the same genomic information. Nevertheless, phenotypic diversity and
complex supra-cellular architectures emerge at every level, starting from tissues and organs. This is
possible thanks to a robust and dynamic interplay of regulative mechanisms.

To study ontogenesis, it is necessary to consider different levels of regulation, both genetic and epi-
genetic. Each cell undergoes a specific path across a landscape of possible regulative states affecting
both its structure and its functions during development. This paper proposes using the Nets-Within-
Nets formalism, which combines Petri Nets’ simplicity with the capability to represent and simulate
the interplay between different layers of regulation connected by non-trivial and context-dependent
hierarchical relations.

In particular, this work introduces a modeling strategy based on Nets-Within-Nets that can model
several critical processes involved in ontogenesis. Moreover, it presents a case study focusing on
the first phase of Vulval Precursor Cells specification in C. Elegans. The case study shows that the
proposed model can simulate the emergent morphogenetic pattern corresponding to the observed de-
velopmental outcome of that phase, in both the physiological case and different mutations. The model
presented in the results section is available online at https://github.com/sysbio-polito/NWN_CElegans_
VPC_model/

1. Introduction
Ontogenesis is one of the key concepts at the base of de-

velopmental biology [68], defined as “[...] the development
of a single individual, or a system within the individual, from
the fertilized egg to maturation and death” [62]. Ontogenetic
processes comprise complex and intertwined mechanisms at
different levels, from the embryonic development of the or-
ganism as a whole to the differentiation of single cells.

When modeling ontogenesis, a particularly challenging
task is to predict the outcome of a developmental process,
simulating the formation of emergentmorphological and phe-
notypic patterns from local inter-cellular interactions. Amodel
serving this purpose must describe the cellular organization
in space and the consecutive temporal stages characteriz-
ing the process. Each stage corresponds to a different con-
formation and regulative set-up involving multiple interact-
ing cells. Since the regulatory states of these cells depend
on their neighbors’ relations, such conformations dictate the
communication schemes they engage in [31]. This complex-
ity contributes to creating a multi-dimensional and dynamic
landscape of inter-dependent regulative states in which cells
can fall into [53, 33]. Moreover, one has to consider that
physiology and phenotype not only emerge from the sys-
tem’s subparts. The subparts themselves self-reproduce, de-
termining internal and system-level regulative and structural
changes.

To holistically consider the dynamic properties of this
hierarchical regulative environment, a computational model
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must explicitly account for their evolution in space and time.
Moreover, it must quantitatively simulate the underlying non-
linear regulatory dynamics across different system levels.
This requirement imposes the need to model the hierarchical
organization of the system. Eventually, biological systems
are intrinsically stochastic, i.e., modeling of their complex-
ity must include stochastic behaviors.

Several modeling approaches for Systems Biology based
on different formalisms exist, and each of them has strengths
that better fit specific aspects of the target problem [7, 24].

Mathematicalmodels have been among the first proposed
to represent continuous biological quantities in chemical re-
actions at the metabolic level and still prevail in Systems Bi-
ology [19, 36, 27].

This is particularly true for the sub-molecular scale, which
relies on natural laws and is typically modeled based on Or-
dinary Differential Equations (ODEs), and is true also for
the level beyond molecules, for example, when focusing on
concentration of molecules. In the latter case, a continuous
description by ODEs naturally supports a macro-view on the
system of interest. The focus is on concentrations and their
changes over time. ODEs are suitable for dynamics that oc-
cur continuously, evolve in a deterministic manner, progress
at a similar speed, and can be easily described by real-valued
variables. Extensions can relax these constraints, for ex-
ample, by introducing delays, stochasticity, or discreteness.
All in all, continuous formalisms are suitable to describe the
concentration dynamics of homogeneous cellular compart-
ments that involve large numbers of cells [22].

Considering the complexity, biological and biochemical
systems are usually non-linear, and ODEs describing these
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systems are often challenging to solve. Nevertheless, they
can be approximated by introducing increasingly efficient
numerical analysis integrators that enable handling large sys-
tems. Also, parameter estimation in the case of a large net-
workwith several parametersmay have a high computational
cost, and themodel’s prediction accuracymay decrease [35].

Stochastic discrete eventmodeling and simulation, where
you can control the granularity of observation (instead of set-
ting the degree of accuracy/error of the calculation), is gain-
ing importance as an alternative modeling approach in Sys-
tems Biology. The discrete event view describes the dynam-
ics of a system by distinguishing state changes, i.e., events
triggered by the flow of time or the situation [76].

Several biological processes are inherently discrete and
qualitative, and many examples could be given [23]. Con-
centrations do not necessarily change continuously, particu-
larly if the dynamics of a small number of entities, like DNA
molecules and plasmids, are modeled [42]. Several interac-
tions (e.g., biological signaling, omics regulation, etc.) can
be described by discrete stochastic information related to the
involved entities (e.g., molecules, cells) [57]. Also, higher-
level phenomena of interest for the description of ontoge-
netic mechanisms (e.g., cell fate determination) are better
described by qualitative information.

Several approaches to modeling and simulation of bio-
logical systems often focus on modeling intracellular mech-
anisms and thus fail to adequately capture supra-cellular spa-
tial elements, limiting their capability to analyze patterns
emerging from local interactions between biological entities
[7, 6]. Comprising both intracellular and supra-cellular in-
formation can broaden the scope of representations. Yet, it
poses the challenge of combining heterogeneous informa-
tion from multiple system levels in a single model. One of
the approaches for handling model heterogeneity is the com-
position of existing models into a more extensive scope [7].
However, this approach raises consistency issues [61] and
introduces additional requirements to create multi-level and
hybrid models [4].

This paper introduces a computationalmodelingmethod-
ology based onNets-Within-Nets (NWN), a formalism based
on Petri Nets (PN). NWN rely on a single formalism to cover
all requirements posed by the modeling of complex ontoge-
netic processes. The paper does not aim at introducing a new
formal extension of the NWN formalisms. NWN are instead
used as a powerful instrument to propose a methodology to
model complex dynamics, stochastic processes, hierarchical
organizations, and spatial structures in biology. NWN sup-
port composition and integration processes typical of hybrid
models, supporting the integration of heterogeneous sources
of knowledge. In other words, NWN leverage the strengths
of modeling paradigms from various existing computational
tools and methods, with the advantage of maintaining uni-
formity in formalism usage. This paper explicitly refers to
the NWN implementation provided by Renew, an extensible
editor and simulation engine for Petri nets [41, 11, 70]. The
main advantage of this framework is to add the full power of
an object-oriented language (i.e., Java) to the NWN formal-

ism, thus allowing the description of more complex func-
tionalities.

After introducing the NWN formalism, its relations to
other PN-based formalisms, and our usage of its capabili-
ties for modeling ontogenetic processes, this paper provides
a working example of the proposed approach. This exam-
ple models a well-characterized and straightforward ontoge-
netic process: the Vulval Precursor Cells (VPC) specifica-
tion process in C. Elegans. Eventually, the paper provides an
appendix proposing a library of NWM modeling basic bio-
logical processes that interested readers can use as a starting
point to build models of different ontogenetic processes.

2. Background
The goal of this section is not to provide a complete and

formal review of the PN theory. Interested readers may refer
to [59] for a detailed introduction on this topic. This section
provides an overview of PN applications in the biological
domain and, most importantly, introduces the basic charac-
teristics of the NWN formalism exploited to model ontoge-
netic processes in the following parts of the paper.
2.1. Petri nets definition

Petri Nets (PN) are discrete event system models first in-
troduced in the early 1960s by Carl Adam Petri in his Ph.D.
dissertation [56]. PN combine a well-defined mathematical
theory with a graphical representation of the dynamic be-
havior of the systems. This combination is among one of
the main reasons for the great success of PN, which have
been used to model various kinds of dynamic event-driven
systems, including biological systems [12].

