
01 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Correlation between wearable inertial sensor data and standardised Parkinson's disease axial impairment measures
using machine learning / Borzi', L.; Manoni, A.; Zampogna, A.; Irrera, F.; Suppa, A.; Olmo, G.. - ELETTRONICO. -
2022:(2022), pp. 732-736. (Intervento presentato al  convegno IEEE 21st Mediterranean Electrotechnical Conference
(MELECON) tenutosi a Palermo nel 14-16 June 2022) [10.1109/MELECON53508.2022.9843018].

Original

Correlation between wearable inertial sensor data and standardised Parkinson's disease axial
impairment measures using machine learning

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MELECON53508.2022.9843018

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971866 since: 2022-09-30T06:54:02Z

IEEE



Correlation between wearable inertial sensor data
and standardised Parkinson’s disease axial

impairment measures using machine learning
Luigi Borzi’

Dept. Control and Computer Engineering
Politecnico di Torino

Turin, Italy
luigi.borzi@polito.it

Alessandro Manoni
Dept. Information Engineering, Electronics and Telecommunication

Sapienza University
Rome, Italy

alessandro.manoni@uniroma1.it

Alessandro Zampogna
Dept. Human Neurosciences

Sapienza University
Rome, Italy

alessandro.zampogna@uniroma1.it

Fernanda Irrera
Dept. Information Engineering, Electronics and Telecommunication

Sapienza University
Rome, Italy

fernanda.irrera@uniroma1.it

Antonio Suppa
Dept. Human Neurosciences

Sapienza University
Rome, Italy

IRCCS NEUROMED Institute
Pozzilli, Italy

antonio.suppa@uniroma1.it

Gabriella Olmo
Dept. Control and Computer Engineering

Politecnico di Torino
Turin, Italy

gabriella.olmo@polito.it

Abstract—Wearable sensors represent a valuable means for
monitoring motion signs and symptoms of Parkinson’s disease
(PD). In this paper, we explore the potential of a single inertial
sensor to yield information correlated to the patient’s subjective
perception of axial motion impairment during daily activities.
This latter is expressed using as a relevant metric the sum of
MDS-UPDRS items 2.11-2.13. Methods: thirty-one patients with
PD were enrolled in this study, and asked to perform a timed-
up-and-go test while wearing an inertial sensor on their thigh.
Several time- and frequency-domain features were extracted
from the inertial signals. They were fed to a random forest
regression model for the prediction of the axial impairment
metric. The model was optimized using 10-fold cross-validation
and performance were assessed using leave-one-subject-out test.
Results: Pearson correlation coefficient with the addressed metric
of 0.76 (0.86) and mean absolute error of 1.70 (1.52) were
obtained in patients under (not under) dopaminergic therapy.
Moreover, moderate to strong correlations were found between
the predicted score and some important disease progression,
axial impairment, and motor performance metrics. Conclusion:
a single wearable inertial sensor may be used for assessing motor
disabilities of patients with PD.

Index Terms—Parkinson’s disease, UPDRS, wearable inertial
sensors, gait, prediction, machine learning, random forest

I. INTRODUCTION

Parkinson’s disease (PD) is one of the most common
neurodegenerative disorders, affecting more than 1% of in-
dividuals over the age of 60 [1]. Cardinal PD motor signs

include rigidity, tremor at rest, bradykinesia (i.e. slowness of
movement) and postural instability [2], [3]. As a result, a
reduction in the quality of life and an increase in the risk
of falls in the PD population are observed [4].

The Movement Disorder Society - Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS) [5] is one of the most
used clinical rating scales, and evaluates various aspects of
the disease, including non-motor and motor experiences of
daily living and motor complications. The scale encompasses
six parts. Part I aims at assessing mental state, behavior,
mood, pain and autonomic functions. Part II is a patient
self-evaluation of several motor aspects of daily activities,
as perceived in the days preceding the interview. Part III is
the clinical evaluation of several motor skills. Part IV scores
possible complications such as dyskinesia (i.e. involuntary
movements) and fluctuations of several clinical conditions;
finally, part V and VI take into account the severity of the dis-
ease (Hoehn and Yahr scale - H&Y) and the disability degree.
A score between 0 and 4 is assigned to each item, according
to the severity of the symptom at hand, and following proper
guidelines.

