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Abstract: Porous 3D composite materials are interesting anode electrodes for single chamber microbial
fuel cells (SCMFCs) since they exploit a surface layer that is able to achieve the correct biocompatibility
for the proliferation of electroactive bacteria and have an inner charge transfer element that favors
electron transfer and improves the electrochemical activity of microorganisms. The crucial step is to
fine-tune the continuous porosity inside the anode electrode, thus enhancing the bacterial growth,
adhesion, and proliferation, and the substrate’s transport and waste products removal, avoiding pore
clogging. To this purpose, a novel approach to synthetize a 3D composite aerogel is proposed in
the present work. A 3D composite aerogel, based on polydimethylsiloxane (PDMS) and multi-wall
carbon nanotubes (MWCNTs) as a conductive filler, was obtained by pouring this mixture over the
commercial sugar, used as removable template to induce and tune the hierarchical continuous porosity
into final nanostructures. In this scenario, the granularity of the sugar directly affects the porosities
distribution inside the 3D composite aerogel, as confirmed by the morphological characterizations
implemented. We demonstrated the capability to realize a high-performance bioelectrode, which
showed a 3D porous structure characterized by a high surface area typical of aerogel materials, the
required biocompatibility for bacterial proliferations, and an improved electron pathway inside it.
Indeed, SCMFCs with 3D composite aerogel achieved current densities of (691.7 ± 9.5) mA m−2,
three orders of magnitude higher than commercial carbon paper, (287.8 ± 16.1) mA m−2.

Keywords: microbial fuel cells; nanostructured anode; 3D composite aerogel; polydimethylsiloxane;
multi-wall carbon nanotubes

1. Introduction

Alternative energy sources and technologies have progressively gained a crucial role
in the replacement of traditional fossil energy, enhancing the consequent environmental
healthiness [1,2]. In this scenario, bio-electrochemistry devices (BESs) can satisfy all re-
quirements of renewable energy and wastewater treatment, since these devices are able
to directly transduce the chemical energy contained in an organic mass into an electri-
cal energy, thanks to the metabolic activity of electroactive bacteria [3,4]. Electroactive
bacteria have been exploited for different technologies, such as renewable energy gen-
eration [5], wastewater treatment [6], biosensors [7], and bioremediation [8]. The main
bio-electrochemistry device that involves electroactive bacteria to obtain a power output is
known as a microbial fuel cell (MFC). The peculiarity of these devices is the potential for a
wide range of applications, such as in biosensors, bioremediation, wastewater treatment,
and energy generation.

In the last decades, many works in the literature focused their attention on all the
possible efforts to improve the MFCs’ performance in terms of power output, which re-
sults to be very low, leading thus to a discrepancy between the prospective technology
and real-world applications [9]. Among all possible technological components, such as
electroactive bacteria species, device architecture, ion exchange membrane, and organic
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substrates, bioelectrodes play a pivotal role in defining the MFCs’ performance [10,11].
Bioelectrodes, indeed, result to be the solid substrate on which the electroactive bacteria can
proliferate, thus inducing biofilm formation and the consequent exchange of electrons [12].
To guarantee these features, the physiochemical properties and structures of electrodes
are key factors that strictly affect the electron transfer at the biological/inorganic interface
and define the maximum available surface area for the electroactive bacteria’s attachment
and growth [10–12]. Carbon-based materials are considered one of the best-performing
anode electrodes, able to combine the biocompatibility properties for the proliferation
of microorganisms and the proper electrical conductivity, thus ensuring electron trans-
fer from electroactive bacteria and anode electrodes [9,10,12–14]. The lower electrical
conductivity of carbon-based materials, due to the single metal electrode, is widely bal-
anced by their capability to improve bacterial proliferation, inducing an optimized biofilm
formation [15,16]. Moreover, carbon-based materials exploit many other important prop-
erties, such as lightweight, cost-effective electrodes, a high surface area to volume ratio,
a chemically inert surface, and proper mechanical features, giving them all the required
features of a well-performing anode electrode [17]. Previous studies applied different
carbon materials as anode electrodes, such as carbon cloth, carbon paper graphite rod,
carbon sponges, and metal oxide foam with conductive coatings [18,19]. Among them, a
particular interest for porous electrodes has arisen due to the high surface area capable of
improving the growth, adhesion and proliferation of bacteria. Nevertheless, pore clogging
frequently occurs during the phase of biofilm formation, when the porous electrodes are
implemented [18,19]. Consequently, the transport of substrates and waste products inside
3D electrodes are largely limited, reflecting a low MFC performance. The random, long-
distance, zig-zag ion migration paths of disordered electrode porous structure can hinder
the rate of substrate transport and waste removal [20,21].

