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Gender differences among innovators: a patent analysis of stars 

This article examines the gender gap in patenting activities and the predominance 

of male innovators among outstanding inventors, so-called “stars”. In particular, 

we investigate different metrics of productivity among top inventors, identified 

employing different definitions with respect to the quantity and quality of output. 

We distinguish between prolific inventors, with high numbers of patents registered 

in their name, and high-quality inventors, with portfolios comprising patents with 

large numbers of citations. Using patent data for more than 600,000 inventors, we 

find that star inventors differ from the pool of non-star inventors in terms of gender: 

while for non-star inventors being a woman constitutes a significant disadvantage, 

for stars it actually presents a positive association both with quantity and quality of 

innovative outputs. Moreover, career length constitutes a key premium for female 

inventors’ productivity, but with smaller magnitudes among stars. The only 

exception where we observe no gender differences is among inventors with large 

portfolios (more than five patent families): among them, women do not display any 

significant gap in the quality of outputs, nor does career length provide a gendered 

premium. 

 

Keywords: gender gap, patents, innovation, productivity, career 

Word count: 9’134 

 

1. Introduction 

Inventors are at the heart of the process of advancing human civilization, and their 

characteristics are key for understanding innovative dynamics in modern times. In recent 

years, the innovation literature has focused on diversity and gender gaps in the inventors’ 

population, highlighting a substantial predominance of male innovators among patent 

holders (Hunt et al., 2013; Lax Martinez et al., 2016; Haseltine & Chodos, 2017). Despite 

a positive trend in female representation, which narrowed the gender gap over time, 

women remain a small fraction of inventors (Heikkilä 2019; USPTO 2019) and are less 

likely to benefit financially from intellectual property rights (Kline et al., 2019).1 This 

under-representation of women inventors increases the societal loss of potential 

 
1 This issue is not only problematic at the individual level: firms adopting non-patented innovations may 

face more difficulties in accessing financial support, especially start-ups  (Caviggioli et al., 2020a; Fischer 

& Ringler, 2014; Caviggioli et al., 2020b, Colombelli et al. 2020). 
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innovations from the available talent pool (Bell et al. 2019). Conversely, diversity is 

desirable since it spurs the evolution of knowledge and prevents paradigmatic lock-in 

(Wullum Nielsen and Börjeson 2019; Stirling 2007). For gender diversity more 

specifically, there is already evidence that countries and organizations suffering from skill 

shortages might benefit from resorting to the innovative potential of women (Hoisl and 

Mariani, 2017; Amoroso and Audretsch, 2020; Menter, 2020; Colombelli et al. 2021).  

Despite its economic and social significance, the study of female underrepresentation 

amongst innovators is still in its infancy. Importantly, most analyses of gender gaps in 

patenting do not distinguish between innovators with different levels of productivity and 

do not account for heterogeneities in the gender gap at the top of the distribution for so-

called “star inventors”, namely those individuals able to generate superior innovative 

outcomes (Zucker and Darby, 1997; Groysberg and Lee, 2009; Oldroyd and Morris, 

2012).2 Star inventors are rare and particularly valuable to advance societies’ knowledge 

base, and there is already some evidence of lost ‘Marie Curies’ because fewer women 

manage to become stars (Bell et al. 2019), but to date there is no clear evidence about the 

difference in gender gaps among stars compared to non-star innovators.  

In this context, the main contribution of this article is to examine gender gaps among 

inventors considering their productivity, and to shed light on how female representation 

and inventor-level outcomes vary among stars and non-stars. For this analysis, we 

develop different operational definitions of “stars” from the relevant literature (Hess and 

Rothaermel, 2011; Kehoe and Tzabbar, 2015), to measure patenting performance along 

the dimensions of quantity and quality (Call, Nyberg, and Thatcher 2015; Aguinis and 

O’Boyle 2014). The comparison of inventors with an average productivity versus highly 

 
2 One notable exception is the study by Bell et al. (2019:707), which shows a plot with the unconditional 

gender gap among highly-cited inventors, but does not perform any econometric analysis on it. 
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prolific and highly cited ones helps identifying more targeted policies to support women 

inventors, depending on the group experiencing the largest inequalities.  

The analysis is based on a sample of more than 600’000 inventors over the period 1981-

2010. We first examine the unconditional differences between male and female inventors 

according to the two definitions of quantity and quality stars. We find that, while women 

are under-represented with all metrics, the underrepresentation among stars is smaller 

when considering quality-based measures. We then perform a series of multivariate 

regressions,to examine the role of career length as a key mediating factor, while 

controlling for sectoral and geographic characteristic of inventors. It is crucial to account 

for the technology sector of operation due to the substantial differences in gender shares 

in different disciplines. Furthermore, the US offices file a large number of patents from 

non-residents (WIPO 2021, pp.32), thus we want to differentiate people with their main 

geographic interests in the US from those more tied to other countries, by using a proxy 

for inventors’ country of origin, the first country of patent filing (earliest priority). 

Results reveal that the negative association between being a woman and patent 

productivity, either in terms of quantity or quality, is overturned when considering the 

sample of star inventors. Furthermore, any additional year of career has a small but 

positive impact on productivity (measured both as quantity and quality) for women with 

respect to male inventors. However, for the top group of high-quality inventors with large 

patent portfolios, there is no discernible gender difference in productivity, nor a gendered 

career premium. 

The implications of our findings are in line with the literature on gender gaps in contexts 

other than patenting, which show that women’s career is penalized by family 

responsibilities that allow them less time flexibility and slow down career progression 
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(Goldin 2014; Blau and Kahn 2017b). Additionally, however, we find that some women 

overcome the obstacles leading to the top percentiles of patenting inventors, especially if 

we include smaller patent portfolios to measure quality. Our analysis does not rule out 

biases and discrimination against women inventors at all levels, such as stereotypes 

against women in sectors that are culturally associated with masculinity, like science, 

technology, engineering, and mathematics (STEM), and which are a major source of 

patents – in fact, we find evidence of large variations in gender gaps among different 

industrial sectors. However, the robust effect of including career length indicates that time 

is one of the key factors for female innovative productivity.  

The rest of the article is organized as follows. Section Errore. L'origine riferimento 

non è stata trovata. examines the previous literature to develop our hypotheses. Section 

3 presents the data and summary statistics, and Section 4 the empirical methodology 

applied. Section 5 discusses the results and finally Section 6 concludes with some policy 

implications and further research avenues. 

2. Gender and stars: state of the art and hypotheses from the literature 

The empirical literature focusing on gender differences in scientific productivity has 

mostly considered scientific articles as the key innovative outputs, and only to a limited 

extent has examined patents. We therefore consider all studies that focus on patented 

innovations, but also some of the literature on the production of scientific in order to 

inform the identification of the most productive individuals and for the mechanisms 

underlying gender gaps.  

a. Gender gaps in patenting 

Several works have recently acknowledged the under-representation of women among 

inventors (Hunt et al. 2013; Haseltine and Chodos 2017) with gender shares that vary 
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over time and across office of filing (see, for example, Bell et al. 2019; Heikkilä 2019; 

Lax Martinez, Raffo, and Saito 2016). For example, in the US in 2016, around 20% of 

patents included at least one female inventor and female inventors represented 12% of 

total inventors (USPTO 2019). The reasons identified in the literature for this 

underrepresentation are multiple. Several articles found evidence of horizontal 

segregation - gendered differences in the field of studies and in the industrial sectors of 

activity (Mayer and Rathmann 2018; Wullum Nielsen and Börjeson 2019; Puuska 2010). 

According to studies of horizontal segregation, cultural norms and expectations push 

women and men towards different areas of work and study, with men more likely to be 

involved in activities with technical and operational aspects (Bettio and Verashchagina 

2009). This cultural pressure impacts on career choices already starting in higher 

education and then in the labour market (Cech 2013; Charles and Bradley 2002), as seen 

by the under-representation of female undergrad and PhD students in STEM areas (Hunt 

et al. 2013; Loan and Hussain 2017; Toivanen and Väänänen 2016). Horizontal 

segregation in the intellectual workforce is well documented in the production of 

scientific articles, where women and minorities are systematically underrepresented in 

less technical fields (Kozlowski et al. 2022). 