A PN is a directed bipartite graph having two types of
nodes: places representing states or conditions and transi-
tions representing events that may produce, consume or take
resources from one state to another. Directed arcs can only
link places to transitions or transitions to places. Places can
contain a discrete number of tokens, each one representing a
resource unit. The marking of a PN is the token configura-
tion in its places. It can dynamically change when transitions
fire. Formally, a PN is a 4-tupleN = (P , T ,W ,M0), where:

1. P = {p1, p2, ..., pm} is a finite set of places;
2. T = {t1, t2, ..., tn} is a finite set of transitions, P ∪T ≠

∅, and P ∩ T = ∅;
3. W ∶ (S × T ) ∪ (T × S) → ℕ assigns to each arc a

non-negative integer arc multiplicity (or weight); note
that no arc may connect two places or two transitions;

4. M0 ∶ P → N is the initial marking, i.e., the initial
configuration of tokens. Together with the network
architecture, it defines the PN model.

Figure 1 shows an example of the graphical formalism
used to represent a simple PN. Specific symbols are assigned
to represent places, transitions, arcs, and tokens. Transitions
can move tokens from their input to their output places. Fir-
ing a transition consumes W (pi, t) tokens from each input
place pi and produces W (t, pj) tokens in each of its output
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places pj . When not indicated, the weight of an arc is equal
to 1. A transition t is enabled (it may fire) in a markingM if
there are enough tokens in its input places for the consump-
tions to be possible, i.e., if and only if ∀p ∶ M(p) ≥ W (p, t).

Place

Transition

Arc

Token

W(p1,t)=2

p1

p2

t p3
W(t,p3)=2

Figure 1: Graphical representation of a simple Petri net. The
basic elements that compose a Petri net are places, transitions,
arcs and tokens. Transitions are able to move tokens from their
input to their output places.

Starting from this basic definition, also referred to as
low-level PN, several PN variants have been defined. Some
of them found application in supporting biological systems
modeling to different extents.
2.2. Petri nets in biological applications

Simple biological mechanisms such as isolated biochem-
ical reactions require a quantitative representation of kinetic
parameters and stoichiometric relations between the involved
molecular species. In a low-level PN, places can represent
species (substrates and products), while transitions canmodel
reactions. Tokens can express in a discreteway relative quan-
tities of molecules.

Moving from a single reaction to groups of biochemi-
cal reactions (e.g., metabolic and gene regulation networks)
introduces further requirements such as more complex ar-
chitectures and concurrency [39]. Low-level PN can still
support this complexity. In a metabolic network, places can
model molecular species and states, while transitions can
model enzymatic reactions. Tokens represent discrete quan-
tities of molecules, while the architecture of the network rep-
resents how resources flow within a network of competitive
or sequential reactions. Similarly, in a regulation network,
places can refer to genes and gene products. Transitions can
cover transcription, translation, and regulation processes. At
the same time, tokens can model elements from the relevant
omic pools (e.g., genes, transcripts, proteins) and the regu-
latory conditions in which each of them can fall.

The phenomena considered so far refer to a single system
level (i.e., intracellular mechanisms) and consider a limited
temporal scale. Expressing different time scales provides
greater expressivity which is often required, for example, to
model differential transcriptional rates. To handle different
timescales, timed PN [64] introduce a time delay associated
with the activation of each transition. Once a transition is
enabled, deterministic time delays can occur, ordering the
different activation events during the net evolution. The in-
troduction of time delays increases time resolution when in-
cluding diverse yet intertwined mechanisms in a model.

Stochastic PN [45] extend Timed PN with the use of
probabilistic time delays. They can model the stochasticity
of a biological system (e.g., gene expression level random
fluctuations [29]). The delays become random variables that
can depend on the current marking of the net [67].

Time continuous PN have also been proposed in the lit-
erature [17]. They can be a valuable tool to model selected
biological processes that are not discrete in nature. While
these PN can potentially be employed in the methodology
presented in this paper, they have not been exploited since
not supported by the selected simulation framework.

In general, low-level PN do not scale with system com-
plexity. The lack of scalability limits their use to the mod-
eling of small systems. High-level Petri Nets can increase
the model’s expressivity, including different system levels
and dimensional scales to provide a more systemic view of
the biological complexity. High-level PN extend the low-
level formalism, supporting multi-level and nested models
that properly handle information diversity and complexity
[44].

Colored PN (CPN) [34] are the simplest class of high-
level PN. They are important since they allow to associate
tokens with arbitrarily complex data structures defined as
colors encoding complex information. Moreover, in CPN,
each place and transition can be designed to accept a lim-
ited number of colors. In this way, it is possible to sepa-
rate the identity of resources from their location, modeling
the same condition for different categories of resources [50].
CPN lead to non-redundant and more compact representa-
tions of the system. This compact representation improves
readability and averts modeling errors while preserving the
modeling capabilities of low-level PN, which can be gener-
ated from CPN models by automatic unfolding [43, 44].

Models considered so far flatten information from differ-
ent system levels into a single one. To represent a multi-level
system structure, hierarchical PN organize system parts and
sub-parts in nested net architectures with explicit hierarchi-
cal relations. The nested architecture allows for arbitrarily
high resolution when describing mechanisms from different
system levels [48]. Nevertheless, like CPN, hierarchical PN
stick to a static paradigm: token colors are static data struc-
tures, and nets have a fixed model architecture. Resources
can change state only by moving from place to place, i.e.,
changing their position in the net, preserving the information
they carry with them unaltered. Also, mobility is devised for
tokens, i.e., for resources, but not for other model elements.

Complex biological processes such as ontogenesis chal-
lenge the limitations ofmost high-level PN.Ontogenesis com-
prises architectural and functional system changes across dif-
ferent phases of the same process. These changes include
the movement and generation of new parts and decision-
making processes based on previous process stages. For ex-
ample, an embryonic development process can be consid-
ered at different system levels, from the organismal struc-
tural rearrangements to local molecular and cellular inter-
actions from which morphological and functional patterns
emerge at each developmental stage.
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The NWN formalism is an extension of PN in which to-
kens themselves have the structure of a PN. Tokens specified
in this way (net-tokens) evolve dynamically, just like the net
holding them (system-net). This hierarchical organization
can be reiterated in a boundless way, allowing for open re-
cursion in specifying the system’s hierarchical organization
[10]. The idea of tokens being PN goes back to R. Valk [71],
and NWN approaches are extensively studied in the PN lit-
erature [40, 46, 63, 10]. The Nets-Within-Nets (NWNs) for-
malism supports all capabilities of other high-level PN and
can face the additional modeling requirements posed by on-
togenetic processes [5, 3] as will be explained in the next sec-
tions. Among the different flavors of the NWN formalisms,
this paper adopts the one provided by the Renew simulator
[41, 11, 70]. One of the main motivations behind this choice
is that it provides a robust framework that allows extending
the NWN formalism with the full power of the Java object-
oriented programming language (i.e., Java), thus allowing
the implementation of more complex functionalities.
2.3. An introduction to the Nets-Within-Nets

formalism
The NWN formalism introduces the possibility to spec-

ify tokens in terms of PN models. Such tokens are called
net-tokens, or object nets, while the net holding them takes
the name of system-net. This schema can grow recursively
to an arbitrarily large number of levels: net-tokens from a
level may function as system-nets for net-tokens at a lower
one.

