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Abstract
Building on a new but simple method to characterize multivariate Bernoulli variables
with given means, we investigate their dependence structure. We evaluate on some
computational examples whether the assumption of exchangeability is binding. This
is useful in applications where exchangeability is a standard assumption, such as credit
risk.

Keywords Multivariate Bernoulli distribution · Fréchet class · Algebraic statistics

1 Introduction

Multivariate Bernoulli variables and their dependence structure are widely studied in
the statistical literature, see e.g., [1]. A part of the literature focuses on exchangeable
Bernoulli variables for their importance in applications, as credit riskmodeling [6], and
for the De Finetti representation theorem, which describes the dependence structure
in a very simple way. Nevertheless, the De Finetti theorem holds only for infinite
sequences of exchangeable variables (see, e.g., [3]).

A novel representation of the class of multivariate Bernoulli variables with
some given moments is provided in [4]. If we consider the Fréchet class of d-
dimensional Bernoulli variables with given one-dimensional means (p1, . . . , pd), i.e.,
F(p1, . . . , pd), we can use this representation to investigate the dependence structure
of the class. In fact, in [4], the probability mass functions belonging toF(p1, . . . , pd)
are represented as points in a convex hull whose generators are mass functions which
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belong to the same class. The generators of the class can be explicitly found, although
we do not have a general analytical expression for them. This representation is gen-
eral and allows us to easily generate a sample of mass functions in the class and to
find bounds for the other moments of the distribution. It is worth noting that this
method puts no restriction on the number of variables. The range of applications is
limited only by the amount of computational effort required, because the number of
generators increases very quickly as the dimension of the multivariate Bernoulli vari-
ables increases. This limitation is overcome if we consider the class of exchangeable
Bernoulli variables. Fontana et al. [5] analytically finds the convex hull generators for
the class of exchangeable Bernoulli variables with given mean. This analytical rep-
resentation holds for any finite sequence of exchangeable Bernoulli variables, thus in
a more general framework than the De Finetti representation theorem. The analytical
solution allows us to work in any dimension.

The aimof this paper is to investigate someFréchet classes and to compare the entire
Frechét class with the subclass of exchangeable random variables. For this reason, we
choose to assume that the vector has identically distributedBernoullimargins, i.e., they
all have the same mean. This analysis is computational because we have the analytical
solution only under the assumption of exchangeability. As a consequence, it cannot
be developed in very high dimension because of the computational effort required.
Nevertheless, we work in a truly multidimensional setting, since we reach dimension
six. Our comparison between the whole Fréchet class and the set of exchangeable
variables makes it possible to draw some conclusions about the limitation that can
derive from the assumption of exchangeability in applications.

The paper is organized as follows. After a preliminary section, we restate the the-
oretical results in [4], but using the same approach that is used in [5] to focus on
the exchangeable case. We also recall the analytical construction in the exchangeable
case. In Sect. 4, we investigate two special cases. For each case, we find the generators
of the class and we provide bounds for the first four cross-moments, since they drive
dependence. In particular, we exhibit the correlation bounds, to underline the admissi-
ble strength of linear dependence in the class. We also consider the value at risk (VaR)
of the sums of Bernoulli variables. This measure is important in credit risk, where
Bernoulli variables are indicators of default. In fact, VaR is an indicator for the possi-
ble loss of a portfolio with dependent obligors. Interestingly, we find that the bounds
for the VaR remain the same if we consider the subclass of exchangeable variables
and therefore they can be computed on this subclass and obtained analytically.

2 Preliminaries

Let Fd be the set of d-dimensional distributions which have Bernoulli univariate
marginal distributions. Let us consider the Fréchet class F(p1, . . . , pd) ⊆ Fd of
distribution functions in Fd which have Bernoulli marginal distributions B(pi ), 0 <

pi < 1, i ∈ {1, . . . , d}. If X = (X1, . . . , Xd) is a randomvectorwith joint distribution
in F(p1, . . . , pd), we denote
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– Its cumulative distribution function by FXd and its probability mass function (pmf)
by fXd , where Xd = {0, 1}d ;

– The column vector which contains the values of F and f over Xd , by FXd =
(Fp(x) : x ∈ Xd) and fXd

= ( f p(x) : x ∈ Xd) respectively; we make the
non-restrictive hypothesis that the setXd of 2d binary vectors is ordered according
to the reverse-lexicographical criterion. For example, S2 = {00, 10, 01, 11} and
S3 = {000, 100, 010, 110, 001, 101, 011, 111};

– The marginal cumulative distribution function and the marginal mass function of
Xi by FXd ,i and fXd ,i , respectively, i ∈ {1, . . . , d};

– The values fXd ,i (0) ≡ FXd ,i (0) and fXd ,i (1) by qi and pi , respectively, i ∈
{1, . . . , d}.