Moreover, gender gaps can arise in the form of vertical segregation, due to different 

conditions faced by men and women when trying to achieve the pinnacle of their career. 

Unpaid labour in the form of childbearing, childcare, housework and care of the elderly 

people in the family are tasks unevenly distributed between men and women, which 

reduce the time that women can invest in paid jobs (Blau and Kahn 2017a). Women on 

average report facing greater difficulties in balancing professional and family life (Stack 

2004; Loan and Hussain 2017; Mayer and Rathmann 2018; Abramo, D’Angelo, and 

Caprasecca 2009). Related to this aspect, the difference in productivity is larger before 
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the age of 40 than later (Kyvik and Teigen 1996). The productivity gap seems to decline 

with time: maternity leave has more relevant effects in earlier steps of career progression 

(Abramo, D’Angelo, and Caprasecca 2009; Joy 2006).  

For mechanisms underlying the gender gap specifically in patenting,  a masculine bias in 

STEM has been observed also for the filing of  intellectual property rights: for instance 

Heikkilä, (2019) confirmed it for design rights, trademarks and utility models in Finland. 

There is also evidence that the gender gap in patenting could be linked to gendered tasks, 

such as technical design and development (Hunt et al. 2013). In this context, there is also 

evidence that males are more likely to produce the kind of scientific outputs that is 

protected by patents (Barwa and Rai 2003; Leahey and Blume 2017; Lai 2020). Even the 

current definition of patent law can be considered “gendered”, as noticed by the study by 

Lai, (2020).3  

b. Star individuals: definitions and gender gaps 

Next, our article relates to the literature on scientific productivity and on the identification 

of star innovators. Star scientists are considered of interest since they generate superior 

innovation outcomes (Groysberg and Lee, 2009; Oldroyd and Morris, 2012; Zucker and 

Darby, 1997). Although in some cases the literature identifies negative effects in 

organizations due to coordination costs and conflicts related with the presence of stars 

inventors (Bendersky and Hays 2012; Groysberg, Polzer, and Elfenbein 2011; Swaab et 

al. 2014) and because hiring “stars” is often expensive (Groysberg, Polzer, and Elfenbein 

2011), there is a general consensus about their overall positive impact. Their effect is not 

limited to a direct increase of output but also to broader support for an organization’s 

 
3 In her analysis, patent law embodies the notion that the typical technology is something mechanical or 

from a male-dominated field. “This is, in turn, reflected in who is considered to be an inventor and what is 

deemed to be patentable. That patent law is gendered means that the law is rewarding masculine forms of 

invention over feminine forms.” (p. 17 in Lai, 2020). 
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activities (Kehoe and Tzabbar 2015) and to the attraction of resources and skilled 

personnel (Lacetera, Cockburn, and Henderson 2004; Hess and Rothaermel 2011). They 

also indirectly foster the productivity of peers and collaborators thanks to learning and 

emulation (Lockwood and Kunda 1997). 

When studying gender issues in terms of productivity of star individuals, the literature 

has mostly focused on scientific articles.4 The list of studies providing evidence on the 

higher male research productivity in academic journals is long (e.g. Baccini, Barabesi, 

Cioni, & Pisani, 2014; Beaudry & Larivière, 2016; Hunter & Leahey, 2010; König, Fell, 

Kellnhofer, & Schui, 2015; Stack, 2004; Xie & Shauman, 1998; Akbaritabar, Casnici, & 

Squazzoni, 2018; Arruda, Bezerra, Neris, de Toro, & Wainera, 2009; Mayer and 

Rathmann, 2018). Significant differences between productivity levels of males and 

females were found in particular in STEM fields (Sax et al. 2002; Kretschmer and 

Kretschmer 2013; Abramo, D’Angelo, and Caprasecca 2009). The study of Kwiek (2016) 

on European data has shown that being a female academic is a strong predictor of not 

becoming a highly productive researcher (i.e. top 10%) but only in some countries, that 

is Italy and the United Kingdom, thus highlighting that the discrepancies are not only due 

to individual factors, but also to local cultural, socio-economic and policy conditions.  

This literature shows evidence of “glass ceilings”, unseen barriers that block career 

progress of women towards the top of a profession, despite their qualifications and skills 

(Kretschmer and Kretschmer 2013). In our analysis, we apply the concept of glass ceilings 

broadly, considering the threshold dividing star scientists from non-star ones as a 

potentially challenging productivity step that women may have more difficulties 

surpassing compared to men. 

 
4 There is also evidence in terms of wages that in the past decades the gender pay gap declined much more 

slowly at the top of the wage distribution than at the middle or bottom (Blau and Kahn 2017a), thus pointing 

out at some specific difficulties in closing the gap in the highest fraction of the distribution. 
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When dealing with star innovators and scientists, it is important to note that their 

identification is not only determined by the amount of output, but it is also related to its 

quality. For this reason, previous studies have employed citations as measure of quality, 

again focusing mostly on scientific publications rather than patents. The results of this 

literature are mixed: some analyses actually found evidence of higher citation rates for 

women (Borrego et al. 2010), some found a male advantage (Larivière et al. 2013), and 

others found no significant difference (Lerchenmueller and Sorenson 2018; Nielsen 

2016). 

The literature on female stars in patents is less developed but still points towards a 

possible gap even at the top of the distribution, in particular when considering those 

patents that are commercialized, largely due to women's underrepresentation in 

engineering and in jobs involving development and design (Hunt et al. 2013). Some 

evidence for the Unites States indicates that environmental factors, and particularly 

exposure to specific networks and to same-gender mentorship, might be key in limiting 

the access of female inventors to star-level patenting (Bell et al. 2019). To the best of our 

knowledge, however,  there are to date no econometric studies that examine the presence 

of gender gaps among top inventors of patented innovations. 

c. Hypotheses and research question 

Considering these different streams of the literature regarding top inventors and the 

gender gap, two possible mechanisms are at play that we must consider in our analysis: 

on the one hand, women trying to become stars may suffer from all the limitations, glass-

ceilings and constraints that make them already underrepresented in the scientific 

community both due to vertical and horizontal segregation. If competition and 

discrimination get fiercer at the top, we should observe an even larger gender gap among 
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star inventors. On the other hand, female inventors who manage to thrive in these 

gendered innovation systems by overcoming all the hurdles identified in the literature are 

likely to be a selection of the most motivated, innovative and creative ones. If inventors 

at the top are a selection of the best, we may observe a reduced gender gap, or even a 

reversed one, where the women who make it to the top are even better than their male 

counterparts.  

Since the evidence from the scientific articles production literature offers mixed results, 

and the patent literature has not yet explored this issue, we do not have a strong theoretical 

expectation for gender gap differences among inventors of different productivity levels. 

Whether the glass ceiling or the selection effect dominates among female star innovators 

is an empirical question, that can be influenced by the way productivity is measured and 

by the moderating role of career length. Our research question is thus the following: is 

the gender gap among top inventors different than for other scientist producing average 

patenting outputs? In other words, is being a woman a greater or smaller disadvantage for 

star innovators compared to the whole pool of innovators? To answer this question, we 

consider different measures of patenting productivity (capturing both quantity and 

quality) while controlling for the different sectors of activity, and inquire about the role 

of career length, which in the literature has been identified as a key factor in shaping 

gender gaps.  

3. Data and star inventors’ identification  

a. Data  

The main data sources for our analysis are PatentsView and PATSTAT. PatentsView is 

a data warehouse sourced from USPTO-provided data on granted patents. Critically for 

our study of individual inventors, this database includes disambiguated inventors’ names 
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from the application of an algorithm5. We then linked the patent level data from 

PatentsView to PATSTAT, the largest repository of patent data in terms of coverage and 

available information, maintained by the EPO with the collaboration of the main patent 

offices6. Extending data to PATSTAT provides access to additional data at patent- and 

family-level (see next paragraphs). 

