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Edge-based Passive Crowd Monitoring Through WiFi Beacons

Kalkidan Gebrua, Marco Rapellia, Riccardo Ruscaa, Claudio Casettia, Carla Fabiana Chiasserinia, Paolo Giacconea

aPolitecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy

Abstract

Tracking people’s flows has become crucial, not only for safety and security, but also for numerous practical business applications
and better management of urban spaces, facilities and services. In this paper, we proposed methodologies that, exploiting IoT
technology deployed at the edge of the network, allow for the analysis of people’s movement in urban environments, both outdoors
and indoors. In particular, leveraging the use of WiFi probe packets sent by smart devices carried by people on the move, we
first describe an implementation of our methodology using off-the-shelf hardware to count people boarding public transportation
vehicles. We then present an alternate implementation using commercial WiFi scanners connected to the edge and leveraging
suitably deployed virtual network functions to process the data collected by a OneM2M IoT platform, proposing also a mobility
tracking procedure that can be applied to anonymized data provided by commercial WiFi scanners. Our experimental results show
that the proposed approaches to people counting and mobility detection can achieve a good level of accuracy, while overall carrying
a low price tag.

Keywords: Mobility, People’s flow tracking, Edge computing, Detection, WiFi

1. Introduction

In November 2018, the Italian National Institute of Statis-
tics (ISTAT) published a research on everyday commuters and
their means of transportation [1]. Data from the prior year’s
national census was used in the analysis. According to the find-
ings of this investigation, more than 40% of the Italian popula-
tion prefers not to use private transportation for daily travels on
a regular basis, 19% of the Italian population prefers to go by
foot or bicycle, while 23% prefers to use public transportation
such as buses, trams, trains, school buses, or subway. Overall,
this represents a considerable proportion of national commuters
who rely on non-private form of transportation. To go to and
from work or school on a regular basis, this section of the urban
population relies on adequate infrastructure and services pro-
vided by municipal transportation agencies. It is clear that ba-
sic data acquired from a census will not be sufficient to achieve
this aim. In order to maintain a high level of service, precise
monitoring of the number of users of public transportation is
required on a regular basis. If the local transportation authority
had real-time data on bus passengers collected at each stop, they
would be able to expand the service appropriately. In addition,
following the global lockdown imposed by governments to stop
the spread of the COVID-19 pandemic, capacity restrictions in
public places were established to limit the number of individ-
uals who gathered. As an example, in Italy a capacity limit
for the maximum number of people that can be transported on
public transit vehicles was established. It is therefore clear that
designing an efficient system for people’s flow monitoring be-
comes critical. However, fulfilling this need in a trustworthy
manner is highly challenging, as the privacy of the data of ev-
ery individual involved should be preserved in every part of the

designed monitoring system.
Importantly, for many safety applications and convenience

services designed for mobile users it is essential to detect
the pattern taken by people’s flows at different times of the
day/week. One of the key technologies to achieve this goal is
the Internet-of-Things (IoT) [2][3], as IoT devices are becom-
ing pervasive and most of them are equipped with a radio in-
terface, e.g., WiFi, LoRaWan or 5G, that can conveniently con-
nect them with other devices as well as with the communication
network infrastructure. Furthermore, IoT devices typically con-
sume little energy, hence they contribute to creating sustainable
communication systems, have low cost, and pose fewer privacy
issues than other devices like smart city cameras.

In this work, we leverage the IoT technology and tackle the
problem of characterizing both people’s trajectories and the
number of people a flow includes, while preserving users’ pri-
vacy. In particular, we focus on an urban environment and ex-
ploit both commercial sensors and simple devices like Rasp-
berry PIs, equipped with a WiFi interface. Such devices can
scan the WiFi spectrum for probe requests, i.e., packets trans-
mitted by user hand-handled devices towards nearby access
points. Using the logs provided by these spectrum scanners,
we develop techniques to increase the privacy level in data col-
lection and processing. Importantly, we aim at developing a
solution that can cope with the serious limitations of commer-
cial or Raspberry PI-based scanners, which demands for a new
approach with respect to those proposed in prior art.

