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Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder,
affecting more than 10 million people worldwide. Being a movement disorder, many
motor symptoms manifest at different stages of the disease, including bradykinesia
(slowness of movement), postural stability, gait impairment, and freezing of gait
(FOG - a sudden motor block). PD represents a very complex disorder for several
reasons, including the difficulty of early diagnosis, the heterogeneity in the man-
ifestation of symptoms, their evolution, and their fluctuations throughout the day.
For these reasons, the longitudinal monitoring of PD, possibly performed in daily
life conditions, is fundamental for achieving a global picture of the disease and its
evolution, allowing the planning of proper therapy adjustments. A large spectrum
of technological solutions is available for the accurate and precise evaluation of
motor impairment in PD. However, most of them are costly and can be used only in
laboratory settings. In this context, wearable motion sensors represent a valuable
and ecological solution for collecting and processing movement data, allowing to
continuously monitor PD in free-living settings. Moreover, the combination of
wearable sensors and machine learning (ML) methods provides great opportunities
for an accurate and objective evaluation of motor impairment in PD.

This present thesis aims to provide new opportunities for monitoring PD using
wearable sensors and ML. A wide range of sensor settings and signal processing,
ML, and deep learning (DL) methods for PD assessment are described and discussed
in this study. Indeed, their use for the evaluation and prediction of specific motor
symptoms is described.

Overall, motion data were recorded from more than 200 subjects with PD,
using different experimental protocols for different objectives. Specifically, this
thesis describes and discusses methods for the automatic evaluation of bradykinesia,
estimation of postural stability and gait impairment, and detection and prediction of
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FOG. Both dedicated hardware and sensors embedded in commercial smartphones
were used for data collection. Different signal processing, ML, and DL algorithms
were designed to maximize performance while maintaining a low computation
burden. When evaluating lower-limb bradykinesia using a single smartphone, results
demonstrated that the correlation between the computer scoring system and the
average clinical score was larger than the best agreement among four independent
raters. This suggests that, for specific tasks, computer methods may overcome inter-
rater variability. When assessing postural stability using a smartphone during simple
activities, such as stance and turning, results suggested that it is possible to obtain a
gross evaluation of the postural response in PD. This information may be important
for predicting the risk of falls and taking proper countermeasures. The combination
of a single inertial sensor and DL methods provided promising performance in FOG
detection, even predicting FOG before its actual occurrence. The large number of
participants involved in the analysis and the heterogeneity of activities executed
by subjects strongly enforce the validity of the obtained results. Moreover, the
high-speed and low-memory characteristics of the developed algorithm suggest a
possible real-time implementation of the detection model in a stand-alone wearable
device. The designed solution can be used for triggering some kind of auditory or
tactile cue for reducing FOG or even preventing its occurrence.

Overall, the results suggest that it is possible to use simple and non-invasive
technology for monitoring several motor aspects of PD. The designed solutions can
be used during the normal follow-up clinical visits for a more objective estimation of
motor symptoms severity. Moreover, they can be used to remotely assess the disease,
providing precise and continuous measures describing the presence, severity, and
fluctuations of PD motor signs.

Future studies will make use of even less obtrusive wearable solutions (e.g.,
smart clothes), in order to maximize patient compliance, thus allowing long-term
monitoring of PD. Moreover, data will be collected and analyzed in semi-supervised
and non-supervised environments, in order to evaluate the robustness of the designed
algorithms in heterogeneous and complex real-life scenarios.
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Chapter 1

Introduction

1.1 Parkinson’s Disease

Parkinson’s disease (PD) is a chronic, progressive, neurodegenerative disorder af-
fecting more than 10 million people worldwide [1]. PD involves both motor and
non-motor symptoms, associated with the degeneration of dopamine neurons, mainly
in the substantia nigra pars compacta region of the brain stem (Figure 1.1 left). Due
to its involvement in motor control, executive functions, gratification, and motivation,
an impaired dopamine production (Figure 1.1 right) produces delayed and uncoordi-
nated movements, deficits of attention, altered mood (e.g., anxiety, depression), and
psychiatric disorders, severely affecting the quality of life (QoL) of patients with PD
(PwPD) [2]. The main PD symptoms include bradykinesia, rigidity, tremor, and pos-
tural instability [3]. However, several non-motor symptoms (e.g., sleep disturbances,
psychosis, depression, dementia, autonomic and gastrointestinal dysfunction) may
occur as well [4, 5]. Current PD treatments aim to increase dopamine levels, with
Levodopa (L-Dopa) being the most used one. Although this drug temporally reverts
the symptoms, it does not prevent disease progression [6], and it can even produce
motor complications such as dyskinesia (i.e., involuntary movements) [2].

Approximately 0.3% of the general population is affected by PD, and this value
rises to 3% for subjects older than 65 years, being aging a major risk factor [8]. The
mean age at onset is 55 [9], the mean age at diagnosis is 70 [10], and the incidence1

ranges from 0.5 per 100,000 in the 30-40 age range to 120 per 100,000 in the oldest

1number of new cases per population at risk in a given time period
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Fig. 1.1 Substantia nigra and dopamine reduction in Parkinson’s disease (adapted from [7]).

population (over 70) [10]. Besides aging, the male sex is the most prominent risk
factor for developing PD at all ages and nationalities [11]. Male-to-female ratios for
incidence rates range from 1.37 to 3.7 and generally increase with age, suggesting
that twice as many men than women suffer from PD [10]. It has been observed
an increase of almost 50% in the incidence of both PD and Parkinsonism of all
types over the 30-year period from 1976 to 2005, particularly in men older than 70
years. This trend needs to be interpreted with caution, as it may be due to improved
access to care or increased awareness of signs and symptoms of Parkinsonism by
physicians [12]. PD is typified by a degenerative process that affects dopaminergic
neurons in the substantia nigra. How the degenerative processes damage both the
nigrostriatal system and other brain regions are not completely clear. Literature
studies suggest two major hypotheses regarding the pathogenesis of the disease. The
first one indicates misfolding and aggregation of proteins to provoke the death of
dopaminergic neurons [13], while the other proposes mitochondrial dysfunction and
the consequent oxidative stress [14], including toxic oxidized dopamine species. The
pathological hallmarks of PD include loss of nigrostriatal dopaminergic neurons and
the presence of intraneuronal proteinaceous cytoplasmic inclusions, named Lewy
bodies (LB) [9]. LB are α-synuclein inclusions composed of neurofilaments and
proteins responsible for proteolysis. These include ubiquitin, a protein playing a
primary role in targeting other proteins for clearance. Mutations in the α-synuclein
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gene are responsible for some familial forms of PD in which LB are also observed
[5]. It has been shown that Parkin2 facilitates the binding of ubiquitin (ubiquitination)
to other α-synuclein interacting proteins, leading to the formation of LB [15]. The
ubiquitin-proteasome system (UPS) is thought to be linked to the development
of cell death, as it plays an important role in intracellular proteolysis and several
intracellular processes that maintain the viability of cells. Failure of the UPS leads
to the abnormal aggregation of proteins including α-synuclein, which represents a
major component of LB. The link between UPS and neurodegeneration has been
reinforced by the discovery of mutations in genes that code for several proteins
belonging to UPS in PD [5].

1.1.1 Symptoms

Figure 1.2 lists motor and non-motor signs of PD. The four cardinal symptoms of
PD include tremor at rest, rigidity, bradykinesia, and postural instability.

Fig. 1.2 Motor and non-motor aspects of Parkinson’s disease (adapted from [16]).

Also, flexed posture and motor blocks have been included among classic char-
acteristics of Parkinsonism, with PD being the most common form [2]. Non-motor

2component of a multiprotein E3 ubiquitin ligase complex which in turn is part of the ubiquitin-
proteasome system
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symptoms are often present before the diagnosis, impair with disease progression,
and contribute to severe disability, impaired QoL, and reduced life expectancy.
Non-motor symptoms are often not well recognized and consequently, inadequately
treated [17]. Some of them (e.g., depression, constipation, pain, and sleep disorders)
can be improved with nowadays treatments, while others need the administration of
non-dopaminergic drugs.

Motor

Tremor is an involuntary, rhythmic muscle contraction leading to shaking movements
in one or more parts of the body. In most cases, tremors are prominent in the distal
part of an extremity. Tremor frequency ranges from low (4–5 Hz) to high (8–10
Hz)[18]. Clinically, tremor is observed in 75% of PwPD, and it can manifest in
different forms. Tremor at rest is one of the PD cardinal signs. It is often asymmetric
and it shows moderate amplitude and frequency ranging from 4 Hz to 6 Hz. It is
caused by an agonist-antagonist alternate contraction pattern [19], and it typically
disappears with action and during sleep [2]. Reemergent tremor represents an action
tremor that manifests a few seconds after the transition from rest to posture and
has a frequency content similar to that of a rest tremor. Postural tremor is more
prominent and disabling than rest tremor and sometimes is the first manifestation of
PD [20]. Its pathophysiology is linked to altered activity in the basal ganglia circuit,
which is affected by dopamine neurons breakdown, and the cerebellum-thalamo-
cortical circuit, which is also involved in many other tremors [18]. Tremor is not
correlated with other PD motor symptoms, such as bradykinesia and rigidity, and
several studies indicate tremor to be a marker of benign PD [21]. When the drug
therapy is not effective, both thermocoagulation and deep brain stimulation provide
good to excellent tremor control [18].

Rigidity is defined as an increased resistance during passive movement of a limb
[22] and is one of the principal sign of PD. PD rigidity is marked by an increased
muscle tone, increased resistance to stretching and reduced distension to passive
movement [23]. The increase of rigidity during voluntary movement of other body
parts and during stretching is a feature that helps differentiate PD rigidity from
spasticity, with this latter worsening during fast displacement [24]. There is no
proven correlation between dopamine deficiency and rigidity [23]. The mechanism
underlying PD rigidity may include changes in the passive mechanical properties of
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joints, muscles, and tendons, and abnormalities in peripheral sensory inputs that may
influence the response to muscle stretch [25].

Bradykinesia represents the slowness of movement and is the symptom that
better correlates with dopaminergic deficiency in PD [26]. Akinesia and hypokinesia
refer respectively to poor spontaneous movements (e.g., in facial expression) or
associated movement (e.g., arm swing during walking), and to the low amplitude
of the movement itself [27]. Potentially, bradykinesia could be due to slowness in
programming or executing movements [28]. However, PwPD demonstrate intact
motor programming capability, yet they have difficulties in movement execution
without an external trigger, which may be a loud noise or a visual cue requiring
them to overcome an obstacle [2]. Although reduced muscle strength as well as
other PD motor symptoms may contribute, the principal deficit seems to be the
insufficient recruitment of muscle fibers during the initiation of movement [27]. In
current clinical practice, the assessment of bradykinesia is carried out by observing
the slowness and amplitude of movements during the execution of rapid, repetitive,
alternating movements of the upper and lower limbs [29].

Postural instability is due to the loss of physiological postural reflexes and often
manifests in the advanced stages of PD, after the onset of other clinical signs [30].
Together with motor blocks, it is the most common cause of falls and leads to a
high risk of hip fractures [31]. It also may contribute to limitations in gait and
decreased mobility [30]. Many studies have indicated rigidity, dystonia, abnormal
spatial cognition, abnormal processing of proprioceptive signals [32], and side
effects of pharmacological treatments as causes of postural instability [33]. The
abnormal postural response is clinically evaluated during the pull test, where the
clinician quickly pulls the patient backward by the shoulders and quantifies the
degree of retropulsion as follows: if the patient takes more than two steps backward
or does not show postural response, this indicates an abnormal postural response
[34]. Although pharmacological (dopaminergic therapy) and surgical (deep brain
stimulation) treatments may improve some axial signs, usually, they do not robustly
improve postural instability [35].

Freezing of gait (FOG) is a form of paroxysmal akinesia (i.e., loss of movement)
that affects gait in more than half of PwPD [36]. It is defined as a "brief, episodic
absence or marked reduction in forward progression of the feet despite the intention
to walk" [37]. FOG is quite heterogeneous in terms of clinical phenomenology
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(e.g., shuffling steps, trembling legs, or complete akinesia) [38], duration of a single
episode (with half of the episodes lasting less than 5 s and 90% lasting less than 20
s) [39], and triggering factors including environmental circumstances (e.g., turning,
gait initiation, tight spaces) [38, 40–42], cognitive challenges (e.g., dual tasking) [43]
and emotional stress (e.g., anxiety) [44]. FOG represents one of the most challenging
and disabling symptoms in PD [37, 45] as it increases the risk of falls [43, 46] and is
an early predictor of shorter survival [47].

Non-motor

Depression is a very common condition in PwPD, with a prevalence ranging from
20% to 70% [48, 49]. Depression in PD manifests as loss of interest, decreased
energy, motivation, and appetite, sleep disorders, sadness, and suicidal thoughts [4].
Prevalence of anxiety disorders is higher in PwPD than in age-matched controls [50]
and seems to be related to motor fluctuations (i.e., change of patients’ motor condition
based on the therapy effect) [51]. Dementia may manifest in the late stages of the
disease. Although PwPD demonstrate cognitive slowing and reduced memory recall,
recognition memory remains intact [52]. Psychosis and visual hallucinations are
common, dose-dependent side effects of dopaminergic medications, exacerbated by
the disease progression and co-morbidities [53]. Among the risk factors, advanced
age, the presence of dementia, and polypharmacy are the most common. Sleep
disturbances are frequent in PwPD [54]. Due to depression and/or hallucinations,
rest at night is compromised, and patients have difficulty falling asleep. Higher
risks for pathologic sleep include male gender, cognitive impairment, advanced
stage of the disease, and drug-induced psychosis [55]. Orthostatic hypotension
causes position-related dizziness, which often leads to falls in PwPD, fatigue, or
even fainting. This symptom may not manifest as a major problem until late stages
[56]. Dopaminergic therapies could not be effective and may even worsen the
symptom [57]. Alterations in voice and speech occur in approximately 75–90% of
the PD population, with voice and prosody being among the earliest indicators of
PD [58, 59]. Gastrointestinal symptoms are diffused in PD. Dysphagia represents a
major risk for polmonite ab ingestis, which is one of the principal causes of death
in PwPD [60]. Constipation is the most common problem and often is one of the
earliest signs of PD, manifesting even 20 years before the appearance of the motor
symptoms [61]. At least 60% of PwPD suffer from constipation as compared with
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21% in age-matched non-PD patients [62]. Nausea affects many PwPD suffering
from the side effects of L-Dopa or other PD pharmacological treatments. Irregular
peristalsis is due to the stimulation of dopaminergic receptors, especially those of
the gastrointestinal tract [4]. About 30% of patients experiences incontinence, due to
bladder dysfunction [63]. The severity of this latter is correlated with the progression
of the disease [63]. Finally, patients, particularly those taking dopaminergic therapy,
may become obsessive and compulsive in gambling, spending, shopping, or even
sex [4].

1.1.2 Diagnosis and follow-up

Different non-motor dysfunctions are known to be predictive markers of PD (Figure
1.3 left). However, the diagnosis of PD is mainly clinical and based on the presence
of cardinal motor symptoms (Figure 1.3 center). The clinical diagnosis is confirmed

Fig. 1.3 Progression and diagnosis of Parkinson’s disease (from [64]).

by an effective response to the dopaminergic therapy [65]. Some imaging tech-
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niques are used to differentiate PD with motor symptoms from other disorders [66].
Dopamine transporter single-photon emission computed tomography identifies the
presynaptic dopamine neuronal dysfunction present in PD and other Parkinsonisms.
This is done by demonstrating reduced uptake of a radioactive tracer that binds to
dopamine transporters in the basal ganglia. Dopamine transporter scans are gener-
ally useful only when the clinical diagnosis is uncertain. Functional brain imaging
with positron emission tomography and the radiotracer 18-fluorodopa is capable
to quantify the deficiency of dopamine synthesis and storage within pre-synaptic
striatal nerve terminals. Therefore, it ascertains the diagnosis of PD in early disease
stages and allows differential diagnosis between PD and other movement disorders.
Additionally, this imaging technique is useful in the follow-up of the disease pro-
gression, the assessment of medical and surgical PD therapy strategies with possible
neuroprotective properties, and the detection of pre-clinical disease in subjects at
risk for the disorder [67].

1.1.3 Clinical scales

Hoehn and Yahr scale

The Hoehn and Yahr scale (H&Y) [21] is a widely used clinical rating scale for
PD, which determines large categories based on the level of motor impairment. It
is simple and of easy application, capturing typical features of progressive motor
impairment, and providing a general assessment of disease progression. It ranges
from stage 0 (no signs of disease) to stage 5 (wheelchair-bound or bedridden unless
assisted). Figure 1.4 schematically reports the scale and briefly describes each
stage. H&Y stages have been found to correlate with the progression of motor
complications, reduction of QoL, and dopaminergic loss [29]. However, due to
simplicity and lack of detail, it does not allow the evaluation of specific motor and
non-motor aspects of the disease. The main focus of this scale is unilateral versus
bilateral manifestations of motor symptoms and the impairment of postural reflexes.
A modified version of H&Y is often used [68].
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Fig. 1.4 Parkinson’s disease progression as measured by the Hoehn and Yahr scale (from
[69]).

MDS-UPDRS

The Unified Parkinson’s Disease Rating Scale (UPDRS) [34] is the most employed
scale in current clinical practice to evaluate several aspects of PD, including disability
and motor impairment [29, 70]. It consists of a questionnaire divided into 4 parts:
non-motor aspects, motor aspects, motor examination, and motor complications
(Table 1.1). In each part, a score ranging from 0 to 4 is given to each item. Part I
is a questionnaire including items related to cognitive impairment, hallucinations
and psychosis, depressed and anxious mood, sleep disturbances, pain, fatigue, and
other non-motor aspects. Part II focuses on motor aspects of PD, including speech
impairment, eating, dressing, handwriting, and some mobility aspects (e.g., standing
up from a chair and walking). Part III represents the clinical evaluation of the disease,
where the clinicians ask the patient to perform a set of scripted tasks. These latter
include some specific movements of the hands (e.g., pronation-supination, finger
tapping) and legs (e.g., toe-tapping, leg agility), together with some overall mobility
tasks (e.g., sit to stand, walk). Moreover, speech, facial expression, tremor, and other
motor aspects and symptoms (e.g., bradykinesia, dyskinesia) are evaluated. Finally,
Part IV aims to evaluate motor complications of the disease, such as dyskinesia,
motor fluctuations, and dystonia.
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Validity, reliability, wide utilization, application across all stages of the disease,
and wide coverage of motor and non-motor symptoms make UPDRS the most es-
tablished rating scale for PD [6]. Ambiguities, lack of enough detailed instructions
[71] and difficulty in detecting small changes [2] led to the necessity of the devel-
opment of a new version of the UPDRS. In 2001, the Movement Disorder Society
(MDS) commissioned a revision of the scale, resulting in a new version, termed the
MDS-sponsored UPDRS revision (MDS-UPDRS). The new scale had to keep the
strengths of the previous one, modify ambiguous items, and add some new items to
cover a wider spectrum of features and aspects of the disease [29].

