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Abstract. Human activity recognition (HAR) is a classification problem involving

time-dependent signals produced by body monitoring, and its application domain

covers all the aspects of human life, from healthcare to sport, from safety to

smart environments. As such, it is naturally well suited for on-edge deployment

of personalized point-of-care (POC) analyses or other tailored services for the user.

However, typical smart and wearable devices suffer from relevant limitations regarding

energy consumption, and this significantly hinders the possibility for successful

employment of edge computing for tasks like HAR.

In this paper, we investigate how this problem can be mitigated by adopting a

neuromorphic approach. By comparing optimized classifiers based on traditional deep

neural network (DNN) architectures as well as on recent alternatives like the Legendre

Memory Unit (LMU), we show how spiking neural networks (SNNs) can effectively

deal with the temporal signals typical of HAR providing high performances at a low

energy cost. By carrying out an application-oriented hyperparameter optimization, we

also propose a methodology flexible to be extended to different domains, to enlarge

the field of neuro-inspired classifier suitable for on-edge artificial intelligence of things

(AIoT) applications.

Keywords: Neuromorphic Engineering, Human Activity Recognition, Spiking Neural

Network, Artificial Intelligence of Things, Edge Computing, Legendre Memory Unit,

Raw IMU Data.

1. Introduction

Fast growth and widespread availability of smart devices integrating a high number of

sensors have significantly changed the idea of body sensor networks (BSNs) during the

last few years, emphasizing the actual feasibility of the concept and successfully leading
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it towards a simplified and non-invasive monitoring of physiological and activity signals.

Thanks to the wearable devices increasingly present in our daily life, BSNs consisting

of a number of body-worn sensor nodes wirelessly collaborating can be shrunk down to

a single device [1, 2, 3]. As a consequence, the coupling of device miniaturization and

BSNs dimension reduction opened the way to a wide range of applications for wearable

sensors, including, but not limited to: healthcare, elderly assistance, fitness, and gestures

recognition [4, 5, 6, 7]. Nonetheless, critical challenges still have to be faced, as new

constraints must be taken into account when dealing with the limitations imposed by

devices intended to be as small and portable as possible [8]. As extensively pointed out

in [9], the ultimate goal of edge computing for wearable devices requires a change of

paradigm materializing in a reduction of the computational efforts. Typical wearable

sensors are indeed affected by severe limitations in terms of power, and the conventional

approach - based on data transmission to off-chip, remote servers in charge of processing

the acquired signals - introduces an additional limitation on the temporal side. Meeting

these challenges would mean setting the scene for effective real-time processing of data,

suited to enlarge the range of personalized services to be efficiently and widely deployed

on smart edge devices [10, 11, 12, 13, 14].

Among the number of possible tasks related to body monitoring, human activity

recognition (HAR) stands out for its relevance due to the inherent richness of information

and the consequent adaptability to different applications. A reliable and responsive

classification of ongoing user activity, besides being useful in monitoring activities of

daily living (ADL), can also be decisive in safety-critical situations [15]. As a general

definition, human activity recognition is the analysis and classification of signals related

to human actions, and it can be divided in categories according to the type of devices

and sensors employed to acquire those signals [16]. However, due to the wide diffusion of

smart devices and to their ease of use with just minor installation constraints, wearable

sensors have been attracting the most attention in HAR research over the last decade

[17, 18]. At the same time, from the algorithms standpoint, great efforts have been

devoted to developing new machine learning (ML) models for more and more accurate

classification, employing either traditional ML techniques or deep learning (DL) methods

[19, 20, 21, 22].

In this race to the best classification result, a vast majority of the proposed

solutions have focused only on the accuracy performances, not taking into account

the possibility of shifting towards more biologically inspired models and thus leaving

aside the alternative perspective offered by a neuromorphic approach. Nevertheless,

adopting such neural-inspired paradigm, spiking neural networks (SNNs) [23], thanks

to their event-based asynchronous operations, could represent a valuable candidate for

energy-efficient solutions [24]. SNNs are indeed bio-inspired models offering practicable

trade-offs between biological conformity and simulation runtimes, which can provide

low-power computation as a result of their temporally sparse activity based on binary