Figure 2 shows a simple NWN model used to introduce
the basic modeling elements exploited in this paper. The
figure uses the NWN notation offered by Renew, the sim-
ulation environment this work relies on. This notation is
used consistently throughout the paper. The proposed sys-
tem is composed of a system-net (SN) in which four types
of tokens coexist. As in low-level PN, the simplest category
of tokens is black tokens, denoted as [] in place pSN1 . The
consumption or creation of tokens by a transition is denoted
by inscriptions on its arcs, listing the involved tokens sep-
arated by semicolons. Black tokens do not bring specific
associated information other than the presence of a unit of
a generic resource. Whenever more specific information is
required (e.g., a string or an integer value), colored tokens
can be used, as shown in place pSN6 . NT1 and NT2 define
the architecture of two net-tokens. The inscription N1: new
NT1 in transition tSN1 denotes that a new instance N1 of the
net NT1 is created, and a reference to this object is then lo-
cated in place pSN2 . Following the object-oriented paradigm,
a reference to the same instance of a net-token can be instan-
tiated in different places. Therefore a net-token can exist at
the same time in different places or even in different nets.
In Figure 2, the transition tSN4 creates two references to the
same instance of the same net-token N2 in places pSN4 and
pSN5 . Finally, the bidirectional arc connecting pSN3 with tSN4denotes that token N1 is used to fire the transition and then
moved back to its original place.

This short overview shows howNWNcan express a range

of possible scenarios. The following section presents the
way these capabilities respond to the modeling requirements
posed by complex ontogenetic processes.

3. NWN applied to ontogenesis modeling
This section applies the NWN object-oriented paradigm

to the problem of modeling ontogenetic processes. It focuses
on describing the most relevant and complex biological se-
mantics involved in every ontogenetic process as depicted in
Figure 3. After presenting these mechanisms, Appendix A
proposes an extensive set of biological processes modeled
using NWN. These models represent a library of basic build-
ing blocks that can build complex models of generic onto-
genetic processes.

In our approach, the net-tokens represent differentiating
biological cells described through their internal regulative
networks. The system-net instead represents the landscape
of external factors that affect the cells’ functioning. The
system-net includes themicroenvironment (e.g., environmen-
tal factors, spatial organization, and relative cell positions)
and the relevant developmental phases. The presentation of
the proposed modeling strategy resorts to a simple abstract
example, depicted in Figure 4. The target biological system
is composed of a Petri dish divided into four subspaces (A)
where two cells of the same type and able to exchange and
react to signals (B) coexist. In the first stage of the process
(A), cell NT1 moves in a subspace closer to cell NT2 (C),
and the two cells start exchanging biological signals medi-
ated by mutual activation of signaling mechanisms (D). As
a result of this interaction, the process enters a new stage (E)
where the cells change their state (F).

Figure 5 shows a simpleNWNmodeling themechanisms
presented in Figure 4. NT1 and NT2 model the two cells as
instances of the net-token (NT). The system-net (SN) mod-
els the spatial organization of the Petri dish and the process
organization in the two considered stages.
3.1. Spatiality and mobility

NWN models can explicitly represent spatiality, using
places to represent actual locations that various actors oc-
cupy. For example, in Figure 5, places pSN01 , pSN02 , and pSN03represent the three subspaces of the Petri dish in which cells
(net-tokens) can live during stage 1 of the ontogenetic pro-
cess. Similarly, pSN04 and pSN05 are the two locations of interest
during stage 2.

Interactions between the actors existing at different posi-
tions can model proximity-enabled communication between
neighbor cells involving communication channels. For ex-
ample, transitions tSN02 and tSN06 express proximity between
pSN02 and pSN03 , and pSN04 and pSN05 , respectively. When these
transitions fire, they involve the net-tokens from the con-
nected places, creatingmutual interactions. This mechanism
can represent juxtacrine interactions between neighbor cells
in a biological context, which occur only when the cells are
in close spatial proximity.

The movement of net-tokens across system-net places
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N1:ch1(N2);

N1

pSN1

N1

:ch1(x); :ch2(x);

NT1

[ ] [ ];[ ]

N1: new NT1; 

Black Token

Downlink

[ ] [ ]

Channel

x

N2

[ ]

NT2

N2: new NT2; 

“C1” “C1
”

N2

x

N1

N1:ch1(N2);

N2

N2

F

Colored 
Token

Uplink

SN

N1

tSN1 pSN2

pSN6

tSN2 pSN3 tSN4

pSN4

pSN5

tNT1 tNT2

pSN7

pNT1 pNT2

Figure 2: Simple example of the NWN formalism usage. The example represents a
system-net (SN) holding the three categories of tokens available in an NWN: (i) black
tokens as in low-level PN, (ii) colored tokens as in Colored PN, and (iii) net-tokens that
are complex tokens represented again using the PN formalism. Communication channels
enable communication between different hierarchical levels of the NWN. Interested readers
can refer to [70] for a complete and detailed description of the formalism.

Position 
A

Position B

State A State B
Compartment A

Compartment B

A B C

Bottom level

Middle level

Top level

Hierarchy
Encapsulation, Selective 

Communication Flexible abstractions

X:ch(…);

:ch(…);

Channel

Figure 3: NWN modeling capabilities. NWN models ex-
press (A) multiple hierarchical levels through the concept of
net-tokens instantiated into a system-net; (B) encapsulation
of model parts and selective communication between them
through the use of communication channels between differ-
ent nets; (C) coexistent and intertwined regulatory layers with
different annotations thanks to the possibility for a net-token
to be referenced in several system-nets.

having spatial semantics models mobility of biological en-
tities. For example, in Figure 5, transition tSN01 can move
net-token NT1 from the place pSN01 , representing a position
in space, to the place pSN02 , representing a different position.
In a biological system, this corresponds to a cell’s move-
ment from a location to another. In general, biological ac-
tors, including cells, are capable of active movement. De-
velopmental processes often comprise cell migration phases

across different microenvironments.
Net-tokens that move from one system place to another

one change the set of interactions they can engage. When
involving places with a spatial connotation, this mechanism
models the regulatory action of the spatial context for biolog-
ical entities. The shift from a biological microenvironment
to another corresponds to a regulatory change since it comes
with potential engagement in interactions with different ac-
tors.
3.2. Semi-permeability of biological

compartments
The object-oriented paradigm implemented by the NWN

formalism is powerful to express encapsulation and selec-
tive communication mechanisms. These features, coupled
with the ability to handle spatial information, make it easy
to describe compartmentalization and semi-permeability of
membranes between biological compartments.

In our modeling approach, the net-tokens describe the
inner functioning of cells intended as biological compart-
ments. For example, net-tokensNT1 andNT2 in the system-
net of Figure 5 are two instances of the same net class, de-
picted in Figure 5-A. The system-net can interact with the
net-tokens dynamics of both instances through the synchronous
channels ch1 (transition tSN02 and tSN06 in Figure 5) and ch2
(transitions tSN04 and tSN05 in Figure 5). Biological compart-
ments are semi-permeable: communication mechanisms be-
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Figure 4: A simple abstract example of an ontogenetic process. The system involves
(A) the movement of a cell (NT1) between different subspaces of a Petri dish, considered
in reason of (B) the signals it exchanges when in contact with other cells, the regulative
set-up it acquires after exchanging signals, and the following changes in cell state. (C) The
interactions between cells in spatial proximity, which are mediated by (D) mutual activation
of signaling mechanisms, lead to (E) a change in the cells state depicted here with a change
of color of the cell (F) that moves them to the second stage of the ontogenetic process
(E).

tween the net-tokens and the system-net represent the selec-
tive permeabilities of biological membranes, including the
mechanisms regulating them.
3.3. Inter-cellular communication

In developing multicellular organisms, each cell behaves
independently from the others yet can exchange signals and
resources. These interactions create the complex and highly
dynamic regulative landscape in which cells live and move.