We observe that qi = 1 − pi and that the expected value of Xi is pi , E(Xi ) = pi ,
i ∈ {1, . . . , d}.

Let now Ed(p) be the class of d -dimensional exchangeable Bernoulli distributions
with mean p. If X = (X1, . . . , Xd) is a random vector with joint distribution in Ed(p),
it holds fXd (x) = fXd (σ (x)) for any σ ∈ Pd , where Pd is the set of permutations
on {1, . . . , d}. Thus, any mass function f in Ed(p) is given by fi := fXd (x) if
x = (x1, . . . , xd) ∈ Xd and #{x j : x j = 1} = i . Therefore, we identify a mass
function fXd in Ed(p)with the corresponding vector f := ( f0, . . . , fd). The simplest
example of exchangeable distribution is the case of independence that is linked to the
Binomial distribution.

Furthermore, the moments depend only on their order, we therefore use μα to
denote a moment of order α = ord(α) = ∑d

i=1 αi , where α ∈ Xd . For example, we
have μ1 = p. We also observe that the correlation ρ between two Bernoulli variables
Xi ∼ B(p) and X j ∼ B(p) is related to the second-order moment μ2 = E[Xi X j ] as
follows:

μ2 = ρ pq + p2. (1)

3 Theoretical Background

Building on the results in [4,5] in this section, we represent the Fréchet class of
multivariate d-dimensional Bernoulli distributions with given margins, d ≥ 2 as the
points of a convex polytope. We recall that a polytope (or more specifically a d-
polytope) is the convex hull of a finite set of points in R

d called the extremal points
of the polytope. We say that a set of k points is affinely independent if no one point
can be expressed as a linear convex combination of the others. For example, three
points are affinely independent if they are not on the same line, four points are affinely
independent if they are not on the same plane, and so on. The convex hull of k + 1
affinely independent points is called a simplex or k-simplex. For example, the line
segment joining two points is a 1-simplex, the triangle defined by three points is a
2-simplex, and the tetrahedron defined by four points is a 3-simplex. A complete
reference on computational geometry is [2].

The representation of F(p1, . . . , pd) as a convex polytope holds for any p, with
the drawback that the search of the generators, is computationally challenging for high
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dimension. This limitation is not present in the class of exchangeable d-dimensional
Bernoulli distributions with given margins, where we have an analytical expression
for the convex polytope generators.

Let fXd be a multivariate d-dimensional Bernoulli distribution with margins p, i.e.,
fXd ∈ F(p1, . . . , pd).
Using the conditions on the mean values, we can write any vector density fXd

in
F(p1, . . . , pd) as the solution of a linear system. Formally, since

E(Xi ) =
∑

x∈Xd

xi fXd (x),

we have

{∑
x∈Xd

xi fXd (x) = pi
1 − ∑

x∈Xd
xi fXd (x) = qi ,

Let γi = pi/qi , it holds γi qi − pi = 0. We can write

γi (1 −
∑

x∈Xd

xi fXd (x)) −
∑

x∈Xd

xi fXd (x) = 0,

∑

x∈Xd

(γi (1 − xi ) − xi ) fXd (x) = 0. (2)

The d equations in Eq. (2) provide a linear system. Let H be its coefficients matrix.
The rows of H are (γi (1− xi )� − x�

i ), i ∈ {1, . . . , d}, where 1 is the vector with all
the elements equal to 1 and xi is the projection vector which contains only the i-th
element of x ∈ Xd , i ∈ {1, . . . , d}, e.g., for the bivariate case x1 = (0, 1, 0, 1) and
x2 = (0, 0, 1, 1).