The clinical evaluation, performed only within pre-
scheduled follow-up sessions, makes difficult for clinicians to
appreciate short-term variations of the patient’s disability level
and to plan proper therapy adjustments. Moreover, it is not



always indicative of the patient’s perception of their impair-
ment during daily activities. In fact, these latter are typically
self-evaluated by the patients themselves and reported in the
medical history via the MDS-UPDRS Part II.

Wearable technology has been widely used to assess PD mo-
tor disorders. The combination of inertial sensors and machine
learning (ML) techniques has been successfully employed for
the monitoring of specific motor aspects, including postural
stability [6], bradykinesia [7], dyskinesia [8], tremor [9], and
freezing of gait (i.e., a sudden motor block) [10], [11]. Some
authors investigated the use of inertial sensors to predict
specific UPDRS items [12]–[15].

In [13], 75 PDPs were equipped with a smartphone po-
sitioned on lower back. Inertial data during turning was ana-
lyzed, and time- and frequency-domain features were extracted
and fed to a linear discriminant analysis classifier. The model
output correlated with the UPDRS gait (r = 0.61, p < 0.001)
and postural stability (r = 0.72, p < 0.001) score. In [14],
inertial data from 75 patients with PD (PDPs) were recorded
during gait using a single inertial measurement unit (IMU) on
the waist. A support vector machine classifier was employed
for gait detection, and the power spectra in the 0–10 Hz
range was computed and used as output. The algorithm output
correlated with the UPDRS gait (r = 0.73, p < 0.001) and
postural stability (r = 0.42, p < 0.001) score. Recently, in [16],
31 PDPs were equipped with 3 inertial sensors on the lower
back and on each foot. Inertial data related to gait, turn, and
stance activities were analysed. The output of a multivariate
linear regression model correlated with the total UPDRS-part
III (r = 0.48, p = 0.007).

In [17], we used a single inertial sensor to estimate the axial
motor impairment of PDPs, clinically evaluated by means of
the postural stability and gait difficulty (PIGD) score. On the
other hand, in this study, we aim to establish the usefulness
of motion data taken using a single inertial sensor for the
prediction of axial impairment as self-reported by the patients
themselves during daily activities. These latter are related
to the sum of MDS-UPDRS items 2.11-2.13, taken as the
reference metric to evaluate the performance of the proposed
algorithm.

II. MATERIALS AND METHODS

This section describes the participants enrolled in this
study (sec. II-A), the data acquisition procedures (sec. II-B),
the preprocessing steps (sec. II-C), the implementation and
optimization of the prediction model (sec. II-D), and finally
the performance evaluation procedures (sec. II-E).

A. Participants

Thirty-one PDPs were enrolled from the Movement Dis-
order outpatient clinic of the Department of Human Neuro-
science, Sapienza University of Rome, Italy. Inclusion criteria
were: diagnosis of idiopathic PD; lack of dementia (i.e. Mini-
Mental State Examination—MMSE > 24); ability to walk
autonomously; lack of neurological or orthopaedic comorbidi-
ties possibly affecting gait. PDPs were clinically assessed in

both OFF (i.e. after L-Dopa withdrawal for at least 12 h) and
ON (1 h after L-Dopa intake) state of therapy. In addition,
L-Dopa equivalent daily dose (LEDD) was calculated for
each patient. The following standardised scales for clinical
assessment were used: H&Y, modified MDS-UPDRS part III,
MMSE. In order to further assess axial impairment, the PIGD
score was calculated, in both OFF and ON state of therapy.
Finally, the sum of MDS-UPDRS items 2.11-2.13 (getting
out of bed, car, or deep chair; walking and balance; freezing
of gait) was computed and addressed as the reference axial
impairment metric (AIM), as it is representative of the self-
perceived status during the several days preceding the MDS-
UPDRS interview. Demographic and clinical features of PDPs
enrolled in this study are summarized in Tab.I. Experimental
procedures were approved by the institutional review board
and performed according to the Declaration of Helsinki.