The analysis is carried out at the level of inventors, with a sample defined as follows. The 

initial sample includes all the inventors with at least one US granted patent filed between 

2008-107, corresponding to 725,577 disambiguated names in PatentsView. The selected 

inventors are associated to around 4.3 million granted patents which are then linked to 

PATSTAT where further information is collected. The cut-off year of 2010 is required to 

allow for a sufficiently large subsequent time window to calculate quality indicators such 

as citations and to account for potential delays in the publication of documents. In terms 

of granted patents, the selected sample represents 58% of the total US activities recorded 

in PatentsView up to 2020. 

All the selected patents are linked to their patent family through PATSTAT (2.9 million 

INPADOC families).8 Patent families represent the unit of analysis that is closer to a 

single invention: multiple patent documents regarding the same filing, for example across 

different patent offices in multiple countries, are collapsed to a single unit, providing a 

more accurate measure of inventors’ productivity (OECD Patent Statistics Manual 2009; 

Martínez 2011). Furthermore, country extensions provide information on the 

 
5 More information at www.patentsview.org (last access September 2021, data on disambiguated 

inventors’ names from March 2020 release). 
6 More information at https://www.epo.org/searching-for-patents/business/patstat.html (last access in 

September 2021, version of database used in this study: fall 2019). 
7 Only “utility” patents have been considered. Withdrawn patents are included (corresponding to 0.17% 

of the examined granted patents). 
8 An INPADOC patent family comprises all the documents sharing directly or indirectly (e.g. via a third 

document) at least one priority.  

http://www.patentsview.org/
https://www.epo.org/searching-for-patents/business/patstat.html
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geographical coverage of an invention. We also collect the earliest filing year and the IPC 

subclasses of each family and calculate several patentometrics following the approach 

described in Caviggioli et al. (2020). For each inventor it is thus possible to identify the 

portfolio of inventions and create portfolio level measures, as described in the next 

section.  

With the aim to minimize potential errors in the original data, either in name 

disambiguation or in patent family identification, those inventors reporting a portfolio-

level earliest filing date prior to 1981 (3.2%) were excluded. Inventors with no IPC codes 

associated to the portfolio were also eliminated (0.01%). The cleaned sample consists of 

a selection of 703,977 inventors active in the years 2008-10 and with a patenting history 

of maximum 30 years in 2010: each patent portfolio represents an inventor’s cumulated 

inventions up to 2010. 

PatentViews incorporates the identification of gender for the majority of the 

disambiguated inventors: details about the method employed for the identification are 

reported in USPTO (2019). The selected sample reports no information on gender for 

9.1% of the inventors (details across sectors and categories are reported in the Appendix, 

in Table 12 and Table 13). The exclusion of inventors with no assigned gender brings the 

final sample to 640,043 individuals, of which 13.1% are female, a value in line with the 

literature (Bell et al. 2019; USPTO 2019). 

b. Identification of star inventors 

As discussed in the literature review, the identification of “stars” can entail different 

operationalizations of the criteria to distinguish outstanding from average performers. In 

general, to be a star, the individual must engage in disproportionately high 

accomplishments relative to most other workers in their field (Call et al., 2015; Aguinis 
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and O’Boyle, 2014)9. The examined performance has been measured with different 

metrics ranging from productivity (Lahiri et al., 2019; Subramanian et al., 2013; Zucker 

et al., 2002; Kehoe and Tzabbar, 2015), to impact (Azoulay et al., 2010; Rothaermel and 

Hess, 2007) and, in some cases, visibility or celebrity (Oldroyd and Morris 2012).  

Star individuals have been studied in several contexts10 with particular attention to 

scientists/scholars (Azoulay, Zivin, and Wang 2010) and inventors (Hohberger 2016), 

thanks to data availability on output, namely articles and patents. Stars among scientists 

and scholars have been typically defined by considering either their productivity in terms 

of quantity of output, in most cases through the number of articles or patents, and in terms 

of a measure of quality of output, such as the received citations (Liu, 2014; Hohberger, 

2016; Hess & Rothaermel, 2011), or a combination of the two (Kehoe & Tzabbar, 2015; 

Agrawal et al., 2017). Bibliometric data in patent documents make it possible to break 

down these two dimensions of quality (van Zeebroeck and van Pottelsberghe de la 

Potterie 2011; Federico Caviggioli, De Marco, et al. 2020). While counting the total 

number of patents by an inventor is quite straightforward, citations are usually subject to 

some discretionary choices: forward citations are the most commonly used measure of 

the technical value of a patent (van Zeebroeck and van Pottelsberghe de la Potterie 2011; 

Antonelli and Colombelli, 2011, 2015), and quality indicators typically considers only 

the citations occurring in the first five years after the filing of the patent, to account for 

the different time of exposure to the probability of receiving a citation (F. Caviggioli and 

Ughetto 2016).  

In this study, we identify stars and apply both conceptual approaches: (i) prolific 

 
9 The extent to which achievement must be disproportional varies across studies (Call, Nyberg, and 

Thatcher 2015): some have used from one to three standard deviation differences (e.g. Hess and 

Rothaermel, 2011) , others have used the top of the examined sample, from 1 to 10% (e.g. Hohberger, 

2016). 
10 For example, sport players (Chen and Garg 2018) and actors (Han and Ravid 2020). 
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inventors, defined by the number of patents that they produce; and (ii) high-quality 

inventors, involved in the creation of a large percentage of outstanding inventions that are 

mentioned and cited extensively by the innovation community.11 The characteristics of 

each of the two are discussed below. 

i. Prolific star inventors (quantity) 

The first definition considers productivity in terms of quantity of outputs and is 

operationalized in the following way. First, the total number of granted patents was 

counted for all the inventors available in PatentsView (without any time restrictions). 

Since patent propensity is different across technological sectors, in the second step we 

ranked the inventors by the number of their granted patents within each of the 35 

technological sectors from the WIPO concordance table. The 35 categories are based on 

IPC subclasses (4-digit IPC codes). Note that each patent can be associated to multiple 

IPC subclasses, and thus to multiple sectors. Hence, it is common that inventors are listed 

in more than one of the 35 sectors (73% in more than one, but only 10% in more than 5 

fields).  

The most prolific inventors are defined as those equal or above the 95th percentile of the 

distribution in their sector. Finally, we focus the analysis on the sample of inventors active 

in 2008-10 to avoid the comparison of inventors working in too different time periods. 

Since the global trend of patenting is increasing over time, in this sample of inventors 

active in 2008-10 we observe that prolific inventors >=95th percentile of their sector are 

14.5% of our sample (Table 1). Female inventors represent 7.7% of all the stars while, 

among the non-stars, female are 14.0% of the sample: thus, there seems to be a further 

 
11 Patent quality can also be measured with generality and originality indexes, and through their 

geographical scope (Agostini et al. 2015; Lanjouw, Pakes, and Putnam 1998). These are however beyond 

the scope of this study. 
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under-representation of women among stars, at least in terms of averages. 

Table 1 Share of outstanding inventors in terms of quantity (prolific)  

Inventors Male Female Total 

Not star  73.5% 12.0% 85.5% 

Stars (>=95th perc.) 13.4% 1.1% 14.5% 

Total 86.9% 13.1% 100% 

This definition based on quantity compares inventors with different career age and in 

different sectors, hence in the multivariate results reported in Section 5 we introduce 

career length as a relevant explanatory variable for productivity and control for sectoral 

fixed effects. Although the data do not report the exact start of an inventor’s career, we 

use as a proxy the priority year of the first invention in an inventor’s portfolio. The 

difference between the reference year 2010 and the debut year provides us with a proxy 

of  career age (Duffy et al., 2011; König et al., 2015; Costas et al., 2015). Note that gender 

biases could affect the “debut” year in patenting for female inventors, which might thus 

occur later than for male. We report in the Appendix some summary statistics on the 

identification of prolific stars when discounting for the career length, which already 

indicate that this variable is relevant for women stars in particular (see Table 14 and Table 

15). 

ii. Inventors with a large share of highly-cited inventions (quality) 

As an alternative approach, we define stars in terms of quality of their inventions. This 

approach is operationalized by considering the ratio of inventions within an inventor’s 

portfolio that can be considered of “high quality”. First of all, a single invention is 

considered of superior quality if it is equal or above the 95th percentile by number of 



16 
 

citations received in the subsequent five years, with respect to a comparable set of 

inventions with the same priority year and in the same technological sector. Next, moving 

to the individual portfolio level, an inventor is considered outstanding if the share of high-

quality inventions s/he generates is equal or above the 95th percentile of the focal sample. 