spikes [25, 26]. Such hallmark, which makes SNNs a clean-cut set of artificial neural

networks (ANNs) with increased bio-plausibility, can be directly traced back to the
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distinguishing feature of biological neural networks with respect to non-spiking ANNs:

in the brain, neurons communicate by spreading information in form of spikes, which are

referred to as action potentials [27, 28, 29]. Relying on spike-based activity, SNNs also

feature an intrinsic suitability for temporal information processing, which allows them

to treat time as an additional dimension of the input signals [30, 31]. As a consequence

of their brain-like, or at least brain-inspired, properties, these network models are of

primary interest as a natural programming paradigm in neuromorphic computing.

Complementary to neural computing, whose primary aim is the implementation

of ANNs to deal with practical tasks, neuromorphic computing brings the attention

to the mimicking of neural processes in new and alternative computer architectures

[32, 33], with the direct consequence of driving efforts towards the development of

specific neuromorphic hardware [34, 35, 36, 37, 38, 39, 40, 41]. Besides these platforms,

neuromorphic simulators have also attracted significant interest, resulting in powerful

tools able to sustain the neuromorphic computing growth even in cases where dedicated

hardware is not readily available [42]. Among them, an intriguing example is represented

by Nengo. Based on the Neural Engineering Framework (NEF) [43], it allows to

build networks from single neuron models, providing the keys to access low-level neural

archetypes to perform high-level functional tasks [44]. Additionally, the front-end API

is designed to make it flexible and easy to adapt to specialized neuromorphic platforms,

such as Intel’s Loihi [45], as well as to deep learning models [46].

In this work, we present a comparative analysis of different models and architectures

for the human activity recognition task. We adopted the Wireless Sensor Data Mining

(WISDM) Smartphone and Smartwatch Activity and Biometrics Dataset [47, 48] to

investigate a classification approach based on raw data only. Particularly, employing

Nengo, we benchmark the beneficial effect of adopting a neuromorphic paradigm

alternative to classical deep learning solutions; thus presenting, to the best of our

knowledge, the first evaluation of bio-inspired models for human activity recognition

directly from raw data.

2. Background

In recent years, a rich literature has been produced in the HAR domain, and deep

learning techniques have been extensively applied in a number of works testing them

on different datasets [49]. Similarly, neuromorphic computing has been attracting

growing interest, leading to an ongoing increase of attention on bio-inspired networks

and dedicated hardware [50].

2.1. Human activity recognition

Independently of the targeted application, ranging from healthcare to surveillance, body

monitoring focused on movement can be classified according to the sensors or sensor

network characteristics. In this regard, during the last decade, following the increasing
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amount of data easily recorded and collected through personal and non-invasive devices,

a natural selection in favour of wearable sensors, generally embedded in smart devices,

started to take place in the HAR field. As a result, many works adopting deep learning

techniques, with solutions relying on convolutional neural networks (CNNs), recurrent

neural networks (RNNs) or their combinations, have been produced for human activity

recognition tasks based on, or intended for, portable platforms [51, 52, 53, 54, 55, 56,

57].

In a high number of cases, smartphone sensors, typically inertial measurement units

(IMUs), are employed in the gathering of datasets, like in the case of WISDM [58] and

UCI-HAR [59] (also referred to as SBHAR [60]). Beside these well-established ones, a

newer version of the WISDM dataset [47, 48] is also attracting growing interest, due to its

more balanced classes and to the addition of smartwatch signals. Other wearable devices

and sensors are then taken into account by datasets like PAMAP2 [61, 62], MHEALTH

[63, 64], OPPORTUNITY [65, 66], PUC-Rio [67], WHARF [68], USC-HAD [69], and

UTD-MHAD [70].

An example of benchmarking for network architectures on various datasets can be

found in [71], where an extensive analysis is carried out involving different techniques

and data. Furthermore, interesting insights into the impact of data segmentation on the

classification accuracy are given. Identifying an optimal window size for time-varying

signals like those treated in human activity recognition is indeed of key importance

from a twofold perspective. It can lead to high levels of accuracy, thus providing more

reliable classifiers, while in terms of time-to-classify it can be crucial to assess suitability

for real-time applications.