Table 1.1 Unified Parkinson’s disease rating scale sections and their description.

Part Domain Description

I non-motor experiences of daily living questionnaire
II motor experiences of daily living questionnaire
III motor examination clinical evaluation
IV motor complications questionnaire and clinical evaluation

1.1.4 Treatment

Current medical and surgical therapies for PD are symptomatic and lack significant
disease-modifying effect [3]. At present, there is no proven neuroprotective therapy,
and only symptomatic treatments are available [5]. An overview of the available
pharmacological and surgical treatments is provided in the following.

Pharmacological

Until fifty years ago, ablative surgery to the controlateral thalamus was used in
patients with severe tremor. Surgical treatment has then been replaced by L-Dopa,
a dopamine-replacement therapy highly effective in improving the symptoms of
the disease. L-Dopa (L-3,4-dihydroxyphenylalanine) is the metabolic precursor
of dopamine and is combined with carbidopa3 to limit the induced side effects
(e.g., nausea) and maximize L-Dopa transport into the central nervous system [72].
L-Dopa-based treatment leads to a significant improvement in both the QoL and

3aromatic amino acid decarboxylase inhibitor
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life expectancy of patients, although it does not revert the disease progression
[73]. Although it represents the most effective drug treatment for PD [5, 74], its
effectiveness decreases with disease progression [75]. Moreover, long-term therapy
frequently leads to severe side effects. L-Dopa-induced dyskinesias are the most
common ones, occurring in more than 50% of PwPD within 10 years of L-Dopa
treatment [76], with pulsatile administration and higher doses being sources of
motor fluctuations. For this reason, continuous dopaminergic delivery is preferable
in order to minimize motor complications in PD [77]. The time of emergence of
adverse events strongly depends on the severity of dopaminergic neuron loss at the
introduction of L-Dopa [78]. Dopamine agonists4 and monoamine oxidase (MAO)-B
inhibitors5 relief motor symptoms of PD and lead to a low risk of motor complications
[79]. The MAO-B inhibitor selegiline, if administrated early in the course of PD,
has been shown to improve PD motor symptoms and activity of daily living (ADL)
score, and the effects persist up to 7 years or more [80]. Although dopamine agonists
are not as effective as L-Dopa, they have demonstrated a reduced risk of dyskinesias
[81], and this may be related to their longer half-life, compared to L-Dopa [3]. The
choice of therapy has to take into account several factors, including the age of the
patient, their compliance, the presence of cognitive impairment, additional medical
conditions, and the degree of tolerance of the treatment. Treatment is carried out in
the initial stage to ameliorate symptoms and allow the patient to be fully independent.
Since the average life expectancy, from diagnosis to death, in PwPD is 17 years
[73], a long-term treatment strategy is needed for most patients, and this should be
discussed with the patient at early stages.

Surgical

Deep brain stimulation (DBS) is the most common surgical therapy for motor com-
plications in advanced stages of PD and has been demonstrated to be effective in
symptomatic PD therapy [82]. Benefits provided by DBS are more constant and
predictable, compared with pharmacological therapy [83]. Stimulation of the sub-
thalamic nucleus was found to reduce motor symptoms of PD, such as dyskinesias,
bradykinesia, akinesia, and tremor [84, 85]. DBS requires an electrode to be inserted
through the skull to stimulate the globus pallidus, subthalamic nucleus, or thalamus.

4compound that activates dopamine receptors
5class of drugs that inhibit neurotransmitter degradation, including dopamine, thus increasing

their concentration in the central nervous system
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A device, similar to a pacemaker, is implanted under the skin and wires connect the
device to the electrode (Figure 1.5). Effective frequency of stimulation is recom-
mended to be above 100 Hz [86]. The most evident results of this therapy are the
reduction of OFF time (i.e., the time when the therapeutic effect vanishes), increased
ON time (i.e., the time when the therapy is effective, thus ameliorating PD motor
symptoms) without dyskinesia manifestations, reduction of required L-Dopa dose
[83], and improved tremor [3].

Fig. 1.5 Deep brain stimulation device and electrode location (from [87]).

Rehabilitation

Rehabilitation aims at maximizing motor and cognitive functions and minimizing
secondary complications, in order to optimize the independence, safety, and QoL
of patients [88]. Several rehabilitative approaches have been proposed, such as
non-specific physiotherapy (e.g., muscle strengthening and stretching, balance and
postural exercises), occupational therapy, treadmill and robotic training, dance and
martial arts therapy, multidisciplinary approaches including speech and cognitive
therapy, motor imagery and action observation therapy, virtual reality, and telere-
habilitation. Such treatments tend to produce short-term improvements and cannot
replace standard pharmacological or surgical treatments. Nevertheless, physical
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exercise is generally accepted as an adjuvant, because it has also a positive impact
on non-motor symptoms, such as mood and depression [89].

1.1.5 Limitations of the current diagnostic and monitoring ap-
proaches

The diagnosis and management of PD are very complex for several reasons. First,
some non-motor signs of PD can manifest up to 20 years before the clinical diagnosis
(Figure 1.6), and they are rarely recognized by patients. However, the early diagnosis
of the disease is fundamental for informing patients about their prognosis and initi-
ating proper therapies where appropriate. This is particularly important nowadays,
when disease-modifying drug trials provide hope for intervening in the earlier stages
of the disease. The journey from the onset of motor symptoms to the diagnosis of
PD depends on several aspects [90]. First, patients must be aware of the abnormal
symptoms, prompting them to seek advice from their primary care physician. Second,
the medical staff must recognize the reported symptoms as possibly related to PD
and recommend a medical visit to the movement disorders specialist. Finally, the
specialist must make a timely and accurate diagnosis, with or without the help of
further investigations (e.g., medical imaging). Each of these steps may be influenced
by a multitude of factors [91].

Fig. 1.6 Progression, symptoms, and complications of Parkinson’s disease as the disease
progresses (from [64]).

Moreover, once the disease is correctly diagnosed, some aspects of PD (e.g.,
motor fluctuations, FOG) are still difficult to appreciate in a medical office. Outpa-
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tient visits are scheduled once or twice a year and have a limited duration, hence
only gross variations are appreciated. Moreover, the visit itself may affect the actual
patient status, which is conditioned by the time interval elapsed since the last drug
administration, the general health conditions, emotional stress, attention [92–94],
and many other subtle factors [95]. This makes it hardly possible for the neurologist
to appreciate short-term variations in order to plan fine adjustments of the pharmaco-
logical treatment. In order to get further insights into the symptoms and their severity
in daily living, clinicians can ask patients to compile diaries, providing detailed
information regarding several aspects, including therapy effect, motor fluctuations,
adverse events, presence and severity of FOG, and possible falls. However, the
drawbacks of a diary include the subjectivity of the reports, their poor reliability
[96, 97], and the fact that only patients with intact cognitive functionality can keep
diaries, thus excluding most patients in later stages of the disease. Thus, diaries
should be combined with other assessment methods. The inter-rater variability in
the evaluation of a patient’s motor performance should also be considered [98, 99].
The possible disagreement in assigning MDS-UPDRS scores can be justified by the
complexity of discriminating between adjacent classes, due to the different aspects
the clinicians are required to evaluate. From these considerations, it turns clear that
long-term observations, possibly carried on during daily life, could yield a signifi-
cantly improved assessment of the disease. More reliable, objective and continuous
measures are advisable to detect symptoms as soon as possible, help clinicians to
make the correct diagnosis, and provide continuous monitoring during daily life.

1.2 Technologies for mobility assessment in Parkin-
son’s disease

A large number of electronic and digital solutions are available for the assessment
of motor performance in healthy individuals and subjects with different types of
mobility impairment. The technologies can be divided into two subgroups: non-
wearable systems (NWS) and wearable sensors (WS). Optoelectronic motion-capture
systems and instrumented walkways are examples of NWS, while smart insoles and
wireless inertial sensors are WS. While the former are mainly used in laboratory
settings, the latter can be used in unsupervised environments and in free-living
conditions [100, 101]. The advantages and disadvantages of these technologies are



1.2 Technologies for mobility assessment in Parkinson’s disease 15

summarized in Table 1.2 and described in the next sections. Section 1.2.1 provides
an overview of the systems currently used for assessing motor impairment in PD,
while Section 1.2.2 describes and discusses the type, characteristics, and location on
the body of wearable inertial sensors, together with their use for monitoring of PD.

System Pros Cons

NWS

Repeatability
Widely accepted as ’gold standard’

Good at measuring position
Accurate results over short distances

Long set-up time
Requires controlled environment

Expensive and cumbersome equipment
Limited workspace

Non suitable for real life monitoring
Poor at measuring acceleration

WS

Low cost
Useful to monitor longer and natural movement

Environment independence
Wireless

Promotes autonomy and active role of patient
Unlimited workspace

Non invasive

Power consumption restrictions
Complex processing algorithms

Sensibility to noise and interference
Possible measurement errors
Imprecise position estimation

Table 1.2 Advantages and disadvantages of non-wearable technology (NWS) for laboratory-
based evaluations and wearable sensors (WS) for free living monitoring.

1.2.1 Overview

Motion-capture systems digitally track the patient’s movement and capture the three-
dimensional movement of the body. The system, depicted in Figure 1.7, is made of a
number of synchronized cameras, several reflective markers placed over the skin of
different anatomical segments, and computer software that records and processes the
markers’ position over time. Specifically, the three-dimensional trajectory of each
marker is reconstructed from the two-dimensional images acquired by the cameras.
This system allows the accurate estimation of spatial-temporal gait parameters,
as well as 3D kinematics measurements [102, 103]. The video system records
images of the patient during motion and provides a degree of quality control of the
motion-capture data. It allows the assessment of patients’ movement from multiple
angles simultaneously, leading to a complete understanding of its pattern. Vicon,
Qualisys, Motion Analysis, and OptoTrack represent some of the commercially
available optoelectronic systems. In particular, the Vicon system provides a clinically
validated solution in any gait analysis or rehabilitation environment, across different
applications, like stroke rehabilitation, posture analysis, and balance studies. For
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these reasons, it is the most common motion capture system [104]. To date, analysis
with these optoelectronic systems is widely accepted as the gold standard, due to the
accuracy in measuring position, as well as in providing well-quantified, repeatable,
and accurate results over short distances. However, they require the markers to be
within the field of view of the cameras, thus reducing the space where the motion can
be captured [105, 106]. Moreover, they present a very long set-up time for marker
positioning, leading to expensive and cumbersome equipment attached to the body.
Finally, they are very expensive and they can be used only in laboratory settings.

Fig. 1.7 Schematic of motion capture systems including markers positioned on the subject’s
body and cameras (from [107]).

Cameras can be low-cost optical body-tracking sensors, with the potential to
assess both healthy and pathological gait, posture, postural instability, and balance in
a non-invasive way [108]. In particular, RGB cameras embedding depth sensors have
become a ground-breaking vision-based motion capture system, finding application
in different contexts, including medical–clinical and rehabilitation settings [109].
Acknowledged as non-intrusive tracking devices, cameras do not require subject
preparation, attachment of markers to the patient’s body or a dedicated handheld
controller [109]. In fact, their inherent technology is able to detect and capture body
movements in real time. This is done by estimating the position of the principal joints
through the anatomical landmarks of a skeletal model in the 3D space [110] (Figure
1.8). As they do not require any additional equipment, subjects are free to move with
their natural patterns while they perform various tasks inside the device’s field of
view, and their movements can be reproduced in real-time on the computer screen,
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for example, to obtain visual feedback. Recently, several studies have investigated
the accuracy and effectiveness of Microsoft Kinect for the assessment of posture,
gesture, and gait performance in several pathological conditions, including PD [111].
The measures provided by such a device were found to be reliable for the assessment
of spatial-temporal gait parameters [112, 113] and kinematic variables (e.g., trunk
angle) in healthy individuals, with results comparable to those of laboratory-grade
systems [109].

Fig. 1.8 Human body 3D reconstruction obtained from the processing of data from RGB-D
camera (from [114]).

Force sensors are used to measure gait-related spatial-temporal parameters, as
well as force and accelerations. They are commonly placed along the floor on some
force platforms or on a single instrumented walkway, where gait is measured by
pressure or force sensors when the subject walks on them [115]. Force plates measure
the downward force, braking, acceleration, and the force directed medial-laterally
[116]. While force sensors measure the force transmitted to the floor when walking
(ground reaction force), pressure plates compute the evolution of foot pressure on the
floor in real-time, which may reach up to 120%-150% of the patient’s body weight
in its maximum expression, when the heel touches the floor. If used individually,
these devices are basic and can be used to obtain a gross evaluation of gait problems.
However, when the information produced by these systems is integrated with that



18 Introduction

obtained from motion capture systems, a robust, fine, accurate, and global evaluation
of the movement and its mechanism can be performed [105].

Wireless electrogoniometers are electrical devices used to assess the flexibility
and mobility of human joints. They measure angular positions through different
planes of motion via attachments positioned at various joints of the body. They
monitor the transduction (i.e., the conversion of voltage signals) in response to
dynamic movements. Electrogoniometers can be obtained from potentiometers and
strain gauges, which are devices that measure the axial rotation of a joint providing
biofeedback on the range of motion. The utility of electrogoniometers contributes
to diagnostic procedures in which patients possibly affected by musculoskeletal
disorders become susceptible to debilitating joint impairments with the potential for
permanent disability. In rehabilitation settings, the application of electrogoniometers
can provide accurate results for physical therapists when making a comparative
analysis of the extent of damage to an affected joint against baseline standards for
improvements. Such devices have been used in PD for the assessment of rigidity
[117, 118] and for the estimation of gait parameters [119].

Electromyography sensors (EMG) are devices that measure the electrical activity
generated by muscle contraction. Needle EMG is an invasive electrodiagnostic
technique used to accurately characterize muscle activity, and it is commonly used by
neurologists. On the other hand, surface EMG (sEMG) is a non-medical procedure
used to assess muscle activation by several professionals, including physiotherapists
and biomedical engineers. The generated EMG signals can be analyzed to detect
abnormalities, activation level, or to analyze the biomechanics of human movement.
Wireless EMG sensors have been widely used in PD, for differential diagnosis [120],
mobility assessment of the limbs [121], quantification of the effect of therapy [122],
and the detection and analysis of FOG [123].

Smart pressure insoles are in-shoe systems embedding several pressure sensors,
which measure the interaction between the foot and the shoe. They provide in-
formation critical to the understanding of gait mechanics and have a wide range
of applications. In the PD context, they have been employed for FOG detection
[124, 125] and gait analysis, with the objective of quantifying disease progression
and daily monitoring for rehabilitation purposes [126]. Figure 1.9 depicts the pres-
sure system (left), the positioning (center), and the plantar pressure data generated
by the system (right).
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Fig. 1.9 Smart pressure insoles system, positioning, and generated foot pressure map (from
[124]).

1.2.2 Wearable inertial sensors

Wearable motion sensors (WMS) have been widely used in the last two decades for
assessing PD motor symptoms [127–130], following disease progression [131], and
monitoring motor fluctuations [132]. This section describes and discusses the use of
inertial sensor technology for monitoring PD. Specifically, the type of sensors and
devices, technical characteristics, and sensors’ location on the body are reported in
the following.

Accelerometers are electro-mechanical devices that are able of measuring static
and/or dynamic forces produced by acceleration. Static forces include gravity, while
dynamic forces can include vibrations and movement. They can measure acceler-
ation on one to three axes, with 3-axis accelerometers being the most employed.
Gyroscopes can be schematically represented with a spinning wheel in which the axis
of rotation is free to assume any possible orientation. During rotation, the orientation
of such an axis is not affected by tilting or rotation of the mounting, following the
angular momentum conservation law. Due to this principle, a gyroscope can provide
the measurement of orientation and its rate of change.

Inertial measurement units (IMU) are stand-alone devices embedding inertial
sensors (Figure 1.10). They commonly integrate a microcontroller, battery, and
inertial units, including a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magne-
tometer. Moreover, the Bluetooth module and SD card allow to transmit data to other
devices and save data locally, respectively. Finally, environmental sensors, such as
temperature, humidity, and pressure sensors may be embedded in IMUs. Prototype
or commercial IMU has been widely employed for monitoring all motor aspects of
PD [133], both in laboratory settings [134] and in home environment [135].
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Fig. 1.10 Schematic representation of inertial measurement units.

Smartphones represent a widespread technology embedding several sensors,
including motion sensors. Specifically, 3-axis accelerometer is used by apps to detect
the movements of the device, as well as to allow features like shaking the phone to
change music. The gyroscope is used in combination with the accelerometer to detect
the rotation of the phone, for features like tilting the phone to play racing games
or to watch a movie. The advantage of smartphones over other wearable devices is
associated with their ability to capture and process data, transmit and receive data,
and connect with other devices or sensors available in the physical environment.
They have been largely used for motion analysis in several application domains,
including human activity recognition (HAR) [136, 137], fall detection [138], and
monitoring of PD motor symptoms [139–141].

The technical characteristics of motion sensing devices should be evaluated in
terms of sample frequency, range, and resolution, in order to assess their suitability
for specific data acquisition tasks. Human activity acceleration signals lay in the 0-20
Hz band [142]. According to the Nyquist sampling theorem, a sampling frequency of
at least 40 Hz should be used for avoiding undesired aliasing effects. The amplitude
of human motion ranges between ±1g while walking and ±2g during running
[142, 143]. Thus, a range of at least ±1g should be used for the recording task
in order to avoid signal saturation. As far as concerns the gyroscope, it produces
signals with a reduced frequency band, compared to accelerometers. Moreover, a
range of ± 2000dps is more than adequate for motion analysis, in a large variety of
tasks [144–146]. Most commercial motion devices have settable parameters, with
a range from ±2g to ±16g for accelerometers and from ±250dps to ±2000dps for
gyroscopes. Resolution of 8 to 16 bits is more than adequate for the analysis of
common activities [140], and the sampling frequency is usually settable.
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Different sensor locations are used for different purposes. The most frequent
locations on the body are schematically reported in Figure 1.11, and discussed
in the following. Tremor is commonly detected using sensors on the wrist [127],
as PD tremor is usually marked in the upper extremities. When performing gait
analysis, sensors on the ankles or shanks are commonly used, as they capture lower
leg movements during walking [147]. Additional sensors on the thighs provide
further insights into the human leg motion, allowing to accurately reproduce the
movement pattern during locomotion [148]. A single sensor on the lower back can
be used for gait parameters estimation, if combined with more complex processing
algorithms [149, 150]. However, the accuracy on PD patients may vary, depending
on the degradation level of the gait pattern and the presence of dyskinesia and FOG.
Bradykinesia can be estimated using sensors placed on different parts of the body
[151].