Table 2 illustrates the percentages for stars and non-stars and in terms of gender. 12.2% 

of the full sample is made of female non-stars and 0.9% of female high-quality stars. The 

gender gap seems similar in this and the previous definition of stars but, when focusing 

on this quality dimension, female inventors represent 14.3% of all the stars while, among 

the non-stars, female are 13.0% of the sample: compared to the previous results based on 

quantity, this finding suggests that the under-representation among stars is lower when 

focusing on quality. 

Table 2 Share of outstanding inventors in terms of quality (highly-cited). 

Inventors Male Female Total 

Not star  81.6% 12.2% 93.8% 

Stars (>=95th perc.) 5.3% 0.9% 6.2% 

Total 86.9% 13.1% 100% 

However, this definition of inventor’s quality is affected by portfolio size: with small 

portfolios, a single “hit” invention would automatically determine a high share of high-

quality inventions. This is particularly relevant when considering inventors debuting in 

2010 with a single “hit”: they would automatically be considered stars in terms of 

inventions’ quality. This distinction could be relevant also because women started 

patenting later historically, and so have smaller portfolios on average. For this reason, we 

replicate the previous analysis on a sample of inventors that produced at least five 

inventions (39% of the full sample). The 95th percentile corresponds to a share of 

outstanding inventions being at least 33% in the portfolio. 
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In this subsample of inventors with at least five inventions, high-quality inventors are 

6.4% of the sample (Table 3), and female inventors represent 9.3% of all these stars, a 

share which is again higher than the 7.7% from the quantity-based definition. Among the 

non-stars, female are 9.5% of the sample. Therefore, even though this high-quality 

definition of stars is more restrictive, it confirms that the under-representation of women 

among stars when considering the quality perspective is smaller than when considering 

the quantity one. 

Table 3 Share of outstanding inventors - only individuals with ≥5  inventions - quality. 

Inventors Male Female Total 

Not star  84.6% 8.9% 93.6% 

Stars (>=95th perc.) 5.8% 0.6% 6.4% 

Total 90.5% 9.5% 100% 

 

Appendix A3 compares the prolific and high quality definitions of stars and examines 

their relatively limited overlap. 

c. Summary statistics on the gap between male and female star inventors 

The average portfolio of patent families for female and male inventors is composed of 5.6 

and 7.5 inventions respectively. Table 4Errore. L'origine riferimento non è stata 

trovata. shows that the number of female inventors is always substantially lower than 

males for all ranges of portfolio sizes, from innovators that only have one patent to those 

that have more than 100. However, the share of female innovators does not decline for 

larger patent portfolios, and on the contrary the second-highest share of female inventors 

is concentrated in large portfolios of 101 to 758 patent families. Similar patterns can be 

seen for patents’ quantity weighted by career length ( 

Table 16 in the Appendix). 
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Table 4 Distribution of portfolio size (families per innovator). 

N. of patents 

(range) 
M F 

% of total inventors in this 

range 

% of female on inventors in this 

range 

1 1 159’720 33’761 30.2% 17.4% 

2 5 200’093 2’9743 35.9% 12.9% 

6 10 89’247 9’878 15.5% 10.0% 

11 50 99’143 9’345 17.0% 8.6% 

51 100 6’590 670 1.1% 9.2% 

101 758 1’601 252 0.3% 13.6% 

Next, we establish the sectoral differences in female representation among top inventors. 

Technological fields are derived from the WIPO IPC-Technology Concordance Table 

(last update in 2016). Each inventor was associated to one or more WIPO fields when it 

represented the largest share of families in the considered portfolio or at least 30% of 

portfolio. With this operationalization we are able to identify the main technological 

field(s) of activity of each inventor. Table 5Errore. L'origine riferimento non è stata 

trovata. shows that the share of female inventors changes across sectors, as abundantly 

found in the previous literature, and the variation among star inventors (prolific or high-

quality ones) across the different sectors is similar. Therefore, while it is important to 

account for these sectoral differences, it is unlikely that stars differ greatly from non-star 

inventors in terms of specific sectoral patterns.  
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Table 5 Share of female inventors across sectors, for prolific and high-quality inventors.  

WIPO 

field 

code 

WIPO field name Full sample 
Subsample of inventors 

with >=5 inventions 

  
N. of 
inventors 

% of 

female 

inventors 

%. of women 

among 
prolific 

inventors 

% of 

female 

inventors 

%. of women 

among 
highly-cited 

inventors 

16 Pharmaceuticals 66,677 24.8 14.1 16.2 17.3 

15 Biotechnology 56,739 24.6 15.8 15.3 16.2 

14 Organic fine chemistry 73,297 22.1 12.7 15.2 17.0 

18 Food chemistry 14,246 19.7 15.9 12.8 15.1 

11 Analysis of biological materials 30,766 19.5 15.6 12.4 11.8 

19 Basic materials chemistry 58,526 17.3 9.9 12.9 14.6 

17 Macromolecular chemistry, polymers 36,475 15.7 8.3 11.8 13.4 

22 Micro-structural and nano-technology 11,297 15.0 8.5 11.3 10.2 
 Full sample 640,043 13.1 7.7 9.5 9.3 

7 IT methods for management 38,369 12.4 10.3 8.4 6.1 

13 Medical technology 69,200 12.4 6.2 8.1 7.6 

21 Surface technology, coating 68,860 12.1 7.5 9.9 9.9 

8 Semiconductors 69,893 12.1 10.3 10.7 9.1 

34 Other consumer goods 35,134 11.9 8.4 7.9 7.6 

20 Materials, metallurgy 35,809 11.1 7.9 8.9 9.5 

6 Computer technology 196,386 10.9 7.7 8.9 6.7 

9 Optics 67,200 10.8 7.4 9.4 8.3 

2 Audio-visual technology 99,815 10.3 7.8 9.1 6.4 

23 Chemical engineering 63,536 10.3 7.6 8.2 8.8 

28 Textile and paper machines 32,719 10.2 6.9 8.1 9.3 

33 Furniture, games 35,547 10.2 6.6 6.7 6.3 

4 Digital communication 77,897 9.9 8.9 8.8 6.1 

29 Other special machines 60,994 9.9 5.5 7.8 9.1 

3 Telecommunications 87,447 9.8 8.6 8.8 6.9 

1 Electrical machinery, apparatus, energy 109,544 9.6 8.1 8.3 6.6 

10 Measurement 118,032 9.0 5.5 7.3 6.0 

5 Basic communication processes 40,051 8.6 7.2 8.0 5.3 

24 Environmental technology 27,579 8.6 4.8 6.7 8.3 

12 Control 64,638 8.3 6.0 6.8 5.1 

25 Handling 44,654 7.4 3.6 5.2 5.7 

30 Thermal processes and apparatus 22,897 6.7 7.1 6.0 4.9 

26 Machine tools 53,943 6.5 4.5 5.5 4.6 

35 Civil engineering 34,847 6.5 3.3 5.4 4.6 

32 Transport 56,717 5.9 2.9 4.6 5.1 

27 Engines, pumps, turbines 45,514 5.9 3.9 5.0 4.9 

31 Mechanical elements 51,552 5.2 2.9 4.3 5.0 

Notes: the analysis on highly-cited is carried out on the subsample of those with at least five inventions. Sectors 

ranked in decreasing order of the percentage of female inventors. 