Unlike existing work, we develop mechanisms that can ef-
fectively (i) cope with commercial sensors as well as simple,
low-cost ad-hoc designed devices that scan the spectrum for
WiFi probes, and (ii) increase the level of users’ privacy protec-
tion. Further, applying an ML-based scheme, we show how the

Preprint submitted to Computer Communications June 3, 2022



data collected through our privacy-preserving technique can be
used to characterize people’s flows. Our approach is then vali-
dated through a proof-of-concept testbed that we developed and
a measurement campaign that we performed on public buses
run by GTT [4] in the city of Turin, Italy.

The rest of the paper is organized as follows. After dis-
cussing some relevant related work in Section 2, in Section 3
we describe some features of the WiFi technology that are rel-
evant for the design of our privacy-preserving solution for peo-
ple’s flows detection. Then Section 4 proposes an approach for
people’s counting indoors, taking a public bus as an example
of indoor public places where a monitoring system could be
deployed. The methodology we use for outdoor spaces is in-
stead presented in Section 5. An approach for people’s mobil-
ity tracking is introduced in Section 6. Finally, Section 7 draws
some conclusions.

2. Related Work

In recent years, several different approaches have been used
to face the problem of detecting and counting people in an ur-
ban area, both in indoor and outdoor scenario. Infrared sen-
sors, cameras, pressure sensors, visible light sensors, RFID,
UWB, and audio-processing are some of them, however, the
techniques mentioned above do not provide satisfactory results
at times in relation to the cost of implementation while at other
times they obtain insufficient performance [5].

Some approaches are based on electromagnetic methods that
analyze in space and time the received signal, which is affected
by the presence of the people in the area. All these methods
are suitable for small indoor environments and require specific
radio frequency emitters. As an example, the work in [6] pro-
posed to count people exploiting the WiFi signal, assuming that
the movements of the human body affect the wireless signal re-
flections, which results in variations in the CSI (Channel State
Information). The method works well in a quasi-static indoor
scenario, within the same room (e.g., people in a meeting room
or staff in an office), but it is hard to implement in a very dy-
namic environment, with people moving by car, by bicycle, or
on foot. Another work [7] focused on counting people crossing
a doorway using off-the-shelf WiFi devices, by exploiting the
reflections of the wireless signal on the human body and by in-
stalling special receivers that process the reflected signals. This
approach would require more than one device to cover all pos-
sible accesses, e.g., on a bus, significantly increasing the cost
of deployment. Indeed, it cannot be applied in an outdoor ur-
ban scenario with the sensors installed (as in our case) on top
of traffic lights.

An alternative approach, which however quite expensive, is
to count people using cameras and advanced algorithms for
video image processing. For example, the state of the art
YOLO V3 library [8] can identify and count people’s heads in a
30-FPS video in real-time, but it requires a high-level GPU and
a highly equipped server, resulting in a video-based detection
platform that is too expensive for large-scale use, especially at
the network edge.

Finally, it is worth mentioning that a preliminary version of
some parts of this work have appeared in our conference papers
[9, 10, 11]. Specifically, [9, 10] sketched our solution for track-
ing people’s flows while accounting for users’ privacy. [11],
instead, introduced the two Virtual Network Functions (NFV)
that we implemented, along with the related scripts, providing
some initial results on people’s flows detection based on the
data collected up to then. In this work, we combine the two
approaches, thus yielding an efficient and effective solution and
implementation, and we provide extensive, more insightful re-
sults, using more than two and a half years of data collected in
the area covered by the scanners we deployed.

3. Preliminaries and Main Observations

As mentioned, we use WiFi signal reception and process-
ing to estimate the number of smart devices (e.g., smartphone,
tablet, laptop, smartwatch, etc.). Our approach thus consists in
scanning the WiFi spectrum, attempting to capture WiFi pack-
ets sent by smartphones. When a smartphone’s WiFi interface
is turned on, it transmits a burst of broadcast messages to dis-
cover Access Points (APs) and smartphones nearby. To link a
recorded WiFi signal with a smartphone, we examine the MAC
(Media Access Control) address information on collected pack-
ets.