TABLE I
DEMOGRAPHIC AND CLINICAL FEATURES OF PATIENTS ENROLLED IN THE

PRESENT STUDY. H&Y: HOEHN AND YAHR SCALE. MMSE:
MINI-MENTAL STATE EXAMINATION. LEDD: L-DOPA EQUIVALENT
DAILY DOSE. PIGD: POSTURAL STABILITY AND GAIT DIFFICULTY

SCORE

Feature Mean value Range
Age (years) 71.9 57-84

Disease duration (years) 10.9 2-23
H&Y 2.4 1-4

MMSE 28.1 24-30
LEDD (mg) 819 300-2296

MDS-UPDRS III OFF 35.9 12-68
MDS-UPDRS III ON 27.9 7-64

PIGD OFF 7.3 0-18
PIGD ON 6.4 0-15

MDS-UPDRS 2.11-2.13 4.9 0-12

B. Data acquisition

PDPs performed a 7-m timed-up-and-go test, consisting of
getting up from a chair, walking back and forth for 7 meters,
and finally sitting down. Patients’ gait was video-recorded
through a camera and monitored by a single IMU placed and
fixed on the thigh through an elastic band. The IMU was
positioned on patients’ thigh so that when they were standing,
the y-axis represented the inverse gravity vector and x-axis
lies in the frontal plane. Hence, the angular velocity around
the x-axis allowed a good representation of the thigh motion
during linear gait. The STMicroelectronics system-on-board
prototype neMEMSi [18] was employed. It is equipped with
a 9-axis IMU (LSM9DS0), integrating a 3-axis accelerometer
and a 3-axis gyroscope; a Bluetooth V3.0 module (BT33); a
lithium-ion battery; an ultralow-power 32-bit microcontroller
(STM32L1). Sensors range was settable up to ±16 g and ±2000
dps for accelerometer and gyroscope, respectively, and sample
frequency up to 200 Hz. The device size (including battery)
is 25 mm × 30 mm × 4 mm. For the aim of the present
experiments, the range was set to ± 2 g and ± 245 dps for
accelerometer and gyroscope, respectively, with a sensitivity
of 61 µg/LSB and 8.75 mdps/digit. The sample frequency
was set to 60 Hz. Data recorded during the experiments were



transmitted in real-time to a personal computer through the
neMEMSi Bluetooth module and progressively saved in CSV
format. Data in CSV files were processed offline as described
in the next section.

C. Preprocessing
Raw readings from accelerometer and gyroscope were fused

using a Kalman filter [19] to estimate the sensor orienta-
tion. The sensor fusion algorithm iteratively integrates the
gyroscope readings to obtain an orientation estimate, and
corrects the generated slow-varying bias using the accelerom-
eter readings. In order to remove low-frequency trends and
high frequency noise, orientation, acceleration, and angular
velocity signals were filtered using a second-order zero-lag
band-pass Butterworth filter, with cutoff frequencies of 0.5 Hz
and 20 Hz. The orientation signal was further low-pass filtered
using a second-order zero-lag Butterworth filter, with a cut-off
frequency of 2 Hz. In order to select only the walking segments
of data, a continuous wavelet transform (CWT) approach was
implemented. A Morse mother wavelet was employed, due to
its similarity with the orientation signal pattern during walking.
The CWT analysis was performed in the frequency range
0.5–2 Hz, as stride time in PDPs was found to range from
0.71 s to 1.55 s [20]. The time-frequency representation of
the orientation signal, restricted in the 0-1 Hz range, and the
resulting walking bouts detection are reported in Fig.1.

Fig. 1. Time-frequency representation of orientation signal based on Continu-
ous Wavelet Transform (top); orientation signal and walking detection output
(bottom).

In each walking segment, initial contacts (ICs) were identi-
fied as the positive orientation signal peaks [21]. Only peaks
exceeding the signal standard deviation and at least 0.5 s
apart were selected. Final contacts (FCs) were identified as
the negative peaks following the ICs [21]. The acceleration,
angular velocity, and orientation recordings were segmented
into windows corresponding to strides (i.e. from an IC to the
subsequent IC), in order to prepare the data for the subse-
quent feature extraction step. From each stride, stride time,

stance time, and swing time were computed as ICi − ICi−1,
FCi−ICi, and ICi−FCi−1. In addition, 7 temporal-domain
features and 6 spectral-domain features were extracted from
all components of all inertial signals, as reported in Tab. II.
The final feature set was made of 120 features, considering 3
inertial signals (i.e. acceleration, angular velocity, orientation),
with 3 components each (i.e. x,y,z). The spectral features
were computed from the Fast Fourier Transform (FFT) of the
signal. The number of points NFFT in which to represent the
FFT was computed as in (1), where T̄stride is the average
stride time of PDPs [20] and Fs is the sample frequency. The
Shannon entropy Ex of the signal x was computed as in (2).