The densities fXd
inF(p1, . . . , pd) are the positive solutions of the system H z =

0, whose components sum up to one.
All the positive, normalized, solutions of H z = 0 are elements of the convex

polytope P = {z ∈ R
2d : ∑n

i=1 zi = 1, H z = 0, I z ≥ 0}, where I is the 2d ×
2d identity matrix. Each point in the polytope is a convex combinations of a set of
generators which are referred to as extremal densities of the linear system. We denote
them as R(i)

Xd
, i = 1, . . . , nF and nF is the number of generators that depends on d

and p.
Using the above arguments, [4] proved the following theorem.

Theorem 1 Let fXd be amultivariate d-dimensional Bernoulli distribution, fXd ∈ Fd .
Then, fXd is a mass with margins p, i.e., fXd ∈ F(p1, . . . , pd) if and only if there
exist λi ≥ 0, i ∈ {1, . . . , nP }, ∑nP

i=1 λi = 1 such that

fXd
=

nP∑

i=1

λi R
(i)
Xd

, (3)
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where R(i)
p = (R(i)

p (x), x ∈ Xd) ∈ F(p1, . . . , pd) are the extremal points of the

polytope P = {z ∈ R
2d : ∑n

i=1 zi = 1, H z = 0, I z ≥ 0} and nP is the number of
the extremal points of P .

To find the extremal densities, i.e., the generators of F(p1, . . . , pd), we have to
find the extremal solutions of an homogeneous system. If the dimension of the system
increases, the number of extremal solutions becomes huge, leading to computational
difficulties. These difficulties disappearwhenwe consider the classEd (p) of exchange-
able Bernoulli variables, where we have the analytical expression of the extremal
densities. If fXd (x) = fXd (σ (x)) for any σ ∈ Pd , any mass function fXd in Ed(p) is
given by fi := fXd (x) if x = (x1, . . . , xd) ∈ Dd and #{x j : x j = 1} = i . Using this
fact, we can define a one-to-one correspondence between Ed(p) and the class of the
distributions of their sums.

Let Sd(p) be the class of distributions pS on {0, . . . , d} such that Sd = ∑d
i=0 Xi

with X ∈ Ed(p). Let pS( j) = p j = P(Sd = j) and pS = (p0, . . . , pd).
The map,

E : Ed(p) → Sd(p)

f j → p j =
(
d

j

)

f j ,
(4)

is a one-to-one correspondence between Ed(p) and Sd(p). Notice that the pmf f I
of independent Bernoulli variables is exchangeable, i.e., f I ∈ Ed(p) and the map E
sends f I in the Binomial distribution.

Therefore, we have
Ed(p) ↔ Sd(p). (5)

Fontana et al. [5] proved that the class of distributions Sd(p) coincides with the entire
class of discrete distributions withmean dp, sayDd(dp). This fact is useful to simplify
the search of the generators of Ed(p).

Therefore, the three classes Ed(p), Sd(p) and Dd(dp) are essentially the same
class, i.e.,

Ed(p) ↔ Sd(p) ≡ Dd(dp) (6)

Thanks to the above correspondence to find the generators of Sd(p), we can look for
the generators of Dd(dp). This simplifies the search. The generators we find are in
one-to-one relationship with the generators of Ed(p).

Using the equivalence Sd(p) ≡ Dd(pd) stated in [5], a pmf in Sd(p) is a pmf on
{0, . . . , d} with mean pd. Thanks to the map E in Eq. (6), this is also equivalent to
find a set of conditions that a pmf of a multivariate Bernoulli has to satisfy for being
in Ed(p). Following the approach developed in the proof of Theorem 1, the set of
conditions are homogeneous equations, whose unknown are the values of a pmf in
Dd(pd).

Proposition 1 Let Y be a discrete random variable defined over {0, . . . , d} and let pY
be its pmf. Then,

Y ∈ Sd(p) ⇐⇒
d∑

j=0

( j − pd)pY ( j) = 0.
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Using Proposition 1, we can find all generators of Sd(p). Thanks to the map E ,
that is equivalent to finding all the generators of Ed(p).

We have to find the normalized extremal points of the convex cone

Cp =
⎧
⎨

⎩
z ∈ R

d+1 :
d∑

j=0

a j z j = 0, I z ≥ 0

⎫
⎬

⎭
, (7)

where a j = j − pd and I is the (d + 1) × (d + 1) identity matrix. The following
proposition, proved in [5], provides the analytical expression of the extremal points
in Sd(p).