In the following, we summarize some important features
of WiFi that we later leverage to extract useful information
from the collection of the transmitted messages, in a privacy-
preserving manner.

3.1. WiFi probe requests

Depending on whether the scanning mode is active or pas-
sive, smartphones can send Probe Requests on the channel on
their own initiative or be triggered by the reception of a Beacon
frame transmitted by an AP. Smartphones are usually capable
of supporting both scanning modes and of switching back and
forth between them. In our experiments, sniffers mainly capture
Probe Requests generated by smartphones on their own initia-
tive during an active scan.

3.2. MAC Randomization

Probe Requests are frames of management type, as all other
frames transmitted to a WiFi AP during the association opera-
tion. They are required in order to create an encrypted channel,
which the user will leverage to send data in the future. As a
result, any fields included in any of those management frames
are broadcast and in clear text. All of the information therein, as
well as the sender’s MAC address, may be retrieved in plain text
by collecting a Probe Request from the WiFi channel. Knowing
a device’s MAC address, according to [12], is a very sensitive
piece of information that might be exploited for a number of
cyber attacks as well as for monitoring people’s movements.

As a result, practically all smartphone manufacturers ran-
domize the MAC addresses in Probe Request frames. Indeed,
software providers have discovered that broadcasting the initial
MAC address is unnecessary at this point of the process because
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the great majority of Probe Request packets do not result in an
actual connection to an AP but are instead used only for scan-
ning reasons. In this case, the universal/local bit is set to one,
resulting in a random MAC address.

The MAC randomization methods are proprietary and
manufacturer-dependent. Apple was the first to adopt MAC
randomization in 2014 for smartphones running iOS 8 [13], fol-
lowed by Linux with Linux Kernel 3.18 the same year, and An-
droid with Android 6.0 [14] the following year. Despite the fact
that it is supported by all operating systems, the MAC random-
ization option is not enabled by default on many devices (es-
pecially those running the Android operating system). During
some reverse engineering investigations, it was observed that
every time a burst of Probe Requests is issued, all operating
systems (OSs) change their MAC addresses. Furthermore, [5]
revealed how iOS 10.1.1 devices randomize their MAC address
as a result of some user behavior. For smartphones running this
software version, every time the device is locked or unlocked,
its WiFi interface is enabled or disabled, or a connection with
a different AP is attempted, a new randomized MAC address is
issued.

MAC randomization solutions, while helpful in reducing the
problem of potentially sensitive data being broadcast over the
channel, do not completely eradicate it. These implementations
contain a variety of problems and drawbacks, including utiliz-
ing additional information given in the Probe Request frame
or their timing, which may lead to the monitoring of devices
even if their MAC addresses are randomized [15]. Indeed, de-
randomization procedures can been used to greatly reduce the
effect of randomization algorithms.

4. Indoors Crowd Monitoring: People Counting on a Bus

In this section, we focus on counting people traveling on a
public bus in the city of Turin. Thanks to a very low cost Rasp-
berry Pi 3B, we apply a de-randomization algorithm to count in
real-time the number of passengers on-board, using the probe
request broadcasted over the WiFi network by the passengers’
devices.

4.1. HW description

One of the main goals of our work is to provide a sustainable,
low cost solution to people’s movements tracking, by creating a
cheap sensor-based system that can easily be installed on public
buses or other public spaces. For this reason, we aim at keep-
ing the cost of the hardware components we employ low, while
still having enough processing power at our disposal to enable
on-the-fly analysis. The best solution turned out to be to use
Raspberry Pi (RP) hardware. We chose a RP 3 Model B, which
has a 1.2 GHz 64-bit quad-core ARM Cortex-A53 CPU, on-
board 802.11n WiFi, Bluetooth, 1 GB RAM, an Ethernet con-
nection, and four USB ports, and it runs the Linux OS. Since
the RP 3 Model B’s WiFi interface does not support monitor
mode by default, we purchased a basic USB dongle antenna to
capture frames on the WiFi channel when in monitor mode. We
used a mobile USB modem that can connect to 3G and 4G/LTE

Figure 1: Hardware solution composed of a Raspberry Pi 3 Model B, a USB
WiFi dongle, and a USB 3G and 4G/LTE modem.

networks using a SIM card to access our RP from different net-
works. Finally, for both power and Ethernet connectivity, a PoE
splitter was used to connect our RP to the PoE cable. Our entire
hardware setup is depicted in Fig. 1, which resulted in a total
cost of all components of less than 50€.