Paracrine and juxtacrine signaling depicted in Figure 6
are among themost relevant intercellular communicationmech-
anisms underlying ontogenetic processes. In biology, paracrine
signaling is a form of cell signaling inwhich a cell produces a
signal and sends it to the extracellular environment, affecting
nearby cells. Juxtacrine signaling (or contact-dependent sig-
naling) is instead a type of cell signaling that requires close
contact.

The two communication mechanisms can be modeled
according to the NWN reported in Figure 7. In paracrine
signaling (Figure 7-A) a cell (NT1 in pSN101 ) uses channel ch1to send a signal represented by a black token in the extra-

cellular environment (pSN102 ). The extracellular environment
here represented for simplicity as a single place can be also
modeled with multiple places, based on the spatial organi-
zation of the cells. Another cell NT2 of a different type and
in spatial proximity (pSN103 ) receives the signal using chan-
nel ch2. In juxtacrine signaling (Figure 7-B), two adjacent
cells (NT3 and NT4 in pSN201 and pSN202 , respectively) engage
in direct communication through channels ch1 and ch2.These two network motifs are particularly relevant for
modeling ontogenetic processes when combinedwith spatial
information. During development, architectural complexity
at the supra-cellular level emerges from local interactions be-
tween cells, which are often influenced by different distance
ranges [52][51].

For example, sender cells engage in long-range inter-
actions in paracrine communication, diffusing soluble sig-
nal molecules in the extracellular environment, targeting re-
ceiver cells. The signal starts with a higher concentration
close to its source, and the concentration decreases with dis-
tance according to diffusion laws specific to the targetmolecule.
Since the reaction to a signal is often dose-dependent, this
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tSN01

NT1

tSN04

NT1:ch2pSN01 pSN02 pSN04

tSN05pSN03 pSN05

NT2:ch2

tSN02
NT1:ch1

NT2

STAGE 1 STAGE 2

NT2:ch1

NT1

NT1

tNT01 pNT01 tNT02

:ch1 :ch2

NT

NT1 NT1

NT1

NT2

NT2 NT2

A

B C
SN

tSN06
NT1:ch1
NT2:ch1

NT2

Figure 5: A simple NWN modeling the biological process presented in Figure 4. The
system-net (SN) uses places to represent locations that various actors occupy. Places pSN01 ,
pSN02 , and pSN03 represent the three subspaces of the Petri dish in which cells represented by
instances of the net-token NT can live during stage 1 of the ontogenetic process. Similarly,
pSN04 and pSN05 are the two locations of interest during stage 2. The movement of cells from
one location to another one is modeled using transitions. Interactions between cells existing
at different positions are modeled using communication channels. Finally, the net-token
represents the internal behavior of the involved cells.

mechanism translates into a distance-dependent effect over
target cells.

In unilateral juxtacrine communication, sender cells com-
municate with receiver cells in their very proximity through
their trans-membrane signal and receptor proteins, respec-
tively. The cells involved in bilateral juxtacrine communica-
tion act through the same mechanisms, but each of them acts
both as a sender and a receiver. Finally, in autocrine signal-
ing, the cell sends out a signal intended to be self-received,
acting both as a sender and as a receiver.
3.4. Dynamic hierarchy

The ability of recursively instantiating net-tokens within
another net expresses the hierarchical and dynamic regula-
tory structures of biological systems (Figure 3.A). Let us
consider the two-level model architecture of Figure 5:

• the system-net at the top-level describes the spatial or-
ganization and regulative landscape for two cells in
two different process phases;

• the net-tokens existing as instances within the system-
net represent cells living in such landscape.

One important aspect to highlight is that the hierarchy is
not static but instead dynamically defined. At first, net-token

instances are created in pSN01 and pSN03 , respectively. Instanti-ation per se does not carry any biological meaning, but the
resultingmarking reflects the system’s initial hierarchical or-
ganization. The system-net then evolves, and net-tokens can
be created or destroyed, simulating the considered biologi-
cal process, and modifying the system’s hierarchical archi-
tecture.

Moreover, NWN support the flexible specification of dif-
ferent abstraction layers (Figure 3-C). The same instance of
a net-token can live into multiple higher-level nets, each one
describing a different aspect of the considered process. This
is an important characteristic that poses the basis for multi-
level and multi-scale modeling.

Eventually, the cross-layer communication mechanisms
presented in the previous sections provide a high degree of
flexibility when deciding case by case which layer is in con-
trol of the evolution of a specific mechanism.
3.5. Process stages

Ontogenetic processes have sequential stages, with check-
points involving regulatory states and sets of biological ac-
tors governing the passage from a stage to the next. Look-
ing at Figure 5, most of the dynamics considered so far be-
long to the first of the two stages of the considered process.
Transitions tSN04 and tSN05 can transport net-tokens NT1 and
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Figure 6: Paracrine and juxtacrine signaling. (A) Paracrine signaling between two cells
exchanging a signal through the extracellular environment. (B) The regulative state of cell
NT1 causes the cell to secrete a signal in the extracellular environment; cell NT2 receives
the signal, which affects its regulative set-up. (C) Juxtacrine signaling between two cells
exchanging signals through the intercellular space. (D) The regulative state of cell NT3
causes the cell to secrete a signal, which directly affects the regulative set-up of cell NT4.

NT2 to pSN04 and pSN05 , respectively. In this case, the transport
represents the passage to a new regulatory setup. To occur,
this passage needs some requirements at the net-token level
to be satisfied. Both tSN04 and tSN05 carry a down-link for the
synchronous channel ch2. The up-link of this channel is in
transition tNT03 of the net-tokens. The channel creates an in-
terplay between the two layers. To move a net token from
pSN02 to pSN04 and therefore advance to the next process stage,
it is not enough to have a net-token in a specific location
of the system-net. The net-token must also satisfy an inter-
nal condition, i.e., one token must be present in pNT02 . This
condition represents the checkpoint for this developmental
stage that models the gatekeeper mechanisms organizing on-
togenetic processes into subsequent phases, i.e., some phe-
notypic traits need to be expressed by the cells for them to
access the next stage. The ways each checkpoint evaluates
net-tokens evolution and state can range from a simple read
of a static value in the net to dynamic tracking to extract
complex information about cell phenotype. The checkpoint
may then include robust decision-making tools that imple-
ment classification routines that handle complex information
and dynamically label complex net-token behaviors.

3.6. Dynamic regulatory landscape
The organization in different process stages also con-

tributes to the definition of a dynamic regulatory landscape.
If places pSN04 and pSN05 represent the counterpart of pSN02 and
pSN03 in a new developmental stage, the movement of a cell
(net-token) from one stage to another one changes the inter-
action schema that engages the cell. This modeling approach
covers both intracellular (net-token) and supra-cellular (system-
net) regulations, the latter intended as any regulation existing
on top of intracellular regulation, including environmental
and epigenetic context. Also, it allows expressing a prior-
ity scheme among such regulation layers and how that may
change in different stages of the same process. This model-
ing approach allows representing a complex regulative land-
scape. Each point corresponds to a particular set of inter-
actions that may take place in a specific process phase and
context, and each cell can undergo multiple paths across it,
passing through different process stages.