Several works in the literature investigated the fabrication of customizable 3D elec-
trodes, characterized by a defined geometric structure and known channel sizes, confirming
the potential for fabricating electrodes via 3D printing technology. This technology, how-
ever, is not sufficient to completely overcome the main limits of 3D electrodes, such as
the low specific area available for bacteria adhesion, maintaining a low power output
density [22–25]. Furthermore, in recent years, composite anode electrodes have attracted
great interest [17], since these electrodes are characterized by two interconnected ele-
ments/portions: a polymeric layer suitable for creating the correct biocompatibility for
bacterial proliferation and a conductive filler capable of enhancing the electron transfer
from electroactive bacteria to the anodic surface. In this scenario, several works in the
literature [26–34] focused their attention on the development of composite anodes, which
involved an intrinsic conductive polymer, such as polyaniline (PANI) [26,27], polypyr-
role [28], or carbon black/stainless steel mesh composite electrode [29] as a surface layer,
while carbon nanotubes (CNTs) played a key role not only in improving electron transfer
from the microorganisms to the electrode surface, but also in inducing an improved nanos-
tructured habitat able to increase bacterial growth, as discussed in the literature [30–35].
During the last years, furthermore, CNTs showed an emerging and interesting application
as anodes in MFCs since they exhibit unique properties in terms of structural features, and
mechanical, electrical, physical, and chemical characteristics [31,32]. As demonstrated in
the literature [32–34], CNTs were shown to be fundamental to the improvement of overall
MFC performance thanks to their capability to enhance the electrochemical activity of
microorganisms [32] and to create a proper electron pathway, thus enhancing their transfer
from microorganisms to the anode surface.

Concerning the possible implementation of a 3D porous composite electrode with
a high surface area, which is suitable to improve the overall device performance, the
main aim of the present work was to implement a 3D porous composite anode, based
on polydimethylsiloxane (PDMS) and multi-wall carbon nanotubes (MWCNTs). In this
scenario, PDMS was involved as a biocompatible and flexible layer, able to improve
bacterial proliferation on the anode electrode, showing however, an insulating behavior
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from an electrical point of view, while MWCNTs were employed as a conductive filler
able to create proper electron pathways to optimize the electron transfer from electroactive
bacteria to the anode surface, granting also the anode electrodes their unique properties,
and thus improving the electrochemical activity of the microorganisms [32]. In the present
work, commercial sugar was used as a removable template to induce and modulate a
continuous porosity inside the material, giving it all the features of aerogel materials, such
as a very light weight, low bulk density, high porosity, and a consequent very high specific
surface area, leading to a final 3D-like composite aerogel [36,37].

We demonstrate a high-performance bioelectrode, which showed a 3D porous struc-
ture characterized by a high surface area typical of aerogel materials, combined with the
composite features. Concerning the MFCs’ overall performance reached with composite 3D-
like aerogel, a maximum current density of (691.7 ± 9.5) mA m−2, which is three orders of
magnitude higher than commercial carbon paper anodes (close to (287.8 ± 16.1) mA m−2),
was obtained. With the main purpose of demonstrating that overall performance reached
with 3D composite aerogel could be comparable with several optimized composite anode
electrodes based on CNTs, a volumetric power density was defined by normalizing the
maximum achieved power output for the internal volume of our device (equal to 12.5 mL).
SCMFCs with 3D composite aerogel reached a maximum volumetric power density of
(3.98 ± 0.06) W m−3, resulting in a comparable performance to that achieved with var-
ious CNT-based anode materials, as summarized in Table 1.