 

Finally, we consider whether gender differences exist in terms of productivity along the 

career trajectory of male and female innovators. Errore. L'origine riferimento non è 

stata trovata. illustrates how the output of male inventors grows steadily and smoothly 

over time, while for female inventors the average number of patents is slightly below the 

one of man for the first 10 years of career (since the beginning of patenting), with a more 
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marked negative difference in the following few years, and then with a marked increase 

around 15-20 years into women’s career, albeit with higher volatility in average output. 

While a longitudinal analysis of career progression vis-à-vis patenting is beyond the scope 

of this study, this graph emphasizes the different career paths experienced by gender, and 

thus calls for careful consideration of career length in our analysis.  

Figure 1 Distribution of the average number of inventions (y-axis) by career length of inventors (x-axis): dashed line 
for  male inventors, continuous line for female inventors.  

 

This pattern is further confirmed looking at specific career brackets (Table 6Errore. 

L'origine riferimento non è stata trovata.). Once again, there is evidence of a relatively 

notable increase in the patent productivity of women after 15 years of career.  

Table 6 Summary statistics on productivity in terms of number of inventions broken down by career length (5-years 
categories). 

Career length Gender Obs Mean Std. Dev. Min Max 

Up to 5 years male 265,875 2.972596 5.06256 1 387 

  female 50,356 2.7416 5.175256 1 321 

From 5 to 10 years male 120,581 7.387872 11.24599 1 549 

  female 18,584 7.05085 11.90288 1 327 

From 10 to 15 years male 75,207 11.5180 16.76582 1 758 

  female 8,678 11.0436 17.68406 1 290 

From 15 to 20 years male 46,167 15.0726 20.74264 1 738 

  female 3,724 17.4989 34.00939 1 595 

Over 20 years male 48,564 19.0375 22.98041 1 610 

  female 2,307 18.2557 30.49225 1 713 
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Lastly, to further assess the presence of potential differences in the share of female and 

male inventors that achieve the status of “star” with our different measures of quantity 

and quality of innovations, we define a measure of concentration similar to a “glass 

ceiling” index. More precisely, “female concentration” is defined as the share of female 

stars among all stars, divided by the share of female inventors among all inventors. Male 

concentration is the equivalent for men. A concentration close to one indicates that the 

representation of a given gender among stars is similar to the one among inventors in 

general. For males, concentration among stars is close to one in all types of 

operationalization of stars (Table 7Errore. L'origine riferimento non è stata trovata.). 

On the contrary, for women it is definitely below one when considering the quantity 

dimension, confirming the under-representation, while the quality-based measure, in both 

examined samples, is close or above one (Table 7): suggesting that the under-

representation is relatively lower when introducing the quality dimension. For 

comparison with the quantity-based measure, Abramo et al. (2009) found similar values 

for a sample of Italian academicians with full professorship: 1.14 for male and 0.57 for 

female.  

Table 7 Share of inventors in different samples of stars. 

Definition of 

star 

Share of women 

among stars 
Reference sample 

Female 

concentration  

Male 

concentration  

Prolific  7.7% Full sample (13.1% female) 0.59 1.06 

Highly-cited  14.3% Full sample (13.1% female) 1.10 0.99 

Highly-cited  9.3% 
Portfolios with >=5 patent 

families (9.5% female) 
0.98 1.00 

Notes: all definitions consider the 95th percentile of the distribution as a cut-off to be considered a star 
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4. Methodology 

All summary statistics presented in the previous section are useful to characterize the 

unconditional distribution of women and men in the overall population of inventors and 

among stars, however they do not control simultaneously for the career effects on 

productivity, for sectoral differences, and for the large geographic predominance of US 

inventors. It is therefore important to analyse the gap between men and women inventors 

in a more rigorous framework that includes all these factors for stars and non-stars. To 

approach the question of gender gaps in a multivariate econometric setting, we  

implements a set of models based on a Poisson estimator for the quantity measure, where 

the dependent variable is the count of patent families (namely, portfolio size) at the 

inventor level i, and a fractional response model for the quality measure, where the 

dependent variable is the share of highly-cited patent families in the portfolio. The 

baseline model is 

N_pi=e^(β0+β1Femalei+ β2CareerLengthi+ β3 Femalei xCareerLengthi +Xiγ)  

Where N_pi is the individual number of patents, with a Poisson distribution, or the share 

of highly cited patents in an inventor’s portfolio, with a logit distribution. The 

independent variables of interest are the same for both models: a Female dummy for the 

gender of the inventor (equals one for women); Career length, a continuous variable that 

captures the number of years between the first patent and 2010; and the interaction of the 

Female dummy x Career length variables. Furthermore, we include in X individual-level 

controls for geographical origin, namely a dummy equal to one if the inventor shows a 

patent filed in the US as first earliest priority; and technological field fixed effects, 

dummies for the sector of activity of each inventor (note that these are not mutually 

exclusive, as an inventor can be active in more than one sector), in some specifications 

also interacted with the Female dummy. For a definition and summary of each of the 
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variables, see Table 11 in the Appendix. While this multivariate approach allows for a 

more careful comparison of female and male inventors controlling for relevant variables, 

it is not able to capture any dynamic effects that can characterize the path-dependent 

evolution of productivity, since all our measures are time invariant. An interesting 

extension for future research could consider the evolution of productivity over time at the 

different stages of career development for men and women. 

5. Results 

The results of the multivariate regression analysis allows us to correlate more formally 

the fact of being female and the probability of being a star, according to the different 

definitions. In these regressions, the interaction of career length with female gender is key 

to inform our understanding of productivity for women accounting for different career 

spans. 

a. Quantity of inventions and gender 

Regarding the quantity of patents produced by an inventor, Table 8 presents the results of 

the Poisson regression as incident rate ratios for all inventors (first and second model) 

and then only for prolific stars (third model). The second model adds to the specification 

the interaction of all sectors and the Female dummy. The third column focuses on the 

subsample of star inventors according to the quantity definition, namely with a portfolio 

size in the top 95th percentile in any technological field.  
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Table 8 Poisson regression as incident rate ratios.  

Model (1) (2) (3) 

Sample Full Full 

Only prolific star 

inventors 

(>=95th percentile) 

Dependent variable Portfolio size 

    

Female dummy 0.8145+ 0.8001+ 1.1342+ 

 (0.0021) (0.0033) (0.0097) 

Career length 1.0804+ 1.0803+ 1.0187+ 

 (0.0001) (0.0001) (0.0001) 

Female dummy x Career length 1.0200+ 1.0202+ 1.0050+ 

 (0.0002) (0.0002) (0.0004) 

Geographical origin (US=1) 0.8272+ 0.8287+ 0.7793+ 

 (0.0008) (0.0008) (0.0011) 

Main technological field dummies Y Y Y 

Female dummy x main tech. field dummies  Y Y 

    

Observations 639860 639860 92979 

PseudoR2 0.2774 0.2782 0.1636 

loglik. -3321588.3481 -3317798.5099 -874303.2559 

Notes: With incident rate ratios, any result below one indicates a negative relation, above one a positive relation. The 

dependent variable is the quantity of patent families in an inventor’s portfolio. * p-value < 0.10; ** p-value < 0.05; 

*** p-value < 0.01; + p-value < 0.001 

The incident rate ratios shown in the table are derived from the Poisson regression 

coefficients, interpreted as the difference between the log of expected counts. Formally, 

this can be written as β = log(μx+1) – log(μx ), where β is the regression coefficient, μ is 

the expected count and the subscripts represent where the predictor variable, say the 

Female dummy, is evaluated at 0 and 1 (implying a one unit change in the predictor 

variable). Since the difference of two logs is equal to the log of their quotient, log(μx+1) 

– log(μx ) = log(μx+1 / μx ), we can interpret the parameter estimate as the log of the ratio 

of expected counts (this explains the term “ratio” in incidence rate ratios). In practice, we 

obtain at the incidence rate ratio by exponentiating the Poisson regression coefficient. So, 

for example, the first coefficient for Female dummy was -0.20518, which translates into 

an incident rate ratio smaller than one of exp(-0.20518)= 0.8145. 
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These results show that, while being a woman constitutes a clear disadvantage in the pool 

of all inventors, it is not the case for prolific stars. The Female dummy has a significant 

negative impact on portfolio size when considering all inventors (it reduces the chances 

for an additional invention by 20% in model 2), but a significant positive effect when 

considering only those inventors equal or above the 95th percentile in the number of 

patents in their portfolio (+13% in model 3). Therefore, being a woman actually increases 

the number of patents in this group of stars. Career length is always positively linked to 

portfolio size, even though the magnitude of the effect is small: +8% of probability for 

any additional year to file an additional invention in the full sample (model 2) and only 

+2% in the sample of prolific stars (model 3). The interaction of being a woman with 

career length has a positive and significant effect in all cases, although small: each 

additional year since the first patent adds to the probability of an extra patent +2% in 

model 2 and +0.5% in model 3. This means that, for a woman, any year of career increases 

the number of patents she generates more than for a man in a statistically significant way. 