In [72], a summary of representative window sizes employed in the HAR task is

reported, showing that typical choices fall within 1 s and 10 s. Exceptions can be found

in works by Ordoñez et al. [73], by Wan et al. [74] and by Xia et al. [75], where

temporal windows down to 0.25 s are employed for different datasets. Mekruksavanich

and coworkers [76, 77], as well as Oluwalade et al. [78] and Ihianle et al. [79], adopted

instead a signal segmentation of 10 s.

2.1.1. WISDM dataset In 2019, the Wireless Sensor Data Mining (WISDM) Lab

published the WISDM Smartphone and Smartwatch Activity and Biometrics Dataset

[47, 48]. Composed of data from 51 subjects performing 18 activities, this dataset

collects signals from both the accelerometer and the gyroscope of a smartphone and

a smartwatch. Each activity is recorded for 3 minutes with an acquisition rate of 20

Hz. With respect to the older WISDM dataset [58], this version is not only enriched

in number of activities but also improved in terms of class balance, with each activity

represented in the dataset with a relative contribution ranging from 5.3% to 5.8% of

the 15,630,426 total samples. Additionally, three subsets can be identified within the

dataset according to activity type: on-hand-oriented, general hand-oriented and eating

hand-oriented. As an example, the kernel density estimation of the 3D smartwatch

data from accelerometer and gyrospcope of the ”general, hand-oriented” subset of the
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Figure 1. Kernel density estimation of the values recorded from smartwatch on the 6

IMU sensor axes for the 7 classes in the ”general, hand-oriented” subset of the WISDM

dataset.

WISDM dataset is shown in Figure 1. Here, an overlap between the raw signal values

can be appreciated.

2.2. Benchmarks and IoT applications of neuromorphic solutions

The actual chances of success for neuro-inspired and neuromorphic approaches promising

energy efficiency improvements are being increasingly tested since the last few years. In

[80], Blouw and coworkers benchmark different hardware performing keyword spotting

tasks, showing a significantly reduced energy consumption when using Intel’s Loihi chip.

Researchers’ achievements using Loihi are summarized in [33], and the platform has also

been compared with a SpiNNaker 2 prototype by Yan et al. [81].

In [82], the effectiveness of an ANN-to-SNN conversion addressing the heartbeat

classification task and subsequently deployed on Loihi is evaluated. An extended

benchmarking of neuromorphic hardware is then provided by Azghadi et al. [83], who

tested multiple platforms on biomedical applications.

In [84], the benefits of a neuromorphic approach are highlighted, assessing the

computational cost reduction provided by SNNs developed in Nengo with respect to

architecturally identical DNNs.

In [85] and [86], authors have investigated the advantages of using the

SpiNNaker neuromorphic architecture [34] for executing massively parallel general-

purpose algorithms such as PageRank and DNA Sequence Matching, implemented with

the MPI paradigm.

Internet of things (IoT) is forecast to be one of the fields which will most benefit from

the development of neuromorphic models and technologies. A survey of IoT platforms



Neuromorphic HAR 6

enabling artificial intelligence (AI) applications has been proposed by Kim et al. [87],

while the impact of neuromorphic systems on Industry 4.0 has been investigated in [88].

The role of edge computing in the artificial intelligence of things (AIoT) field, as well

as in healthcare and other smart environments, has been instead reviewed by Chang et

al. [89]. Promising results for event-driven on-edge applications of AI in the IoT field

have been shown in [90] presenting the neuromorphic IC µBrain.

2.3. Nengo

Relying on the Neural Engineering Framework [43] as the guiding principle to build

neural models accounting for functional objectives as well as anatomical constraints,

Nengo was built as a simulator able to provide sophisticated networks featuring cognitive

abilities starting from single neuron models [44].

The three NEF principles, namely representation, transformation and dynamics,

are translated by Nengo into the fundamental units for networks construction, defining

three core objects called Ensemble, Node and Connection. Their combinations produce

two further objects, Network and Model, while Probe is defined as the object allowing to

gather data during simulations. Such set of six front-end objects represents the toolkit

to build the neural model to be passed to the Simulator, which in turn encloses the

back-end logic for the Network simulation.