Fig. 1.11 Common locations of wearable inertial sensors on the body (from [152]).

Sensors on the upper or lower extremities may be used for assessing upper limb
[153] or lower limb bradykinesia [98]. The same principle is applied to dyskine-
sia, with sensors placed on the upper or lower body for assessing upper-limbs or
lower-limbs dyskinesia [154]. However, a single sensor on the lower back may be
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suitable for detecting trunk dyskinesia [128] or providing a gross evaluation of limbs
dyskinesia [155]. FOG is detected using a variety of sensors, sensors configuration,
and locations on the body. Wrist [156], lower back [157], waist [135, 158, 159],
thigh [160], shank [123, 161], or a combination of them [162] were all explored as
possible body locations for FOG detection.

Applications for PD monitoring

FOG detection and prediction. FOG represents one of the most challenging and
disabling symptoms of PD [45] and is difficult to appreciate in a medical office
[37]. Automatic detection of FOG episodes has been extensively explored over
the past 15 years, making use of WS [163]. The sensors used include commercial
inertial measurement units [164] or prototypes [165], smartphones [157, 166], and
individual accelerometers and/or gyroscopes [167, 168]. Experimental studies using
gait analysis have shown that, in addition to episodes of FOG, patients with FOG
are characterized by abnormal spatio-temporal gait parameters, such as slower and
shorter stride length, greater spatial and temporal variability from stride to stride,
and greater asymmetry between the mobility of both legs than patients without FOG
[145, 169]. Specific spatio-temporal gait parameters (e.g., amplitude and step-to-
step variability) progressively degrade until the occurrence of FOG, providing an
opportunity to recognize typical pre-FOG periods (i.e., specific movement patterns
that occur during actual gait just prior to FOG episodes). Recognition of pre-FOG
periods by motion sensors would allow corrective strategies to be adopted to prevent
or overcome FOG, such as the administration of external sensory cueing [170].

Postural stability. Postural stability (PS) is typically impaired in PwPD and
worsens with disease progression [171, 172]. The difficulty in balancing the center
of mass (COM) makes PwPD prone to the risk of falls [173]. However, in the early
stages of the disease, PS is often difficult to assess during outpatient visits, so it
is rarely used as a diagnostic criterion. On the other hand, the PS score is useful
for monitoring disease progression. In fact, a marked postural impairment may
denote a definite progression to severe disease conditions. PS is clinically assessed
following the recommendations of the MDS-UPDRS part-III [71] (see section 1.1.1).
However, it should be noted that the MDS-UPDRS retropulsion test represents a
somewhat invasive measure, does not exclude the risk of falls for patients, and
cannot be applied in uncontrolled environments. Postural control is highly related to
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COM movements [173], and the latter is directly and quantitatively measurable by
wearable (e.g., accelerometers and gyroscopes) or nonwearable (e.g., stabilometric
platform) sensors [173]. Many studies in the literature have demonstrated the ability
of WMS to quantify postural control in healthy and PD populations [131, 173]. A
direct comparison between the results of stabilometric platforms, which are the "gold
standard" for assessing PS, and WMS yielded a robust correlation between the two
measures [174], paving the way for possible assessment of PD outside the laboratory
setting. Further studies have demonstrated the possibility of discriminating PwPD
from healthy controls [173], distinguishing patients with mild and severe disease
progression [131], identifying individuals at high risk for falls [175], and monitoring
disease progression [176].

Gait impairment. Gait is severely impaired in PwPD, and many gait cycle char-
acteristics (e.g., single/double support, stance, swing duration; step and stride length,
and their variability) are correlated with disease progression [177–179]. Conse-
quently, the gait of PwPD has been addressed in many studies through WS. Inertial
sensors have also been used to quantify fall risk from gait data recorded among the
elderly [179, 180]. Among the various gait tasks performed during daily activities,
many studies in the literature, as well as clinical experience, recognize turning as
a preferred activity to detect motor impairment in PwPD. Turning requires the co-
ordination of multiple limbs and continuous displacement of the COM. Spatially
and temporally asymmetric stepping is required for each leg to travel a different
distance while maintaining the same step time, and this provides information about
the dynamic aspects of balance [181]. Not surprisingly, turning is closely related to
FOG, PS, increased risk of falls and subsequent injuries, isolation, loss of confidence,
and depression [180–183]. On the other hand, automatic assessment of turning is
not trivial. Optical systems [183, 184] ensure repeatability due to the controlled
measurement environment and lead to well-quantified and accurate results over
short distances. Indeed, these systems are widely accepted as the "gold standard".
However, their high cost, long installation time, and expensive and bulky equipment
make their use impractical for frequent monitoring. In this context, WMS systems
are an optimal solution for continuous monitoring of gait and turn under free-living
conditions.

Bradykinesia. Bradykinesia correlates with disease progression and medication
efficacy. Its clinical evaluation is performed following the MDS-UPDRS guidelines
[71]. Specifically, patients are asked to perform a series of upper and lower-extremity
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motor exercises and a short walking task. However, a point-in-time measurement
such as that performed during outpatient visits does not provide any details about
bradykinesia fluctuations in real-world scenarios. In this context, WMS sensors
are useful for both providing objective measurements and long-term monitoring of
bradykinesia during ADLs [132, 135]. Several studies in the literature have used
inertial sensors for the quantification of bradykinesia, providing a comparison with
current clinical assessment. The most widely used task for bradykinesia assessment
is leg agility [185–187], followed by gait [188]. The results suggest that the sen-
sors provide an accurate measure of bradykinesia, which correlates with clinical
assessment.

1.3 Objectives and significance of the study

The present thesis describes a wide spectrum of computer methods and their applica-
tion for monitoring PD motor symptoms. This study aims to overcome the limitations
of both the current clinical monitoring approaches and the related works, providing
new insights into several motor aspects of PD, and improving the performance of
computer methods for PD monitoring. The main strengths of this study can be
summarized as follows.

Device. In most of the experiments included in this thesis, the data collection
process was conducted using a simple device as a commercial smartphone. This
was done for several reasons. First, the use of smartphones avoids buying additional
hardware, as they represent widespread technology embedding motion sensors.
Moreover, participants are familiar with such technology, and this leads to increased
acceptability of the hardware. Finally, smartphones can be used for data recording,
processing, and transmission, and the development of a specific mobile application
would allow interaction with patients.

Sample. A very large sample of PwPD was enrolled in this study. Overall, data
from more than 200 PwPD and 20 elderly controls were analyzed to provide efficient
solutions for the remote monitoring of PD.

Processing. The use of a single smartphone increases the complexity of the data
analysis. To overcome this limitation, signal processing techniques were combined
with machine learning (ML) and deep learning (DL) methods, providing new insights
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into PD motor signs and incremental performance with respect to related work. Data
processing involved the extraction of a large number of features, the use of different
ML models, their optimization for maximizing performance, and the post-processing
of the results. This latter step allows to interpret the results and propose future
studies.

1.4 Thesis organization

The rest of the thesis is organized as follows. Signal processing, ML, and DL
methods for the analysis of inertial data is provided in Chapter 2, together with
an overview of the related work. This chapter serves both as a comprehensive de-
scription of the data analysis pipeline and as an introduction to the methods used in
the present thesis. Chapter 3 describes materials and methods used in different PD
monitoring applications. Each section of the chapter describes a different application
of computer methods for PD monitoring, including FOG detection and prediction,
assessment of postural stability, estimation of gait impairment, and evaluation of
bradykinesia. Information regarding subjects, instrumentation, experimental proto-
col, preprocessing, and classification is carefully provided. The results are reported
in Chapter 4, for each of the experiments included in this thesis. In Chapter 5, an
overall discussion of the obtained results, their interpretation, potential, and limita-
tions are carefully presented. Finally, in Chapter 6 conclusions are drawn and future
studies are proposed.

1.5 Thesis related publications

Part of the methods and results of the present thesis is based on the following
publications:

• L. Borzì, I. Mazzetta, A. Zampogna, A. Suppa, G. Olmo, et al. Prediction of
freezing of gait in Parkinson’s disease using wearables and machine learning.
Sensors, 21(2):1–19, 2021. doi: 10.3390/s21020614.

• L. Borzì, L. Sigcha, D. Rodríguez-Martín, and G. Olmo. Real-time detection
of freezing of gait in Parkinson’s disease using multi-head convolutional neural
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networks and a single inertial sensor. Artificial Intelligence in Medicine, 2022.
doi: 10.1016/j.artmed.2022.102459.

• L. Borzì, G. Olmo, C.A. Artusi, M. Fabbri, M.G. Rizzone, et al. A new index
to assess turning quality and postural stability in patients with Parkinson’s
disease. Biomedical Signal Processing and Control, 62:102059, 2020. doi:
10.1016/j.bspc.2020.102059.

• L. Borzì, S. Fornara, F. Amato, G. Olmo, C.A. Artusi, et al. Smartphone-based
evaluation of postural stability in Parkinson’s disease patients during quiet
stance. Electronics, 9(6):1–14, 2020. doi: 10.3390/electronics9060919.

• L. Borzì, I. Mazzetta, A. Zampogna, A. Suppa, F. Irrera, et al. Predicting
Axial Impairment in Parkinson’s Disease through a Single Inertial Sensor.
Sensors, 22:412, 2022. doi: 10.3390/s22020412.

• L. Borzì, A. Manoni, A. Zampogna, F. Irrera, A. Suppa, et al. Correlation
between wearable inertial sensor data and standardized Parkinson’s disease
axial impairment measures using machine learning. In IEEE 21st Mediter-
ranean Electrotechnical Conference (MELECON), pages 732–736, 2022. doi:
10.1109/MELECON53508.2022.9843018

• L. Borzì, M. Varrecchia, S. Sibille, G. Olmo, C.A. Artusi, et al. Smartphone-
Based Estimation of Item 3.8 of the MDS-UPDRS-III for Assessing Leg
Agility in People With Parkinson’s Disease. IEEE Open Journal of Engineering
in Medicine and Biology, 1:140–147, 2020. doi: 10.1109/ojemb.2020.2993463.



Chapter 2

Machine learning for human motion
analysis and classification

The term ML refers to computer programs that are capable of directly learning
from the input data or past experience, without being explicitly programmed. This
characteristic distinguishes ML from the more general term artificial intelligence
(AI), consisting in intelligent systems that can simulate human intelligence. In the
last two decades, the combination of WS and ML algorithms has demonstrated
excellent performance in the detection [189] and analysis [190] of movement in
PD. In the traditional (shallow) ML approaches, a process of feature extraction
from the raw data is required, including the selection of the most representative
features to solve a given problem [191]. These feature extraction and selection
processes are required because ML models by themselves are not capable of learning
from high-dimensional data in their raw forms (i.e., medical images or time series
acquired by sensors) [192]. Among the ML algorithms, in the last years, the use
of DL approaches has led to establishing the state-of-the-art in many domains and
applications [193], and it has provided promising results in the automatic assessment
of movement disorders [194]. Different from (shallow) ML methods, DL algorithms
have the ability to extract high-level features directly from data. Thus, DL enables the
development of end-to-end models, which decreases the time and effort required to
design classical pipeline-based approaches, including selecting appropriate features
[193, 195]. On the other hand, the large amount of data necessary for training DL
algorithms, and the reduced model interpretability represent the main limitations to
their wide application in the medical domain.
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Figure 2.1 and 2.2 schematically report the processing pipeline of ML and DL
algorithms. The former requires some processing steps to be performed prior to
classification, including filtering, feature extraction, and feature selection. Using
DL reduces the signal processing steps, as they automatically learn from raw data.
However, some preprocessing procedures may be common to both approaches,
aimed to remove noise from data or to split the input data into different data-frames.
The principal preprocessing steps (e.g., signal processing, segmentation, feature
extraction and selection) performed prior to ML classification are described in
Section 2.1, while ML and DL classification algorithms are discussed in Sections
2.2 and 2.3, respectively.

Fig. 2.1 Processing outline used by shallow machine learning algorithms (from [136]).

Fig. 2.2 Processing outline used by deep learning algorithms (from [136]).
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2.1 Data preprocessing

Commonly, raw inertial recordings undergo some preprocessing steps, aiming to
denoise the signal, segment data into pieces, possibly transform the original data,
and extract and select the information that characterizes the data. A brief description
of each processing step is reported in the following sections. A sample of raw
accelerometer and gyroscope readings is provided in Figure 2.3 and 2.4, respectively,
where different simple activities are performed, including walking, standing, turning,
and standing up. Signals represent the data generated by inertial sensors embedded
in a commercial smartphone, positioned on the lower back. As can be observed in
Figure 2.3, the acceleration pattern produced by walking and standing can be clearly
identified. However, postural transitions, such as standing up, are not clearly visible
in the acceleration data, and the signals during turning can be confused with those
during walking. Gyroscope recordings can provide complementary information,
with postural transitions and turning producing a characteristic pattern in the angular
velocity signal (Figure 2.4). On the other hand, the gyroscope’s signals during
walking are very noisy, and those during stance bring little information.

Fig. 2.3 Raw acceleration readings from a series of simple activities. The blue, orange,
and yellow line represents the vertical, medio-lateral, and anterior-posterior directions,
respectively.
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Fig. 2.4 Raw angular velocity readings from a series of simple activities. The blue, orange,
and yellow line represents the vertical, medio-lateral, and anterior-posterior direction, respec-
tively.

2.1.1 Resampling

When data are recorded with a high sampling frequency, down-sampling the data can
be useful to reduce the computational time and burden of the subsequent processing
steps, and useless computation. Given that human activity acceleration signals lay
in the 0-20 Hz band [142], and the band of angular velocity signals is even smaller,
a sampling frequency of 40-50 Hz is adequate, according to the Nyquist sampling
theorem.

2.1.2 Data transformation

The observation of signals in the time domain does not provide a full picture of
characteristics and patterns. Thus, data transformation methods can be used to
provide different representations of the initial data. Fast Fourier transform (FFT)
carries information complementary to that obtained in the original time domain
signal. FFT converts a signal from its original time domain to a representation in the
frequency domain. It is computed as in Equation 2.1, where X is the original signal,
Wn = e(−2πi)/n is one of n roots of unity, and Y is the generated data. However, FFT



2.1 Data preprocessing 31

provides a static picture of the signal, not considering the evolution of patterns in
the time domain. Moreover, the complex representation of the signal increase the
computation burden.

Y (k) =
n

∑
j=1

X( j)W ( j−1,k−1)
n (2.1)

In this context, the continuous wavelet transform (CWT) allows a time-frequency
representation of signals. The frequency content of the signals is generated for
each time frame, producing a 2D (time vs frequency) data map. This approach is
often used in gait analysis for walking steps detection [196, 184]. CWT uses inner
products to measure the similarity between the signal x(t) and an analyzing function,
which is a wavelet ψ(t). Equation (2.2) reports the formula for CWT computation.
First, the wavelet is shifted by b ∈ R values and stretched/compressed by a ∈ R+

values, then the dilated and scaled versions of the wavelet ψ∗( t−b
a ) is compared to

the signal x(t) in order to compute their similarity. This procedure is performed
using a mother wavelet ψ(t) and all possible values of a and b. Figure 2.5 reports a
segment of acceleration signal (vertical axis) recorded during gait, together with the
module of its FFT and CWT transforms.

X(a,b,x(t),ψ) =
∫ +∞

−∞

x(t)
1
a

ψ
∗
(

t −b
a

)
dt (2.2)

Fig. 2.5 Data transformation methods. An example of the original signal (left), its fast Fourier
transform (center), and the continuous wavelet transform (right).

The selection of the analyzing wavelet depends on the type of signal features
or patterns to detect. Although there is no definite relationship between scale (a)
and frequency, this is generally inversely proportional. Specifically, a smaller scale
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generates a compressed wavelet capable of catching rapidly changing details, thus
allowing the analysis of high-frequency features.

2.1.3 Filtering

Raw inertial readings are usually filtered to keep only the frequency components of
interest and remove undesired noise. First, gravity acceleration produces an offset in
the acceleration recordings. This can be observed in Figure 2.3 as the mean value
of the acceleration signals along each axis. Moreover, the sensor can slightly move
from the original body location where it is attached, and this can generate undesired
low-frequency trends. Finally, the frequency band of signals produced by human
movement is between 0 and 20 Hz for acceleration [142], and much lower for angular
velocity. Moreover, most of the energy of inertial signals during gait is included
in the band from 0 to 3 Hz [197, 198]. High-pass filtering can be used to remove
offset and low-frequency trends, while low-pass filtering can be performed to remove
high-frequency noise.

2.1.4 Segmentation

Segmentation is a necessary processing step in many applications, including HAR
[199], gait analysis [200], and monitoring of some PD motor symptoms, such as
tremor [127] and FOG [130]. The segmentation process consists in dividing the
initial signal into successive time-frames (windows); then, the information extraction
process (Section 2.1.5) is performed on these windows. Figure 2.6 depicts gait
acceleration signals.

In most cases, a static segmentation is used [127, 132]. In this case, the signal is
divided into equal-size frames, with or without overlap between adjacent windows
(Figure 2.6 left). In some cases (e.g., gait analysis), it can be more useful to perform
segmentation based on events (e.g., steps). This generates non-overlapped windows
of varying length, according to the time distance between adjacent events (Figure
2.6 right).
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Fig. 2.6 Different segmentation procedures. Static segmentation produces fixed-length
windows with a certain overlap (left), while dynamic segmentation generates non-overlapped
windows of different sizes (right).