 

b. Quality of inventions and gender 

The second set of multivariate analyses focuses on the quality of the portfolios generated 

by each inventor. We investigated the relationship between the share of highly-cited 

patent families in the portfolio and gender and career length. Table 9 illustrates the results 

without applying any restrictions on the minimum portfolio size, while Table 10 focuses 

on the inventors with at least five inventions. 

As before, the first and second models are tested on the full sample of inventors, adding 

further sectoral interactions as fixed effects in the second model, while the third one 

considers only the top performers in terms of highly-cited star inventors.  
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Table 9 Results of fractional response models using a logit for the conditional mean.  

Model (1) (2) (3) 

Sample Full Full 

Only star 

inventors (>=95th 

percentile) 

Dependent variable Share of high-quality inventions in the portfolio 

    

Female dummy 0.8380+ 0.8587+ 1.1576*** 

 (0.0145) (0.0237) (0.0608) 

Career length 1.0254+ 1.0255+ 0.9509+ 

 (0.0004) (0.0004) (0.0009) 

Female dummy X Career length 1.0248+ 1.0242+ 1.0058* 

 (0.0015) (0.0015) (0.0034) 

Geographical origin (US=1) 2.2644+ 2.2658+ 1.0815+ 

 (0.0160) (0.0160) (0.0150) 

Main technological field dummies Y Y Y 

Female dummy x main tech. field dummies  Y Y 

    

Observations 639860 639860 39842 

PseudoR2 0.0482 0.0484 0.0180 

loglik. -172690.3730 -172646.2176 -21702.5482 

Notes: Results as odds ratios indicate a negative relationship when the coefficient is below one, a positive 

relationship if above one. The dependent variable is the share of high-quality inventions in the total portfolio. * p-

value < 0.10; ** p-value < 0.05; *** p-value < 0.01; + p-value < 0.001. 

 

Once again, women’s disadvantage in patenting disappears when considering the Female 

dummy in high-quality star inventors. In the full sample, being a female inventor is 

associated to a smaller proportion of outstanding inventions in the portfolio (-14% in 

model 2). However, being a woman increases the share of high-quality patents in an 

inventor’s portfolio, when considering only the sample of high-quality stars (+16% in 

model 3). 

Additional years of career show a small impact on the share of high-quality inventions: 

+2.5% in the full sample and -5% among stars only. This result suggests that, for high 

shares of high-quality inventions in the portfolio, additional years are more likely to 

generate non-outstanding inventions. The female premium on career length observed for 

portfolio size in the previous set of models (Table 8) is present also in the case of the 

share of high-quality patents, with similar magnitudes: +2.5% and +0.5% in model 2 and 
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3 respectively.  

These first two sets of results indicate a robust difference between non-star women 

inventors and stars, and a positive role of additional years of career that give women an 

added benefit both for producing more patents and to increase the share of high-quality 

patents. However, as discussed in Section 3.b.ii, some inventors included in this latter 

analysis might have relatively small portfolios. Thus, it is important to consider how these 

dynamics change for inventors with more substantial patent portfolios. Hence, we repeat 

the analyses and consider only inventors with more than five inventions (Table 10). In 

the Appendix we provide some sensitivity tests when employing different thresholds, 

with three and seven inventions as minimum portfolio size (Table 21): results are similar 

to the ones for the sample of five inventions as minimum portfolio size. 

Table 10 Results of fractional response models using a logit for the conditional mean selecting the inventors with at 
least five inventions in their portfolio. 

Model (1) (2) (3) 

Sample 
>=5 

inventions 

>=5 

Inventions 

Only star inventors 

among those with >=5 

inventions 

Dependent variable Share of high-quality invention in the portfolio 

    

Female dummy 0.9454** 1.0184 1.0598 

 (0.0224) (0.0368) (0.0504) 

Career length 1.0102+ 1.0104+ 0.9938+ 

 (0.0005) (0.0005) (0.0006) 

Female dummy X Career length 1.0036** 1.0020 0.9994 

 (0.0017) (0.0018) (0.0024) 

Geographical origin (US=1) 2.0610+ 2.0603+ 1.0597+ 

 (0.0144) (0.0145) (0.0096) 

Main technological field dummies Y Y Y 

Female dummy x each main tech. field dummy  Y Y 

    

Observations 251481 251481 16212 

PseudoR2 0.0317 0.0319 0.0012 

loglik. -68828.3078 -68818.3810 -11164.2518 

Notes: Results as odds ratios indicate a negative relationship when the coefficient is below one, a  positive 

relationship if above one. The dependent variable is the share of high-quality inventions in the total portfolio. * p-

value < 0.10; ** p-value < 0.05; *** p-value < 0.01; + p-value < 0.001 

The results on this sample of inventors with at least five inventions in their portfolio show 
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no significant gender difference either in average quality of the output or in terms of 

additional year of career (models 2 and 3).12 As seen already in Table 9, the significant 

result that differs in the group of stars is that career length does not provide a premium, 

but rather a small disadvantage for high-quality stars (+1% and -0.6% in model 2 and 3 

respectively), even when considering only those with portfolios of more than five 

inventions. However, this difference does not seem to apply to men and women 

differently. 

There are three main implications of these results. First, despite the usual negative gap 

for women inventors in terms of productivity, we find that, among stars, women are more 

productive both in terms of quantity of patents and of the share of “hits” (high-quality 

patents). While the average negative productivity gap confirms the presence of a gender 

glass-ceiling in patenting, which prevents most women from accessing resources and 

opportunities to generate the same innovative output of men, this barrier can be broken 

by outstanding female inventors. In fact, the results for stars suggest a selection 

mechanism, with female inventors being on average more productive than males in terms 

of quantity and quality.  

Secondly, when focusing on the very top of the distribution, for female star inventors with 

large portfolios (with at least five inventions), there is no longer any gendered difference 

in terms of average quality. Thus, both the negative glass ceiling of average female 

inventors and the positive selection effect of star women inventors disappear once we 

look at this sub-group of stars with large portfolios. Presumably, women are more 

efficient in achieving “hits” in relatively small portfolios, which is quite reasonable given 

that women have started patenting later historically and have been catching up with men 

 
12 Without the controls for female and sectoral interactions (first model of Table 10), we still have a 

gender gap and a career premium for women, but of lower significance and magnitude than in all 

pervious specifications. 
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only recently. In sum, (i) being a woman innovator on average is linked to a  patenting 

disadvantage (glass ceiling); (ii) being a woman star innovator is associated with a 

significant advantage (selection effect with stars “breaking the glass ceiling”); and (iii) 

being a woman star innovator with large portfolio of more than 5 patents does not 

constitute any significant difference from male star innovators. This implies that the 

gender gap in patenting is not constant across types of inventors and should not be 

addressed uniformly by policy-makers.  

The third implication of our results is that women seem to enjoy a career premium on 

each additional year of career since their first patent, both to expand their portfolio 

(quantity) and to increase its value (quality). Every additional year available to an 

innovator carries greater value for women than for men, ceteris paribus. Since we define 

career length as the time starting from the first patent, this result does not include the fact 

that women might take longer to even begin patenting, in the first place. Therefore, our 

results on the importance of career duration for women may capture only a lower bound 

of the effect.  