Proposition 2 The extremal points of the convex cone Cp in (7) are

p j1, j2(y) =

⎧
⎪⎪⎨

⎪⎪⎩

j2−pd
j2− j1

y = j1
pd− j1
j2− j1

y = j2

0 otherwise

, (8)

with j1 = 0, 1, . . . , j M1 , j2 = jm2 , jm2 + 1, . . . , d, j M1 is the largest integer less than
pd and jm2 is the smallest integer greater than pd.

If pd is integer, the extremal points contain also

ppd(y) =
{
1 y = pd
0 otherwise

. (9)

A corollary of the above proposition is the number of ray densities.

Corollary 1 If pd is not integer there are n p = ( j M1 + 1)(d − j M1 ) extremal
densities.
If pd is integer there are n p = d2 p(1 − p) + 1 extremal densities.

3.1 Moments, Quantiles and their Bounds

This section focuses on the problem of finding bounds for the moments of multivariate
Bernoulli variables inF(p1, . . . , pd) and inEd(p). Given fXd ∈ F(p1, . . . , pd), from
Theorem 1, we observe that each moment E(Xα),α ∈ Xd can be computed as

μ = M⊗d fXd
= M⊗d RXdλ.

We denote by AXd the matrix whose columns contain all the moments of the extremal
mass functions, AXd = M⊗d RXd . Let AkXd = (

M⊗d
)
k RXd where

(
M⊗d

)
k is

the sub-matrix of M⊗d obtained by selecting the rows corresponding to the k-order
moments and RXd is the ray matrix. We observe that the columns of the matrix AkXd

contain the moments of the extremal mass functions, i.e., the bounds for the k-th order
moment are reached on the extremal densities.
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Proposition 3 For each α ∈ Xd , ‖α‖0 = k, the k-order moment μ(α)
k must satisfy the

following bounds:
min A(α)

kXd
≤ μ

(α)
k ≤ max A(α)

kXd

where A(α)

kXd
is the row of the matrix AkXd such that μ(α)

k = A(α)

kXd
λ.

Important special cases are the second-ordermomentswhich allowus to find bounds
for correlations:

Proposition 4 The correlations ρi j must satisfy the following bounds:

min A(α)

2Xd
− pi p j√

piqi p jq j
≤ ρi j ≤ max A(α)

2Xd
− pi p j√

piqi p jq j
,

where A(α)

2Xd
is the row of the matrix A2Xd such that μ

(α)
2 = A(α)

2 p λ and {i, j} = {k :
αk = 1}.

As we observed, for a given p, the class of exchangeable multivariate pmfs Ed(p)
is a subclass of the Frechét class F(p, . . . , p) where all margins are equal to p. For
the sake of simplicity, we denote Fd(p, . . . , p) by Fd(p).

If we consider the class Ed(p) of exchangeable distributions, the moments depend
only on their order. Therefore, as said in the preliminaries, we use μα to denote a
moment of order α. Being Ed(p) ⊂ Fd(p), the above bounds are still true; thus, the
minimum and the maximum moments are reached on the ray densities of Ed(p). We
expect that the bounds for the moments of the variables in Ed(p) are more binding that
the bounds for the moments in Fd(p). We computationally investigate this aspect on
some cases in Sect. 4. There is no particular relation between the extremal densities
of the Fréchet classFd(p) and the extremal densities of the exchangeable class Ed(p)
apart the fact that the extremal density f U (the upper Fréchet bound) defined as

f U (x1, . . . , xd) =

⎧
⎪⎨

⎪⎩

1 − p if x1 = . . . = xd = 0

p if x1 = . . . = xd = 1

0 otherwise

belongs to both sets of extremal densities. An example of extremal densities is given
provided in Sect. 4.

The classEd(p) is of interest in several fields includingfinance,where exchangeable
Bernoulli variables are used to model indicators of default of the obligors in a credit
risk portfolio. In this framework, the distribution of the number of defaults, i.e., the
sum of the components of an exchangeable multivariate Bernoulli variable, is studied.
One of the quantities of interest are the quantiles of the distribution, qα . For some
levels of α, the quantiles are measures of risk and often referred to as Value at risk
(VaRα).