4. Results and discussion
In this section, we apply our modeling approach to a

well-characterized developmental process: the Vulval Pre-
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Figure 7: NWN representation of the two signaling mechanisms relevant for modeling
ontogenetic processes: (A) In paracrine signaling, the cell NT1 uses channel ch1 to send a
signal (black token) to the extracellular environment modeled as a place in the system-net
(pSN102 ). Cell NT2 that is in spatial proximity receives the signal using channel ch2. (B) In
Juxtacrine signaling, the two adjacent cells (NT3 and NT4) engage in direct communica-
tion through channels ch1 and ch2.

cursor Cells (VPC) specification in the development of C.
Elegans larva. This aims to show the proposed modeling
strategy at work, providing an overview of its capabilities.
Differently from other models of the same process available
in the literature (e.g., [9]), the proposed model includes dif-
ferent hierarchical levels, explicitly combines spatial infor-
mation with cell differentiation and cell interaction, taking
advantage of the proposed NWN modeling methodology.
4.1. Biological process

Vulval Precursor Cells (VPC) specification inC. Elegans
is an ontogenetic process involving a small number of cells
but still including all characteristics of more complex pro-
cesses (Figure 8). Also, it is one of the most widely charac-
terized processes of this kind at the intracellular level.

As extensively described in [69, 65], VPC specification
occurs between the L3 and L4 stages of larval development
in C. Elegans. At this stage, each of six multi-potent stem
cells, the Pn.p cells, acquire one of three fates (1◦, 2◦ or 3◦
fate), which guide the subsequent phases of organ develop-
ment. Different actors contribute to fate decisions: the An-
chor Cell (AC), residing in the adjacent developing uterus
district, the underlying hypodermal syncytium, and the neigh-
bor Pn.p cells.

More specifically, as in Figure 8, in the physiological
case, the AC sends out a LIN-3 (EGF-like) signal reach-
ing Pn.p cells with distance-dependent intensity: the closest
cell, P6.p, receives juxtacrine signaling, its neighbors P5.p,
and P7.p cells receive paracrine signaling. The signal does
not reach P3.p, P4.p, and P8.p, the farthest cells. The hy-
podermal syncytium (hyp7) sends uniformly low-intensity
paracrine LIN-3 signals to all Pn.p cells. The Pn.p cells
can engage in mutual juxtacrine lateral signaling via trans-
membrane DSL/LIN-12 (DSL/Notch-like) signaling. At the
intracellular level, intense LIN-3 signaling induces the 1◦
fate in P6.p via the activation of a LET-23-mediatedRAS/MAPK

signaling pathway. This condition is marked by high con-
centrations of the active form of MPK-1, which activates
strong DSL lateral signaling to the neighbors. This acti-
vation causes them to switch off the 1◦ fate traits induced
by LIN-3 paracrine signals from the AC, activating 2◦ fate
traits, corresponding to high concentrations of the active LIN-
12 protein. P3.p, P4.p, and P8.p cells do not receive any
LIN-3 other than that from hyp7, this causing them to un-
dergo the 3◦ fate.

Different non-physiological cases for VPC specification
exist due to various mechanisms, including genetic muta-
tions.
4.2. The model

The NWNmodel of the VPC specification process com-
prises the following elements:

• a bi-dimensional Interactive Spatial Grid (ISG) (Fig-
ure 9);

• a Pn.p specific Differentiative Landscape (DL) (Fig-
ure 10) with complex checkpoint functionalities;

• three cell models, for the Anchor Cell, the Pn.p cells
and the hypodermal syncytium (hyp7) (Figure 13, Fig-
ure 14 and Figure 15, respectively).

For readability, this paper resorts to simplified figures
helping the reader understand the modeling approach. The
complete model and instructions to reproduce the experi-
ments are instead provided in a public GitHub repository at
https://github.com/sysbio-polito/NWN_CElegans_VPC_model/.

Figure 11 helps to understand the hierarchical organiza-
tion of the model’s elements. The system-net at the top-
level combines ISG and DL functionalities. The nets that
model the cells and implement the rules for classifying Pn.p
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Figure 8: Diagram of signaling mechanisms involved in VPC pattern formation. During
the L3 stage of C. Elegans larval development, inductive signaling from the Anchor Cell,
belonging to the developing gonad, and lateral signaling among the VPCs (P3.p - P8.p)
interact to make a precise pattern of cellular fates emerge. These include vulval lineages
of two types, 1° and 2°, each of which generates distinct sets of progeny. The uninduced
VPCs generate a 3° lineage, creating epidermal cells that fuse with the large syncytial
epidermis hyp7. P6.p receives strong juxtacrine signaling via transmembrane LIN-3 signals
from the AC. This strong signal induces the primary (1°) fate, suppressing the secondary
(2°) fate and activating DSL lateral signaling to the two neighboring VPCs (P5.p and
P7.p). P5.p and P7.p receive soluble, paracrine LIN-3 signaling from the AC, which is
slower and weaker than juxtacrine signals and combines with the DSL signals from the
neighboring P6.p to suppress the 1° and promote the 2° fates respectively. In the wild-type
scenario, a precise spatial pattern of cellular fates emerges in the VPCs (3°-3°-2°-1°-2°-3°).

cell fates (Fates Manager net) live and interact as net-tokens
within this system-net.

Figure 12 reports a screenshot of the full system-netmodel
implementation. The figure highlights the different portions
of this model using the dashed boxes, while the complete
source file is available on GitHub.

The top part of Figure 12 represents the ISG depicted
in a more schematic way in Figure 9. It provides a two-
dimensional representation of the VPC specification spatial
environment and models the involved cells’ interactions. In
this model, places represent the positions cells can occupy,
and transitionsmodel the potential interactions between cells
in such positions (e.g., cell-cell communication mechanisms
involved in the emergence of the morphogenetic pattern).
Hyp7 sends LIN-3 paracrine signals uniformly to all Pn.p
cells, modeling that the hypodermal syncytium lies under
the array of Pn.p cells.

The DLmodel (Figure 10) represents instead the mecha-
nism governing the Pn.p cells’ states along the developmen-
tal step from L3 to L4. Possible conditions are: Pn.p state,
and Primary (1◦), Secondary (2◦), or Tertiary (3◦) fates. Since
this developmental stage does not imply a change in the sys-
tem’s architecture, the different fates are modeled as colors
of the net-tokens representing the Pn.p cells. Specific tran-
sitions from the Pn.p places holding the cells create an array
of references to the Pn.p net-tokens. This array is passed
to the Fates Manager net-token using the sync_state chan-
nel. The Fates Manager is a special net-token that monitors
the places modeling active MPK-1 and active LIN-12 of the
Pn.p net-tokens and uses this information to predict the cell’s
fate. The bottom part of Figure 12 represents the actual im-
plementation of this mechanism connected to the remaining
parts of the system-net.

In the presented implementation, the system-net holds
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Figure 9: A schematic representation of the Interactive Spa-
tial Grid (ISG) model for the VPC specification example,
highlighting communication building blocks: juxtacrine LIN-3
signaling from the Anchor Cell (AC) to the P6.p cell; paracrine
LIN-3 signaling from the Anchor Cell (AC) to the P5.p and
P7.p cells; neighbor communication between pairs of Pn.p
cells; paracrine LIN-3 signaling from the hypodermal syncytium
(hyp7) to the Pn.p cells.
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Figure 10: A schematic and simplified representation of the
DL model for the VPC specification example. From the Pn.p
places holding the cells, specific transitions create a complex
token holding a reference to the Pn.p net-tokens. This array is
passed to the FatesManager net-token using the sync_states
channel. The Fates Manager is a special net-token that mon-
itors the places modeling active MPK-1 and active LIN-12 of
the Pn.p net-tokens and uses this information to predict the
cell’s fate represented by assigning a color to the cells.

three main types of net-tokens.
The AC net-token describes the LIN-3 production and

signaling in the Anchor Cell as reported in Figure 13. The
ACmodel has twoLIN-3 communicationmodes implemented
using channels: one for juxtacrine signalingwith P6.p (neigh-
bor communication), and the other one for paracrine signal-
ing with P5.p and P7.p (signal sending). Both signals rely
on the LIN-3 gene for production (transcription and trans-
lation).

