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Abstract—Voice is a reservoir of valuable health data. Recent
studies highlighted its efficacy in predicting sleep quality, and its
potential as biomarker of neurodegeneration. This study assesses
the feasibility of a Telemedicine system for the evaluation of sleep
quality through brief vocal recordings. Machine Learning models
were employed in the binary classification between good and poor
sleepers, with great performance in scoring poor sleep quality –
88% and 85% F-1 score on a 5-fold Cross Validation (CV) for
females and males, respectively. Moreover, the correlation between
perceived sleep quality and a validated global score was studied, as
well as the influence of external factors and sleep-wake schedule.

Index Terms—Voice, Sleep, Tele-medicine, Artificial Intelligence,
Machine Learning

I. INTRODUCTION

Voice Analysis is receiving much attention due to the enor-
mous amount of clinical information contained in the vocal
signal. Speech production occurs through synergistic articulat-
ing movements that shape the excitation source to convey the
final sound. This complex process incorporates a large amount
of data of clinical interest, besides achieving the main objective
of transmitting the information. These data can be implemented
into Machine Learning (ML) algorithms, providing tools to
support the clinical practice. Although vocal analysis can be
applied to any pathology that directly or indirectly affects the
vocal apparatus, recent evidence shows its high potential in
identifying sleep disorders [1]–[3].

Sleep is a transitory state of altered consciousness, which
not only serves a restorative function, but also plays a pivotal
role in the removal of metabolic waste products from the
Central Nervous System (CNS) [4]. This occurs through the
glymphatic activity [5] during Slow Wave Sleep (SWS) –
i.e., the deepest stage of sleep [6]. Low Sleep Quality (SQ)
leads to increased fatigue, and may also be a predictor of
neurodegeneration [7]. Sleep is commonly assessed through
Polysomnography (PSG), an invasive diagnostic test which
consists in recording biosignals during sleep through a huge
number of electrodes. Evidence from [8] shows poorer voice
quality in signals recorded under stressful conditions (e.g., sleep
deprivation).

In this work the authors investigated speech samples of
47 healthy subjects recorded through professional equipment
while executing several vocal tasks. The results revealed worse

Harmonic to Noise Ratio (HNR) values after 24 hours of sleep
deprivation, especially in the female subgroup.

In a similar work [3], Kim et al. investigated the ability
of voice analysis to predict SQ. 203 English healthy native
speakers were recruited and asked to answer a set of question-
naires using mobile devices and collect a set of voice samples
(free speech, sentence, and text). Regression performance was
evaluated in a 5-fold CV in terms of Concordance Correlation
Coefficient (CCC) between real and predicted scores. This value
was equal to 0.5 for the SQ index. Promising results were
also reported for Obstructive sleep apnea (OSA) detection [2],
on speech samples of 45 Portuguese subjects (25 OSA, 20
controls) performing a free monologue and a read text tasks.
Vocal features, including Fundamental frequency (F0), HNR
and cepstral coefficients, were computed and input to a majority
voting ensemble of Support Vector Machine (SVM), Linear
Discriminant Analysis (LDA), and k-Nearest Neighbor (KNN).
The model yielded 88% True Positive Rate (TPR) and 80%
True Negative Rate (TNR).

Our study aims at implementing a model for the automatic
binary classification of subjects characterized by good and poor
sleep quality. In this regard, the COVID-19 pandemic high-
lighted the need for safe and reliable remote monitoring systems
in healthcare. Assessing SQ through Telemedicine, without the
need of costly and invasive exams, would have significant im-
pact on the quality of life. Therefore, the main objective of this
work was to test the feasibility of a tele-monitoring application,
ensuring social-distancing in the medical domain. The study
involved the collection of vocal samples from volunteers, along
with items from two sleep questionnaires. In Section III, we
describe the analysis of vocal signals and sleep questionnaires;
in Section IV we present the results.