Definition 1 Let Y be a random variable with finite mean. Then, the VaRα at level α

is defined by
qα(Y ) = inf{y ∈ R : P(Y ≤ y) ≥ α}
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In [5], the authors prove that the bounds of the quantiles of a distribution pS ∈ Sd(p)
are reached on the ray densities and they analytically find them. In particular, they prove
the following.

Proposition 5 Let us consider the classSd(p). Let j
p
1 = (p−(1−α))d

α
, j M1 be the largest

integer less than pd and jm2 be the smallest integer greater than pd.

1. If j p1 < 0,min qα(R( j1, j2)) = 0 andmax qα(R( j1, j2)) = j∗2 , where j∗2 is the largest

integer smaller than pd
1−α

.

2. If 0 ≤ j p1 ≤ j M1 , min qα(R( j1, j2)) = j∗1 , where j∗1 is the smallest integer greater
or equal to j p1 and max qα(R( j1, j2)) = d.

3. If j p1 > j M1 , min qα(R( j1, j2)) = jm2 = j M1 + 1 and max qα(R( j1, j2)) = d. In this
case, if pd is integer, j M1 + 1 = pd.

The proof of the above propositions relies on the analytical expression of the
extremal densities of the convex polytope Sd(p). For this reason, the assumption
of exchangeability does not affect these bounds. Precisely, let X ∈ Fd(p), Then,
SX = ∑d

i=1 Xi ∈ D(dp) ≡ Sd(p). Therefore, the quantile of SX is the quantile of a
distribution in the class Sd(p) and satisfies the bounds in Proposition 5. This fact is of
interest in credit risk, since it states that the assumption of exchangeability does not
effect the bounds of the value at risk.

4 Computational Results for Some Frechét Classes

This section explores some Fréchet classes for given one-dimensional marginal prob-
abilities. To make comparisons between the general case and the exchangeable case,
we choose two Fréchet classes of d-dimensional Bernoulli variables with identically
distributed one-dimensional margins. We consider the classes Fd

( 1
2

)
and Fd

( 1
5

)
and

their subclasses Ed
( 1
2

)
and Ed

( 1
5

)
, for d = 2, . . . , 5. Table 1 provides the number of

extremal points for each class and exhibits the computational effort necessary to work
in the general case and high dimension.

Case d = 2 is analytical. We know that the extremal densities are the upper and
lower Fréchet bound, as proved in [4]. The same extremal densities generate E2( 12 );
in fact, in the bi-dimensional case, the condition to have the same margins implies
exchangeability.

As a simple example, for case d = 3 and p = 1/2,we provide the extremal densities
of the Fréchet class F3

( 1
2

)
(Table 2) and the extremal densities of the exchangeable

class E3
( 1
2

)
(Table 3). As we already pointed out, the upper Fréchet bound (R(5)

F in

Table 2 and R(2)
E in Table 3) belongs to both classes.

As can be seen, the number of the generators of the whole Fréchet class increases
very quickly, while the number of generators of the subclass of exchangeable variables
is much smaller. This means that working under the assumption of exchangeability is
far easier. The following two sections explore howmuch it could be binding to assume
exchangeability in terms of dependence flexibility. To do this, we find the bounds for
the cross-moments of the entire Fréchet class and of the exchangeable subclass to
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Table 1 Number of extremal
densities for each class: #RF :
number of extremal densities of
Fd (p) and #RE : number of
extremal densities of Ed (p)

d p #RF #RE

2 1/2 2 2

2 1/5 2 2

3 1/2 6 4

3 1/5 6 3

4 1/2 48 5

4 1/5 42 4

5 1/2 2712 9

5 1/5 1292 5

6 1/2 707,264 10

6 1/5 200,255 10

Table 2 Extremal densities of
the Fréchet class F3

(
1
2

)
x1 x2 x3 R(1)

F R(2)
F R(3)

F R(4)
F R(5)

F R(6)
F

0 0 0 0 0 0 0 0.5 0.25

1 0 0 0 0 0.5 0.25 0 0

0 1 0 0 0.5 0 0.25 0 0

1 1 0 0.5 0 0 0 0 0.25

0 0 1 0.5 0 0 0.25 0 0

1 0 1 0 0.5 0 0 0 0.25

0 1 1 0 0 0.5 0 0 0.25

1 1 1 0 0 0 0.25 0.5 0

Table 3 Extremal densities of
the exchangeable class E3

(
1
2

)
x1 x2 x3 R(1)