2.1.5 Feature extraction

The information can be extracted either from the entire signal or from the windows
generated in the segmentation process. Feature extraction consists in identifying and
computing a set of characteristics that best describe the signal. They can be extracted
from the time domain or from data generated using the FFT or CWT transforms. For
example, several types of features can be extracted to describe human gait. Well-
known spatio-temporal gait parameters include stride and step time, stride and step
length, and stance, swing, double stance, and mid-swing duration. Furthermore, it is
possible to include simple features describing the amplitude of signals in the time
domain (Figure 2.5 left), such as mean value, standard deviation, root mean square
value, maximum, minimum, interval, and quartiles. For a more in-depth analysis
of the gait pattern, it is possible to calculate the distance between peaks, the zero
crossing rate, the number of peaks and the entropy, which describe the temporal
evolution of the signal and its complexity. Furthermore, starting from the FFT of the
signal (Figure 2.5 center), the frequency, amplitude, and width of the main harmonic
allow an approximate evaluation of the frequency content. In addition, the number
of harmonics, the ratio of the main harmonic energy to the total energy, and the
spectral entropy can be used to describe the regularity of the signal. Most of the
features described above can be used in a wide range of human motion analysis tasks
involving repetitive movements, such as walking, finger tapping, and repetitive leg



34 Machine learning for human motion analysis and classification

movements. Depending on the specific application, other types of features can be
included to better describe specific movement patterns.

2.1.6 Dimensionality reduction

Principal Component Analysis (PCA) aims to reduce the dimensionality of the gener-
ated feature set while preserving the maximum amount of information. PCA linearly
transforms the data into a new coordinate system where most of the variation in the
data can be described with fewer dimensions than the initial data. In order to make
PCA work properly, the input variables should be independent and centered (i.e., the
mean value should be equal to zero). First, the algorithm computes the covariance
matrix for each feature pair (x,y), according to Equation 2.3. The covariance matrix
(COV ) has feature variances along the diagonal. Then, the COV is used to find the
eigenvalues λ and the eigenvectors v satisfying the equations reported in Equation
2.4, where I represents the identity matrix.

COVx,y =
∑

N
i=1(xi −µx)(yi −µy)

N −1
(2.3)

det(COV −λ I) = 0,(COV −λ I)v = 0 (2.4)

Finally, the eigenvectors are sorted in descending order of the respective eigen-
values. The original feature set is multiplied by the matrix formed by the first k
eigenvectors, obtaining a reduced feature set, including the projection of the original
features along the principal components. The choice of k can be a-priori or based on
the variance level to keep in the transformed feature set. The pseudo-code reported
in Algorithm 1 describes the procedure returning k by setting the variance (varSet)
to be kept by the first k components.

Algorithm 1 Choose k
k set k = 1, cumVariance = 0, setVariance;

while cumVariance < setVariance do
cumVariance = cumVariance + variance(k)
k = k + 1;
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2.1.7 Feature selection

Feature selection (FS) represents the process of reducing the number of input features
when developing a predictive model. Reducing the number of features reduces both
the computational complexity of the model and the over-fitting. This latter occurs
when a statistical model fits exactly against its training data. When this happens, the
algorithm cannot perform accurately against unseen data, defeating its purpose. FS
methods can be grossly divided into three categories, described in the following.

Filter approach. Features are selected before the ML algorithm is run, thus the
selection is independent of the model. Minimum-redundance maximum-relevance
algorithm [201] finds features that maximize the mutual information between the
features and the response variables and minimize mutual information between the
features themselves. Pearson correlation coefficient has also been used as a filter
approach, by sorting features based on the correlation with the target variable [98].
Moreover, strong correlations among features may be used to remove redundant
information [140]. Equation 2.5 describes the computation of Pearson correlation,
where x and y represent the variables, COV the covariance matrix, and σ the variance.

r(x,y) =
COV (x,y)

σx ·σy
(2.5)

Embedded approach. In this case, FS occurs naturally as part of the data mining
algorithm. Artificial neural networks (ANN), support vector machine (SVM), and
the ensemble of decision trees (DT) represent ML models that intrinsically estimate
feature importance during the training process, promoting the most discriminative
features and reducing the weight of weak variables.

Wrapper approach. This method uses the data mining algorithm as a black box
to find the best subset of attributes. In this case, different feature subsets are input to
the classification model, and that providing the best performance is finally selected.
Sequential FS builds up a feature set until performance stops improving. While
forward FS works iteratively by adding features to the subset, backward FS starts
with the complete feature set and iteratively discards features.
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2.1.8 Feature scaling

The range of values of features may widely vary. As some ML models embed
distance calculation, features with a larger range mostly affect the final results,
while features with a very small range are not properly considered. Therefore, the
range of all features should be normalized so that the contribution of each feature
is independent of the initial range of values. Moreover, optimization algorithms
work better and faster with normalized data. Min-max normalization (Equation
2.6) consists in subtracting the minimum value and dividing by the range. This
process maps features in the range from 0 to 1. Mean normalization (Equation 2.7)
consists in subtracting the average value and dividing by the range. This process
maps features in the range from -1 to 1. Finally, z-score normalization (Equation
2.8) consists in subtracting the average value and dividing by the standard deviation.
This process generates features with zero-mean and unitary variance.

x′ =
x−min(x)

max(x)−min(x)
(2.6)

x′ =
x−mean(x)

max(x)−min(x)
(2.7)

x′ =
x−mean(x)

std(x)
(2.8)

2.2 Shallow machine learning algorithms

This section describes the most common supervised ML algorithms. Contrary to
unsupervised learning methods (e.g., clustering), they require an annotation process
performed prior to training. Such annotation task consists in adding labels or tags to
pieces of data (e.g., identifying some activities in the data or marking the presence of
clinical signs), which provide the algorithm information that is used to properly train
the model for the specific task. Regression is used to predict continuous values and
find a correlation between variables (e.g., the output of ML models and a continuous
clinical score). On the other hand, classification aims to group samples into categories
(e.g., control subjects versus PwPD or FOG vs non-FOG). The selection of a specific
ML model depends on several aspects, including the objective, size of the data set,
performance target, training and testing speed, and interpretability of the results
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[202]. Moreover, the linearity or non-linearity of data may suggest the use of specific
ML models over others. Table 2.1 reports the characteristics of some ML models,
in terms of generalization capability, execution speed, and interpretability. In the
following, some suggestions are provided regarding the selection of ML models.
Finally, each classification algorithm is described in the subsequent sections.

Model Robustness Classification speed Interpretability

Decision tree low high high
Random forest high high medium

k nearest neighbor low low low
Linear regression low high medium

Logistic regression low high medium
Support vector machine high medium low

Linear discriminant analysis high medium low
Table 2.1 Comparison between different machine learning models in terms of generalization
capability, speed, and interpretability.

Data set size. If the number of observations is lower than the number of features,
then linear algorithms (e.g., linear regression, linear-SVM) perform well. On the
other hand, if the training data is sufficiently large and the number of observations is
higher than the number of features, algorithms like kNN, DT, or kernel-SVM usually
perform better.

Interpretability. Interpretability refers to the easy understanding of how any indi-
vidual predictor is associated with the response. Usually, the ML models providing
the best performance are associated with low interpretability. Thus, the classification
model should be selected according to the objective, aiming to maximize accuracy
over interpretability or vice-versa, or choosing a trade-off. In medical applications,
the interpretability of the model is of crucial importance. Indeed, clinicians find it
hard to understand and trust complex models due to the lack of intuition and explana-
tion of their predictions. In this context, there is an emerging trend of interpretability
techniques aiming to shed light and provide insights into the prediction process of
the ML models [203].

Speed. In real-world applications, the choice of the algorithm is driven by train-
ing time. Algorithms like linear regression (LR) and logistic regression (LogR) are
easy to implement and quick to run. On the other hand, algorithms like SVM, ANN,
and RF need a lot of time to train. However, once trained, these latter algorithms are
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very fast at testing time, thus they are suitable for real-time applications. In contrast,
the testing time of kNN is proportional to the training set size and may be very long.

Linearity. When classes are linearly separable, all the algorithms perform well.
In this case, linear models (e.g., logistic regression or linear SVM) provide a linear
boundary, which is more robust than more complex separation functions. One option
to test data linearity is to train such linear models and observe the residual errors. In
case of large errors, data is presumably not linear, and more complex ML models
(e.g., ANN, kernel-SVM, RF) are required.

Decision tree and ensemble of trees

DT is probably the simplest and more interpretable ML algorithm. A DT is a
flowchart-like tree structure, where each node indicates a variable, each branch
represents a decision, and each terminal leaf node denotes a class label. DT is built
from the root to the leaves (i.e., from top to bottom), where the most feature power,
the closer the feature is to the root. The Gini index (GI) [204] measures the quality of
each split, with GI = 0 when all observations belong to the same class, and GI = 1
when the distribution of the elements within classes is random. However, it provides
weak generalization capability, as the decision boundaries separating classes are
very sharp (i.e., single threshold). On the other hand, DT is known for its very good
interpretability, as it makes it possible to follow the flow of elements from the input
down to the class allocation. RF takes advantage of a large number of individual
decision trees that operate as an ensemble. Each DT in the RF provides a prediction
for each item, and the final output is computed using majority voting (i.e., the class
with the larger number of votes becomes the final prediction. In order to work
properly, the individual DTs should be independent (i.e., different from each other),
so that they protect each other from their individual errors. When implementing
DT, some parameters should be tuned, including the maximum depth (i.e., number
of tree levels), the maximum number of decision splits, and the minimum number
of observations per leaf node. When using RF, additional parameters should be
specified, such as the number of DTs.



2.2 Shallow machine learning algorithms 39

k nearest neighbor

k nearest neighbor (kNN) is a distance-based supervised classification algorithm.
The prediction of a new element is obtained based on the distance from the elements
of the training set. Let X1 and X2 be two variables (features) and class A and B the
two classes (binary classification problem). Figure 2.7 depicts elements of the two
classes and the new element (red) to be assigned to either class A or B. First, the
distance between the new element and all the elements in the training set is computed.
Then, the k nearest neighbors are selected as the k data points which are closest to
the element. Finally, the element is assigned to the most represented class among the
k neighbors. As can be observed in Figure 2.7, changing the number of neighbors
affects the final classification results. Specifically, the new element is assigned to
class B or A if k = 3 or k = 6, respectively.

Fig. 2.7 k nearest neighbor classifier (from [205]).

Both the parameter k and the distance metric should be selected through the
optimization procedure. Cityblock and euclidean distances are commonly used in
the case of continuous variables. On the other hand, cosine similarity is used when
dealing with categorical or binary values. The formulas for the computation of
these metrics are reported in Equation 2.9,2.10 and 2.11, where x and y represent
two elements, and N their dimensionality (N = 2 in Figure 2.7). kNN algorithms
work better than other ML models when the input data are non-linearly separable.
However, kNN does not provide any decision boundaries, thus the final prediction is
severely affected by the addition of even a few elements to the data set. Moreover,
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the algorithm is quite expensive, as it computes the distance of the element under
test from all the other elements of the data set.

dcityblock(x,y) =
N

∑
i=1

|xi − yi| (2.9)

deuclidean(x,y) =

√
N

∑
i=1

(xi − yi)2 (2.10)

dcosin(x,y) =
∑

N
i=1 xi · yi√

∑
N
i=1 x2

i ·
√

∑
N
i=1 y2

i

(2.11)

Linear and logistic regression

LR is used for solving regression problems, yet it can be adapted for classification
problems using the discretization of the continuous output, which can be easily
performed using a fixed threshold. Given the input matrix X , LR aims to find a linear
relationship between the input data X and the target Y . Equation 2.12 reports the
formula implemented by LR, which corresponds to the equation of a straight line,
where w and b represent the weight term and the bias, respectively. The best fit line
is computed by minimizing the least squares error between the prediction hθ and
the target Y . Specifically, the algorithm finds the best parameters θ by minimizing
the loss function reported in Equation 2.13, where m is the size of the input data X ,
θ is the matrix of parameters (i.e., weights of features) and λ is the regularization
parameter.

Y = wX +b; (2.12)

J(θ) =
1

2m
[

m

∑
i=1

(hθ (x(i))− y(i))2 +λ

n

∑
i=1

θ
2
j ],hθ = θ

T X (2.13)

LogR is a widespread algorithm used for solving classification problems. The
loss function and the hypothesis function for LogR are reported in Equation 2.14. It
can be noticed that, differently from LR, the hypothesis function is a sigmoid rather
that a straight line. The best model parameters are computed by minimizing the
loss function, using the maximum likelihood method. When implementing LR and
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LogR, a few training parameters should be selected, such as the regularization term
(λ ). Specifically, a larger value of parameters promotes a better fit of data over the
generalization capability of the algorithm.

J(θ)=−[
1
m

m

∑
i=1

(y(i)log(hθ (x(i))+(1−y(i))(1−hθ (x(i)))]+
λ

2m

n

∑
j=1

θ
2
j ,hθ =

1
1+ e−θ T X

(2.14)

Support vector machine

SVM is a supervised ML algorithm used for both classification and regression. SVM
aims to find a hyperplane in an N-dimensional space that distinctly separates the
classes. The dimension of the hyperplane is proportional to the number of features.
The hyperplane is selected as the decision boundary ensuring the largest separation
(margin) between classes (Figure 2.8 left), and this represents the main strength of
SVM. Given the input data X , model parameters θ , and prediction y, the loss function
J is computed as in Equation 2.15, where hθ = θ T X . Different of the loss function
of other models LR and LogR, in SVM the penalization occurs both on incorrect
predictions and on those data points which are close to the decision boundary. This
latter aspect ensures margin maximization. Moreover, SVM can exploit different
types of kernel functions for mapping the input data into a higher-dimensional feature
space (Figure 2.8 right) allowing the distinct separation of the input classes with a
linear hyperplane. The following parameters can be optimized during the training-
validation procedure. The regularization term (λ in Equation 2.15) controls the
tolerance level for misclassification errors. Specifically, smaller values of λ promote
margin maximization and allow a larger number of misclassifications. The kernel
function could be linear, polynomial (e.g., quadratic, cubic), or gaussian. Finally,
the kernel scale controls the exact shape of the kernel function (e.g., narrow or wide
gaussian function).

J(θ) =
1
λ
[

m

∑
i=1

y(i)max(0,1−hθ (x(i))+(1− y(i))max(0,1+hθ (x(i))]+
1
2

n

∑
j=1

θ
2
j

(2.15)
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Fig. 2.8 Support vector machine. The hyperplane provides the maximum margin (left) and
the application of a kernel function for mapping data into a higher-dimensional space (from
[206]).

Linear discriminant analysis

The working principle of Linear discriminant analysis (LDA) is similar to that of
PCA, aiming to find linear combinations of input variables that best explain the
data. However, differently of PCA, LDA takes into account the class information,
allowing to perform supervised classification. LDA aims to maximize the inter-class
variance (i.e., the class separation) while minimizing the intra-class variance (i.e., the
dispersion of data points belonging to the same class). Due to the intrinsic working
principle of the algorithm, LDA provides a very good generalization capability.
However, while SVM can project data into a higher-dimensional feature space,
LDA projects the data into a lower-dimensional space. Thus, it is very important
that the data set size (i.e., the number of elements) is larger than the number of
variables/features.

2.3 Deep learning methods

DL algorithms provide the advantage of automatic feature extraction directly from
raw input data, without requiring any feature engineering. This reduces the effort
devoted to the definition of hand-crafted features and avoids user errors. Moreover,
DL approaches are able to automatically identify hidden features, providing a more
in-depth representation of the input data. On the other hand, a large amount of data is
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required to work these methods properly, and their interpretability is still challenging
[203].

2.3.1 Data preparation

The data preparation procedures depend on the specific DL model. The most basic
ANN, named multi-layer perceptron (MLP) requires features to be extracted from
the raw data and used as input to the model. In this case, some or all of the pre-
processing procedures previously described are necessary for making the algorithm
work properly. Specifically, at least segmentation and feature extraction should be
performed before inputting the data into the model. Instead, some more complex
DL architectures, such as convolutional neural networks (CNN) and recurrent neural
networks (RNN) can be fed directly with raw data, as the feature extraction and selec-
tion steps are embedded into the DL model. This allows to save time and reduces the
computational steps necessary for data preparation. However, some transformations
(see Section 2.1.2) may be applied to the raw data before they are input to the DL
model. Moreover, raw inertial data need to be segmented (see Section 2.1.4). Finally,
centered data makes the algorithms speed up the computation and promote proper
convergence of the solution.

2.3.2 Deep learning algorithms

Deep multi-layer perceptron

MLP represents the first ANN architecture, made of fully connected layers. This
means that each neuron of a layer is connected to every neuron in the subsequent
layer. MLP is composed of at least three layers, namely the input, hidden, and output
layers (Figure 2.9). MLPs with a number of hidden layers equal to or larger than two
are called deep neural networks (DNN).

Features are input to the MLP input layer (which has the same dimension as
the feature set), processed through the hidden layer, and the final prediction finally
occurs in the output layer (in which the dimension is equal to the number of different
classes). The output y of each neuron is computed as in Equation 2.16, N is the
number of neurons in the preceding layer, xi the ith input, wi is the ith weight, σ
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Fig. 2.9 Deep neural network.

the activation function, and b is the bias term. Different activation functions can
be used. Hyperbolic tangent (Equation 2.17) and rectified linear unit (ReLU) are
commonly used in the hidden layers, with the latter being much faster than the former.
Sigmoid is used in the output layer in case of binary classification problems. On the
other hand, the softmax activation function is used when dealing with multi-class
problems.

y =
N

∑
i=1

σ(ωixi)+b (2.16)

σ(x) =
ex − e−x

ex + e−x (2.17)

σ(x) = max(0,x) (2.18)

σ(x) =
1

1+ e−x (2.19)

σ(x)i =
exi

∑
C
c=1 exk

, j = 1,2, ...,k (2.20)
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The training process of DNNs is carried out using optimization algorithms
aimed to find a local minimum of the loss function. The binary cross-entropy loss,
commonly used for binary classification problems, is computed as in Equation 2.21,
where ŷ is the prediction, y the target class, and N is the total number of elements in
the training set. While the number of neurons in the input and output layers are fixed,
based on the number of input features and classes, the number of hidden layers and
their size should be tuned to optimize the performance.

J(ŷ,y) =− 1
N

N

∑
i=1

[yil̇og(ŷi)+(1− y)i(̇log(1− ŷi))] (2.21)

Convolutional neural network

CNN can learn a high level of abstraction and features from large data sets by apply-
ing convolution operations to the input data. In fact, CNN leverages three important
ideas: sparse interactions, parameter sharing, and equivariant representations [207].
CNNs are competent to automatically extract features from images and signals and
actually achieve state-of-the-art results in image classification, speech recognition,
and text analysis. When applied to time series classification like HAR, CNNs have
some advantages over other models, including local dependency and scale invariance
[208]. Figure 2.10 schematically reports the principal layers of CNN architecture,
listed and described in the following.