The Pn.p net-token describes the regulation of the Pn.p
cells, all sharing the same architecture. This net-token is de-
scribed using an adaptation of the Petri Nets model from [9].
As shown in Figure 14, the Pn.p cell model receives LIN-
3 signals through channels that describe paracrine or jux-
tacrine signaling (signal sensing and neighbor communica-
tion). LIN-3 activates a cascade of enzymatic activation re-

System-net (ISG+DL)

AC net-token Pn.p net-token hyp7 net-token FM net-token

Figure 11: Nets hierarchy for the VPC specification model
implementation in Renew. The system-net having ISG and DL
functionalities is at the top level, and it hosts the net-tokens
modeling different cells (AC, Pn.p, and hyp7), plus the Fates
Manager (FM) modeling complex checkpoint rules.

actions (the MAPK signaling cascade, enzymatic reactions),
resulting in the production of active MPK-1. This active
protein causes the DSL signal to increase and affect neigh-
bor cells. Pn.p Cells receive DSL signals from neighbors,
and this activates LIN-12 (DSL/LIN-12 lateral signaling via
neighbor communication). Increased active LIN-12 causes
LST and DPY23 inhibitors to switch off the MAPK signal-
ing cascade (inhibitory post-transcriptional regulation).

Eventually, the hyp7 net-token describes the hypodermal
syncytium lying below the Pn.p cells. It provides uniform
and low-intensity LIN-3 paracrine signals to all of them (sig-
nal sending), modeling the fact that LIN-15 can shut down
LIN-3 transcription (inhibitory transcriptional regulation),
as described in [9].

The Fates Manager (FM) net-token is a complex net able
to assign one of the three possible fates (Primary, Secondary
and Tertiary Fate) to the different Pn.p cells. The full net-
work is available on GitHub. However, for the sake of read-
ability, Figure 16 focuses on presenting the overall behavior
of this network.

The first task of the FM is sampling the marking evolu-
tion of the activeMPK-1 and active LIN-12 places of all Pn.p
cells. A channel transfers an array of Pn.p net-token object
references to the FM that can then communicate with them to
obtain their marking. The ability to track the dynamic evolu-
tion of places available in various instances of a net-token is
a crucial characteristic of this modeling strategy. Apart from
its usage in the presented model, these mechanisms can be
used as a general and powerful inspection instrument to un-
derstand the considered process.

The FM stores the marking evolution of the active MPK-
1 and active LIN-12 places of each cell into a set of circular
buffers, creating a sliding windowwhere the markings of the
six Pn.p cells are stored during the simulation. This infor-
mation builds a set of features for each specific cell submit-
ted to a classifier able to determine the fate of the cell (Fig-
ure 16.B). Finally, the resulting fates are sent to the system-
net (Figure 16.C) and used to assign the corresponding color
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Figure 12: The Renew implementation of the system net for the VPC specification
example, combining ISG and DL functionalities. This figure summarizes the complete
architecture of the system-net to give an idea of the complexity of the model. A detailed
view of this net is stored in the GitHub repository.

to the Pn.p cells.
The classification process relies on a Weka random for-

est model [37]. The classification model is trained with a su-
pervised mechanism. A training dataset is generated by col-
lecting the marking of the active MPK-1 and active LIN-12
places in several simulations of the Pn.p net-tokens in a phys-
iological condition. As will be detailed later in this section,
simulations include stochastic behaviors that lead to differ-
ent dynamics. Each set of features was manually labeled to
a fate by comparing the evolution of the active MPK-1 and
active LIN-12 markings with the expected values from bio-
logical knowledge. In particular, cells exhibiting high values

of active MPK-1 were labeled with the Primary fate, cells
having low active MPK-1 and high active LIN-12 with the
Secondary fate, and cells having low levels of both markers
with the Tertiary fate.
4.3. Model tuning and simulations

The proposed implementation of the Pn.p, AC, and hyp7
net-tokens follows the semi-quantitative paradigm proposed
in [9]. The tuning proceeded manually by trial-and-error un-
til the marking evolution of markers (i.e., active MPK-1 and
active LIN-12) recapitulated physiology for all cell models.

Renew supports different high-level Petri Nets formalisms
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Figure 13: The Anchor Cell model. The Anchor Cell (AC)
net-token models the two types of inductive signaling the AC
sends to the Pn.p cells. A neighbor communication module
(Appendix A, Figure 21) models juxtacrine signaling to P6.p,
and a signal sending module (Appendix A, Figure 27) models
paracrine signaling to P5.p and P7.p. Both signaling mech-
anisms leverage communication channels with the system-net
(Paracrine and Juxtacrine signaling from the Anchor Cell place
to the target Pn.p cells, Figure 12).

and their simulation. Experiments use the JavaNet Compiler
[11], which supports stochastic simulation of NWNmodels.
The simulation engine considers all enabled transitions at
each cycle and then randomly selects a subset of them for
activation. This mechanism makes the transitions activation
order non-deterministic, mimicking the stochasticity of the
biological processes. In other words, this means that start-
ing from the same initial conditions, simulations of the same
model may generate different outcomes.

Moreover, themodel structure introduces delays for some
mechanisms to provide better expressivity of graded signal-
ing intensity. For example, expressing the delayed onset of
paracrine signals from the AC compared to the juxtacrine
ones.

This modeling approach expresses temporal dynamics,
which are relevant for modeling ontogenesis since the timing
of functional activation often has a regulatory meaning in
that context.

Experiments involved two simulation campaigns. The
first simulation campaign aimed at collecting features to train
the FM classifier. In this campaign, the Weka classifier was
detached from the model. The FM only collected the fea-
tures from the marking of the Pn.p cells and stored them in
a file (see training_set.arff file on GitHub). Collected data
were then labeled and used to train the model. Data from
simulations were enriched with synthetic data to cover cor-
ner cases difficult to obtain from raw simulations. Globally,
the training set contains 100 samples for each of the three
possible fates.

The second campaign shows the model at work. Differ-
ent initial markings represent different experimental condi-
tions in the model, chosen by the scheme proposed in [9]. In

particular, this paper considers the following conditions:
1. wt: the wild-type physiological condition;
2. lin12_ko: knock-out of the lin-12 gene;
3. lstdpy_ko: knock-out of the lst (lip-1, lst-1, lst-2, lst-3

and lst-4) and dpy23 set of genes ;
4. vul_ko: knock-out of the Vul set of genes (let-23, sem-

5, let-60 and mpk-1).
Each condition corresponds to an expected VPC differ-

entiation pattern as follows:
1. wt: P3.p: 3◦ fate, P4.p: 3◦ fate, P5.p: 2◦ fate, P6.p:

1◦ fate, P7.p: 2◦ fate, P8.p: 3◦ fate;
2. lin12_ko: P3.p: 3◦ fate, P4.p: 3◦ fate, P5.p: 1◦ fate,

P6.p: 1◦ fate, P7.p: 1◦ fate, P8.p: 3◦ fate;
3. lstdpy_ko: P3.p: 3◦ fate, P4.p: 3◦ fate, P5.p: 1◦ fate,

P6.p: 1◦ fate, P7.p: 1◦ fate, P8.p: 3◦ fate;
4. vul_ko: P3.p: 3◦ fate, P4.p: 3◦ fate, P5.p: 3◦ fate,

P6.p: 3◦ fate, P7.p: 3◦ fate, P8.p: 3◦ fate;.
For each experimental condition, 100 simulations were

collected following recommendations in [60]. Simulations
provide both the temporal evolution of the markers of inter-
est from cell models and the six labels resulting from Pn.p
cells classification.