NFFT = T̄stride · Fs (1)

Ex = x log(x+ ϵ), ϵ = 10−5 (2)

TABLE II
FEATURES EMPLOYED IN THE PRESENT STUDY.

ID Feature Description
1 Min minimum value
2 Max maximum value
3 Mean average value
4 Range range of values
5 Std standard deviation
6 RMS root mean square value
7 Entropy Shannon entropy
8 DHf frequency value of the dominant harmonic
9 DHh amplitude of the dominant harmonic
10 DHw width of the dominant harmonic
11 Etot total signal energy
12 DHr energy in the dominant harmonic divided by Etot
13 Entropy Shannon entropy of the signal FFT

D. Prediction model

Training-test split. The initial feature set was divided in
training and test set, according to the leave-one-subject-out
(LOSO) test. It consists in iteratively training the model with
data from all subjects except one, which is used for testing
purposes. At each iteration of LOSO, the following processing
steps were performed.

Normalization. Training and test set were normalized using
the range normalization formula reported in (3). Each feature
(X) from the training and test set was normalized according
to the minimum and maximum value of that feature in the
training set.

X ′ =
X −min(Xtrain)

max(Xtrain)−min(Xtrain)
(3)

Dimensionality reduction. Pearson correlation coefficient
(r) of features from the training set was used to discard
redundant and non-significant features from both the training
and the test set. More specifically, features were discarded if
highly correlated with other features ( r > 0.9) and/or poorly
correlated with the target AIM (r< 0.4).

Feature selection. The F-test was used to rank features
in descending order of importance. The number of selected



features (nf ) was tuned in the range 1-Nf , where Nf is the
total number of features.

Regression model. A random forest regression model was
implemented in this study. It is a supervised ML algorithm
which averages predictions from multiple decision trees to
compute the final output. The number of learners (nl) is
an internal parameter to optimize. Additional parameters to
adjust include minimum leaf size (mls), maximum number
of splits (mns), and maximum parent size (mps). During the
optimization procedure, nl was tuned in the range 3-40, mls

in 1-30, mns in 1-20, and mps in 1-20.
Validation. A k-fold cross validation (CV) was imple-

mented. It consists in dividing the training set into k folds;
then, the model is iteratively trained using k-1 folds and
validated on the remaining fold. The procedure is performed k
times, to collect predictions from the entire training set. Data
from a given PDP was included either in the training or in the
validation set, in order to guarantee subject independence. In
this study, k was set to 10, resulting in data from 3 PDPs in
each validation fold.

Optimization. A grid search approach was used to optimize
the number of selected features and the model parameters.
For each combination of nf , nl, mls, mns, and mps, 10-
fold CV was performed, and root mean square error (RMSE)
was computed using predictions from the validation set. The
optimal parameters combination was identified searching for
the minimum RMSE value.

E. Performance evaluation

Model performance were evaluated using LOSO test. First,
given that different observations (corresponding to different
strides) from each PDP were available, they were averaged in
order to obtain a single measure for each PDP.

Performance were evaluated using the following metrics:
Pearson correlation coefficient (r) and the respective p-value,
RMSE, and mean absolute error (MAE). The metrics were
computed as in (4), (5), and (6), where yi is the ith label,
ŷi is the ith prediction, and ȳ is the average value of labels.
Moreover, the correlation plot was obtained from PDPs OFF
and ON therapy.

r =

√√√√1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)

(4)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷ)2 (5)

MAE =
1

N

N∑
i=1

|yi − ŷi| (6)

III. RESULTS AND DISCUSSION

Tab. III reports the performance of the proposed prediction
model, in terms of the Pearson correlation coefficient with the
AIM (i.e. the sum of UPDRS items 2.11-2.13), in patients
OFF and ON therapy.

The model provided better performance in PDPs OFF ther-
apy, as evident from all the performance evaluation metrics.
The Wilcoxon test demonstrated that predictions were signifi-
cantly different in PDPs OFF and ON therapy (p = 0.014). Fig.
2 reports the correlation plot for PDPs OFF and ON therapy.
The equation of the best fit line is provided, together with
the Pearson correlation coefficient and the sample size. Larger
correlation and smaller prediction errors can be observed in
PDPs OFF therapy.