II. MATERIALS

The data were collected from Italian speakers through a
simple WA available on Desktop and Mobile Web browsers. We
designed the WA specifically to guide users through performing
a voice test and two sleep questionnaires. The test consisted in
reading a phonemically balanced text proposed in [9] to capture
different facets of pathological voices. It is long enough to
stress resistance, it contains intricate phonetics to assess the
ability to pronounce complex sounds, and requires changes
in expression during reading [9]. Here, we report the text



employed (Italian language):
IL RAMARRO DELLA ZIA Il papà (o il babbo come dice il
piccolo Dado) era sul letto. Sotto di lui, accanto al lago, sedeva
Gigi, detto Ciccio, cocco della mamma e della nonna. Vicino
ad un sasso c’era una rosa rosso vivo e lo sciocco, vedendola,
la volle per la zia. La zia Lulù cercava zanzare per il suo
ramarro, ma dato che era giugno (o luglio non so bene) non
ne trovava. Trovò invece una rana che saltando dalla strada
finì nel lago con un grande spruzzo. Sai che fifa, la zia! Lo
schizzo bagnò il suo completo rosa che divenne giallo come un
taxi. Passava di lì un signore cosmopolita di nome Sardanapalo
Nabucodonosor che si innamorò della zia e la portò con sé in
Afghanistan.

After the vocal task, the WA required the users to fill in a
questionnaire to assess sleep quality and an additional survey
– detailed in Section III-B2 – that addressed the subjects’ daily
habits and Sleep–Wake cycle. Furthermore, we added a short
section to collect the age, gender, and level of education of the
speakers.

135 anonymous volunteers (55 males) participated; among
these, 70 subjects (37 males) performed all tasks – i.e., the
recording and the sleep questionnaires – and we focused on
this subgroup to perform the analysis. Given the influence of
the gender on most of the vocal features extracted, we split
the dataset into two groups (males and females). Then, we
applied the same workflow to each cluster. Data collection, in
accordance with the Declaration of Helsinki, was approved by
the Ethics Committee of the A.O.U Città della Salute e della
Scienza di Torino (approval number 00384/2020). Informed
consent for observational study was obtained; demographic
and clinical data were noted anonymously. Table I reports an
overview of the collected information. Regarding Age, values
displayed in Table I, do not include 10 subjects (8 females)
which failed in entering their age on the online form. Given
that this subset represents the 14% of the whole group (and
23% of the female subjects), for the subsequent analysis (cf.
Section III-A2) the missing values were replaced with the
median of the whole group – per each gender.

Data analysis and classification was carried out in Python;
Praat (by Paul Boersma and David Weenink, Phonetic Sci-
ences, University of Amsterdam) was mainly employed for pre-
processing and feature extraction.

III. METHODS

A. Speech Analysis
1) Signal pre-processing: This section describes the pre-

processing steps carried out on the vocal signals, performed
through the software Praat. The recordings were firstly down-
sampled to 16 kHz and a de-noising filter with Praat default
hyperparameters was applied to each signal; the signal ampli-
tude was normalized in the range [0, 1] to prevent the speaker-
microphone distance from affecting the model. It is worth not-
ing that we manually removed initial and final silence regions;
hence, no further preparatory steps were required. Finally, we
employed the Praat software to detect voiced regions’ start- and
end-point.

2) Feature extraction: Raw vocal signals do not provide
much information unless a proper feature extraction procedure
is implemented. Given the absence of a specific set of features
with proven high correlation with the application at hand, we
decided to extract a total number of 96 speech features and
inspect their effectiveness. We derived timing measures from
the entire vocal signal and more specific features from the
voiced regions. The first group is intended to detect changes in
the rhythmic organization of the speech and encompasses the
Number of Pauses (NP), the Duration of Pause Intervals (DPI)
defined in [10] as the median duration of unvoiced intervals
exceeding 30 ms [11], and the Rate of Speech Timing (RST),
proposed in [10] to evaluate the capability of alternating voiced,
unvoiced and paused regions. The latter include periodicity
measures – i.e, F0 and the first three Formants; noise measures
– i.e, HNR, Cepstral Peak Prominence (CPP), and Glottal to
Noise Excitation ratio (GNE) – and amplitude related measures
(i.e., Intensity). Moreover, we extracted spectral and cepstral
features (12 Mel Frequency Cepstral Coefficients (MFCC)),
13 Perceptual Linear Prediction (PLP)) which proved to be
effective for the application at hand in similar works [2], [3]. In
more detail, after identifying and merging voiced regions, we
framed each signal into 25 ms windows with 10 ms overlap [3]
and extracted features from each segment. Finally, we grouped
them into one feature vector, and calculated five statistics
(i.e., mean value, median value, standard deviation, kurtosis,
and skewness). Table II reports an overview of the features
employed. Z-score normalization was applied to the whole
feature set to scale features to the same range. This, besides
being a general good practice, is particularly important if
Euclidean distances have to be computed in subsequent analysis
(e.g., similarity measures).