Fig. 2.10 Convolutional neural network layers and components.
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Input layer. In the case of inertial signals, the input layer is usually represented by
windows generated in the segmentation step. Input dimensions depend on the window
size and number of channels, with the latter corresponding to the components of the
recorded inertial data. When using all components from the 3-axis accelerometer,
the number of channels is equal to three. This number increases up to six if using
the additional components of the 3-axial gyroscope. The window size is obtained by
multiplying the time duration (s) of the window by the sampling frequency. Given
that the computational complexity and testing time of the algorithm are affected by
the input dimension, it is advisable to resample the original signal using the lowest
yet possible sampling frequency (see Section 2.1.1).

Convolutional layer (1D-CNN). Given a one-dimensional (1D) signal of length
m, convolutional layers perform the convolution between the signal and a number
n f of filters of size f , sliding with a stride s. The generated output has dimensions(

m− f
s +1,n f

)
. Both the f weights and the bias term of each filter are learned during

the training stage. The number of filters, size, and stride should be tuned and selected
according to the optimization process.

ReLU activation function. ReLU represents the most common activation function
in CNNs, increasing non-linearity and speeding up the computation. It is defined in
the [0,+ ∞] interval, and computes the output as a = max(0,z), where z is the input
value.

Pooling layer. It provides a reduction in the size of the representation generated
by the convolutional layer. The main advantages include speeding up the computation
and summarizing the presence of features in patches of the feature map. The pooling
layer applies a filter of size p with a stride s to the input data of dimensions (d, n f ),
generating an output of dimensions (d−p+1

s , n f ). While max-pooling outputs the
maximum value of the f values, average-pooling computes the mean of these values.
The type, size, and stride of pooling should be tuned and selected according to the
optimization process.

Flatten layer. It consists in unrolling the multidimensional matrix of dimensions
(d, n f ) into a 1D vector of size (1, d · n f ). It provides a mechanism to adapt the
outputs of a CNN layer to dense layers. Each unit of the layer represents a neuron,
which is then connected to each neuron of the subsequent dense layer.

Dense layer. It represents the fully connected layer of the network, in which
each neuron is connected to each neuron of the preceding flattened layer. Given a
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number of neurons d in the preceding layer and nn in the dense layer, the number of
parameters required for the computation is d ·nn +nn, where d ·nn accounts for the
neuron weights and nn for the neuron bias. Both the nn weights and the bias term
of each filter are learned during the learning stage of the algorithm. The number of
dense layers and their size should be tuned and selected according to the optimization
process.

Softmax layer. It represents the classification layer, in which the final continuous
output of each neuron σ(zi) is computed from the input vector z, as shown in
Equation 2.22. Given a number of classes k, the normalization term ∑

k
j=1 ezk ensures

that all the output values of the function will sum up to 1, thus representing a valid
probability distribution.

σ(z)i =
ezi

∑
k
j=1 ez j

(2.22)

Moreover, the following regularization methods are used to avoid over-fitting
and improve the generalization capability of the classification algorithm.

Dropout. Dropout regularization consists in randomly removing a given per-
centage of units (1 - dropout rate), thus training the CNN with a smaller number of
neurons. It reduces over-fitting and increases the generalization capability of the
classification model. The dropout rate should be tuned and selected according to the
optimization process.

Regularization. Similarly to dropout, regularization aims to reduce the variance,
hence the over-fitting. In this study, L2 regularization was used in the softmax layer,
updating the general cost function by adding an additional term λ

2m ·∑∥ω∥2, where λ

is the regularization term, m the input dimension and ω represents the weights vector.
The effect of L2 is the reduction of the connection weights. The regularization term
should be tuned and selected according to the optimization process.

2.3.3 Training

In order to enable the learning process of the classification model, some preliminary
settings should be adjusted, as discussed in the following.
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Learning rate. The learning rate α is one of the most important parameters
in the learning process, as it controls the learning step size at each iteration while
moving toward the minima of the loss function. The larger is α , the faster the model
weights are updated and the learning process turns out to be. However, an excessive
α may lead to divergence of the solution. On the other hand, a very small α avoids
divergence but slows down the computation and may lead to convergence to local
minima. The learning rate should be selected by observing the training-validation
loss learning curve to ensure proper model training and convergence of the solution.

Batch size. Training the model using mini-batches represents a compromise
between the batch gradient descent (GD) algorithm and the stochastic GD. In the
former approach, all the data are passed to the network at one time, while in the
latter only one item at a time is passed to the network during the learning process.
The former approach takes advantage of the vectorization of the input data, yet it
is very slow, as all the input data are required to take a learning step. The latter
approach speeds up the movement toward the minimum of the loss function but loses
the speed-up provided by vectorization. The mini-batch GD consists in dividing
the input data into m

bs
batches of data, where m is the input data size and bs is the

mini-batch size. The training is then performed using a single batch at each learning
step.

Number of epochs. The number of epochs defines the maximum number of
iterations the model should undergo before the training process is stopped. A reduced
number of iterations may lead to poor performance, while a too large number of
iterations may result in model over-fitting.

Early stopping. In order to avoid over-fitting and reduce unnecessary computation
during training, early stopping conditions may be defined in the learning process. In
this case, the training is stopped when no reduction in the validation loss is observed
for a certain number of iterations. The best parameters (i.e., those providing the
minimum validation error) are saved and then used in the testing stage.

Optimizer. Adaptive moment estimation (Adam) [209] optimization was used
in this study for weights and biases of the neural network. It combines both the
Momentum and the RMSprop GD algorithms, thus it is very effective and commonly
used in deep neural network architectures. First, Momentum GD computes gradients
dω at each iteration for the tth mini-batch. Then, it computes Vdw = β1Vdω +(1−
β1)dω , with β1 = 0.9. Finally, weights are updated with ω = ω −αVdω . RMSprop
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works in a similar way, computing Sdw = β2Sdω +(1−β )dω2, and finally updating
weights as in Equation 2.23, where ε is 10−8 and β2 is set to 0.999.

ω = ω −α
dω√

Sdω + ε
(2.23)

Adam first computes V ′
dω

= Vdω

1−β t
1

and S′dω
= Sdω

1−β t
2
, and finally updates weights ω as

in Equation 2.24, where α is the learning rate.

ω = ω −α
Vdω

′√
S′

dω
+ ε

(2.24)

Loss function. For the classification task, the categorical cross-entropy loss
function is commonly used. It is defined as in Equation 2.25, where N is the total
number of samples, yi is the ith class label, and ȳi is the ith prediction.

E =− 1
N

N

∑
i=1

yi · log(ȳi)+(1− yi) · log(1− ȳi) (2.25)

2.4 Performance evaluation

The evaluation of the prediction performance represents one of the most important
stages of classification and/or regression tasks. A comprehensive performance
evaluation allows to fully describe the strengths and weaknesses of the developed
algorithm and to compare the results with past or future literature studies. The
performance metrics are described in Section 2.4.2 and Section 2.4.3 for classification
and regression, respectively. Section 2.4.4 discusses the effect of class imbalance on
classification performance, together with an overview of possible solutions.

2.4.1 Validation methods

In order to prepare the data set generated in the previous steps for the subsequent
classification process, a splitting procedure should be applied. Specifically, the data
set is divided into training, validation, and test set. The former is used to train
the classification model, while the latter is used for performance evaluation. All
classification algorithms involve a set of parameters, intrinsic to the model itself,
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that should be correctly tuned for maximizing the performance. This optimization
procedure is usually carried out on the training set. Specifically, the training set is
further divided into training and validation sets; for each combination of parameters’
values, the model is trained on the training set, and its performance is evaluated on
the validation set; then, the combination of parameters providing the best results is
selected. Finally, the optimized model is tested on the independent test set, which
represents completely new unknown data.

There are different types of validation and test methods. Hold-out validation
consists in randomly dividing the data set into training and test sets, according to
selected proportions (e.g., 0.8 for training, 0.2 for testing). K-fold cross-validation
(CV) divides the data set into k folds. Then, the model is iteratively trained using
data from k-1 folds and tested on data from the remaining fold. Common values
for k are 5 and 10, where the procedure is repeated 5 and 10 times, respectively.
Leave-one-subject-out (LOSO) validation is a particular case of k-fold CV, in which
k is equal to the number of subjects. This method ensures subject independence, as
data from the same patient belongs either to the training or to the test set. Finally,
leave-one-task-out is used when subjects perform more than one experiment. In this
case, the training phase involves all tasks except for one, which is used as a test.
This validation procedure is commonly performed when the objective is to develop
subject-specific models, as in this case both training and testing involve data from
the same subject.

2.4.2 Classification metrics

In the following, classification metrics are listed and described for a classic binary
classification problem. In this context, the ground truth (e.g., the clinical score, the
presence or absence of symptoms) corresponds to a binary variable, named in the
following with the term "label". Similarly, the prediction is a binary value, obtained
as the output of the classification model (in case of discrete output) or computed
as the binary approximation of the continuous probability (in case of continuous
output). Positive and negative samples indicate the presence or absence of a particular
symptom (e.g., FOG).

True positives (TP) are defined as the true samples correctly identified by the
model. False positives (FP) represent negative samples wrongly predicted as positive.
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False negatives (FN) correspond to positive samples not detected by the model.
Finally, true negatives (TN) represent correctly classified negative instances. Figure
2.11 schematically describes these metrics, where both label and prediction can
assume only binary integer or categorical values (e.g., 0 or 1, yes or no).

Fig. 2.11 Definition of true (TP) and false positives (FP) and true (TN) and false negatives
(FN).

Sensitivity/recall (Equation 2.26) evaluates how many true samples are recog-
nized by the model. Specificity (Equation 2.27) measures how efficiently negative
samples are discarded. Accuracy (Equation 2.28) is an overall performance evalua-
tion metric providing the percentage of correct classification. The geometric mean
of sensitivity and specificity (Equation 3.1) is useful to appreciate the situations
in which one of the two measures is far smaller than the other. F-score (Equation
2.30) is computed as the harmonic mean between sensitivity and precision/positive
predictive value, with positive predictive value (PPV) computed as in Equation 2.31.
Finally, negative predictive value (NPV) is computed as in Equation 2.32.

In the case of unbalanced data sets (see Section 2.4.4), the F-score is preferable
to accuracy as a global correct classification metric.

sensitivity =
T P

T P+FN
(2.26)

speci f icity =
T N

T N +FP
(2.27)

accuracy =
T P+T N

T P+T N +FP+FN
(2.28)

geometric−mean =
√

sensitivity · speci f icity (2.29)

F − score =
2 · sensitivity · precision
sensitivity+ precision

(2.30)
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PPV =
T P

T P+FP
(2.31)

NPV =
T N

T N +FN
(2.32)

Moreover, the receiver operating characteristic (ROC) curve is a graphical plot de-
scribing the diagnostic capability of a binary classifier as its discrimination threshold
varies. Specifically, the ROC curve is created by plotting the true positive rate (i.e.,
sensitivity) against the false positive rate (i.e., 1 - specificity) at various threshold
settings. Finally, the area under the curve (AUC) measures the ability of a classifier
to distinguish between classes and is used as a summary of the ROC curve, while
the equal error rate (EER) corresponds to the error observed at the point in the ROC
curve where sensitivity equals specificity.

2.4.3 Regression metrics

Differently of classification, where the objective is to predict specific classes, the
objective of regression algorithms is to predict a continuous score. In this case,
proper performance metrics are defined, different from that used in classification
tasks. The correlation coefficient (Equation 2.33) measures how well the model fits
the dependent variable, i.e., how much variability in the dependent variable can be
explained by the model; it ranges between 0 and 1, with larger values indicating
better performance. Root mean square error (RMSE, Equation 2.34) and mean
absolute error (MAE, Equation 2.35) are absolute measures of the goodness of fit,
providing the entity of deviation from the target values. While MAE treats all errors
the same, RMSE gives larger penalization to big prediction errors.

r =

√
1− ∑

N
i=1(yi − ŷ)2

∑
N
i=1(yi − ȳ)

(2.33)

RMSE =

√
1
N

N

∑
i=1

(ŷi − yi)2 (2.34)

MAE =
1
N

N

∑
i=1

|yi − ȳ| (2.35)
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2.4.4 The problem of class unbalance

In most real-world applications, classes are not balanced, which means that different
classes can encompass a different number of elements. ML algorithms aim to
minimize the misclassification error, regardless of the distribution of the training
items in the different classes. In the case of very unbalanced classes, this will result
in a high accuracy value and poor sensitivity or specificity in the smallest represented
class. Figure 4.9 reports an example of a confusion matrix, where the positive class
includes 10 samples, and the negative class contains 100 elements. The computation
of performance metrics results in an accuracy of 0.87 and a specificity of 0.95, which
are good results. However, sensitivity is equal to 0.1 and precision is less than 0.2,
leading to poor usability of the classification model. Different methods can be used
to solve this problem, balancing the original data set and providing balanced results.

Fig. 2.12 Example of the confusion matrix.

Under-sampling consists in randomly selecting only a certain percentage of the
most represented class. In the case reported in Figure 4.9, the negative class would
be sampled with a ratio of 0.1, thus discarding 90% of the negative elements. This
procedure makes the data set balanced, however, a huge loss of information occurs.
Over-sampling works in the opposite direction. In this case, the elements of the
smallest class are repeated a certain number of times, depending on the balance ratio.
However, this would produce over-fitting (i.e., the model is fitting on the provided
samples and it is unlike to have good generalization capabilities).

This issue can be partially solved by generating artificial data, similar but not
identical to that of the smallest class but not identical. New data points are generated
using linear combinations of the training samples. Synthetic minority oversampling
technique (SMOTE) [210] is an example of an over-sampling algorithm.

Data augmentation techniques include also arbitrary rotations of the inertial
signals. Starting from each single data window (see Section 2.1.4), additional
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windows can be obtained by inverting signals along the time dimension, changing
the sign of positive and negative recorded samples, or changing the order of axes
(e.g., invert x and y axis). The additional windows are then merged with the original
data set, resulting in a larger and more heterogeneous sample.

The cost function of the ML classification model may be modified to assign
different weights to errors in different classes. The cost matrix is a 2D matrix
reporting the cost of errors occurring in each field of the confusion matrix (Figure
4.9). The error weight of TP and TN is set to zero, and that of FP and FN is
equal by default (e.g., equal to 1). Changing one of the two weights (e.g. the FN)
would produce different results, affecting the performance metrics (e.g., sensitivity).
However, despite some metrics can be maximized using this approach, it is unlikely
that the overall accuracy would improve.

Finally, sequential data, such as inertial signals, commonly undergo a segmen-
tation procedure (see Section 2.1.4), consisting in dividing the original signal into
different time frames. An alternative approach for class balancing could be to use
a different overlap for signals belonging to different classes. A larger overlap can
be used for the less-represented class, resulting in balanced data. This would not
produce any loss of information, as the most represented class is not affected by the
balancing procedure. Moreover, any data are synthetically generated or repeated
identically multiple times.

2.5 Related work

The combination of WS and ML techniques has been successfully employed for
the monitoring of several motor aspects of PD. It has been employed for assessing
bradykinesia [151, 211], dyskinesia [212, 213], postural stability [140, 176], tremor
[127], and FOG [157, 158, 135, 214, 162]. Moreover, some studies implemented ML
methods for predicting single MDS-UPDRS items related to motor signs [98, 215]
or a set of MDS-UPDRS motor scores [216]. A detailed overview of the literature
works focusing on different aspects of PD is provided in the following.
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FOG

Automated FOG detection methods based on WMS and ML have received increasing
attention over the last two decades. Different sensors, sensor configurations, exper-
imental procedures, and classification algorithms have been proposed, providing
incremental improvement in detection performance. The number of sensors ranges
from 1 [157, 158, 217] to 6 [218], and several sensor locations have been proposed
[156–158, 160–162]. Experimental procedures include a large variety of walking
tasks. Some studies addressed the timed-up-and-go test (TUG) [219, 220], as it
includes gait initiation and turns. In other studies, self-designed protocols included
walking [161], together with turns and stops for eliciting FOG [160, 221, 214]. Fi-
nally, few studies included activities similar to ADLs in addition to free-like walking
tasks [135, 217, 159]. As far as concerns the sample size, most published works en-
rolled a population ranging from 7 to 12 PwPD [219, 160, 161, 220, 221, 162, 214],
with few studies addressing larger samples of 21 [135, 159, 217] and 38 [157] pa-
tients. A large variety of FOG detection algorithms has been proposed. The first
approaches were based on the computation of a few indices characterizing FOG and
the use of a simple threshold to distinguish FOG from other activities [222, 223].
The freeze index [222] represents the first FOG index described in the literature
and is evaluated as the ratio of power in the freezing band (i.e., 3-8 Hz) and that
in the locomotion band (i.e., 0-3 Hz). Subsequent works aimed to improve the
classification performance by extracting a larger number of features and using ML
algorithms for the classification task, including SVM [135, 157], kNN [162, 214],
and random forest [224]. Finally, DL was proposed to detect FOG, outperforming
classical ML models [158, 217, 156]. Recent studies have taken advantage of the
high potential of DL algorithms to perform FOG detection and prediction. More
specifically, CNN [158, 156, 161], LSTM [217, 221], and deep autoencoders [160]
achieved good to excellent performance in FOG detection, with sensitivity ranging
from 0.63 [161] to 0.92 [217] and specificity ranging from 0.75 [135] to 0.98 [161].
The major limitations of the mentioned studies include the small PD patients cohort,
the lack of external validation data sets, the use of laboratory settings and super-
vised experiments, the high computational complexity of the designed classification
algorithms, and/or the non-suitability for real-time implementations.

WMS also enables monitoring of spatial-temporal gait degradation in patients
with FOG, possibly useful for the recognition of pre-FOG periods (i.e., prediction of
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FOG before its actual occurrence). Indeed, their usage, in combination with ML, has
recently paved the way for FOG prediction [162, 225–229]. By examining several
time- and frequency-domain gait features, these studies have achieved the real-time
detection of pre-FOG periods [225–227, 161]. However, the reported performance
of ML analysis in predicting FOG is suboptimal in terms of accuracy, probably
reflecting the clinical heterogeneity of the cohorts under study. For example, accuracy
in predicting FOG in PD would benefit from assessing the effect of L-Dopa, which
is known to improve spatio-temporal gait parameters (e.g., stride length and speed).
Accordingly, the patient’s condition with respect to dopaminergic therapy would
influence the effectiveness of the algorithm and thus the accuracy of FOG prediction.
None of the previous studies using wearable inertial sensors and ML analysis to
predict FOG evaluated and compared PwPD with and without dopaminergic therapy.