6. Conclusion 

In this study, we explore how different definitions of top levels of productivity in 

patenting relate to gender gaps in innovation. Applying measures of quantity and quality 

of patenting output, we observe robust evidence that star innovators are different from the 

overall pool of innovators: while there is a negative gender gap in patenting for women, 

a selection effect ensures that among the top percentiles of innovators being a woman is 

actually associated with more patents and a higher share of highly cited patents. This 

gendered effect disappears when we consider quality for star inventors with more than 

five patents. In that case, being a woman constitutes neither an advantage nor a 
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disadvantage, and stars are not different from other inventors.  

Furthermore, we find that career length plays a significant role in countering the 

disadvantage that women face in becoming innovators or in enhancing the female 

advantage among stars. There is generally a premium for each additional year of career 

after the first patent, but this premium is much larger for the overall pool of innovators 

and less dramatic for stars. Once again, there is no gendered premium for being a woman 

and having extra years of career in the group of inventors with more than five inventions. 

Further research could expand on these results, examining the time dimension of career 

progression and productivity, using longitudinal measures of individual productivity to 

follow patenting dynamics over time. One important caveat that can further clarify our 

results on career length is that our analysis does not examine the process of entry into 

these scientific fields and the time before the first patent as part of career length of an 

innovator. Therefore, if women take longer to achieve the first patent filing, this is not 

captured in our analysis.  

Future lines of analysis should characterize further these results, for example examining 

how the temporal career dimension interacts with interpersonal networks, as well: patents 

are often the outcome of team efforts in which mentoring, peer support, competition for 

resources and spillovers between scientists all affect the success of individuals. While our 

focus of analysis is exclusively on individual inventors, evidence-based policy in support 

of women scientists should encourage further analysis of how gender gaps relate to the 

interaction between star and non-star inventors.  Additionally, the sectoral and geographic 

dimension of patenting are not unpacked in detail in the present study, and more vertical 

in-depth analyses of specific sectors could provide further insights in the different 

disciplinary boundaries of gender gaps among stars. One important limitation of our 

analysis is also the focus on US granted patents, and the definition of geographic origin 
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of inventors on the basis of the first country of patent filing. While the US remains one 

of the largest markets for patent production, more studies of patenting in other geographic 

regions are highly needed, not only in Europe but also in emerging markets like China, 

currently the country that grants most patents in the world (WIPO 2021, pp.32). 

Overall, our results indicate the relevance of integrating a gender perspective into 

innovation policies. The core implications of our results derive from the finding that the 

selection effect for the most competitive and motivated women dominates over glass 

ceilings, gender discrimination and disadvantages. This is not to say that women should 

not be supported in their career progression, considering the possible delays that they face 

due to greater household and family responsibilities: in fact, among the pool of all 

innovators, there is still a significant gender gap. Our results indicate that the most 

appropriate policy strategy should account for the different directions of the gender gap 

identified, first and foremost by addressing the gender disadvantage in the general 

population of innovators, facilitating the access to resources, support and opportunities 

for women. Also, our results show that the glass-ceiling is broken by some of the most 

capable and motivated female innovators who achieve superior productivity. This result 

suggest that gender equality policies should focus on the overall population of inventors 

rather than “picking winners” or concentrating on the top of the distribution, because star 

female inventors already succeed at being more productive than men. 

Moreover, policymakers can leverage the career effects identified in our analysis, 

allowing more time and long-term support for women to develop their patent portfolios 

and close any gender gap. Policymakers interested in more female participation among 

innovators and in creating a more level playing field should consider the added value 

from each extra year of career progression for women when designing the regulations and 

incentives for public support towards greater gender equality.  
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In parallel, to address the career-driven gender gap in patenting, innovation policies with 

a gender perspective could be reinforced by labour, welfare and equal opportunities 

policies. For example, considering that both low female participation in innovation and 

the delays in careers that female face can be in part explained by greater household and 

family responsibilities, all the measures aiming at increasing female labour market 

participation (like the extension of paid paternity leave for fathers and other measures to 

narrowing down the gender care gap as well as the increase of childcare services and 

family subsidies) and reducing the gender pay gap to make the inventor career more 

attractive to women could also be effective. In turn, also a gender perspective in education 

policies would reinforce all previous policies not just for stimulating more female 

participation in STEM studies but also to question existing prejudices and perceptions 

about women and men’s respective family responsibilities and duties. 
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Appendix 

A0. Summary of key variables 

Table 11 Description and summary statistics of variables used in the econometric models 

Variable Description Obs Mean Std. dev. Min Max 

Quantity 
Number of patent families in the 

inventor’s portfolio 
639,860 7.25 13.6581 1 758 

Quality 

Inventor’s portfolio share of 

outstanding inventions, defined as 

those in their top 95th percentile in 

the year-tech.field cohort 

639,860 0.08 0.2017 0 1 

Female dummy 

Dummy equal 1 if the inventor is 

female according to the data in 

PatentsView 

639,860 0.13 0.3371 0 1 

Career length 
Years since the first patent filing (= 

2011 – earliest filing year) 
639,860 8.18 6.8628 1 30 

Geographical origin (US=1) 

Dummy equal 1 if the inventor’s 

earliest location for patent filing is 

in the US 

639,860 0.44 0.4967 0 1 

 

A1. Missing information on gender 

Table 12 reports the distribution of missing data about gender across technological fields. 
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Table 12 Distribution of missing data about gender across technological fields 

WIPO field code WIPO field % of missing gender 

- Full sample 9.1 

1 Electrical machinery, apparatus, energy 9.26 

2 Audio-visual technology 9.61 

3 Telecommunications 9.97 

4 Digital communication 10.63 

5 Basic communication processes 10.79 

6 Computer technology 9.37 

7 IT methods for management 5.91 

8 Semiconductors 11.50 

9 Optics 9.26 

10 Measurement 7.82 

11 Analysis of biological materials 7.99 

12 Control 6.88 

13 Medical technology 5.89 

14 Organic fine chemistry 10.29 

15 Biotechnology 9.51 

16 Pharmaceuticals 9.85 

17 Macromolecular chemistry, polymers 8.73 

18 Food chemistry 7.20 

19 Basic materials chemistry  8.69 

20 Materials, metallurgy 8.78 

21 Surface technology, coating 8.55 

22 Micro-structural and nano-technology 11.22 

23 Chemical engineering 7.49 

24 Environmental technology 6.43 

25 Handling 4.60 

26 Machine tools 5.84 

27 Engines, pumps, turbines 5.62 

28 Textile and paper machines 6.21 

29 Other special machines 6.30 

30 Thermal processes and apparatus 7.03 

31 Mechanical elements 5.06 

32 Transport 4.75 

33 Furniture, games 5.08 

34 Other consumer goods 6.21 

35 Civil engineering 5.02 

 

Table 13 shows descriptive statistics on the portfolio size ( number of patent families) for 

female, male and inventors with missing gender data. With respect to the identified 

prolific inventors, missing data on gender represent 6.9% of stars and 9.4% of non-stars.  

Table 13 Average portfolio of patent families for the selected sample 

Gender Mean Std. Dev. Min Max 

female 5.645 13.279 1 713 

male 7.491 13.704 1 758 

missing 7.289 15.260 1 1041 
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A2. Prolific star inventors accounting for career length 

The definition of prolific stars can be modified by weighting for career length the number 

of patents in an inventor’s portfolio. In fact, the examined inventors had different time 

windows to produce their stock of patents. Inventors have different debut year, identified 

as the priority year of their first invention: this serves to compute the career age and 

discount the count of patents by such a weight. With this alternative definition, individual 

inventors are defined as prolific stars both with the simple count of patents and with the 

patent count divided by career length in less than 9% of cases, while they identify 

different inventors in around 20% of cases (Table 14). The majority of inventors (more 

than 70%) is not prolific with either definition.13 

 

Table 14 Overlap between the baseline definition of prolific inventors and a career-weighted one. Definition 1 is the 
count of patents; definition 2 is the count of patents divided by career length (years since first patent). 