As mentioned before, validation and tuning of the model
were performed using simulations. During simulation, the
temporal evolution of the marking of each place of the differ-
ent networks composing the model was constantly recorded.
Themarking of a place can be seen as the intensity of the bio-
logical signal associated to the place at a given point in time.
The average marking over a complete simulation represents
the average signal intensity. This metric, after min-max nor-
malization, is used here to analyze and validate the behavior
of the model by looking at a sample simulation from the wt
condition. Figure 17 focuses on the dynamics of the P5.p,
P6.p, and P7.p cells. As expected from the knowledge of
the biological system, the P6.p cell receives a strong LIN-3
juxtacrine signal from the AC that corresponds to signifi-
cant active LET-23 production (0.25 normalized average in-
tensity), which induces a strong production of active MPK-
1 (0.5 normalized average intensity), inducing the Primary
fate. At the same time, the P6.p cell does not receive sig-
nificant DSL lateral signaling from the neighbors, resulting
in a negligible production of active LIN-12. Both the P5.p
and P7.p cells receive weaker paracrine LIN-3 signal from
the anchor cell, which requires some time to be delivered.
This corresponds to a weaker production of active LET-23
(less than 0.1 normalized average intensity) that starts later
than the P6.p cell. Moreover, these cells receive strong DSL
lateral signaling (about 0.25 normalized average intensity)
induced by high active MPK-1 production in the P6.p cell.
This results in a strong production of active LIN-12 (about
0.4 normalized average intensity) that inhibits the production
of active MPK-1 (about 0.2 normalized average intensity), a
condition that correctly corresponds to the Secondary fate
expected to be induced in these cells.

Figure 18 extends the analysis to all Pn.p cells. As ex-
pected cells P3.p, P4.p and P8.p (first, second and last rows,
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Figure 14: The Pn.p Cell model. The net-token for Pn.p cells models intracellular signaling
cascades integrating inductive and lateral signals within each VPC. The AC communicates
with Pn.p cells with either juxtacrine or paracrine inductive signaling that activates, with
different intensities, the Vul genes signaling pathway. This pathway activates the 1◦ fate
marker (i.e., active MPK-1) and the DSL output signal while inhibiting the 2◦ fate marker
(i.e., active LIN-12) via DPY-23 and LST-mediated transcriptional inhibition. In addi-
tion, DSL-mediated lateral signaling activates the 2◦ fate marker (i.e., active LIN-12) in
neighboring VPCs. LIN-12 is a Notch-like receptor for the Delta-like signal DSL. DSL-
LIN-12 lateral signaling between neighbor Pn.p cells and AC juxtacrine signaling to P6.p
cell are modeled with a neighbor communication module (see Appendix A, Figure 21).
AC paracrine signaling is modeled combining a signal sending and a signal sensing module
(Appendix A, Figure 27 and Figure 26).

respectively) only receive weak LIN-3 signal from the hy-
poderm and may receive very weak lateral signaling from
neighbors. This condition is not enough to trigger a signifi-
cant activeMPK-1 nor active LIN-12 production. Therefore,
in these cells, both markers levels are negligible (around 0.0
normalized average intensity), which indicates the Tertiary
fate.

While Figure 17 and Figure 18 show the dynamic behav-
ior of the system analyzing a single simulation in the wild-
type physiological condition, Figure 19 shows the results of
several simulations on all considered conditions, represented
as the normalized average values of the active MPK-1 and
active LIN-12 markers for simulated Pn.p cells. The fig-
ure shows the ability of the model to recreate, for each con-
sidered condition, the expected differentiation pattern influ-
enced by the corresponding level of the active MPK-1 and
active LIN-12 markers.

Of course, misclassifications are possible for simulations

generating signals close to the classifier’s boundary. This is
possible due to the stochasticity of the simulation. To quan-
tify the accuracy of the model, Table 1 summarizes, for each
cell, the ability of the model to predict the correct fate of
the different cells in the considered conditions. These val-
ues refer to 100 simulations per condition. It is important to
remark that the model was trained and tuned on the wt case
and then used to evaluate new unknown conditions. This is
a simple example to show how this modeling strategy can be
exploited to inspect different conditions, therefore, perform-
ing in silico knowledge exploration.

5. Conclusions and future perspectives
This paper presented an NWN-based modeling approach

responding to modeling requirements posed by ontogene-
sis applied to the case study of a VPC specification in C.
Elegans. Considering model performance in terms of pre-
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experiment Pn.p pattern accuracies
wt 3 3 2 1 2 3 100% 100% 87% 100% 93% 100%
lin12_ko 3 3 1 1 1 3 100% 97% 74% 100% 83% 100%
lst_lf 3 3 1 1 1 3 100% 100% 79% 100% 83% 100%
vul_ko 3 3 3 3 3 3 100% 100% 100% 100% 100% 100%

Table 1
Results of the pattern formation simulations. For each experimental condition, the Pn.p
fates pattern observed is reported, together with the accuracy of the prediction for each
cell generated in the simulation outcomes. Reported results refer to 100 simulation runs.

Figure 15: The hyp7 Cell model. This net-token models LIN-
3 production by the hyp7 hypodermal syncytium with a signal
sending module (Appendix A, Figure 26).
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Figure 16: Overview of the cell fate classification process
in the Fates Manager. The classification process relies on a
Weka random forest classifier. The classifier receives as fea-
tures information on the marking of the active MPK-1 (MPK-
1_ACT and active LIN-12 (LIN-12_ACT) places of the Pn.p
net-tokens and, based on it, predicts the cells’ fate.

dictive power, compared to other state-of-the-art approaches
[9, 18, 38, 25], our modeling framework has similar or better
predictive performance. Furthermore, the proposed model
has the advantage of supporting the integration and compo-
sition of heterogeneous biological information and models.
It combines the advantages of multi-level hybrid models [4]

with formalism uniformity, which facilitates model analysis,
and knowledge representation and exchange.

In the future, performance needs to be tested over a more
significant number of mutations for the VPC specification
case, starting from those tested in [8] and performing predic-
tions over new experimental conditions to be subsequently
verified experimentally in order to demonstrate the actual
predictive power of the model.

At the moment, NWN models have been mainly used
through simulation since the formal analysis of such com-
plex graphs is not trivial due to the state-space explosion
problem [30]. In particular, model checking is a promising
method to verify systems that are modeled as state transition
graphs [14]. Moreover, besides the verification capabilities,
formal methods can support additional analysis able to infer
system level properties of the system (e,g, invariants, stead
states, etc.) that could provide interesting insights on the
studied phenomenon.