E R(2)
E R(3)

E R(4)
E

0 0 0 0.25 0.5 0 0

1 0 0 0 0 0.5/3 0.25

0 1 0 0 0 0.5/3 0.25

1 1 0 0.25 0 0.5/3 0

0 0 1 0 0 0.5/3 0.25

1 0 1 0.25 0 0.5/3 0

0 1 1 0.25 0 0.5/3 0

1 1 1 0 0.5 0 0.25

consider both linear and nonlinear dependence. We also consider the VaR of the sums,
whose bounds—as discussed in Sect. 3.1—are not affected by the assumption of
exchangeability.

4.1 The ClassFd
( 1
2
)

In this section, we consider the case p = 1
2 and d = 2, . . . , 6.
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Table 4 Bounds for moments of order 2, . . . , 6: mF and MF are the minimum and maximum moments

for Fd

(
1
2

)
and mE and ME are the minimum and maximum moments for Ed

(
1
2

)
, d = 2, . . . , 6

Fd

(
1
2

)
Ed

(
1
2

)

Order 2, . . . , 6 Order 2 Order 3 Order 4 Order 5 Order 6

d mF MF mE ME mE ME mE ME mE ME mE ME

2 0 0.5 0 0.5 . . . . . . . .

3 0 0.5 0.167 0.5 0 0.5 . . . . . .

4 0 0.5 0.167 0.5 0 0.5 0 0.5 . . . .

5 0 0.5 0.2 0.5 0.05 0.5 0 0.5 0 0.5 . .

6 0 0.5 0.2 0.5 0.05 0.5 0 0.5 0 0.5 0 0.5

Table 5 Bounds for the
VaR0.95—case p = 1

2
d minVaR0.95 maxVaR0.95

2 1 2

3 2 3

4 2 4

5 3 5

6 3 6

Table 6 Bounds for moments of order 2, . . . , 6: mF and MF are the minimum and maximum moments

for Fd

(
1
5

)
and mE and ME are the minimum and maximum moments for Ed

(
1
5

)
, d = 2, . . . , 6

Fd

(
1
5

)
Ed

(
1
5

)

Order 2, . . . , 6 Order 2 Order 3 Order 4 Order 5 Order 6

d mF MF mE ME mE ME mE ME mE ME mE ME

2 0 0.2 0 0.2 . . . . . . . .

3 0 0.2 0 0.2 0 0.2 . . . . . .

4 0 0.2 0 0.2 0 0.2 0 0.2 . . . .

5 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 . .

6 0 0.2 0.013 0.2 0 0.2 0 0.2 0 0.2 0 0.2

Table 4 reports the bounds for moments of order 2, . . . , 6 both for the Fréchet class
Fd

( 1
2

)
and the exchangeable class Ed

( 1
2

)
, d = 2, . . . , 6 .

We conclude this section with the bounds for the value at risk VaR0.95 of the sums,
i.e., the quantile q0.95 of the distribution of SX = X1 + . . . + Xd , where X has pmf
in Fd(

1
2 ). The bounds, in Table 5, remain the same if we assume that X has pmf in

Ed( 12 ). Notice that the maximum VaR is always the dimension d; this is probably due
to the fact that marginal probability p = 1

2 is quite large. The results in [5], where
marginal default probabilities are small, support this interpretation.
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Table 7 Bounds for the
VaR0.95—case p = 1

5
d minVaR0.95 maxVaR0.95

2 1 2

3 1 3

4 1 4

5 1 5

6 1 6

4.2 The ClassFd
( 1
5
)

In this section, we consider the case p = 1
5 and d = 2, . . . , 6.

Table 6 reports the bounds for moments of order 2, . . . , 6 both for the Fréchet class
Fd

( 1
5

)
and the exchangeable class Ed

( 1
5

)
, d = 2, . . . , 6 .

We conclude this section with the bounds for the value at risk VaR0.95 of the sums,
i.e., the quantile q0.95 of the distribution of SX , where X has pmf in Fd

( 1
5

)
. The

bounds are in Table 7. Also in this case, the bounds remain the same if we assume that
X has pmf in Ed

( 1
5

)
and the maximum VaR is always the dimension d.
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