Table 1. Several composite anode electrodes based on CNT investigated in the literature and devel-
oped as high-performing anode electrodes in microbial fuel cells (MFCs).

Composite Materials as Anode in MFCs Overall Device Performance Reference

Carbon nanotube (CNT)/polyaniline
(PANI) was applied as composite anode

A maximum current density of
100 mA cm−2, in correspondence to
which a maximum power density of
42 mW m−2, was achieved

[26]

A composite anode, based on carbon
nanotube (CNT)/polyaniline (PANI), was
involved to modify a stainless steel mesh

A maximum power density of
48 mW m−2 concerning anode
performance

[27]

Composite anode made of
polypyrrole-carboxymethyl cellulose
(PPy-CMC) composite films to cover the
nitrogen-doped carbon nanotubes sponge
(N-CNTs)

A maximum volumetric power
density of 4.88 W m−3 [28]

A composite electrode based on carbon
black/stainless steel mesh (CB/SSM)

A maximum projected current
density close to
10.07 ± 0.88 mA cm−2

[29]

3D porous carbon structure obtained by 3D
printing technology with UV-curable resin.
Final 3D structures were pyrolyzed at a
temperature of 800 ◦C under N2
atmosphere

Achieved maximum power density
of 233.5 ± 11.6 mWm−2 [33]

3D porous carbon sponges prepared
through a pyrolysis treatment of
nanostructured seitan composite, based on
Fe-MIL-88B-NH2

A maximum power density, defined
by normalizing the power output to
internal device’s volume, was close
to 11.21 W m−3 and a current
density of 23.11 A m−3

[34]

2. Methods and Materials
2.1. Materials and Nanofibers Synthesis

With the main aim of synthetizing a 3D composite-like aerogel, a commercial sugar
(refined form of sucrose, primary example of disaccharide) was involved as the template
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to generate a hierarchical porous structure inside the materials. With this strategy, we
proposed two different samples: (i) 3D PDMS aerogel, obtained by pouring over the sugar
a mixture of PDMS (purchased from Sylgard 184, Dow Corning Co., Midland, MI, USA)
and its crosslinker with a weight ratio of 10:1, representing the standard ratio for both
components, to provide desirable mechanical properties in terms of flexibility and an
optimum biocompatibility for electroactive bacteria growth; and (ii) 3D composite aerogel
obtained by pouring over the sugar a mixture containing PDMS, its crosslinker, and a
certain amount of multi-wall carbon nanotubes (MWCNTs) (obtained from Nanocyl).

In this case, the minimum amount of MWCNTs, close to 10 wt%, defined with re-
spect to the amount of commercial elastomer PDMS, was added to PDMS mixed with
its crosslinker (weight ratio of 10:1). The amounts of MWCNTs were selected to obtain
a proper electrical conductivity of final materials, in line with all works reported in the
literature [26–35].

The mixture was properly stirred for a couple of minutes and the resulting air-bubbles,
trapped during the mixture, were removed by imposing gentle vacuum conditions. This
composite-based mixture was subsequently poured over the sugar, and it was infiltrated
into the porous structure by capillary force. Consequently, the size of the pores and porosity
were directly affected and tuned by the granularity of sugar. The final 3D composite aerogel
was obtained through a curing process, implemented in ambient condition at a temperature
of 100 ◦C for 15 min, and the sugar was subsequently dissolved in hot water bath under
sonication for 1 h. Finally, the 3D composite aerogel was dried overnight at room temperature.