Low-level PN are supported by a large literature provid-
ing methods like partial order reduction [72], symmetries
[66], the sweep-line method [13] or alternative ways to rep-
resent the state space [20, 55] and cope with large model
sizes. Tools such as Maria [47], LoLA [75], GreatSPN [1],
Maude [15] are examples of instruments providing verifi-
cation options for traditional PN variants. For high-level
Petri nets some interesting model checking tools also exist
[16, 21, 32]. However, the problem is still open when con-
sidering the peculiarities of the NWN formalism. Venero
et al. [73] provide a method that can be applied to multi-
level and recursive nets. Recently, Willrodt et al. [74] pre-
sented Modular Model Checker (MoMoC), a model check-
ing tool designed to work with NWN and integrated with Re-
new. While this is a promising starting point, these tools can
handle only very simple nets, and significant work is still re-
quired to handle complex models such as the ones presented
in this paper.

Our models combine hypothesis-driven and data-driven
approaches, but a necessary improvement is to make param-
eter identification rely on experimental data only, possibly
generating them ad hoc.

Computational capabilities could limit the model com-
plexity: if computational complexity is too high, analyses
and simulations take too long to complete [54]. However,
it is possible to face this problem both at the model level,
with complexity reduction [2], and at the hardware level,
with state-of-the-art architectures for parallel and distributed
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Figure 17: P5.p, P6.p, and P7.p dynamic behavior. The dynamic marking evolution
of relevant places along with the simulation in the Pn.p models correctly recapitulates
physiology. P6.p (central row) receives strong LIN-3 signaling from the AC, resulting in
strong MPK-1 activation and DSL-mediated lateral signaling to neighbors. P5.p and P7.p
(top and bottom rows, respectively) receive weaker, delayed LIN-3 signal, inducing weak
LET-23 activation, leading to moderate active MPK-1 levels, which are inhibited by the
high LIN-12 activation induced by the DSL lateral signaling from the P6.p cell, inducing
the Secondary fate.

computing to speed up computational times [26, 28].
Finally, significant effort is required to improve the mod-

eling strategy usability from life scientists with limited ex-
perience in model development and computer engineering.
An effort in this direction is already in place with the de-
velopment of the Biological System Description Language
(BiSDL), a domain-specific high-level, modular program-
ming language naturally accessible by purely biological se-
mantics and automatically generating simulation-readyNWN
models [49].

In this way, we intend to improve the capability ofmodel-
ing biological complexity and make the resulting tools avail-
able to a large and diverse user base to fulfill the systems
biology scientific community’s needs [58].
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A. Appendix 1
This appendix reports a library of biological functional modules and

their respective NWNmodel that can be used to model complex ontogenetic
processes.

A.1. Interactive spatial grid
This section reports a set of cell movement and cell to cell communica-

tion mechanisms mediated by the relative spatial positions modeled in the
ISG.
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Figure 20: Neighbor detection. It models the capability of a
cell to detect the presence of a neighbor cell in direct physical
contact. This module allows a net-token occupying a place in
the ISG (NT1 in pSN01 ) to detect a neighboring net-token in-
stance in the adjacent place (pSN02 ) via a communication chan-
nel :cℎ1, linking transitions tSN01 in the system-net (SN) and
tNT 1
01 in NT1.
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Figure 21: Neighbor communication. It models the commu-
nication between neighboring cells in direct physical contact.
This module allows a net-token occupying a place in the ISG
(NT1 in pSN01 ) to connect to the net-token instance living in
the neighboring place (NT2 in pSN02 ) by exchanging signals via
a communication channel :cℎ1, linking transitions tSN01 in the
system-net (SN), tNT 1

01 in NT1 and tNT 1
01 in NT2.
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Figure 22: Cell movement. It models the mobility of a cell
from a one position to another one in the physical environment.
This module describes the movement of a net-token (NT1)
from a place in the ISG (pSN01 ) to another one (pSN02 ) via a
transition (tSN01 ) in the system-net (SN).
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Figure 23: Molecular flow. It models the mobility of a
molecule from a one position to another one in the physical
environment. This module models the movement of a colored
token (M1) from a place in the ISG (pSN01 , holding the net-
token NT1) to another one (pSN02 , holding the net-token NT2)
via a transition (tSN01 ) in the system-net (SN).
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Figure 24: Mitosis. It models a cell undergoing mitosis
and generating two daughter cells. This module includes the
mother cell (NT1) in a position in the ISG (pSN01 ) generat-
ing two daughter cells via a transition (tSN01 ) in the system-net
(SN), one in its starting position (pSN01 ), and another one in
close spatial proximity (pSN02 ).
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Figure 25: Apoptosis. It models a cell undergoing apoptosis
that leaves the position it occupied in the environment empty.
This module includes the apoptotic cell (NT1) in a position
in the ISG (pSN01 ) being removed from the ISG via a transition
(tSN01 ) in the system-net (SN).
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Figure 26: Signal sensing. It models a cell sensing a signal
from the extracellular environment. In this module, the net-
token occupying a place in the ISG (NT1) senses the signal
modeled with the colored token S1 in the same place pSN01 it
occupies via a communication channel :cℎ1, linking transitions
tSN01 in the system-net (SN) and tNT 1

01 in NT1.
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Figure 27: Signal sending. it models a cell sending a signal
to the extracellular environment. In this module the net-token
NT1 sends the signal modeled with the colored token S1 in the
same place it occupies in the ISG (pSN01 ) via a communication
channel :cℎ1, linking transitions tSN01 in the system-net (SN)
and tNT 1

01 in NT1.
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A.2. Differentiative landscape
This section reports a building block to model a single differentiative

step in a Differentiative Landscape (DL) model.
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Figure 28: Differentiative step. It models a cell changing its
phenotype state. This passage is regulated by a checkpoint
evaluating the cell state. This module includes the net-token
occupying a place in the DL (NT1 in pSN01 ). If NT1 inter-
nal state activates the checkpoint in tSN01 via a communication
channel :cℎ1 (linking tSN01 in the system-net and tNT 1

01 in NT1),
the DL transition moves NT1 to pSN02 , modeling the new phe-
notypic state.

A.3. Cells
This section reports a set of sample building blocks to model simple

intracellular mechanisms in the Cell models.
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Figure 29: Transcription. It models the transcription of a gene
(or a region of the genome) into coding or non-coding RNA
transcripts. This module includes a net-token (NT) place for
the genomic information to be transcribed (pNT

01 ) and one for
the transcription products (pNT

02 ), while tNT
01 models the tran-

scription process.
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Figure 30: Translation. It models the translation of an RNA
transcript into a protein product. This module includes a net-
token place for the RNA molecules to be translated (pNT

01 ) and
one for the translation products (pNT

02 ), while tNT
01 models the

translation process.
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Figure 31: Enzymatic reaction. It models the enzymatic catal-
ysis transforming substrates into products. This module in-
cludes a net-token place for the enzymatic reaction substrates
(pNT

01 ), one for the products (pNT
02 ), and one for the enzyme

to catalyze the reaction (pNT
03 ), while tNT

01 models the reaction
process, which depends on the presence of the enzyme.
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Figure 32: Activating gene regulation. It models the positive
regulation of a transcription process. This module includes a
net-token place for the gene to be transcribed (pNT

01 ), one for
the transcription products (pNT

02 ), and one for the regulatory
signal (for example, a transcription factor) activating transcrip-
tion (pNT

03 ), while tNT
01 models the transcription process, which

depends on the presence of the activating signal.
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Figure 33: Inhibiting gene regulation. It models negative
regulation of a transcription process. This module includes
net-token places for the gene to be transcribed (pNT

01 ), the
transcription products (pNT

02 ), the regulatory signal activating
transcription (pNT

03 ), and the signal inducing the degradation of
the activating signal (pNT

03 ). While tNT
01 models the activation-

dependent transcription process, tNT
02 models the degradation

of the activating signal, that is induced by the inhibitory signal,
resulting in the inhibition of the transcription process.
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