4.2. Capturing procedure and Probe Request analysis

In order to avoid storing sensitive information, the Probe Re-
quests recorded by our RP are examined in real time, by pipelin-
ing the output of the network sniffer on the two interfaces (WiFi
showing the Probe Requests packets, and Ethernet showing the
bus-internal information on the status of the doors) to the pro-
cessing scripts used for the analysis of the collected messages.
As detailed below, the analysis consists of four main steps, each
of which is executed through a separate script file. The scripts
are executed one after the other in a pipeline, so that we can per-
form several operations on the same input instance, in a modu-
lar manner.

Time window sampling: Due to the fact that Probe Re-
quests from smartphones are broadcasted in bursts, performing
detailed analysis on a single frame of information is impracti-
cal. Analyzing a consistent collection of frames is necessary
to gain an insight on the number of passengers aboard a bus at
any given moment. To this end, a script keeps track of the door
status, which is retrieved through UDP from the bus network,
as well as of Probe Requests recorded in the file output by the
capture procedure. A new Probe Request frame is added to the
final position of the time window when the bus doors are closed,
and the sample thus created is inspected for further processing.
When the door status at a bus stop indicates that a door is open-
ing, the sampled window is cleared and rebuilt from scratch as
soon as the doors close. As a consequence, we can be confi-
dent that we have a sample that covers the whole time interval
between two consecutive door opening, i.e., between two con-
secutive bus stops.

MAC address analysis: Several occurrences of Probe Re-
quest frames with the same MAC address are identified in our
sample window since Probe Request frames are broadcasted in
bursts. In order to compact the frames from a single MAC
source address, a script takes all samples in the time window
just elapsed and scans all of the recorded frames. Each individ-
ual MAC address that appears inside the sample time window
is recorded separately by the application, along with some extra
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(c) (d)

Figure 2: Mean relative error for the power filter and the MAC occurrence filter: (a) October 16, 2020, (b) October 19, 2020, (c) October 30, 2020, (d) November
2, 2020.

information for each record created. At the end of the process, a
single record will include all of the data associated with a burst
of an identical MAC address. After that, the fresh sample is
further processed in the next phase of the analysis.

Probe Requests Filtering: Since we are only interested
in detecting the devices of people on board, some filtering is
needed to limit the scope of our capture to the bus only. Indeed,
it is highly likely that some of the Probe Request frames gath-
ered by our sensor were not sent by devices on board, but by
those outside the vehicle. This happens mostly when the bus
stops at a traffic light and is surrounded by other vehicles, but it
can also occur at any one time. To address this problem, we de-
fine a power level threshold, Pl, as well as an occurrence level
threshold, Ol, defined as the minimum number of occurrences
of a MAC address within a sample window. A shorter number
of frames in a burst can indicate that a device is passing near
the bus for a brief period of time, while the average power level
can be used to infer the distance between the transmitter and
the sensor. If the average power of a burst of Probe Requests
is less than Pl or the burst includes less than Ol frames, the

corresponding input record is deleted. The data that is not re-
moved is assumed to belong to devices on board, and it is sent to
the de-randomization algorithm. Pl and Ol are two parameters
that must be adequately set and are unique for each environ-
ment, i.e., they should be re-calibrated in a different bus. As
discussed at the end of this section, to find the most suitable
choice of parameters, we conducted extensive tests and com-
pared our results to the actual number of passengers on board,
as established by human counting sessions.