2.2. Characterizations and Measurements

Morphological properties were evaluated by implementing a field effect scanning
electron microscope (FESEM, ZEISS Merlin, Milan, Italy). With the main goal of defining
how the granularity of sugar and the presence of conductive filler can affect the hierarchical
distribution of porosity inside the materials, FESEM images were processed with imaging
software (ImageJ, online applet, National Institutes of Health NIH,) Bethesda, (US-MD). As
reported in our previous work [38], final porosity of all samples was defined taking into
account the density of 3D composite aerogel ρ3D−areogel and the density of a bulk substrate
made of the same materials, ρbulk, according to Equation (1)[(

1 −
(

ρ3D−areogel

ρbulk

))
∗ 100

]
(1)

We compared the porosity distribution for all obtained samples, 3D PDMS aerogel
compared with 3D composite aerogel, with the main purpose of verifying the effect of
MWCNTs, introduced as a conductive filler, on porosity distribution, leading also to the
evaluation of how the porosity can affect the lightening properties of samples.

The electrical conductivity of 3D PDMS aerogel and 3D composite aerogel was mea-
sured to confirm the pivotal role of MWCNTs in increasing the electrical conductivity,
which must be such as to allow its application as an anodic electrode. All electrical char-
acterizations (Keithley 2635A, multimeter unit) were performed by employing different
voltage values (V) among the samples, leading to measurement of the related current
(I) through the material. To implement electrical characterizations, a specimen with a
form of a rectangular parallelepiped was defined for two samples, 3D composite aerogel
compared with 3D composite bulk, which presents the same polymeric composition without
porosity distribution inside it. Both of the two materials were compared with a commercial
carbon-based material (carbon paper, CP), commonly showing high performance in terms
of electrical conductivity.

2.3. SCMFC Devices and Working Operation

An open-air single chamber MFC (SCMFC) was used as thoroughly reported in our
previous work [39,40]. The MFCs’ devices were fabricated by 3D printing technology
(OBJET 30), and they were based on an intermediate compartment that maintained a
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constant distance between anodic and cathodic parts. The single chamber configuration
provided for a common electrolyte, containing 1 g L−1 of sodium acetate used as a carbon
energy source and other compounds suitable for the optimal operation of these devices.
All these compounds were based on ammonium chloride (0.31 g L−1 of NH4Cl) used as
a nitrogen source to ensure bacterial growth, and phosphate buffer solution (PBS) able to
maintain a neutral pH (based on 0.13 g L−1 of potassium chloride, 4.28 g L−1 of sodium
phosphate dibasic, and 2.45 g L−1 of sodium phosphate monobasic monohydrate). The
inner volume of electrolyte was equal to 12.5 mL, while both electrodes showed a geometric
area close to 5.76 cm2.

With the main aim of evaluating the SCMFCs’ performance, two different anodes
electrodes were proposed: 3D composite aerogel based on PDMS/MWCNTs compared
with a commercial carbon-based material (carbon paper (CP) purchased from Fuel Cell
Earth), used as reference material. For all devices, commercial cathode electrodes were
employed, as proposed in the literature [40,41]. Specifically, the cathode was made of
carbon-based material, which showed on the outer side a gas diffusion layer, able to ensure
oxygen diffusion from outside to inside the device, and on the inner side, a platinum-based
catalyst was properly deposited. This catalyst layer was a conductive paste of platinum
(Pt/C, 0.5 mg/cm2, from Sigma Aldrich, Burlington, MA, USA) and 5 wt% of Nafion
(Sigma Aldrich, Burlington, MA, USA) was used as a binder. Titanium wires (Goodfellow
Cambridge Limited, Huntingdon PE29 6WR, United Kingdom UK) were threaded along
both anode and cathode electrodes to establish good electrical contact.