B. Sleep Analysis
1) Sleep Quality Assessment: The shortened sPSQI [13],

a validated, 13-item survey, was employed to assess over-
all sleep quality, adapted from the original Pittsburgh Sleep
Quality Index (PSQI) [14]. The obtained global score is used
to discriminate between good and poor sleepers. Differently
from the standard PSQI, the sPSQI includes only self-reported
questions. As introduced in Section I PSG is the gold standard
test to diagnose Sleep Disorders; however, the PSQI is a reliable
tool commonly used in reasearch and the medical practice.
The index evaluates sleep quality over five components: Sleep
Latency, Duration, Efficiency, Disturbances and Daytime Dys-
function. The sPSQI score was obtained from the 70 available
subjects. In our dataset, the score ranges in (0,10), with 10
indicating a negative extreme, with a global score of 6.21 ±
1.72 (median: 6.0). When presenting the shortened PSQI score
[13], the Authors suggested a cut-off value of 4 for detecting
poor sleepers. According to the data collected in the present
study, the range, and distribution, we set the cut-off value at
5.0, identifying 26 good sleepers and 44 poor sleepers.

2) Sleep Features: A second sleep survey (SLEEPS) was
administered to the subjects through the WA. The survey
includes 21 self-reported items that provide an overview of



TABLE I: Demographic Characteristics in the analysed population

Age Education Level Employment Remote Working/Learning sPSQI SLEEPS score Disease
Insomnia, OSA, Covid-19

Females
41.4 ± 18.1 Middle School: 3 (9%) Students: 25 (76%)

9 (27%) 6.38 ± 1.51 2.29 ± 1.04
1 OSA

Secondary School: 7 (21%) Workers: 21 (64%) 1 Covid-19
Bachelor’s/Master’s Degree: 23 (70%)

Males
36.9 ± 14.5 Middle School: 2 (5%) Students: 26 (71%)

12 (33%) 6.05 ± 1.88 2.39 ± 0.92Secondary School: 10 (27%) Workers: 27 (73%)Bachelor’s/Master’s Degree: 25 (68%))

the subjects’ sleep-wake schedule. The aim of this survey is
to investigate the link between the subjects’ habits and their
quality of sleep. The set of questions included in SLEEPS is
displayed in Table III. One item in the SLEEPS assesses the
Perceived Sleep Quality (SLEEPQ), which is usually evaluated
through a sleep diary in actigraphy studies and compared to the
actual value [15]. Sleep was assessed on a 5-point rating scale
(i.e., Excellent - Above Average – Average - Below Average -
Very Poor). All items were scored on a Likert scale of 0-4 where
4 represented the negative extreme, following the protocols
established in [14] and also applied in the design of the sPSQI
(cf., Section III-B1). Binary or numerical answers were adapted
accordingly.

C. Feature selection
Prior to feature selection we performed an early fusion in

the feature space in order to merge vocal and sleep features
extracted for each subject. Then we applied the feature selection
workflow which was adapted from a from a similar work, which
however involves Parkinson’s disease (PD) subjects [16].

A correlation-based approach was implemented; this proce-
dure selects the most significant (i.e., those with high feature-
target correlation) and non-redundant features (i.e., those with
low inter-feature correlation). First, we evaluated Pearson’s
correlation r between features and target (rfo), investigating
its absolute value for each feature and retaining only the most
significant ones (i.e, r > 0.4, P � value < 0.02). Then we
computed the intra-feature correlation (rff ). For couples of
features showing inter-correlation higher than intra-correlation
(i.e, rff > rfo), the feature less correlated to the class was
removed.

TABLE II: List of features extracted. V: voiced, UNV: un-
voiced. TW: This work

Feature (type and name) Region
analyzed

Application in
SQ assessment

Periodicity: F0, Formants, Bandwidths V [3], [8], [12]

Intensity V [12]

Noise: HNR, GNE, CPP V [3], [8], [12] + TW

Spectral: mean, std, skew.,
kurt, roll off, slope, decrease V [8] + TW

MFCC, �MFCC, ��MFCC V [3]

PLP, �PLP, ��PLP V [3]

Timing NP, DPI, RST V + UNV TW

D. Classification

Automatic binary classification between subjects character-
ized by good and poor sleep quality was performed. The
label was obtained by setting a threshold on the continuous
sPSQI score, as commonly done in the clinical practice [17].
Therefore, the quality threshold was set at 5.0 (cf. III-B1, and
all subjects with continuous sPSQI score above-threshold were
labelled as poor sleepers.