Inventors Definition 2: Not a star Definition 2: Star Total 

Definition 1: Not a star 71.3% 14.5% 85.8% 

Definition 1: Star 5.5% 8.7% 14.2% 

Total 76.8% 23.2% 100.0% 

 

When looking at women inventors only, we see that the adjustment for career length 

increases the identified share of prolific female stars from 8.5% to 22%, with an overlap 

of only 6% of cases between the two definitions (Table 15). Therefore, we take this as 

indication that it is important to examine more formally in the regression analysis the role 

of career length in the representation of star innovators and for the analysis of gender, in 

particular.  

 

 
13 The sample of prolific stars when weighting for career length is even more dense of prolific inventors 

due to the inflation of those debuting in the last year: 23% of innovators are prolific (>=95th percentile in 

their sector). Across fields the average number of patents per year ranges between 0.605 (field 29, “Other 

special machines”) and 1.268 (field 8, “Semiconductors”): inventors with at least one filing in 2010 are 

very likely to be considered prolific. 
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Table 15 Overlap between the baseline definition of prolific inventors and a career-weighted one in the sample of 
female inventors. Definition 1 is the count of patents; definition 2 is the count of patents divided by career length 
(years since first patent). 

Inventors Definition 2: Not a star Definition 2: Star Total 

Definition 1: Not a star 75.5% 16.0% 91.5% 

Definition 1: Star 2.6% 6.0% 8.5% 

Total 78.0% 22.0% 100.0% 

 

Table 16 Distribution of portfolio size weighted by career length (average yearly number of patent families since 
debut year). 

Range M F % of total inventors in this range % of female on inventors in this range 

>0 0.25 99’149 17’093 18.2% 14.7% 

>0.25 0.5 183’119 29’890 33.3% 14.0% 

>0.5 1 141’937 19’197 25.2% 11.9% 

>1 1.5 46’297 5’455 8.1% 10.5% 

>1.5 2 32’401 4’253 5.7% 11.6% 

>2 758 53’491 7’761 9.6% 12.7% 

 

A3. Overlap of prolific and high-quality star inventors (including small portfolios) 

In this Appendix we establish how much our definitions capture similar types of star 

inventors. The quality measure (“hit ratio”) is not expected to have a high correlation with 

individual portfolio size (Forthmann et al. 2020; Caviggioli and Forthmann 2022), since 

the ability to produce a lot of patents is mostly related to the number of high-quality 

inventions but not to their portfolio share. Our data confirm such evidence from the 

literature: the two definitions of quantity and quality performance do not overlap much in 

the identification of stars (Table 17Errore. L'origine riferimento non è stata trovata.), 

with less than 3% of the sample being a star under both definitions.  

Table 17 Overlap of stars’ definitions (quantity vs. quality) - subsample of inventors with at least five inventions.  

Overlap Quantity/Quality High-quality: not a star High-quality: star Total 

Prolific: not a star 61.1% 3.7% 64.7% 

Prolific: star 32.5% 2.8% 35.3% 

Total 93.6% 6.4% 100.0% 

Notes: “Prolific stars” are top 5 percentile inventors by family portfolio size. “Highly-cited stars” are the inventors 

having a portfolio share of high-quality inventions equal or above 95th percentile. 

The same analysis broken down by gender is reported in the Table 19 for the subsample 
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of female inventors, and Table 20 for the male inventors. The results show that 2.2% of 

female inventors is considered a star under both definitions, compared to 2.8% of male 

inventors. Clearly, women face more difficulties than their male counterparts in becoming 

stars, even if they already have more than five inventions. 

Whether we use the threshold of quality with more than five inventions or not does not 

make much of a difference, since the overlap is indeed quite limited: Table 18 reports the 

results for the high-quality definition without any portfolio size thresholds. The criterion 

for the identification of inventors with an outstanding share of high-quality inventions 

seems stricter than the one for being prolific. 

 

Table 18 Overlap of the two types of stars’ definitions (quantity versus quality) on the full sample of inventors.  

Overlap Quantity/Quality High- quality: not a star High-quality: star Total 

Prolific (def. 1): not a star 79.9% 5.5% 85.5% 

Prolific (def. 1): Star 13.8% 0.7% 14.5% 

Total 93.8% 6.2% 100.0% 

Notes: “Prolific stars” are top 5 percentile inventors by family portfolio size. “Highly-cited stars” are the inventors 

having a portfolio share of high-quality inventions equal or above 95th percentile. 

 

The following tables illustrate how the overlap between our definitions based on quantity 

and on quality vary by gender in the sample of inventors with at least 5 inventions (Table 

19 for the subsample of female inventors, Table 20 for the male inventors). In this sample 

of inventors with at least 5 inventions, 27.8% of women are defined as prolific stars, 

versus 36.1% of men. The difference for highly-cited stars is instead smaller: 6.3% of the 

female inventors are high-quality, versus 6.5% of males. Finally, 2.2% of female 

inventors is considered a star under both definitions, compared to 2.8% of male inventors. 
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Table 19 Overlap of the two types of stars on the subsample of female inventors with at least five inventions.  

Overlap Quantity/Quality High- quality: not a star High-quality: star Total 

Prolific: not a star 68.1% 4.1% 72.2% 

Prolific: star 25.5% 2.2% 27.8% 

Total 93.7% 6.3% 100.0% 

Notes: “Prolific stars” are top 5 percentile inventors by family portfolio size. “Highly-cited stars” are the inventors 
having a portfolio share of high-quality inventions equal or above 95th percentile. 

 

Table 20 Overlap of the two types of stars on the subsample of male inventors with at least five inventions.  

Overlap Quantity/Quality High- quality: not a star High-quality: star Total 

Prolific: not a star 60.3% 3.6% 63.9% 

Prolific: star 33.2% 2.8% 36.1% 

Total 93.5% 6.5% 100.0% 

Notes: “Prolific stars” are top 5 percentile inventors by family portfolio size. “Highly-cited stars” are the inventors 

having a portfolio share of high-quality inventions equal or above 95th percentile. 

 

A4. Sensitivity analysis on the minimum number of patent families for the sample 

used to test the quality metrics 

Table 21 Results of fractional response models using a logit for the conditional mean selecting the inventors with at 
least three/seven inventions in their portfolio 

Model (1) (2) (3) (4) (5) (6) 

Sample 
>=3 

Inv. 

>=7 

Inv. 

>=3 

Inv. 

>=7 

Inv. 

>=3 inv. 

and star 

by high-

quality 

>=7 inv. 

and star 

by high-

quality 

Dependent variable Share of high-quality inventions in the portfolio 

       

Female dummy 0.9405*** 0.9481** 1.0455 0.9911 1.1297** 1.0420 

 (0.0194) (0.0256) (0.0327) (0.0409) (0.0543) (0.0687) 

Career length 1.0147+ 1.0074+ 1.0149+ 1.0075+ 0.9858+ 0.9919+ 

 (0.0004) (0.0005) (0.0004) (0.0005) (0.0007) (0.0008) 

Female dummy X Career length 1.0066+ 1.0015 
1.0052**

* 
0.9999 0.9995 0.9998 

 (0.0016) (0.0019) (0.0016) (0.0020) (0.0026) (0.0032) 

Geographical origin (US=1) 2.1347+ 2.0000+ 2.1349+ 1.9989+ 1.0828+ 1.0552+ 

 (0.0141) (0.0151) (0.0141) (0.0151) (0.0107) (0.0116) 

Main technological field dummies Y Y Y Y Y Y 

Female dum. x each main tech. field 

dummy 
  Y Y Y Y 

       

Observations 356554 188924 356554 188924 18125 9814 

PseudoR2 0.0345 0.0298 0.0348 0.0299 0.0032 0.0015 

loglik. -97543.28 
-

51738.75 

-

97521.91 

-

51729.96 
-12463.32 -6759.36 

Notes: Results as odds ratios indicate a negative relationship when the coefficient is below one, a positive 

relationship if above one. The dependent variable is the share of high-quality inventions in the total portfolio. * p-

value < 0.10; ** p-value < 0.05; *** p-value < 0.01; + p-value < 0.001 