To obtain sufficient data for statistical analysis, we implemented 2 SCMFCs for each
anode electrode; 2 SCMFCs with 3D composite aerogels and 2 SCMFCs with CP, used as
a reference anode, were studied. Another important aspect of these experiments was the
electroactive bacteria involved, which were a mixed consortium derived from seawater
sediment. All devices worked under fed-batch mode, in which all electrolyte was replaced
with new when a voltage value tending to zero, was registered/recorded. Moreover, to
evaluate the devices’ overall performance, anodes and cathodes were connected to an
external load of 1000 to Ω, and the voltage trends were continuously measured using a
multi-channel data acquisition unit (Agilent 34972A, Leini, Italy). With the main purpose
of evaluating how 3D composite aerogel can affect the internal resistances of the SCMFCs,
electrochemical impedance spectroscopy (EIS) was implemented on all whole devices.
EIS was performed by superimposing a sinusoidal signal with an amplitude of 25 mV
in the frequency range from 200 mHz to 150 kHz. This electrochemical characterization,
moreover, was implemented when all whole devices produced the maximum voltage
output, corresponding to an open-circuit voltage (OCV) condition [40–42].

3. Results and Discussion

In the present work, 3D composite aerogels based on PDMS and MWCNTs were fabri-
cated by involving a commercial sugar as the template to generate a hierarchical porous
structure inside the materials, giving them the intrinsic properties of aerogels, such as high
porosity, low density, and light weight. A standard ratio of 10:1 of PDMS and its curing
agent was implemented, providing the desirable mechanical properties and an optimum
biocompatibility for electroactive bacteria. Moreover, a minimum amount of 10 wt% of
MWCNTs was added to reach the proper electrical conductivity [26–35] to guarantee an
effective electron transfer from the bacteria to the anode surface. The 3D composite aerogels
allowed for the combination of all properties required to reach an anode material suitable
for improving the electrochemical activity of the microorganisms, thus enabling a biofilm
formation where the electroactive bacteria can directly transfer the produced electrons to
the anode surface (see Figure 1).
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Figure 1. Representation of the scheme implemented to synthetize: (a) 3D PDMS aerogel, obtained by
pouring the sugar over the mixture of PDMS and its crosslinker with a weight ratio of 10:1; (b) 3D
composite aerogel, based on PDMS and 10 wt% MWCNTs, involving sugar as a porosity template and
starting from a bulk layer of PDMS and MWCNTs; (c) scheme of the importance of 3D composite
aerogel properties in the optimization of biofilm formation, as reported in the literature [43] and a
real figure of SCMFC devices, where 3D composite aerogel was applied as anode electrode.

Indeed, PDMS was selected for its high biocompatibility to ensure bacterial prolifera-
tions, and good chemical and mechanical stabilities, making it suitable to apply as anodic
electrodes in SCMFCs. Moreover, the selection of MWCNTs as the conductive filler was
made to ensure a proper electrical conductibility of the 3D composite aerogel, which must
guarantee a proper electron transfer from the biofilm to the anode electrode surface inside
the bio-electrochemical devices.

3.1. Morphological Characterization

With the main aim of demonstrating the capability to obtain a 3D porous electrode com-
bined with a high surface area, a morphological characterization was performed. Figure 2
reports electron microscopy characterizations and morphological properties allowing for
the evaluation and comparison of the porosity distribution for each of the 3D aerogels,
3D PDMS aerogels (Figure 2a) compared with 3D composite aerogels (Figure 2b). Significant
differences in pore distributions between two samples can be highlighted by analyzing the
same figures. Indeed, 3D composite aerogels (Figure 2b) are characterized by a hierarchical
continuous porosity, suitable for ensuring a high surface area to volume ratio, playing a
pivotal role in improving bacterial growth, and simultaneously avoiding pore clogging, a
phenomenon that can occur when 3D porous electrodes are used in bio-electrochemical
devices. Moreover, 3D composite aerogels showed pores with sizes in the range of several tens
of micrometers (56 ± 13 µm), which considerably affects and favors microorganism prolif-
eration and penetration inside the samples differently from the 3D PDMS aerogels, which
showed a lower porosity distribution inside. All morphological properties, highlighted
by FESEM pictures, were confirmed by the definition of porosity percentage, defined by
analyzing all images and applying Equation (1), as reported in Figure 2c.
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Figure 2. Morphological properties of (a) 3D PDMS aerogels; (b) 3D composite aerogel, based on
PDMS/MWCNTs; and (c) density and porosity trends characterizing all samples, 3D PDMS aerogels
and 3D composite aerogels, respectively.