MAC de-randomization: The MAC de-randomization is
the method at the center of our Probe Request counting proce-
dure. It attempts to determine if two bursts of Probe Requests
with different randomized MAC addresses are likely to belong
to the same device based on the information received from the
pipeline. The input data is a sequence of bursts of Probe Re-
quest frames, each with an identical MAC address. The iABA-
CUS method [16], i.e., a recursive mechanism to reverse en-
gineer the MAC randomization approach, is the basis for our
de-randomization operation. When the iABACUS method is
used, it generates a collection of lists, each of which carries
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Figure 3: Performance evaluation for the manual counting sessions (all dates in 2020): (a) October 16, (b) October 19, (c) October 30, (d) November 2.

different random MAC addresses that are assumed to be associ-
ated with a single device, trying to mask its true MAC address.
Finally, we count the number of separate devices identified on
board by counting the number of distinct lists formed by the
de-randomization process.

As a result, the number of people on board is calculated, to-
gether with the detection timestamp, and transmitted as a UDP
datagram through our LTE dongle to our own server, where a
Grafana dashboard is used for detailed viewing.

4.3. Tuning of system parameters
In order to properly establish all of the criteria that were cru-

cial to the performance of our system, we needed to compare
the outcomes of the counting process against the ground truth.
In remote sensing systems, the concept of ground truth is used
to describe data collected on-site that is used to calibrate ac-
quired data and help in the interpretation and analysis of what
has been detected. We thus scheduled several manual count-
ing sessions to determine the exact number of individuals on
board of a public bus while our system was in action. Only by
comparing the manual counting results to the values detected
by the sensor at the same time, one can properly set the system
parameters so as to reflect the capturing environment.

We computed the difference between the ground truth num-
bers at each bus stop and the corresponding values from our

software system. By averaging all of the errors over the course
of the manual counting session, we were able to compute the
mean relative error for a particular set of parameters. The main
parameters employed in our methodology were the power level
threshold Pl and the occurrence level threshold Ol, and they
were both tuned according to the obtained experimental results.
Fig. 2 shows the mean relative error for various combinations
of power and occurrence thresholds. Using the values of Ol = 1
and Pl = −75 dBm as thresholds, we can filter out spurious de-
tection occurrences, thus minimizing the mean relative error in
virtually all of our comparisons, as one can see from the pre-
sented plots.

4.4. Performance evaluation

Thanks to the procedure described above, we can now rather
precisely estimate the number of passengers on a bus. To allow
for a more accurate evaluation of our system, the number of
people on the bus was classified into three categories: “green
zone” denotes a small number of passengers on board, namely
less than less than 20% of the maximum bus capacity (namely,
16 in our case); “yellow zone” with a number of passengers
on board ranging from 20% to almost 40% of the maximum
bus capacity (namely, from 16 to 28); “red zone” with more
than 40% of overall capacity (namely, 28 passengers or more),
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Figure 4: Coverage map of the 5G EVE testbed deployed in the area of the Politecnico di Torino campus.

which implies that safe interpersonal distances on the bus can
no longer be guaranteed.

In general, our findings show that we can predict the actual
number of people on board with a high degree of accuracy for
all scenarios for which a ground truth was available. Fig. 3a
depicts the comparison between our counting forecast and the
manual counting that took place on October16, 2020. An accu-
racy level of 85% for the entire day is attained, if we estimate
the overall relative error for this scenario. The discrepancy be-
tween the ground truth and the manual counting recorded on
October 19, 2020 is represented in Fig. 3b. In this case, the
overall accuracy results to be quite high, namely, 90%. Lastly,
Fig. 3c presents the differences with respect to the ground truth
recorded on October 30, 2020, with an overall accuracy of
91%, whereas Fig. 3d depicts the differences with respect to
the ground truth recorded on November 2, 2020, with an over-
all accuracy of 88%.

4.5. Capturing using Bluetooth

The whole analysis provided here for WiFi could be repli-
cated in a similar way for Bluetooth or Bluetooth Low En-
ergy (BLE). Indeed, there are many examples in the literature
of similar analysis conducted via Bluetooth interfaces [17, 18],
achieving promising results.

At the outset of this project, we configured our sensors to
analyse WiFi and BLE in parallel. Similarly to the WiFi captur-
ing method, the BLE procedure featured time-windowed MAC
address analysis, filtering and de-randomization. With respect
to WiFi, BLE sends broadcast packets with a much smaller size
and at a very high frequency. Indeed, a BLE capture can eas-
ily reach about 80-90 packets/s, all with a few bytes size. It is
clear how performing an analysis on the fly for a high-frequency
medium like BLE is very impacting from a CPU load point of
view. For this reason, considering the limited computational
capabilities of our hardware, we decided to have the whole cap-
turing procedure based on WiFi Probe Requests only.