To avoid weak generalization capability of the model, we
randomly split the database into two subsets: 80% to be used
during the training/validation phase and 20% to be used as the
test set. We implemented feature selection, model selection and
model optimization on the training/validation set only, while
the remaining 20% of subjects, employed in the testing phase,
underwent no further optimization.

The extracted Speech and Sleep features were merged into
a single vector and inputted to the classifier. Then, the per-
formances of 7 ML classifiers were compared; the classifier
featuring the highest F-1 score was optimized. Given the un-
balanced dataset – with higher cardinality for poor sleepers, we

TABLE III: Items and Scores of the SLEEPS Questionnaire

Item Score

I. General Data

Covid-19 diagnosis Scale
OSA diagnosis Scale
Insomnia Scale
University Y/N
Work Y/N

II. Work and Study Habits

Remote Working/Learning Y/N
Hours of Screen Time Scale
End of use Time of Electronic Devices Numeric
Blue Light Filter Y/N

III. Leisure Time Habits

Time spent away from home during workdays Numeric
Time spent outside over the weekend Numeric
Excercise hours (outdoors, per week) Numeric
Excercise hours (indoors, per week) Numeric
Time spent working on a hobby (per week) Numeric

IV. Sleep Habits

Nocturnal awakenings Scale
Getting up at night Scale
Morning drowsiness Scale
Morning fatigue Scale
Fatigue, poor concentration and impaired performance Scale
Difficulty falling asleep Scale
Perceived sleep quality Scale



considered the F-1 score to be a reliable metric for performance
evaluation. We tested several approaches – such as Naive Bayes
(NB), KNN, SVM and Random Forest (RF) – as well as
ensemble methods, such as Adaptive Boosting (ADA), Gradient
Boosting (GB), and Bagging ensemble (BAG) classifiers.

Given the random splitting procedure employed, we per-
formed each experiment 10 times on 10 randomly extracted
subsets, and averaged the performance metrics for comparing
the classifiers. Hyperparameters optimisation (Grid Search ap-
proach) was applied to the best model; we evaluated accuracy,
F1-score, precision, sensibility, specificity and the Area Under
the Curve (AUC) as an average over 10 iterations, to further
assess the stability of the final mode.

IV. RESULTS AND DISCUSSION

A. Feature Relevance
In this section we investigated the significance of the fea-

tures extracted according to the Pearson correlation coefficients
between each feature and the class. As far as concerns the
female population, the three most correlated features resulted
��MFCC12 std (r: -0.70, p<0.001), �MFCC12 std (r: -0.67,
p<0.001), and ��MFCC10 std (r: 0.60, p<0.001), highlighting
the importance of the MFCC coefficients for the application
at hand. For the male population, the analysis confirmed the
importance of the MFCC coefficients found for the female
group (�MFCC3 mean (r: 0.50, p: 0.001), and �� MFCC6
mean (r: -0.46, p<0.004) and introduced the significance of the
SLEEPQ parameter measured through the sleep questionnaire
(SLEEPQ (r: -0.56, p<0.001).

B. Population Inspection
The scores collected through the SLEEPS were analysed

along with the global sPSQI score. A recent study suggested
moderate correlation of poor sleep quality and Covid-19-related
factors [18] (positivity to the virus, proximity with COVID+
people). SQ was evaluated through the Medical Outcomes
Study-Sleep Scale (MOS-SS) Index II score [19]. Among the
observed factors, positivity to Covid-19 resulted in being fairly
significant. Hence, we examined the sPSQI in our sample and
its distribution compared to the Covid-19 parameter – i.e., past
(P) positivity, current positivity (C) or never diagnosed (N).
Males who were previously affected by the virus presented with
worse sPSQI scores, resulting in poorer sleep quality. Instead,
regarding the N-condition, the score was equally distributed
in the data range. No similar trend was observed in the
Female group. Fig. 1 shows the comparison between sPSQI
and SLEEPQ. As per Males, the two scores concur. Instead,
some subjects in the Female group failed in rating their sleep,
showing overrating tendencies. As appreciable, 35% scored
their sleep as Average, instead featuring a sPSQI of 7.0 ± 1.53
and 32.4% of the subjects scored sleep as Above Average and
resulted in a sPSQI of 6.0 ± 0.95 – all below average.