A key feature of Nengo is the flexibility of its Simulator, ensured by the possibility of

adapting it to specific, and possibly specialized, hardware [46]. For instance, NengoLoihi

is a specialized backend for running Nengo models on Intel Loihi. Furthermore, as a

result of this adaptability, models from different frameworks can be simply integrated

through NengoDL’s Converter, which translates deep learning models by replacing

standard activation functions with Nengo’s spiking neurons.

2.4. Legendre Memory Unit

Neural communication relies on complex processes resulting in transmission and filtering

of spikes through synapses. These mechanisms can be modelled by means of ordinary

differential equations (ODEs) integrated over time, which allow to approximate the

behaviour of time cells [91, 92]. The Legendre Memory Unit (LMU) is a recurrent

architecture able to perform such approximation for a continuous-time delay [93]. The

main property of the LMU network is the capability of decoding a delayed signal u(t−θ
′
),

contained within a sliding window of length θ, through a high-dimensional projection of

the input u(t) that is orthogonalized using the shifted Legendre polynomials [94]. The

i th shifted Legendre polynomial is given by Eq. 1

Pi(r) = (−1)i
i∑

j=0

(
i

j

)(
i+ j

j

)
(−r)j (1)
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and it is used to delay the input signal through Eq. 2

u(t− θ
′
) ≈

d−1∑
i=0

Pi

(
θ
′

θ

)
mi(t) (2)

where the highest order d− 1 in the series expansion is related to the dimension of the

state vector m(t), defined by the input u(t) as it follows in Eq. 3

θṁ(t) = Am(t) +Bu(t) (3)

with A and B representing the ideal state-space matrices derived using the Padé

approximants through Eq. 4 and Eq. 5.

A = [a]ij ∈ Rd×d, aij = (2i+ 1)

{
−1 i < j

(−1)i−j+1 i ≥ j
(4)

B = [b]i ∈ Rd×1, bi = (2i+ 1)(−1)i, i, j ∈ [0, d− 1] (5)

Although little literature has been produced so far on LMU applications, remarkable

results have already been reported, showing state-of-the-art outcomes in terms of

accuracy and interestingly small numbers of parameters when performing keyword

spotting [95].

3. Methodology

The unprecedentedly huge amount of data produced in the IoT era is posing renewed

challenges to cloud-based solutions based on back-and-forth transmission from end

devices. Possible ways to face these difficulties are offered by the so-called fog computing

and edge computing. The latter particularly aims at bringing data processing close to

the sensors, moving computation down from the application layer to edge devices [96].

To accomplish this goal, the identification of lighter and less demanding computing

solutions is of key importance, and the neuromorphic paradigm can provide well-suited

tools.

To investigate this aspect, we propose a comparison of different neural networks

of both recurrent and convolutional type, spiking and non-spiking. We also adopt

neuro-inspired approaches to the HAR task through innovative solutions like the LMU,

pointing out the differences between traditional DNNs and SNNs from a twofold

perspective: beside the classification performance, we also evaluate the computational

effort and memory demand. Such comparison is performed at the end of the optimization

pipeline graphically summarized in Figure 2. Here, vertical arrows identify preliminary

steps, specifically involving dataset selection (a) and design of the optimization

experiment (c, d), while horizontal arrows depict the subsequent phases along the

backbone of the whole study: the neural network architectures selection (b), the

hyperparameters optimization (e) and the final achievement of classifiers specifically

tailored to human activity recognition (f). In the following subsections we provide more

details about each step of our investigation procedure.
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Figure 2. The procedure we adopted can be divided into two complementary phases.

On the one hand, depicted by the vertical arrows, there are the preliminary steps:

dataset selection in a), hyperparameters search space definition in c) and optimization

experiment configuration in d). On the other hand, there is the backbone of the

pipeline, summarized by the horizontal arrows: neural network architectures selection

in b), hyperparameters optimization in e) and classifiers evaluation in f).