5. Outdoors Crowd Monitoring

We now tackle an outdoor scenario, focusing on detecting
and counting people moving by any means of transportation
in a specific area of Turin, Italy. In this testbed, several of
commercial scanners were installed along a mile between the
Politecnico di Torino campus and the Porta Susa train station,
which is the major transit train station of the city of Turin, Italy.
In this area, we were able to detect people who commute every-
day to our campus on foot, but also a large inflow and outflow of
people using different transportation means (e.g., bike, electric
scooter, car, motorbike).

With respect to the scenario described in Section 4, here we
consider a wider area, all kind of means of transportation, and
a very high dynamic context. In this case, we chose to use
black-box commercial WiFi scanners (Libelium Meshlium): all
the MAC addresses captured were immediately anonymized
through a SHA-224 hash function.

5.1. Testbed architecture

Fig. 5 depicts the architecture of the testbed we deployed
to address our outdoor use case. It includes an edge cloud
where two applications are implemented by combining mul-
tiple VNFs. All the WiFi scanners are connected through the
Radio Access Network (RAN) to the OneM2M server [19], an
open architecture for the provision of IoT services. An MQTT
broker allows the connection to the OneM2M server with the
edge cloud, hosted in a dedicated data center at Politecnico
di Torino. Thanks to the use of the edge paradigm, the pro-
posed architecture can scale horizontally with the number of
scanners installed. Furthermore, the use of VNFs to realize the
entire mobility application provides high flexibility in terms of
required hardware resources.

Through an MQTT connection, all the data stored in the
OneM2M server is retrieved by the MOB (“MOBility track-
ing”) VNF and saved in a local MySQL database for bet-
ter performance during future data analysis. Finally, the
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Figure 5: 5G EVE Edge Cloud testbed architecture with the two implemented
VNFs.

user/experimenter can see in real-time all the data collected by
the scanners through the VIS (“VISualization”) VNF where a
web-based visualization tool was developed.

As shown in Fig. 4, six Libelium Meshlium WiFi scan-
ners [20] were installed, two of them on campus next to entry
gates, and the others on top of traffic light poles. The scanners
were configured to passively capture the “Probe Requests” on
the 2.4 GHz and 5 GHz ISM bands, periodically sent by mobile
devices while searching for known WiFi networks, as explained
in Section 3. Each scanner is connected to the platform we de-
veloped within the 5G EVE EU project [21], through a cellular
connection. Every 51 seconds1 the scanners group the infor-
mation about all the devices detected during the last sampling
period and every two minutes they upload the collected data
to the OneM2M server [19]. Differently from the ad-hoc solu-
tion developed in Section 4, the processed data provided by the
scanners does not allow to run any de-randomization technique.

5.2. Mobility application
We now detail the mobility application we developed, de-

scribing each of the VNFs thereof.

5.2.1. MOBility VNF
The MOB VNF is in charge of retrieving data from the

OneM2M platform through an MQTT (Message Queuing
Telemetry Transport) client. MQTT is a very lightweight, open
transport protocol, based on the publish-subscribe paradigm.
The protocol runs over TCP/IP, thus it is reliable and prevents
out-of-order delivery of data.

When the scanners upload a new message to the remote plat-
form, this is saved in the server’s local database, and then it is
also sent to the MQTT client where the message is parsed, an-
alyzed and stored in the MySQL database of the MOB. Before
saving the data on the MOB database, two operations occur in
sequence: (i) address digesting, and (ii) stationary device re-
moval. The first operation allows reducing the size of the data
on the database, while the second one allows eliminating all
those devices which, being fixed objects (e.g., APs, personal
computers, etc.) are considered as outliers.

1The periodicity is set by default by the Meshlium scanners.

Figure 6: Heatmap showing (in log scale) the frequency of detection at different
times of the day, during March 2020, 2021 and 2022.