It was possible to observe the correlation between the porosity distribution, which
increased when MWCNTs were added, and the density of final samples, whose trend was
shown to be opposite, decreasing with the addition of MWCNTs because of the increased
porosity. The 3D composite aerogels were characterized by a porosity distribution that was
double that obtained with 3D PDMS aerogels, ensuring a decreasing of the density and
confirming a final 3D sample lighter than the 3D PDMS aerogel.

3.2. Electrical Characterization

A careful evaluation of the final electrical conductivity of 3D composite aerogel was
carried out to determine how the aerogel structures can affect the electrical conductivity
compared with the one obtained with the 3D composite bulk (PDMS/MWCNTs) sample. In
the present work, to perform the electrical characterization, a specimen in the form of a
rectangular parallelepiped was defined, and all characterizations were implemented onto
10 samples for each structure, aerogel, and bulk, respectively. The specimen was character-
ized by a length of 2 cm, a depth of 0.4 cm, and a thickness of 0.1 cm. Furthermore, with the
main purpose of comparing the electrical conductivity obtained with a 3D composite bulk
and a 3D composite aerogel containing PDMS as polymeric matrix and 5 wt% of MWCNTs as
conductive filler, a specimen with the same dimensions was used. Figure 3 shows how the
aerogel structure presented a higher electrical conductivity, close to (26.5 ± 2.8) mS cm−1,
which results to be two times higher than that of (10.6 ± 2.5) mS cm−1 obtained with 3D
composite bulk samples. However, on the contrary, 3D composite electrical conductivity was
found to be comparable with that reached when carbon paper (CP, (23.6 ± 2.5) mS cm−1)
was used as the reference anode electrode; this is commonly characterized by high perfor-
mance in terms of electrical conductivity.
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Figure 3. Electrical conductivity obtained for each sample: 3D composite bulk (purple rectangle),
carbon paper (CP) (grey rectangle), and 3D composite aerogel (magenta rectangle). The 3D composite
bulk and 3D composite aerogel were both made of PDMS and 5 wt% of MWCNTs. To obtain these
results, all electrical characterizations were performed on 10 samples for each structure.

These latter results, further confirmed the quality of results in terms of electrical
conductivity, leading thus to open the doors for 3D composite aerogel as anode electrodes
in SCMFCs

3.3. Performance of Bio-Electrochemical Devices

All of the above results confirmed that 3D composite aerogels are a good candidate to be
applied as anodic electrodes for SCMFCs, since they satisfy the mandatory properties that
an anode electrode should have for this application. Furthermore, all results demonstrated
that 3D composite aerogel showed a high continuous porosity, which is suitable to improve
the bacteria proliferation and mass transport, and good electrical conductivity, which is
important to guarantee an electrical pathway for the electrons released from electroactive
microorganisms. The overall performance reached with 3D composite aerogels as anode
electrodes was compared with carbon-based materials (carbon paper), used as reference
material. Contrarily, due to the limits attributed to the low porosity of anode electrodes
thoroughly investigated by many works in the literature [16,38], in the present work, 3D
composite bulk material was not applied as an anode electrode.

Figure 4 demonstrates the analysis of all current density trends obtained with all
SCMFCs devices. The current density was defined by normalizing the current values with
respect to the geometric area, equal to 5.76 cm2.