Postural stability and gait impairment

Over the past two decades, wearable sensing systems based on accelerometers and
gyroscopes have been increasingly used for objective monitoring of gait and bal-
ance in PwPD [230, 231, 145]. These technologies have provided highly accurate
data through analysis of inertial data recorded during various activities, including
stance [140, 129], postural transitions [232, 233], gait [234, 179, 123], and turning
[235, 176]. In addition, several ML algorithms have been used previously to ob-
jectively assess the severity of PD [236, 237]. However, so far only a few studies
have used sensor-based recordings in PD to predict specific MDS-UPDRS items
regarding balance and gait or even the postural stability and gait difficulty (PIGD)
score, achieving suboptimal performance. Currently, clinical assessment of axial
impairment in PD involves measurement of the PIGD score, which is an accurate
indicator of disease severity and prognosis [238]. To obtain quantitative markers of
disease progression, it would be important to measure the PIGD score objectively
in PwPD. In [215], gait data of 75 PwPD were recorded using a single IMU on the
waist. An SVM classifier was used for gait detection, and power spectra in the range
of 0–10 Hz were calculated and used as output. The results showed that the output of
the algorithm was correlated with MDS-UPDRS gait scores (r = −0.73, p < 0.001)
and PS scores (r = −0.42, p < 0.001). In [239], 31 participants were equipped with
3 WMS on the lower back and on each foot. Inertial data were recorded in the home
environment and gait, turning, and stance activities were registered and analyzed.
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Several measures related to the quantity and quality of movements were extracted,
selected, and input to a multivariable LR model. The outcome of the algorithm was
found to be correlated with UPDRS-part III total score (r = 0.48, p = 0.007) and
PIGD score (r = 0.61, p < 0.001). To overcome the limitations of the aforementioned
studies, a DL model fed with raw inertial data was validated and tested on a large
number of PwPD, obtaining good performance [240]. Specifically, 119 PwPD were
fitted with a single triaxial accelerometer on the lower back and asked to walk back
and forth for 2 minutes. A CNN model was used to predict the MDS-UPDRS part III
total score, obtaining an r = 0.82 and a RMSE = 6.3. These studies did not consider
several clinical biases that have a major impact on sensor-based measures, such as
the effect of L-Dopa and the presence of FOG. In addition, the use of multiple WMS
reduced the noninvasiveness and comfort of the adopted sensing systems [239].

Among the various walking tasks performed during daily activities, many studies
in the literature, as well as clinical experience, recognize turning as a privileged
activity to detect motor impairment in PwPD. Despite numerous studies on the gait
characteristics of PwPD using WS, only a few have focused on turn detection and
analysis. Among them, the authors of [184] used a single sensor on the lower back
and recorded data from a cohort of 20 PwPD and 13 elderly people with the goal
of detecting turns in both ON and OFF states. The experimental protocol included
simulated ADLs including free walking, sit-to-stand, brushing teeth, ironing, and
turning. The obtained detection performance, measured in terms of sensitivity,
specificity, and accuracy, was 92%, 89%, and 92% in the ON state and 92%, 78%,
and 83% in the OFF state. In [180], 45 elderly and 10 young adults were equipped
with four WMS, placed on the sternum, lower back, and thighs. Participants were
asked to perform multiple 360circ turns in both directions; the aim was to identify
people characterized by a high anamnestic risk of falling. Dynamic time warping
was performed on the angular velocity signals of elderly participants and controls,
and significant differences emerged between the two classes. However, the method
was not applied to patients with neurodegenerative diseases. All of the cited studies
have some limitations, including a small cohort of PD patients (maximum 30 PD
patients), supervised experimental protocols, the use of dedicated hardware, and, in
general, the use of multiple IMUs. In addition, no postural control index or objective
measure with assessed correlation with clinical parameters has been proposed.
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Bradykinesia

The combination of WMS and ML techniques was also exploited to recognize the
severity of bradykinesia. In [185, 241], 34 and 24 subjects were enrolled, respectively.
Three IMUs were mounted on the patient’s chest and each thigh to assess the leg
agility (LA) task in the clinical setting. Time and frequency domain features were
extracted and selected to feed the classification algorithms, namely SVM and kNN.
The accuracy was found to be 43% in both studies. A correlation coefficient r = 0.49
between the automatic scoring system and the MDS-UPDRS clinical assessment was
reported in [241]. Bradykinesia was assessed in [242] through a specific smartphone
application tested on 14 PwPD. Several items of the MDS-UPDRS Part III were
analyzed, including finger touch, hand pronation-supination movements, and LA.
Focusing on the latter, the best correlation with the clinical score was found with
leg movement power (r = −0.5, p = 0.015). However, no classification tasks
designed to assess the severity of bradykinesia were performed. In [188], a six-
month clinical study of 44 PwPD was conducted to assess many MDS-UPDRS
motor tasks using a smartphone in the home environment. Although LA was not
included in the assessment, the walking task can be partially considered an indicator
of bradykinesia; the authors found an intra-class correlation coefficient (ICC) of 0.88
with the MDS-UPDRS walking score. In addition, in [186] 19 PwPD were monitored
with ankle-mounted WMS for assessment of LA and response to treatment. Time
and frequency domain characteristics were calculated to feed different classifiers, i.e.,
SVM, DT, and LR. Performance was expressed in terms of ICC, Pearson correlation
coefficient, and RMSE with respect to MDS-UPDRS bradykinesia score (item 3.14);
ICC = 0.89, r = 0.83 and RMSE = 0.53 were reported. Finally, in [187] 50 PwPDs
were tested by wearing IMU on each ankle for LA quantification. A fuzzy logic
inference model was constructed by exploiting both the most significant features
and rules based on the recommendations of MDS-UPDRS item 3.8. Unfortunately,
classification results in terms of accuracy, r, ICC, and RMSE were not reported.
It is worth noting that all of the cited studies have some limitations, including the
small sample size (maximum 44 PwPD), the use of dedicated hardware (only one
study employs smartphones), and the number of sensors (most studies use three
sensors). In addition, some relevant details about the dataset (e.g., the cardinality of
MDS-UPDRS classes) were not reported.



Chapter 3

Materials and methods

This chapter describes the data and the processing methods used in this study. Dif-
ferent sections refer to any specific objective. FOG detection and prediction are
addressed in Section 3.1. The automatic assessment of postural stability while
performing different tasks is described in Section 3.2. The evaluation of gait impair-
ment is described in Section 3.3, while Section 3.4 reports the automatic estimation
of bradykinesia. Each of the following sections is structured as follows. First, an
overview is provided regarding the objective of the study, along with a brief summary
of the employed materials and methods. Then, the patients’ cohort enrolled in the
study, data acquisition procedures (i.e., sensors, experimental protocol), preprocess-
ing steps (i.e., denoising, feature extraction, feature selection), and implementation
details of classification and regression models are described.

3.1 Freezing of gait

The following two studies focus on the detection and prediction of FOG. In the
first work (Section 3.1.1), data were recorded using sensors on the shanks, and the
analyses were performed using an optimized feature set and ML model. Performance
was evaluated in both ON and OFF conditions, and the effect of therapy was evaluated.
In the second work (Section 3.1.2), data were recorded using a single sensor on the
waist, and DL was used to develop a real-time FOG detection algorithm.
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3.1.1 Prediction of freezing of gait using lower limbs inertial
sensors

Despite a large number of studies focused on the detection of FOG, few of them
aimed to recognize the typical degradation of gait patterns preceding FOG. More-
over, none of them considered the effect of therapy on the detection and prediction
performance. In this work, the combination of ML and WMS data was exploited
for the detection and prediction of FOG [219]. Participants were equipped with two
IMUs on their shins and asked to perform a TUG test. Data from a single axis of the
gyroscope were processed and fed to different ML models. Classification models
were optimized and combined for improving the algorithm performance. Finally,
the results of both FOG detection and prediction algorithms were assessed, further
considering the effect of therapy.

Subjects

Eleven PwPD affected by FOG were enrolled in the Movement Disorder outpatient
clinic of the Department of Human Neurosciences, Sapienza University of Rome,
Italy. The inclusion criteria were as follows. A clinical diagnosis of idiopathic
PD based on current consensus criteria [243], lack of dementia (mini-mental state
examination - MMSE > 24), presence of FOG directly verified by physical examina-
tion of two neurologists, ability to walk independently, and lack of comorbidities
possibly affecting gait (e.g. neuropathies, rheumatic and orthopedic disorders). To
assess patients’ motor, cognitive, and emotional functions, the clinical examination
included the following standardized scales and scores: H&Y, MDS-UPDRS part III,
FOG questionnaire (FOG-Q), MMSE, frontal assessment battery (FAB), Hamilton
depression rating scale (HAM-D) and Beck anxiety inventory (BAI). During the
experimental sessions, patients were studied both under (1 hour after L-Dopa intake)
and not under (after L-Dopa withdrawal for at least 12 hours) dopaminergic therapy
(i.e., ON and OFF state of therapy, respectively). Finally, the L-Dopa equivalent
daily doses (LEDDs) were calculated for each patient [244]. Table 3.1 summarizes
the demographic and clinical features of the population enrolled in this study. In
agreement with the Declaration of Helsinki, the experimental procedures were ap-
proved by the institutional review board of Sapienza University of Rome, Italy. Also,
all the patients gave written informed consent to experimental procedures.
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Table 3.1 Demographic and clinical features of patients enrolled in this study (mean ±
standard deviation). MDS : movement disorder society; UPDRS : unified Parkinson’s disease
rating scale; ON : under dopaminergic therapy; OFF : not under dopaminergic therapy.

Number of subjects (male) 11 (7)
Age (years) 73 ± 7

Disease duration (years) 10.5 ± 7
FOG duration (years) 6.7 ± 1.6
Hoehn & Yahr score 2.7 ± 1

MDS-UPDRS - part III ON 37.9 ± 15.1
MDS-UPDRS - part III OFF 44.5 ± 16.9

FOG questionnaire 18.6 ± 2.9
Mini-mental state examination 28.3 ± 2.1

Frontal assessment battery 14.4 ± 2.8
Hamilton depression rating scale 17 ± 7.8

Beck anxiety inventory 16.5 ± 13
Levodopa equivalent daily dose (mg) 741 ± 272

Data acquisition

The motor task consisted of 7-meter TUG test requiring patients to get up from a
chair, walk in a straight line for 7 m, turn, walk back, and sit down. To increase
the probability of FOG occurrence, the TUG test was performed in a free-living-
like environment equipped with factors that commonly elicit FOG in a domestic
setting. More in detail, the TUG test implied the passage from a spacious room
to a narrow and furnished corridor (about 1.5 meters wide) with the interposition
of an open door [145]. During TUG tests, PwPD were video-recorded through a
camera and monitored by two IMUs placed and fixed on the shins (Figure 3.1a)
through elastic bands, which allowed a good and permanent adhesion during the tests.
Video recordings were used for the offline clinical assessment by two independent
neurologists, experts in movement disorders, serving as gold standard evaluation for
FOG detection. More in detail, two independent neurologists separately identified
the start and end of FOG episodes and, in case of discrepancy, performed a common
assessment to resolve the ambiguity. The IMUs positioning on the patient was
implemented so that when the patient was standing the y-axis represented the inverse
gravity vector and the x-axis lay in the frontal plane. Hence, the angular velocity
around the x-axis enables a good representation of human motion during linear gait.
The STMicroelectronics system-on-board prototypes neMEMSi [245] were equipped
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with a 9-axis IMU (LSM9DS0), integrating a ± 16 g 3D accelerometer, a ± 12 Gauss
3D magnetometer, and a ± 2000 dps 3D gyroscope; a Bluetooth V3.0 module (BT33);
a lithium-ion battery; an ultralow-power 32-bit microcontroller (STM32L1) (Figure
3.1b). Also, the neMEMSi device included temperature, hygrometer, and pressure
sensors that were not used for this study. A preliminary conventional calibration
process of the inertial sensors was performed. It consisted of a software correction of
the displacement of the IMUs framework with respect to the earth framework, before
their positioning on the patient. Real-time IMU data were acquired with a sampling
frequency of 60 Hz, acceleration full scale of ± 2 g, and angular velocity full scale of
± 245 dps. No additional analog/digital filter was added besides the ones specified
in the datasheets. The resulting data were sent in real-time to a personal computer
through the neMEMSi Bluetooth module and progressively saved in CSV format.

(a) Sketch of wearable device positioning and iner-
tial reference frame

(b) Exploded view of the neMEMSi device.

Fig. 3.1 Sensor positioning and composition

Each CSV file was related to a single test. Data in CSV files were processed
offline as described in the next Section. For the synchronization of the two devices,
data collection started when the patient was sitting down. When the patient stood up,
an evident peak in the collected data from the 3-axis gyroscopes took place, as can
be observed in Figure 3.2 for the x-axis of the gyroscope. In that plot, the normalized
angular velocity around the x-axis is drawn versus time. At time t=2.6 s the patient
stood up and a peak from each device can be detected. In the following few seconds
(till t=6 s) data are not meaningful because the patient was arranging their position.
After t=6.5 s the patient started walking. By superimposing the standing-up peaks
related to the two legs, the relative delay from each other can be calculated. The
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mentioned method allows a perfect synchronization between signals from the two
shins, which conserves their phase shift along the whole test duration.

Fig. 3.2 Normalized angular velocity around the x axis versus time for the two shins during
the transition from sitting to standing up.

Preprocessing

In this study, a single component of the angular velocity signal was employed,
which describes the principal angular movement of the leg. Specifically, the an-
gular velocity signal around the x-axis was addressed, in the following reported as ωx.

Normalization. The raw input data ωx were normalized using the mean-normalization
formula (see Section 2.1.8). Signal normalization allows to process a homogeneous
range of motion data for the entire population, and to perform data segmentation in a
subject-independent way.

Segmentation. In order to get information about the traits and qualities of each
step accomplished by the patient, a step-to-step data segmentation process was per-
formed. To this end, signal peaks were identified as anchor points for segmentation;
indeed, points in which the angular velocity reaches the maximum are known to
represent the mid-swing phase in gait analysis [246, 247]. This procedure was rec-
ognized to ease step detection and limit detection errors. In more detail, signals from
the right and left leg were kept separated, and only signal peaks with an amplitude
≥ 20% of the maximum value and at least 350 ms apart were considered. The
amplitude threshold was heuristically selected in order to catch both normal and
anomalous steps such as those preceding FOG. The temporal threshold was set to



64 Materials and methods

avoid duplicated peak detection during normal gait. In Figure 3.3a, an example of the
outcome of our peak detection algorithm is reported. Once having identified signal
peaks, two data segmentation tasks were performed in order to arrange data frames
for subsequent feature extraction. Type I segmentation catches data between two
subsequent peaks (i.e., the current and the previous one), while Type II segmentation
measures the positive portion of data encompassed by the current peak (Figure 3.3b).
Type I segments yield frequency information, while range of motion and movement
intensity can be computed using the Type II segmentation.

(a) Signal peaks identified by the peak detec-
tion algorithm (red triangles)

(b) Type I and Type II segments.

Fig. 3.3 Peak detection and signal segmentation.

As the objective is to catch walking pattern degradation preceding FOG events,
the features to be extracted from inertial data should be able to represent subtle
details of each step. The selected features in both time and frequency domains are
reported in Table 3.2. Some of them, e.g., standard deviation, range, and root mean
square, are self-explaining. In the following, a description of those features requiring
some comments is provided.

Angular Jerk. It represents the rate of variation of the angular acceleration, defined
as 1

2 ·
∫

ω̈2
x ·dt, where ω̈x is the second derivative of the angular velocity around the

x-axis.
Normalized Jerk. It represents the Angular Jerk normalized by the time in which it is
computed.
Stride similarity. It is computed using the Dynamic Time Warping (DTW) algorithm.
It provides a scalar output that is inversely proportional to the similarity between the
two input signals. Thus the output represents the similarity between the actual stride
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Table 3.2 List of extracted features, along with the employed segmentation type.

Domain Feature Segmentation
Te

m
po

ra
l

Standard Deviation Type I
Range Type I

Root Mean Square Type I
Angular Jerk Type II

Normalized Jerk Type II
Stride Similarity Type I

Step Time Type II
Stride Time Type I
Peak height Type II
Peak width Type II

Sp
ec

tr
al

Power Spectral Entropy Type I
Principal Harmonic Frequency Type I
Principal Harmonic Amplitude Type I

Principal Harmonic Width Type I
Weighted Power Spectral Frequency Type I

Low Power Frequency Type I

and the previous one.
Step Time. It is computed as the temporal distance between each peak and the
previous contralateral peak.
Stride Time. It is computed as the temporal distance between two subsequent peaks
in the signal measured on either the right or the left leg.
Peak height and width. They are computed respectively as the height (with respect to
zero) and half-power width of the positive portion of the signal peak. The former
represents the maximum angular velocity reached in each step while the latter is
proportional to the swing time.
Power Spectral Entropy. It is the spectral Shannon Entropy, computed as −P ·
log(P+ ε), where P is the normalized squared amplitude of the signal Fast Fourier
Transform (FFT) and ε an arbitrarily small value (0.001) ensuring real output values.
It represents a measure of the quantity of information carried by the signal spectrum.
Principal Harmonic Amplitude and Frequency. They are computed from the signal
FFT, as the peak value and its corresponding abscissa (frequency).
Principal Harmonic Width. It is obtained as the half-power width of the principal
harmonic component.
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Weighted Power Spectral Peak. It is the product of amplitude and frequency of the
principal harmonic.
Low Power Frequency. It represents the ratio between the power in the bandwidth
0-2 Hz and the total signal power.

Classification

A binary supervised classification problem was set up for FOG detection, namely
gait vs FOG. This allowed us to get an insight into the capability of the extracted
feature set to discriminate between normal and abnormal gait patterns. In view of
the subsequent pre-FOG detection task, the implemented algorithm should be robust
and easily interpretable. In this context, DT represents a simple and fast algorithm,
providing straightforward interpretability of its outcome. Nevertheless, DT is known
to implement a very sharp margin separating the two classes, thus increasing the risk
of over-fitting. On the other hand, SVM seeks the hyperplane providing the largest
margin for separating the two classes and it has been widely employed in similar
problems [248] [249]. In this work, both models were combined by exploiting DT
for feature selection and SVM for classification. As for DT, features close to the tree
root achieve the best classification of the training set. Hence, this algorithm can be
used to rank features in decreasing order of relevance. The implemented DT has the
following parameters: split criterion based on Gini-Simpson diversity index [204],
minimum leaf size equal to 1, and a maximum number of splits of 15. A tuning
procedure was performed to identify the best feature subset and model parameters,
i.e., those minimizing the misclassification error in a 10-fold CV. The number of
selected features varied from 1 to N (i.e., the entire feature set), while the SVM
regularization term ranged from 1 to 20.