Finally, the items collected through the SLEEPS were ranked
according to their correlation with SLEEPQ. As expected, the
frequency of nocturnal awakenings, the occurrence of insomnia
and hours of sleep were highly correlated with the perceived

Fig. 1: Comparison between SLEEPQ score and sPSQI in the
Males and Females groups. Quality: VP: very poor, BA: below
average, A: average, AA: above average, E: excellent.

sleep quality. No significant correlation was found with remote
working (or learning), or the use of a blue light filter. Instead,
reasonable correlation was found with the end of use time of
electronic devices, morning drowsiness and difficulty falling
asleep.

C. Classification Results

This section presents the results of the binary classification
performed as described in Section III-D, along with a discus-
sion. Fig. 2 displays the comparison of the classification F-1
score on the 7 models tested. The values refer to a 5-fold CV
and are averaged over 10 iterations.

Regarding females, the best performance was achieved
through the BAG classifier (88% ± 3.4), the KNN classifier
(87% ± 3.7) and the SVM classifier (86% ± 3.7). In both sub-
groups, no model clearly outperformed; hence, on the three best
models (BAG, KNN, SVM) we performed the hyperparameters
tuning. The considered parameters were: number-of-estimators
(2 to 50, steps of 2), distance metrics, K (from 2 to Nsamp/2),
C (10, 100, 1000) and gamma (0.1, 0.001, 0.0001), kernel, for
the three classifiers respectively. A SVM (C = 10, gamma =
0.001, kernel = RBF) and a KNN (k=7, Chebyshev distance)
emerged as the best models for the female and male subgroups,
respectively.

The final performance of the optimized models is reported
in Table IV. No impairment in performance is observed when
moving from validation data to completely new samples con-
tained in the test set, suggesting lack of overfitting and good
generalization. The different cardinality in the dataset classes
inevitably leads to low classification specificity. However, the
good overall performance suggests that this may be compen-
sated when testing the proposed algorithm on larger datasets.

Table V reports an overview of the features resulting from the
feature selection procedure, for the male and female subgroups.



(a)

(b)

Fig. 2: Performance comparison across the 7 model tested. (a)
Female subgroup, (b) Male subgroup.

V. CONCLUSIONS AND FUTURE WORK

This study presented a workflow for classifying SQ based on
vocal analysis, through a Telemedicine system and ML tech-
niques. Vocal signals were recorded on personal computers or
smartphones. Despite the lack of professional microphones and
task-training, the employed ML models proved efficient, with
F-1 scores of 88% and 85% for females and males, respectively.
Higher performance in the female subgroup may be due to the
intrinsic structure of the female vocal apparatus, which may be
more prone to vocal changes resulting from sleep disturbances,
as also noted in [8]. This study is not without limitations.
First of all, the target was identified through the sPSQI score,
which is a clinically validated index which, however, relies only
on subjective items. Future work will address this issue, and
include in the analysis objective parameters – e.g., actigraphy-
derived measures [20]. Finally, enhanced performances may be
obtained by enlarging the dataset and performing a stratified
analysis per age or physiological characteristics – e.g., sim-
ilar sleep-wake routine, comorbidities, other physiological or

TABLE IV: Classification performance of the optimized mod-
els. Average over 10 iterations employing a 5-fold CV are
reported.

Female Male

Validation Test Validation Test

Acc. 83 ± 4.4 86 ± 9.0 82 ± 6.0 84 ± 11.3

Pre. 84 ± 3.4 85 ± 8.2 83 ± 4.6 88 ± 11.1

F1 88 ± 3.0 91 ± 5.8 85 ± 4.8 87 ± 9.1

Sens. 96 ± 3.4 98 ± 6.0 91 ± 5.2 88 ± 13.3

Spec. 60 ± 12.6 55 ± 26.7 69 ± 10.5 77 ± 21.3

AUC 0.92 ± 0.03 0.76 ± 0.14 0.84 ± 0.07 0.82 ± 0.12

TABLE V: Overview of feature selected in the final model.

Female Male

12th MFCC; 10th 12th �MFCC 3rd Formant; 1st MFCC

5th, 6th, 10th-13th �� MFCC 3rd , 6th, 7th �MFCC

4th �PLP ; 5th, 8th �� PLP 1st PLP ; 1st � PLP

Spectral Flux; Spectral Roll-off point 1st �� PLP

demographic parameters.
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