3.1. Activity subset and time window

Human activity recognition, straightforwardly belonging to classification problems,

begins with selection of the data, which can be either acquired on purpose or already

collected in a dataset. In this work, we employed the data from smart devices available

in the WISDM dataset. Specifically, due the increasing spread of wearable devices

and their suitability for tailored applications in different domains, we decided to focus

on smartwatch data, glimpsing the opportunity for future adaptation of the proposed

neuro-inspired approach to other wrist-worn devices, possibly employed for personalized

point-of-care (POC) monitoring or other customized purposes to be brought as close as

possible to the user. In this perspective, from the whole dataset we selected (step a

in Figure 2) the subset of general, hand-oriented activities: 1) dribbling in basketball,

2) playing catch with a tennis ball, 3) typing, 4) writing, 5) clapping, 6) brushing

teeth and 7) folding clothes. With the aim of reducing as much as possible the

required computational effort in view of on-edge deployment, the only preprocessing
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step performed was segmentation.

In Figure 3, an example of raw 3-axial accelerometer and gyroscope data available

in the WISDM dataset. Here, it is highlighted how classification of the raw input signals

is not trivial when they are examined in real time, in the absence of any elaboration,

filtering or data aggregation. We divided the signals into temporal windows, without
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Figure 3. A comparison of representative 10-second samples recorded by the

smartwatch on the 6 IMU sensors for the 7 classes in the ”general, hand-oriented”

subset of the WISDM dataset.

overlap, with length of 2 s. Such choice was the result of an initial exploration including

longer windows of 5 s and 10 s. With respect to these, the one with length of 2 s offered

a valuable trade-off between the need for a sufficiently high number of temporal data

for each sample and the goal of providing fast-response classifiers in an anthropocentric

definition of real-time. The resulting 36,201 samples, based on raw data only, without

any feature extraction, have then been split into training, validation and test set with

a 60:20:20 proportion.

3.2. Network architectures

As previously introduced, HAR can be successfully performed employing either

convolutional or recurrent architectures. At step b in Figure 2 we accounted for both of

these architecture types in order to benchmark possible alternatives offered by neuro-

inspired solutions. The CNN comprises two convolutional layers followed by a max

pooling layer, a flattening layer and two dense layers, as it is sketched in Figure 4.a.

We employed the same structure for both non-spiking and spiking convolutional neural

networks (Figure 4.b), in the following referred to also as CNN and sCNN respectively.

On the other hand, we implemented a recurrent architecture with a structure consisting



Neuromorphic HAR 10

of a sequence of two Long Short-Term Memory (LSTM) layers, each connected to a

dropout layer, followed by a dense layer (Figure 4.c).

Differently from the case of the convolutional architectures, our spiking

implementation of recurrent networks does not rely on the same architecture adopted

in the non-spiking domain: as it is summarized by Figure 4.f, we used the Legendre

Memory Unit (LMU) in place of LSTMs, with a single LMU layer instead of the repeated

LSTM-dropout pair. To further enrich the network comparison and benchmarking, we

employed the LMU in a non-spiking network as well (Figure 4.e). The sCNN, the LMU-

based network and its spiking version (sLMU) have been implemented by means of the

Nengo neural simulator, employing the NengoDL Converter to build the spiking CNN

directly from its non-spiking counterpart.

We also worked with Nengo to investigate the impact of a human-inspired feature,

borrowed from the auditory system, on networks based on the LMU: by analogy with the

cochlea, we introduced a frequency filter (ff) on the input (Figure 4.e and Figure 4.g)

decomposing the original signals into five channels through the application, differently

from the biological system, of a Butterworth filter bank. In all of the spiking networks

under investigation we adopted the rectified integrate and fire neuron model available

in Nengo and supported in the Loihi neuromorphic chip.

3.3. Hyperparameter optimization

Artificial neural networks can be characterized and described from two complementary

perspectives. On the one hand, there is the architecture, namely the number and the

type of layers employed and how they are connected to each other; on the other hand,

there are the hyperparameters, which specifically identify each network determining its

inherent behaviour. Consequently, as it is also pointed out in [97], hyperparameter

optimization (HPO) must be accounted for when different network topologies are

investigated and compared, especially in cases where unnecessary complexity must be

prevented.