The generated feature set was split into 70% training and 30% test sets to avoid
over-fitting. Then, the model optimization process was performed using the training
set and the resulting optimized model was tested on the test set. Moreover, in
order to ensure subject independence and to achieve results representative of more
realistic working conditions, LOSO validation was performed. The classification
performance was evaluated for each performed validation/test, in terms of sensitivity,
specificity, accuracy, PPV and NPV, F-score, and AUC. Training, validation, and test
were carried out on data related to patients ON and OFF therapy separately. Then,
the results obtained in the two conditions were compared. Finally, the final model
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configuration was trained with data related to patients ON (OFF) therapy and tested
on OFF (ON) data. Thus, the performance obtained in the two testing conditions
was compared.

As for pre-FOG detection, i.e., capturing typical degradation of gait pattern
preceding FOG episodes, a binary classification problem was set up to differentiate
between gait and pre-FOG. The steps employed to select the final model configura-
tion, which is used for pre-FOG identification, are described in Figure 3.4.

Fig. 3.4 Workflow of the procedure used for the identification of the final model configuration.
SVM : support vector machine; kNN : k-nearest neighbor; LDA : linear discriminant analysis;
LogR : logistic regression; FN : false negative.

First of all, as the pre-FOG window length cannot be determined a-priori, dif-
ferent window lengths in the range of 2-5 s were considered. For each value,
the corresponding gait data were labeled as belonging to the pre-FOG class. As
the identification of the most suitable classification algorithm for this task is not
straightforward, several tests were performed using the model implemented for FOG
detection as well as different models, namely kNN, LDA, and LogR. In order to
jointly identify the most suitable window length and classification model, a 10-fold
CV was performed for each model-window length pair and computed accuracy. For
each classification algorithm, the corresponding hyperparameters were optimized
employing a Bayesian optimization algorithm. The hyperparameters and the corre-
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sponding range used for model optimization in the 10-fold CV procedure are reported
in Table 3.3. Once having identified the model providing the best performance, two
approaches were exploited for improving the algorithm sensitivity. The first one
consists in tuning the FN cost of the algorithm in the range of 0-10, in order to
reduce the number of pre-FOG samples that are not recognized by the algorithm.
The second approach employs a combination of detection models; data samples are
classified as pre-FOG if at least one model yields a pre-FOG decision.

Table 3.3 Parameters employed for model optimization, along with the corresponding range.

Model Parameter Range

SVM
kernel function linear, quadratic, gaussian

kernel scale 0.001 - 100
box-constraint 0.01 - 100

kNN
number of neighbors 1 - 50

distance metric euclidean, manhattan
distance weight equal, inverse, squared inverse

LDA
Gamma 0.01 - 1
Delta 0.01 -100

LR Lambda 0.01 - 100

In both cases, sensitivity, accuracy, and F-score were computed and the config-
uration providing the best performance was selected. Then, LOSO validation was
performed, and several classification evaluation metrics were computed. Finally, in
order to provide interpretability of the developed classification model, the relevance
of features in discriminating normal from abnormal (i.e., pre-FOG) gait steps was
assessed. Specifically, the most frequently selected features were addressed (i.e., in at
least 80% of cases in the LOSO validation) and the Spearman correlation coefficient
and the associated p-value were computed between those features and the binary
class label (i.e., 0: gait, 1: pre-FOG). This method allows quantifying the statisti-
cal dependence between features and target, thus providing a measure of increase
or reduction in variables’ value while approaching a FOG event. Specifically, a
positive/negative correlation coefficient indicates an increase/decrease of features
value as approaching FOG. Finally, the latency between the pre-FOG detection
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and the actual FOG occurrence was computed. The above-mentioned analysis was
performed on data related to patients’ ON and OFF therapy separately and the results
were compared. Then, the final model configuration was trained with patients ON
(OFF) therapy and tested on patients OFF (ON). Finally, the performance obtained
in the two testing conditions was compared.

3.1.2 Real-time detection of freezing of gait using a single ac-
celerometer

This study aims to develop a robust, fast, and lightweight FOG detection algorithm
for real-time applications in the home environment. Data from three different data
sets were used for the analysis. A novel CNN was trained and optimized to maximize
performance while reducing the computational complexity. A detailed performance
evaluation was provided, including information regarding the detection rate, FPs
number and duration, and the prediction time or detection latency. Finally, testing
time, memory requirement, and battery consumption were estimated.

Subjects

In this study, three data sets were employed for the analysis. As far as concerns
the main data set (REMPARK), only binary (i.e., FOG, non-FOG) class labels
were available. Given a large number of FOG episodes recorded, it was used for
training, validation, and testing of the classification model. The additional data sets
(6MWT,ADL) yield the advantage of including class labels for different activities.
The first one includes a large amount of gait data and some FOG episodes. In the
second one, despite no FOG episodes being recorded during the data collection
procedures, several ADLs were performed during the recordings. Thus, this latter
data set was included to test the robustness of the FOG detection algorithm to
FPs, which is of fundamental importance for a real-life-oriented detection tool.
Both data sets were used in this study as independent test sets. A summary of the
characteristics of the three data sets is reported in Table 3.4, together with the list of
labeled activities.

The REMPARK data set [135] includes data from 21 PD PwPD. The inclusion
criteria were a clinical diagnosis of PD with motor symptoms, H&Y stage larger than
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Table 3.4 Characteristics of the data sets used in this study.

Data set REMPARK 6MWT ADL

Subjects (% male) 21 (86%) 38 (75%) 59 (63%)
Total recording time 9.1 h 2.4 h 5.9 h

FOG duration 93 min 5.3 min 0
# FOG episodes 1058 52 0

Labeled
activities

FOG
non-FOG

FOG
gait

stance

gait
stance

sit
sit-to-stand
stand-to-sit
toe tapping
leg agility

retropulsion test

2 in OFF state of therapy, absence of dementia or vision impairments preventing them
from accomplishing the required tasks, and FOG-Q score larger than 6. Subjects
needing gait assistance (e.g., walking stick, crutch) were included in the study. The
experiments were conducted at patients’ homes. Data were recorded both ON and
OFF dopaminergic therapy. In detail, the sample included 18 males and 3 females,
with age 69.3 ± 9.7, disease duration 9 ± 4.8, H&Y score 3.1 ± 0.4, FOG-Q 15.8 ±
4.1, MMSE 27.8 ± 1.9, and total MDS-UPDRS part-III 16.2 ± 9.7 in ON and 36.3
± 14.4 in OFF.

The 6MWT data set [132, 157] includes data from 38 PwPD and 21 control
subjects. The inclusion criteria for the PD sample were a clinical diagnosis of
PD with motor symptoms (either with a medical history of FOG events or not),
and no major comorbidities or vision/cognitive impairments preventing them from
accomplishing the required tasks. Subjects needing gait assistance were included in
the study. The experiments were conducted during pre-scheduled outpatient visits,
and all PwPD were in a daily ON state, meaning that they had taken their usual drug
dose, and a variable time had elapsed since then. The sample included 28 males and
10 females, with a mean age of 70.7 ± 8.2, disease duration of 9 ± 4.8, and H&Y
score of 2.5 ± 0.8. The inclusion criteria for the controls were no clinically evident
sign of Parkinsonism, no severe vision impairment, dementia, and other significant
neurological disorders. Subjects needing gait assistance were included in the study.
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The control sample included 7 males and 14 females, with a mean age of 85.6 ± 7.2.
Being enrolled in a retirement home, the age of control subjects was significantly
superior to that of PwPD. However, these controls represent a challenging situation
for the detection algorithm in correctly classifying the gait features of PD patients.
In fact, elderly people may exhibit challenging gait patterns, in terms of gait velocity
and turn amplitude.

The ADL data set [176] includes data from 59 PwPD. The inclusion criteria
were a clinical diagnosis of PD with motor symptoms, no major comorbidities, or
vision/cognitive impairments preventing them from accomplishing the required tasks.
Subjects needing gait assistance were included in the study. All PD participants were
in a daily ON state. The sample included 37 males and 22 females, with an age of
69.2 ± 10.2, disease duration of 6.7 ± 5.3, and H&Y score of 2.14 ± 0.8.

Data acquisition

REMPARK. The performed activities included walking tasks (e.g., showing home,
stand up and go test, walking outdoors) and some tasks designed for FP analysis (e.g.,
brushing teeth, painting/drawing/erasing on a sheet of paper, cleaning windows).
Acceleration data were recorded using an IMU mounted on the left side of the
waist (Figure 3.5) by means of an elastic band and locally stored on the device.
Sensor range was set to ± 6g and sample rate to 200Hz, with data subsequently
down-sampled to 40 Hz. A total of 9.1 h of inertial data were recorded during the
experiments, including 93 minutes of FOG.

6MWT. Participants were asked to perform the 6-minute walking test (6MWT),
consisting of walking back and forth along a 10-m hallway for 6 min at their preferred
pace. Data from a 3-axial accelerometer and 3-axial gyroscope were recorded using
a smartphone mounted on the lower back by an elastic band (Figure 3.6). A range of
± 2g and 2000 dps was used for the accelerometer and the gyroscope respectively,
and a sampling rate of 200 Hz was selected. Inertial data were locally stored in the
smartphone. A total of 2.4 h of inertial data were recorded from PwPD during the
experiments, including 97.6 min of gait, 17.4 min of stance, and 5.3 min of FOG.
An additional 1.4 h of data were recorded from control subjects, including 72 min of
gait and 4 min of stance.
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Fig. 3.5 Sensor position and axes orientation in the REMPARK data set. Anterior, vertical,
and lateral (left) direction corresponds to the x-axis, y-axis, and z-axis of the sensor reference
system, respectively.

Fig. 3.6 Sensor position and axes orientation in the independent data sets (6MWT, ADL).
Vertical, lateral (left), and posterior direction corresponds to the x-axis, y-axis, and z-axis of
the sensor reference system, respectively.

ADL. The same sensor configuration as in the 6MWT data set was used. Experi-
ments were conducted during outpatient visits, and participants were asked by the
clinicians to perform several activities, including free walking, turning with different
angular amplitudes, standing up, sitting down, standing for several seconds, and
other tasks required for the MDS-UPDRS evaluation. These tasks, performed in
semi-supervised conditions, are rather representative of activities carried out in a
domestic environment. A total of 5.9 h of inertial data were recorded during the
experiments, including 32.8 min of walking, 40.2 min of stance (i.e., sit, stand), and
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13.5 min of postural transitions (i.e., standing up, sitting down), while the remain-
ing activities included tasks related to the MDS-UPDRS evaluation and unlabeled
activities.

Preprocessing

Raw data of the main data set (REMPARK) were segmented using fixed-length
sliding windows of 2s. As the data set is intrinsically unbalanced, due to the different
proportions of FOG and non-FOG events, a differential segmentation process was
performed for training and validation set generation. The segmentation procedure,
reported in Figure 3.7, consists in using different overlaps for FOG and non-FOG
data. More specifically, 50% overlap (1s advance) and 87.5% overlap (0.25s advance)
were used for non-FOG and FOG data, respectively. Windows including only non-
FOG data were labeled as non-FOG, windows including at least 50% of FOG were
labeled as FOG, and the remaining windows were discarded.

Fig. 3.7 Differential segmentation process used for training and validation set generation.
Window size (w) and overlap (o) are different during FOG and other activities.

The result of the segmentation process is reported in Figure 3.8 (right), in terms
of the proportion of FOG and non-FOG instances. As evident from Figure 3.8 (left),
using a fixed-length overlap generates an unbalanced training set, with 75% and 25%
of non-FOG and FOG instances, respectively. On the contrary, the implemented
differential segmentation procedure provided a balanced distribution of non-FOG
and FOG instances, i.e., 52% and 48%, respectively. As for the test set generation,
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segmentation was performed using a fixed overlap of 75% (0.5s advance), resembling
the actual working condition of the FOG detection system (every 0.5s the algorithm
processes data from the preceding 2s). After segmentation, mean-removal was
performed on each window separately, in order to allow the classification model to
work properly with centered data.

Fig. 3.8 Proportion of FOG using standard segmentation (left) and class balancing obtained
from the differential segmentation procedure (right).

As for the independent data sets (6MWT, ADL), the axes’ orientation and sam-
pling rate were different from those of the main data set. Hence the following
procedures were performed to achieve uniform data. First, data were resampled at
40 Hz, by under-sampling the original data collected at 200 Hz. Then, the order of
the axes was adjusted to match that of the main database. After data resampling and
reshaping, segmentation was performed using 2s sliding windows with 75% overlap
(0.5s advance), as done for the test set of the main data set. Finally, the mean value
was removed from each window separately.

In order to prepare the data for the subsequent optimization and testing proce-
dures, the entire REMPARK data set was initially split into training, validation, and
test set, including respectively 12, 4, and 5 patients (approximately 60% for training,
20% for validation, and the remaining 20% for testing). The subsets were generated
so that patients in the training and test sets had similar characteristics in terms of age,
disease duration, H&Y, MMSE, and MDS-UPDRS-III, while PD patients with more
severe FOG were assigned to the test set. This represents a conservative situation,
useful to test the generalization capability of the algorithm when data from patients
with severe gait impairment are input to the classification model. The optimization
of the classification model architecture, parameters, and learning process settings
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was performed using the training and validation sets. Then, the optimized model was
tested on the test set and further tested on the additional independent data sets.

Classification

Classification model. The simplest CNN architecture includes a convolutional layer
followed by a pooling, subsequent flattened and dense layers, and finally a softmax
classification layer. Starting from this configuration, additional convolutional, pool-
ing, and dense layers were iteratively added to the architecture. Moreover, different
heads - CNN were used to obtain different spatial resolutions in the analysis of the
input signals to capture useful features, from local to global level [250].

Optimization. For each configuration, a grid search procedure was used to opti-
mize the hyper-parameters (i.e., number of filters and kernel size for convolutional
layers; type, size, and stride for pooling layers; number of neurons for dense layers).
Finally, the dropout rate and regularization parameters were adjusted to optimize
the training-validation performance. AUC and memory requirements were mon-
itored during the validation stage, in order to identify the architecture providing
the best performance while not significantly increasing the computational burden.
Specifically, an increase in AUC by at least 1% was deemed necessary to justify a
significant increase in computational complexity, whereas no threshold was set in
case of a reduction in computational complexity. The range of values and the step
size used for parameter optimization are reported in Table 3.5. While some param-
eters were optimized using the grid-search tuning process (i.e., number of filters,
filter size, pool size, pool stride, number of neurons in the dense layers), others were
manually adjusted to ensure a proper training process and to increase performance.
The parameters range and the respective step size were selected considering both
studies focusing on human activity recognition tasks [251, 252] and literature works
proposing FOG detection algorithms [158, 217]. However, the range was limited in
some cases in order to control the model complexity. Specifically, the upper limit
for the number of filters, the number of dense layers, the number of neurons in the
dense layers, and the number of convolutional heads were limited to 32, 3, 128, and
3, respectively.

Performance evaluation. A comprehensive performance evaluation procedure
was implemented to assess the classification results of the proposed model. Sensi-
tivity, specificity, accuracy, F-score, AUC, and EER were computed. Moreover, the
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Table 3.5 Range of values and steps used for the optimization of the model architecture,
model training, and regularization parameters. Some parameters were tuned using the
automatic grid-search optimization procedure (top), while others were manually adjusted
(bottom).

Parameter Range Step

# filters 4-32 4
filter size 3-39 3
pool size 2-3 1

pool stride 2-3 1
# neurons [16, 32, 64, 128] -

# dense layers 1-3 1
# convolutional heads 1-3 1

pool type [average, max] -
dropout rate 0.2-0.8 0.1

regularization term [0.001, 0.01, 0.1] -
learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] -

batch size [64, 128, 256, 512, 1024] -
# training epochs 20-250 10

geometric mean of sensitivity and specificity (Equation 3.1) is useful to appreciate
the situations in which one of the two measures is far smaller than the other.

geometric−mean =
√

sensitivity · speci f icity (3.1)

In order to provide further details on the prediction performance of the classifica-
tion algorithm, some post-processing procedures were performed using predictions
and class labels. As far as concerns the REMPARK data set, only a binary class
label was available, being either 1 or 0 in the case of FOG or activities other than
FOG, respectively. As for the additional data sets, several class labels were provided,
including gait and stance for both the 6MWT and ADL data sets, with the latter
including also labels for sitting down, standing up, and some MDS-UPDRS-related
tasks.

Postprocessing. The following measures were computed for all the data sets.
First, the percentage of FOG episodes detected was computed as the number of real
FOG episodes in which at least one data window was classified as FOG. The pro-
portion of FOG windows detected within each episode represents a complementary
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measure with respect to the percentage of FOG episodes detected. It was computed
as the percentage of true FOG windows classified as FOG by the algorithm in each
episode (Figure 3.9 B). As far as concerns the FPs, their number, duration (Figure
3.9 D), and the distance of false FOG episodes from the real FOG (Figure 3.9 C)
were computed for two out of three data sets, where FOG data was available. Finally,
FOG detection latency represents the temporal resolution in detecting FOG episodes.
It was computed as the difference between the onset of the real and detected FOG
episodes (Figure 3.9 A). Such measure is expressed in seconds (s) and can be either
negative or positive, depending on the detection being predicted or delayed with
respect to the true episode. As far as concerns the data sets for which the activ-
ity label was provided, additional analyses were performed to assess FPs. More
specifically, the occurrence of false FOG episodes was counted for each activity.
This is important to assess which activities are most frequently misclassified by the
algorithm.

Fig. 3.9 Schematic of the measures computed for post-processing analysis. A: prediction
time; B: amount of FOG detected in the episode; C: distance between false FOG episode and
the nearest real FOG episode; D: duration of false FOG episode.

Computational complexity. As the FOG detection algorithm is required to work
in real-time, testing time was computed for different input data dimensions. It was
computed separately for the preprocessing steps (i.e., reshape, mean removal) and for
the classification step. Moreover, in order to check the feasibility of implementing
the algorithm in a stand-alone device, memory requirements were calculated for
input data and classification model parameter storage. For further analysis of the
computational complexity, the floating-point operations (FLOPs) were evaluated on
the multi-head CNN model. Finally, in order to provide an estimation of the battery
consumption, the computational complexity and the processing time of the proposed
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algorithm were compared to those of the detection model presently embedded in the
commercial STAT-ON monitoring device [135].