5.2.2. VISualization VNF
The VIS VNF provides an aggregate view of all the data col-

lected and analyzed through a standard web browser by means
of both an interactive, real-time visualization dashboard imple-
mented on the Grafana [22] tool, and through a simple dynamic
web page linked to a python script.

Grafana is a multi-platform, open-source analytics and in-
teractive visualization web application. It enables the cre-
ation of complex monitoring dashboards using interactive query
builders on databases and provide interactive charts, graphs and
alerts. It is also possible to set threshold values above or below
with which to generate alerts.

It is worth mentioning that we deployed the MOB and VIS
VNFs in two virtual machines (VMs) that reside on the same
local network. This allows the two VMs to communicate
with each other by using integrated Grafana API and SQL
queries, since the MOB database coincides with the Grafana
data source.

5.3. Data analysis

We now describe one of the results we obtained using the
large amount of data acquired through our test bed. As of
October 2019, the total number of detection events has been
97,728,830, corresponding to 51,255,486 distinct MAC ad-
dresses. Because of MAC randomization, the latter represents
an upper bound on the number of detected devices2. More in
detail, Figures 6 and 7 show a comparison of the data captured
during the month of March of three consecutive years: 2020,
2021, and 2022. Fig. 6 depicts, through a heatmap in a log-
arithmic scale, the occurrences of detection for each scanner
for different hours of the day. We omitted the data from scan-
ner 7 because some data is lacking due to scanner outages. It
is possible to see the effect of COVID-19 restrictions over the

2Unfortunately, lacking access to the Meshlium software, we cannot imple-
ment the derandomization procedure outlined in Section 4.

7



Figure 7: Number of distinct MAC addresses detected by each scanner during
the whole month of March 2020, 2021, and 2022.

different years. In March 2020, a strict lockdown prevented
people mobility outdoors, and this is reflected in the low num-
bers of smart devices. In March 2021, restrictions, though still
in place, became looser and therefore more devices were de-
tected. Finally, in March 2022 all schools, university and com-
panies were almost back to normal and so the graph shows up
to a two-magnitude increase in the presence of people in the
testbed area.

Fig. 7 shows the same trend as before but in a more aggregate
way, representing in detail the overall detection in the month
of March by each scanner, in the three years considered. As
expected, the three curves do not overlap, but there is a gap
between each other, the only outlier being the data related to
scanner 6, i.e., the one near Porta Susa train station, which de-
tected the same amount of devices during 2020 and 2021, and
many more compared to the other scanners in 2022.

6. Tracking Mobility

In this section, we introduce a methodology for detecting and
also tracking smart devices, that can be applied in the testbed
scenario described in Section 5. This methodology is apt to
be applied to counting procedures using black-box scanners, as
those in the previous section, but it is also amenable to do-it-
yourself solutions as the ones described in Section 4.

6.1. Our methodology

Probe request patterns are used in order to pinpoint a tem-
poral sequence, T , to actual walking paths on the streets near
the scanners previously described. The aim of our mobility
tracking system is thus to associate the probes transmitted by
a mobile device and detected by the WiFi scanners to the most
likely path, across a given set of predefined paths that have been
monitored in the area. The path classification is based on some
preliminary experiments to build the ground-truth information,
which yields a catalog of fingerprint vectors for each possible
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Figure 8: The points of the path map γ(t) in the considered toy scenario.

path. Thanks to this catalog, the sequence of probes sent by a
new mobile device and detected by the scanners is compared
to all known fingerprints, and the path with the most similar
fingerprint is selected as output of the mobility tracking, as de-
tailed more formally in the following.

Let P be the set of predefined paths in the considered area to
monitor, and let p ∈ P be a generic path. To compute the finger-
print fp of a path p, we let the scanners collect probe samples
by having a person take k walks along p, carrying a device. In
the following, we will refer to such a device as “ground-truth
device” and to each walk along p as a “run”.