Steps from c to e in Figure 2 summarize the procedure for the hyperparameter

tuning we performed by means of the Neural Network Intelligence (NNI) toolkit [98],

using the built-in Annealing algorithm. For each network, we designed a NNI

optimization experiment, carried out within a proper search space defined at step

c. Each optimization experiment is composed of 1,000 trials, with 4 evenly spaced

random re-initializations of the tuner, intended to partially mitigate the problem

of local minima affecting the annealing algorithms [99]. At the end of every trial,

consisting of 100 training epochs, the weights providing the best training accuracy have

been extracted to evaluate the test accuracy, defined to be the optimization objective

of the experiment. For all the investigated networks, training has been performed

employing Adam optimizer with constant learning rate, including optimization of this

latter throughout the experiment trials. All these settings for the NNI experiments are

performed in step d of Figure 2. A summary of the hyperparameters contained in the
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Figure 4. Summary of the investigated networks. The convolutional architecture

adopted in the non-spiking domain (a) has been translated into the spiking domain

(b) by means of the Converter in NengoDL. The recurrent architectures have instead

different structures in the two domains: LSTM units followed by a dropout layer have

been employed for the non-spiking implementation (c), while the recurrent SNN has

been obtained using the Legendre Memory Unit (f). This latter has been adopted in

the non-spiking domain (d) as first. An additional variation with the introduction of

a frequency filtering on the input has been explored for both the non-spiking (e) and

the spiking (g) LMU-based architectures.

search spaces employed for the HPO is reported in Table 1.

3.4. Comparison criteria

At the end of the proposed pipeline, labelled as step f in Figure 2, we obtained a trained

classifier with optimized hyperparameters for each network architecture. We then set

out to compare these classifiers, with the goal of assessing the advantages offered by

neuro-inspired approaches without taking the risk of evaluating them from a narrow

perspective mainly focused on accuracy performances.

In order to make a comprehensive comparison between networks which rely not

only on different architectures but also on different inherent working principles, we

adopted multiple metrics beside the classification accuracy. The number of parameters

and the memory footprint have been considered for all the networks. In the case of non-

spiking networks, we evaluated the number of floating point operations (FLOPs) and

the corresponding estimated energy consumption on Intel’s Movidius Neural Compute

Stick 2. Whereas, for spiking networks we assessed the number of neurons, the number
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Table 1. Summary and description of the optimized hyperparameters. For the

spiking networks, all the hyperparameters reported for the corresponding non-spiking

implementation are take into account as well.

Network Hyperparameter Description

LSTM

units 1
Number of units in the LSTM layers

units 2

dropout 1
Dropout rate between the LSTM layers

dropout 2

l2 2
L2 regularization applied to the recurrent weights matrix

in the second LSTM layer

CNN

filters 1
Number of filters in the convolutional layers

filters 2

kernel size 1
Dimension of the kernel in the convolutional layers

kernel size 2

dense 1 Number of units in the first Dense layer

Spiking CNN

target rate 1 Target value for neurons firing rates regularization

in the convolutional layerstarget rate 2

reg conv 1 L2-like regularization applied to the neurons firing rates

in the convolutional layersreg conv 2

scale firing rates Scale factor for the neurons firing rates

synapse
Time constant of the synaptic low-pass filter

on the output of all the neurons

n steps
How long (in simulation time steps ⋆) the input

is presented to the network

LMU

units Size of the LMU kernels

order Number of Legendre polynomials

theta Length of the sliding window

synapse in
Time constant of the synaptic low-pass filter

on the input connection of the LMU

synapse out
Time constant of the synaptic low-pass filter

on the output connection of the LMU

tau
Time constant of the discretized synaptic low-pass

filter on the internal connections to memory

Spiking LMU ⋆⋆

n neurons
In place of units, size of the neuron ensembles (whose

number is defined by order)

synapse all
Time constant of the synaptic low-pass filter on

the connections between neuron ensembles

max rate Firing rate for neuron input equal to 1

All
batch size Number of training examples in each learning iteration

learning rate Step size for weights update in each learning iteration

⋆ The default value in Nengo of 1 ms is used
⋆⋆ All the hyperparameters for the non-spiking LMU are specifically re-optimized for the spiking implementation
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of synaptic operations (SOPs), and the corresponding estimated energy consumption

on Intel’s Loihi. Our energy evaluations rely on the results presented in [84].