TABLE III
PEARSON CORRELATION COEFFICIENT OF THE PREDICTION MODEL WITH

AIM (SUM OF UPDRS ITEMS 2.11-2.13), IN PDPS UNDER (ON) AND
NOT UNDER (OFF) DOPAMINERGIC THERAPY. RMSE: ROOT MEAN

SQUARE ERROR. MAE: MEAN ABSOLUTE ERROR.

Therapy r (p) RMSE MAE
OFF 0.86 (<0.001) 1.72 1.52
ON 0.76 (<0.001) 2.30 1.70

Fig. 2. Correlation plot for PDPs OFF (left) and ON (right) therapy.

Tab. IV reports the Pearson correlation coefficient and the
respective p-value for other prediction-clinical score pairs,
in PDPs OFF and ON therapy. The predicted score showed
moderate to strong correlation with disease progression (mea-
sured by the H&Y score), level of clinically evaluated motor
impairment (measured by the total UPDRS-III score), and
axial impairment (measured by the PIGD score). Again, larger
correlations can be observed for PDPs OFF therapy.

TABLE IV
CORRELATION BETWEEN PREDICTION AND VARIOUS CLINICAL SCORES,

FOR PDPS OFF AND ON THERAPY. H&Y: HOEHN AND YAHR SCALE.
PIGD: POSTURAL STABILITY AND GAIT DIFFICULTY SCORE.

Clinical score r (p-value)
OFF ON

H&Y 0.68 (<0.001) 0.48 (0.007)
UPDRS-III 0.58 (<0.001) 0.53 (0.002)

PIGD 0.79 (<0.001) 0.69 (<0.001)

Tab. V reports the final feature set used by the prediction
model for PDPs OFF and ON therapy. As can be observed,
features selected in PDPs ON therapy are a subset of those
used for PDPs OFF therapy. As the AIM worsens, minimum
and average value of inertial signals increase while movement
intensity (measured by the standard deviation) and the signal



energy (measured by the total energy and the amplitude of the
dominant harmonic) decrease.

TABLE V
FEATURE SELECTED IN THE OPTIMIZATION PROCEDURE, FOR PATIENTS

OFF AND ON THERAPY. α : ACCELERATION; ω : ANGULAR VELOCITY; θ :
ORIENTATION

Feature Component TrendOFF ON
Min ωx,θx θx increase

Mean ωx - increase
Std αy ,αz ,ωx,ωy ,θx ωx decrease

DHh αy ,αz ,ωy ,ωx ωx decrease
Etot αz ,ωx ωx decrease

It is worth noting that the regression model was trained
and validated to predict the sum of UPDRS items 2.11-2.13.
In addition to demonstrating very good prediction capability
on such metric, which represents the subjective perception of
motor impairment during the preceding days, the algorithm’s
output correlated with important clinical items. When com-
paring the present results with that of [16], larger correlation
with total MDS-UPDRS part-III (r = 0.58 and r = 0.53 in
PDPs OFF and ON therapy vs r = 0.48) and with PIGD score
(r = 0.79 and r = 0.69 in PDPs OFF and ON therapy vs r
= 0.61) were obtained in this study. Moreover, while in [16]
data from 3 sensors recorded during different activities (i.e.
gait, turn, stance) were analyzed, in this study only gait data
recorded using a single sensor were processed. Compared to
[17], correlation with PIGD is equal in patients OFF therapy,
while a lower correlation is observed in patients ON therapy
(r = 0.69 vs r = 0.75). However, we remark that the proposed
algorithm was not developed for PIGD prediction, as this does
not represent the main goal of this study.

IV. CONCLUSION AND FUTURE WORK

In this work, 31 patients affected by Parkinson’s disease
were enrolled. Standardised scales (H&Y, MDS-UPDRS part
II and part III, PIGD score) were used to assess their axial
impairment, postural instability, and gait difficulties during
daily activities. All the PDPs performed the same tests wearing
a single IMU on the thigh and correlations between inertial
data and scale scores were analyzed in both OFF and ON state
of therapy using regression algorithms. A set of 120 features
was extracted and divided into training and test sets according
to a LOSO test. Both feature selection and regression model
parameters were optimized. As a result, the model provided
large prediction correlations in the whole cohort of patients
for all the investigated scores, with larger values and smaller
errors in PDPs OFF therapy.
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