Consider the following toy example (assuming all times ex-
pressed in seconds):

T = [(0, X), (30, X), (60, X), (90, X), (100,Y),

(120, X), (130,Y), (160,Y), (190,Y), (220, X)].

where T can be represented as follows: T = [(ti, si)]i, for in-
creasing values of ti, i = 0, 1, 2.... A generic pair inT represents
the events according to which sensor si detected the ground-
truth device at time ti, with si ∈ {X,Y}. The above expression
can be interpreted as follows: the ground-truth device was de-
tected by scanner X at times 0, 30, 60, 90, 120, 210 and by scan-
ner Y at times 100, 130, 160, 190. Note that event detection oc-
curs at multiples of 30 s, i.e., periodically as in the considered
off-the-shelf scanners, and the sampling events have a 10 s off-
set between scanners. Now, from T we set a path map defined
as follows: γ(ti) = 2 if si = X, and γ(ti) = 1 if si = Y . These
two values have been arbitrarily chosen and do not affect at all
the final classification result. Fig. 8 shows the path map for the
considered toy scenario.

Let δ be the observation period, i.e., the total time inter-
val during which the ground-truth device has been detected,
δ = maxi{ti} − mini{ti}. Let us now partition the observation
period into N temporal sub-intervals, each of duration δ/N. No-
tably, N is the only parameter that should be tuned according to
the proposed scheme and later we will show that N = 4 yields
already good results. In the toy example, δ = 210 s and each
sub-interval lasts 52.5 s when N = 4.

With the above data, we can now compute the fingerprint
fp. We remark that this is just one of the possible fingerprints
that can be designed for path identification. The fingerprint we
use is represented by a vector of 2N real numbers, formally
fp ∈ R2N . We divide such a vector in two parts.

The first N values of the fingerprint are the coverage part and
are computed as the average of γ(t) over each sub-interval. This
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weighs the detection of the device from multiple scanners dur-
ing the same interval. The remaining N values of the fingerprint
are the direction part and model the mobility direction between
the two scanners. It is computed as the slope of the best fitting
linear interpolating function of the samples over the considered
path.

In the considered toy example, the sub-intervals would be
[0, 52.5), [52.5, 105), [105, 157.5), [157.5, 210] and the corre-
sponding fingerprint would be computed as:

fp = [2, 1.67, 1.5, 1.33︸              ︷︷              ︸
coverage

, 0,−0.019,−0.1, 0.018︸                      ︷︷                      ︸
direction

] .

Indeed, during the first sub-interval the ground-truth device was
detected by scanner X (i.e., 2) only and the corresponding slope
is 0. During the second sub-interval, it was detected twice by
X (i.e., 2) and once by Y (i.e., 1), thus the average is 1.67 and
the corresponding slope is negative, suggesting that the device
moved mainly from X to Y . A similar reasoning applies to the
following two sub-intervals.

By performing many runs with the ground-truth device, a set
of fingerprints is attached to each path. Thus, in order to find
a match for a new device, the mobility tracking system com-
putes its fingerprint and looks up the most similar fingerprint,
using a simple Euclidean norm to evaluate the distance between
vectors. In case many paths show fingerprints at a minimum
distance, the path with the maximum number of minimum dis-
tance fingerprints is chosen. If still more than one path is found,
the device is marked as untraceable.

This is the starting point of our mobile tracking application.
We are currently studying how to enhance and optimize our
methodology in order to be able, not only to detect and count
people under the coverage of our scanners, but also infer some
mobility patterns in an aggregated way.

7. Conclusions

Detecting the presence of people in outdoors and indoors ar-
eas is useful in several scenarios: from the design of urban
spaces, to the planning of public transportation, to the imple-
mentation of mobility restriction measures such as the one that
many countries put in place during the COVID-19 pandemic.
In this paper, we have presented two possible methodologies
for people counting and mobility detection based both on off-
the-shelf hardware and commercial devices. We have shown
that, although these approaches lack the precision provided by
solutions based on cameras, they can be implemented in a less
expensive, more practical way, which in many cases can be
enough to have a rough estimate of the volume of people crowd-
ing in area or a public vehicle. These solutions are all amenable
to being deployed at the edge of the network, supported by the
flexibility of virtual network functions implementing data ma-
nipulation, processing, and visualization.
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