4. Results and discussion

Neural networks benchmarking, and classifiers comparison in general, is naturally prone

to the risk of an oversimplification taking shape in the evaluation of accuracy as the only

meaningful metrics; and in the neuromorphic domain, such a simplistic approach can

become even more deceptive. Although it certainly plays a decisive role, classification

accuracy cannot be considered as independent of other figures of merit like energy

consumption or memory footprint. Both of these quantities bring indeed with them

crucial information for a deeper evaluation, and knowledge, of neuro-inspired solutions

to classification problems. Especially when spiking neural networks achieve classification

performances comparable to other non-spiking DNNs, accuracy alone might not be

enough to propose a fair comparison and a valuable benchmarking.

Consequently, as already introduced, in this work we accounted for multiple

metrics. For each network, they have been evaluated taking into account the optimal

hyperparameter configuration provided by specifically designed NNI experiments,

each of them carried out performing 1,000 trials. Thus guarantying a comparable

development effort in optimizing the parameters for the different solutions.

Table 2 summarizes the considered metrics together with the corresponding values

for each network. The optimized hyperparameters of the different architectures are

instead reported in the Supplementary material in Table S1 and Table S2 for the non-

spiking and the spiking networks respectively.

Following its undeniable, although not unrivaled, leading role, classification

accuracy is however the first quantity to be taken into account. The best result

from this perspective is given by the LSTM-based network (Table 2), which scores

(96.42 ± 0.03)%. Interestingly, the second highest accuracy is achieved by its spiking

counterpart. The recurrent network based on the spiking implementation of the LMU,

relying on rectified integrate and fire neurons, provides indeed a test accuracy of

(94.51 ± 0.15)%; which turns out to overcome the performances of the convolutional

architecture regardless of whether it is adopted in the spiking or non-spiking domain.

Similarly, the spiking LMU enriched with a frequency filtering inspired by the auditory

system outperforms both spiking and non-spiking CNNs, with a test accuracy of

(94.39 ± 0.13)%. To extend these results with reference to the employed dataset,

and to complete the picture offered by the classification accuracies, the confusion

matrices produced by all the investigated network on the test set are reported in

the Supplementary material in Section S2. Additionally, in Section S3 a comparison

with other works adopting DL and ML techniques on WISDM dataset is presented,

showing that the SNNs investigated in this work can match state-of-the-art results even

overcoming them in some cases.

Further along the rows of Table 2, the second metrics we considered is the total
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number of parameters, which directly leads to the memory footprint. From this

perspective, what seemed a plausible forecast looking at the classification accuracy,

namely the LSTM-based network as the optimal solution, is overturn. With more than

two millions of parameters, this architecture is indeed by far the most demanding in

terms of memory footprint, with a size of 8.50 MB. At the opposite end is the network

built on the non-spiking LMU, which is more than one order of magnitude smaller

with only 0.30 MB of memory footprint. Similar values are found for LMU (ff) and

sLMU also, while the spiking LMU with frequency filtering slightly exceeds these values

almost reaching those of the convolutional architectures. The relative size of the different

networks can be further appreciated from the circles diameter in Figure 5.

Combining the information obtained from the results discussed above, it is

straightforward to identify the best network in terms of accuracy and the one with

the smallest memory footprint. However, these two networks do not coincide and they

even are far from each other regarding both metrics, so that only partial conclusions

can be drawn unless energy consumption is assessed. Taking such step further, namely

quantifying the advantage of adopting a neuromorphic approach for the considered task,

a triplet of fundamental quantities is eventually extracted from each network, making the

reported benchmarking not only a comparison of values but also a tool to target possible

future applications of the proposed neuro-inspired approach. The bottom two rows of

Table 2 highlight that energy consumption is assessed referring to two different and

specialized hardwares: for the non-spiking networks, Intel Movidius Neural Compute

Stick 2 is considered, while Intel Loihi is taken into account for the spiking networks. In

Table 2. Summary of the evaluated metrics. The reported values have been obtained

with the optimal hyperparameters configuration for each network.