The maximum current density reached with 3D composite aerogel, (691.7 ± 9.5) mA m−2,
was almost three orders of magnitude higher than that of the carbon paper anodes used as
the reference anode electrode (close to (287.8 ± 16.1) mA m−2). Moreover, with the main
purpose of demonstrating the effective role of 3D composite aerogel in improving the overall
SCMFCs performance, a volumetric power density was defined by normalizing the maxi-
mum achieved power output for the internal volume, equal to 12.5 mL. SCMFCs with 3D
composite aerogel reached a maximum volumetric power density of (3.98 ± 0.06) W m−3,
which was comparable with the performance achieved with various CNT-based anode
materials [26–35], as reported in Table 1.
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Improved overall SCMFC performance, defined as current density trends monitored
over time when 3D composite aerogel was involved, was confirmed by polarization curves
obtained by implementing linear sweep voltammetry (LSV). Figure 5 displays the maxi-
mum power density, close to 60 mW m−2, reached by 3D composite aerogel, which was three
times higher than that obtained with the reference anode electrode, close to 20 mW m−2.

The same considerations can be made by analyzing short-circuit current densities,
equal to 200 mA m−2 for 3D composite aerogel and equal to 50 mA m−2 for reference
anode electrodes.

Furthermore, with the main purpose of demonstrating how the continuous porosity
combined with good electrical conductivity played a pivotal role in creating an optimal
habitat for electroactive bacterial growth, favoring microorganism penetration into the
electrode, and improving the feed’s diffusion rate, electrochemical impedance spectroscopy
was performed to thoroughly investigate all electrochemical interfaces. EIS was performed
to define the internal resistance (Rct) related to the charge-transfer of different anode
electrodes. The Nyquist plot, represented in Figure 6, demonstrated that SCMFCs having
3D composite aerogel as anode electrodes were characterized by a lower impedance value
than those obtained with carbon paper used ed as anodic reference material. As reported
in the literature [42], through the analysis of Nyquist plots of impedance obtained for
SCMFCs, four different characteristics can be defined: (i) ohmic resistance, (ii) charge-
transfer resistance defining the cathode interfaces created by the presence of the catalyst
layer, (iii) charge-transfer resistance due to the anode interfaces, and (iv) resistance related
to diffusion in the electrolyte solution. Since in this experimental configuration, all SCMFCs
contained the same materials except for the anode electrode, it was possible to declare that
a lower total cell impedance can be attributed to the presence of 3D composite aerogel as the
anode electrode in SCMFCs. The value of Rct for 3D composite aerogel, equal to 30 Ω, was
quite smaller than that obtained with CP as the anode electrodes, which was equal to 47 Ω.
A smaller Rct value corresponds to good electron transfer, ensured by the presence of a
conductive filler, leading thus to exploit the active role of MWCNTs.
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4. Conclusions

In the present work, the crucial role of improved anode electrodes to enhance the
performance of MFC was demonstrated. It was possible to confirm the key role of a 3D-
composite anode electrode, exploited through the development of 3D composite aerogels.
We demonstrated the capability to induce continuous porosity inside the final material by
pouring a composite mixture, based on PDMS, its curing agent, and 10 wt% of MWCNTs
onto the sugar, which acted as a removal template. To this purpose, 3D composite aerogels
combined a high continuous porosity (close to 60% of whole sample), a light weight ensured
by a low density, and a good electrical conductivity of (26.5 ± 2.8) mS cm−1.

3D composite aerogels have huge potential as anode electrodes in SCMFCs, since these
kinds of materials satisfy all those properties, which are deemed mandatory for anode
electrodes, such high continuous porosity, a high surface area capable of improving bacterial
growth, adhesion, and proliferation, and a good electrical conductivity to offer a proper
pathway for electrons from the microorganisms to the outside. SCMFCs with 3D composite
aerogels achieved a maximum current density of (691.7 ± 9.5) mA m−2, three times higher
than that reached with a commercial carbon-based electrode. Furthermore, this value was
reached by a high-performing anode, suitable for inducing biofilm formation derived from
an environmental inoculum, leading thus to ensure a decreasing cost of synthesis and an
easier fabrication process.
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