LSTM CNN sCNN LMU
LMU
(ff) sLMU

sLMU
(ff)

Test
accuracy

(%)

96.42
±

0.03

93.81
±

0.10

92.47
±

0.08

91.71
±

0.13

88.16
±

0.13

94.51
±

0.15

94.39
±

0.13

Number of
parameters

2,125,222 144,899 167,973 76,130 89,014 91,200 132,540

Memory
footprint

(MB)

8.50 0.58 0.67 0.30 0.36 0.36 0.53

FLOPs
(x103)

4,249.65 2,828.89 / 158.66 197.00 / /

SOPs
(x103)

/ / 10.82 / / 99.91 127.95

Energy on
Movidius

(µJ)

3,199.99 2,130.15 / 119.47 148.34 / /

Energy on
Loihi
(µJ)

/ / 5.49 / / 50.66 64.87
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Figure 5. In order to highlight the advantages of a neuromorphic approach to

temporal signal classification, an energy vs. accuracy diagram can be employed to

effectively show how relevant is the gain in terms of energy reduction with respect to

a possible drop in classification accuracy. The results here presented highlight that all

the investigated SNNs and all the LMU-based networks ensure an energy consumption

one order of magnitude at least smaller than that of traditional DNNs. Concerning the

memory footprint, similar conclusion can be drawn, with CNN and LSTM turning out

to be largest networks. From the accuracy standpoint, instead, spiking LMUs provide

performances comparable to both CNN and LSTM, even overcoming the former.

both cases, quantitative evaluations are made through the results of [84], which provide

the energy cost for a single operation. In Table 2, both the number of operations and the

required energy per inference are reported for all the investigated network. The same

results are also presented in Figure 5, where the energy is on the y-axis and the number

of operations defines the circles color. As it is clearly shown, and expected, all the

spiking networks are less computationally expensive, with the spiking CNN providing

the lowest value of 5.49 µJ. It is worth also noting that the assessed energy consumption

for all the LMU-based networks is one order of magnitude at least smaller than that of

CNN and LSTM. Once again, the highest value is provided by the latter, even though

in this case, as well as for the memory footprint, it does not correspond to the best

result. With more than 3000 µJ, such architecture is indeed almost three orders of

magnitude more energy-hungry than the sCNN. Within the range defined by these two

opposite ends, the sLMU turns out to be the one with the highest accuracy at low

energy cost: 50.66 µJ to achieve the second best accuracy here reported, which means

it is about two orders of magnitude lower in energy but comparable in accuracy with

respect to the LSTM-based architecture.

The trade-off between high classification accuracy and small energy consumption
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offered by the spiking LMU, coupled with its reduced memory footprint, makes this

architecture a relevant candidate for possible on-edge applications of neuromorphic

classifiers for real-time tasks. In the view of evaluating the different architectures to

address specific tasks and applications, the presented results are also summarized in

Figure 6, where a radar chart is used to further highlight strengths and weaknesses of

the investigated networks.

5. Conclusion

Human activity recognition is a time-dependent task whose application domain extends

to all the aspects of human life, from healthcare to sport, from safety to smart

environments. In this paper, starting from the HAR problem, we have proposed

an operational strategy to identify the optimal solution given a target application.

Specifically, we have shown how a neuromorphic approach can be adopted to deal with

time-varying inputs accounting for possible deployment constraints. By performing

multiple optimization experiments, we have investigated the characteristics and the

performances of multiple neural networks, highlighting advantages and drawbacks

of recurrent and convolutional architectures with both spiking and non-spiking
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LSTM CNN sCNN LMU LMU (ff) sLMU sLMU (ff)

Figure 6. A radar chart of the presented results allows to easily compare the

investigated networks focusing on each of the evaluated metrics. It is worth noting

that the traditional DNN architectures here considered, namely the LSTM and the

CNN, are outperformed by the alternative ones, based on the LMU, in all the metrics

related to energy and memory. Similarly, the spiking CNN also provides significant

improvements with respect to LSTM and non-spiking CNN in terms of both energy

and memory.
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implementations. In this regard, we have reported a significant reduction in energy

consumption for all the investigated spiking networks with respect to their non-spiking

counterparts. In more detail, among these SNNs, the spiking implementation of

the LMU has been pointed out as the optimal solution to achieve high classification

accuracies with low energy consumption. With the analysis presented in this work,

we hence have shown a suitable procedure to evaluate the possible benefits of a

neuromorphic classifier for on-edge AIoT applications.
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