The effect of activity threshold. The FOG detection algorithm was designed to
process and classify every single time window. However, this does not represent
the most energy-efficient solution for data analysis in real-life. Instead, a simple
thresholding method could be used for distinguishing activity from inactivity periods.
Then, the designed algorithm can be run only during activity periods. In this way, a
percentage of FPs (registered in this study during inactivity periods) may be avoided.
Moreover, the energy consumption would be significantly reduced, as inactivity data
are processed using a simple threshold approach instead of a DL algorithm. To this
end, the magnitude M of the 3D acceleration signal for each window j was computed
according to Equation 3.2, where αx, αy, and αz represent the acceleration signal
along each axis, and the sum is performed for every sample i of every window of
length w.

M j =

√
w

∑
i=1

(αx
2
i +αy

2
i +αz

2
i ) (3.2)

Then, the performance and the percentage of discarded windows were computed on
the validation set of the REMPARK data set. The threshold was selected in order to
discard data windows without degrading the performance of the algorithm. Finally,
the effect of the magnitude thresholding was evaluated separately on the test set of
the REMPARK data set, and on the 6MWT and ADL data sets.

The experiments were performed on a computer with a 2.3 GHz processor, 8
GB RAM, and 4 GB GPU. Preprocessing and post-processing were performed
using MATLAB (version R2020a), while training, optimization, and testing of the
classification model were performed in Python (version 3.6), using Keras (version
2.4), Keras-flops (version 0.1.2), and TensorFlow (version 2.3) libraries.

3.2 Postural stability

The following two studies aim to automatically evaluate postural stability in PwPD.
In both studies, a single smartphone placed on the lower back was used for data
acquisition. In the first work (Section 3.2.1), data related to turning were analyzed,
aiming both to distinguish patients with different disease progression and to provide
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an index correlated with the level of postural stability. In the second work (Section
3.2.2), participants were asked to keep a static upright position. ML models were
optimized to classify patients according to the clinical postural stability score.

3.2.1 Turn quality and postural stability assessment using smart-
phones

Despite a large number of studies focused on gait analysis during straight walking,
only a few of them analyzed the gait pattern during turning. Moreover, most of these
latter performed statistical tests to highlight differences in populations (e.g., PwPD
vs healthy controls) or in the level of motor impairment. In the present study, data
recorded from a single smartphone was used to develop a binary classification model
for distinguishing patients with different levels of motor impairment. Moreover, an
index for assessing the quality of movement (QoM) and the level of postural stability
was proposed.

Subjects

The study was performed at the Regional Reference Center for Parkinson’s Disease
and Movement Disorders, University Hospital Città della Salute e della Scienza,
Turin, Italy. A total number of 72 PwPD were enrolled in the experiment. About 60%
were males, and this reflects the prevalence of this pathology, which is unbalanced
between the two genders. However, the demographic and clinical characteristics are
not significantly different between the two groups; hence, for the sake of brevity,
these were not separately reported. The inclusion criteria were a clinical diagnosis of
PD with motor symptoms, no major comorbidities or vision/cognitive impairments
preventing them from accomplishing the required tasks. All PD participants were
in daily ON state, meaning that they had taken their usual drug dose, and a variable
time had elapsed since then. The first group of patients has been enrolled during
the pre-scheduled follow-up clinical visit. Hence, detailed clinical scores related
to the entire MDS-UPDRS part III were available, measured simultaneously with
the experiments by clinicians with expertise in movement disorders. The second
set of 13 PwPD was explicitly enrolled for the experiments, independently of their
periodical follow-up neurological visit. The main characteristics of the two patient
subgroups (labeled G-PD1 and G-PD2 respectively) are summarized in Tables 3.6
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and 3.7. Given that patients from G-PD2 did not undergo a simultaneous complete
neurological examination, the whole MDS-UPDRS part III was not evaluated. How-
ever, a recent H&Y score was available from anamnestic data and confirmed by
the clinicians supervising the experiments. The patients were binary classified into
two groups: mild (M) vs moderate/severe (S) motor and postural conditions. The
first class corresponds to H&Y less than or equal to 2, whereas the second class
encompasses patients with H&Y larger than 2. It is worth noticing that, as the
objective was to devise an index capable of correlating with the motor status and the
disease progression of PD patients, all the experiments were carried out on patients
characterized by different stages of the disease. The inclusion of a control group was
not deemed pertinent, whereas the generalization to other conditions (e.g. frailty in
the elderly population), although extremely interesting and challenging, is beyond
the scope of this experiment.

Table 3.6 Demographic and clinical characteristics of PD patients enrolled during pre-
scheduled outpatients visit (G-PD1).

# subjects (male) Age (years) Disease duration H&Y

59 (37) 69.2 ± 10.2 6.7 ± 5.3 2.14 ± 0.8

Table 3.7 Demographic and clinical characteristics of PD patients performing the 6MWT
(G-PD2).

Condition # subjects (male) Age (years) Disease duration H&Y

Mild (M) 6 (4) 68.2 ±3.9 6.2 ±1.7 ≤ 2
Moderate/Severe (S) 7 (5) 75.2 ±5.3 15.2 ±4.5 > 2

The study was conducted in accordance with the Declaration of Helsinki and ap-
proved by the local Ethics Committee. Participants received detailed information on
the study purposes and execution, and written informed consent for the observational
study was obtained. Demographic and clinical data were noted anonymously. Tests
were performed under the supervision of clinical personnel to ensure patients’ safety.

Data acquisition

Participants were asked to perform walking tests encompassing several 180◦ turns in
both directions while wearing a smartphone, in order to measure inertial data and
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work out the QoM index.
For G-PD1, inertial data were registered during the entire visiting time. Patients

were equipped with the smartphone secured around the third lumbar vertebra with
an elastic band, ensuring its adherence to the body (see Fig. 3.10). Then, they were
asked by the clinicians to perform several activities relevant to the MDS-UPDRS
scoring, including free walking, turning with different angular amplitudes, standing
up, sitting down, standing for several seconds, and so on. These tasks, performed
in semi-supervised conditions, are rather representative of activities carried out in a
domestic environment.

Fig. 3.10 Smartphone position adopted for the experiments.

Patients from G-PD2 were asked to perform a 6MWT, selected for its easy setup,
patient’s tolerance and reproducibility [253], and, most importantly, its suitability
for measuring multiple 180◦ turns in both directions. Subjects were equipped with
the smartphone as previously described, and asked to walk back and forth along a
10-meter hallway for 6 minutes at their preferred pace. They were free of using their
usual walking aids, quitting the test at any moment and possibly resuming it.

All patients agreed to the videotaping of the procedure after receiving suitable
explanations and being guaranteed that they could be identified and the videotapes
were not made available to persons different from the authorized ones. However,
video recordings were not used in this work. In fact, given that the objective was to
assess a QoM index using inertial data from turns, the only relevant information in
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this phase was the fact that the patient was performing a turn. The annotation of this
specific piece of information was deemed not sufficient to justify the time possibly
spent by a clinician to review the whole video sequence, given also the fact that a
clinician was in any case present during the test. In any case, the video was recorded
to enable possible future research. A chronometer was run simultaneously with the
test session, and turns and gait abnormalities (e.g., FOG episodes) were manually
annotated by the clinical and technical personnel. Inertial data from the embedded
sensors were collected and locally stored by means of SensorLog, a commercial app
for Android 6.0. Once collected, data were exported in CSV format and processed
offline using MATLAB version 2018a for Windows 10.

Preprocessing

Turn detection. Based on the annotations of the registered activities, turning events
were identified using a graphical user interface (GUI) developed in MATLAB. In order
to avoid confounding factors and increase the detection performance in view of an
automated turn detection, only 180◦ turns were considered. It is worth noticing that
180◦ turns allow insights into the patient’s motor condition. Figure 3.11 reports
sample amplitudes of the acceleration signal. The correlation between axes decreases
during turning, compared to straight walking. Moreover, a neat increasing and
subsequently decreasing pattern in the x-axis angular velocity (black line) can be
observed. The area under this curve yields information on the amplitude of the turn,
whereas the green line denotes the identified signal segments related to turns.

Filtering. Signals were re-calibrated to compensate for possible deviations of
sensors from the initial position and to make gait signal patterns uniform. Following
the method proposed in [254], the 3-axis accelerometer orientation correction was
performed by applying a quaternion rotation transformation to the device raw data.
After mean removal, inertial signals were de-trended and filtered with a second-order
zero-lag Butterworth low-pass filter with a cut-off frequency of 20 Hz.

Feature extraction. The set of features reported in Table 3.8 was extracted
from each turn of every participant. The reported features were identified from
literature studies for their recognized capability to describe gait characteristics,
postural control, and motor impairment in healthy, frail, and/or PD subjects, also
affected by complications such as FOG. All acceleration (αx,αy,αz) and angular
velocity (ωx,ωy,ωz) components were kept separated. Step and stride variability, step
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Fig. 3.11 Acceleration and angular velocity signals related to walking and turning activities.
For better visualization, the x-component of angular velocity was low-pass filtered (fc = 0.5
Hz), removing high-frequency noise.

and stride time, and gait symmetry were computed from the vertical component of
the acceleration signal. All the other features were computed for all components of
the accelerometer and gyroscope, generating a final set of 77 features. The spectral
entropy is the Shannon entropy computed on the signal FFT, whereas the weighted
power spectrum peaks represent the product of amplitude and frequency values
corresponding to the dominant harmonic in the FFT domain. The other features are
self-explaining.

Feature selection. The Pearson correlation coefficient r was computed between
each feature reported in Table 3.8 and the class of patients from G-PD2, i.e., 0 and
1 for mild and severe motor impairment, respectively. Then, only features with a
mild-to-moderate correlation (i.e., r > 0.4) were selected for the subsequent binary
classification task. Moreover, features exhibiting strong mutual correlation were
discarded, in order to keep only relevant and non-redundant features.

Classification

A binary classification algorithm was addressed, capable of sorting patients into
two classes: mild (M) and moderate/severe (S) motor conditions, defined as a H&Y



84 Materials and methods

Table 3.8 List of all features extracted for each turn.

Feature ID Feature Source

1 Root Mean Square [255–257]
2 Range [258]
3 Standard Deviation [255, 256]
4 Jerk [256]
5 Normalized jerk [256]
6 Spectral Entropy [259]
7 Spectrum Peaks [260, 259]
8 Normalyzed Spectrum Peaks [259]
9 Weighted Power Spectrum Peaks [260, 259]

10 Harmonic Index [261]
11 Low Power Frequency [262]
12 Step variability [263, 36]
13 Stride variability [260, 262, 263]
14 Symmetry [262, 263]
15 Step time [263]
16 Stride time [262, 263]
17 Dominant frequency [260, 259, 36]

stage ≤ 2 and > 2 respectively. Different ML models were considered, namely
kNN, SVM, and LDA. For each model, the main parameters were exhaustively
tuned, namely: kernel type, kernel scale, and cost for SVM; number of neighbors,
distance metric, and distance weight for kNN; gamma and delta parameters for LDA.
The classifiers were trained using G-PD2 patients, i.e. those who performed the
6MWT and whose binary classification based on the H&Y scale was available. The
optimization was performed by minimizing the 10-fold CV error (i.e. maximizing
the accuracy), and the performance was evaluated in terms of accuracy and AUC.
Moreover, the confusion matrix was computed to assess the number of FPs and FNs.
The ML model providing the best performance was selected and tested on patients
from the G-PD1 group. Then, the continuous output provided by the model was used
as QoM and correlated with the clinical scores. Specifically, the QoM is defined
as the a posteriori probability of belonging to either class, averaged on all turns
performed by each patient involved in the experiment. The idea is to create a scale
to measure the degree of postural instability. The lower and upper limits of the scale
are obtained using the binary (i.e., 0 or 1) classification between mild and severe
motor impairment (G-PD2). Then, the additional patients (G-PD1) are represented
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on such a scale, using the continuous output provided by the classification model.
Specifically, the closer the output is to 1, the more severe the motor condition of the
patient is.

3.2.2 Postural stability assessment during quiet stance using
smartphones

In this work, both healthy young subjects and PwPD were enrolled and asked to keep
a static upright position with a smartphone secured on their lower back. Several time-
and frequency-domain features were extracted and selected, and different ML models
were optimized to classify subjects according to their level of postural stability.

Subjects

Data acquisition was carried out at the Regional Reference Center for Parkinson’s
Disease and Movement Disorders, Azienda Ospedaliera Universitaria em Città della
Salute e della Scienza, Turin (Italy). The study was conducted in accordance with
the Declaration of Helsinki and approved by the local ethics committee. Participants
received detailed information about the purpose and execution of the study and
written informed consent was obtained for the observational study. Demographic and
clinical data were noted anonymously. Patients consented to the videotaping of the
procedure after receiving appropriate explanations and assurances of privacy. The
experiments were conducted in the hospital during periodically scheduled outpatient
visits; therefore, patient safety was ensured by the presence of medical staff. A total
of 42 PwPD were recruited. Inclusion criteria were a clinical diagnosis of idiopathic
PD with motor signs and symptoms, absence of major cognitive impairment or other
conditions that prevented the patient from performing the task correctly, ability to
maintain an upright position without assistance for at least one minute, and absence
of dyskinesias and other comorbidities or conditions affecting balance. Because the
experiments were conducted during an outpatient visit, most patients were in the
daily on condition. Data acquisition was also performed on 7 healthy young subjects.
The choice of a control population that did not correspond to the age-matched PD
sample was dictated by the need to select some subjects with recognized optimal
postural control. This made it possible to define a scale on which to place the
different levels of postural stability, with the controls representing the best possible
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value. The number of controls was chosen to match that of PwPDs with the worst
possible level of postural control. The population characteristics are summarized in
Table 3.9 for all PwPD and control subjects, while in Table 3.10 they are divided
according to the postural stability score.

Table 3.9 Demographic and clinical characteristics of subjects involved in this study. Mea-
sures are reported in terms of mean ± standard deviation. n.a.: not applicable

Sample # Subjects (male) Age (years) Disease duration (years) H&Y P.S. score

PD 42 (31) 68.6 ± 10.7 10.3 ± 6.6 2.3 ± 0.6 1.1 ± 1
Control 7 (5) 27.2 ± 2 n.a n.a n.a

Table 3.10 Demographic and clinical characteristics of PD subjects divided for PS score.
Measures are reported in terms of mean (range).

P.S. score # Subjects (male) Age (years) Disease duration (years) H&Y

PS 0 16 (10) 64.2 (52-83) 8.2 (2-21) 1.4 (1-2)
PS 1 15 (10) 69.3 (53-87) 9.3 (1-22) 2 (2)
PS 2 3 (3) 78 (74-81) 15.5 (11-20) 3 (3)
PS 3 8 (6) 67.7 (55-81) 18.4 (12-24) 3 (3)

Clinical assessment of postural stability (PS) was performed by experienced
neurologists using the retropulsion test (MDS-UPDRS Part III, item 3.12). Neu-
rologists assigned a score between 0 and 4, following the recommendations of the
MDS-UPDRS. Based on this clinical score, PwPD were divided into classes. The
distribution of patients in each class, along with the control population, is shown in
Figure 3.12. As can be seen from Figure 3.12-a, no patient is included in class 4,
despite the fact that the score of item 3.12 ranges from zero to four. This is in line
with the MDS-UPDRS recommendations. In fact, a score of 4 is assigned in case the
subject is largely unstable and unable to regain stability after losing it. Therefore,
such patients usually do not perform the retropulsion test. As for patients in classes 0
and 1, they take a maximum of 2 and 5 steps to recover balance, respectively. As for
class 2 and 3 patients, they have a drastic lack of postural reflexes. Class 2 patients
should be able to recover their balance by taking a maximum of 5 steps backward,
while Class 3 patients should not. However, it is not common among neurologists
to wait for patients to take 5 steps backward before grasping them safely. As a
result, classes 2 and 3 are largely overlapping and the distinction between the two
is somewhat arbitrary. Moreover, the variance v of the data distribution calculated
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both by keeping classes 2 and 3 separate and by joining them together revealed a
negligible difference, i.e., deltav < 1%. Therefore, in agreement with the expert
neurologists who participated in this study, classes 2 and 3 were merged into a single
class, referred to as 2 in the remainder of this paper. The resulting distribution is
shown in Figure 3.12-b.

(a) Original (b) Class 2 and 3 merged

Fig. 3.12 Distribution of subjects based on clinical PS score.

Data acquisition

Data acquisition was performed using inertial sensors, i.e., triaxial accelerometer
and triaxial gyroscope, embedded in a commercial smartphone. The smartphone was
placed inside an elastic band and attached to the patient’s lower back at the L3-L5
level. The smartphone recorded and stored inertial data locally via the SensorLog
app for Android 6.0. Once collected, the data were exported to CSV format and
processed offline using MATLAB, version 2019b for Windows 10. The recorded data
were analyzed visually and computationally to verify that they were not limited by
the operating system or application used. Subjects were asked to maintain a stable
upright position, with feet about 10 cm apart, arms relaxed along the body, and eyes
open. Data recording was done once for at least 30 minutes. First, the technical
characteristics of the smartphone used were analyzed in terms of resolution and
noise. These specifications are very important in this context, since the experimental
protocol involves only a stance phase, with subjects maintaining a static position.
Consequently, it is necessary to appreciate the small variations of the inertial sensors,
which require adequate sensor resolution and noise levels. Table 3.11 shows the
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technical specifications of the sensors embedded in the Samsung Galaxy S5 mini
smartphone used in the experiments, in terms of range, resolution/sensitivity, noise,
and sampling rate. The minimum range of the accelerometer (± 2g) and gyroscope
(± 250dps) is more than adequate for analyzing static activities, and sensor noise
was found to be negligible if compared to the expected signal amplitude, obtained by
performing some preliminary data acquisition tasks.

Table 3.11 Smartphone embedded inertial sensors specifications. Fs: sampling frequency.

Sensor Range (min,max) Resolution Noise Fs

Accelerometer ±2 g, ±16 g 16 bits 70 ( µg
rt−Hz ) 200 Hz

Gyroscope ±250 dps, ±2000 dps 16 bits 3.8 ( md ps
rt−Hz ) 200 Hz

Preprocessing

Feature extraction. A wide range of features in the time and frequency domains
was extracted. An extensive literature search, together with a visual inspection
of the signals, resulted in the collection of 414 features (i.e., 69 features for each
acceleration and angular velocity component) from the recorded data. The complete
list of features is given in Table 3.12, along with a brief description. Note that, for
the sake of brevity, when a given feature is calculated on different frequency bands
(e.g. RAPP, Np band), it is reported only once in the table. Some features (e.g., Np,
F0 amplitude, F0 width) were selected for their ability to represent the spectral char-
acteristics of the signal. Other parameters (e.g., Pb, RAPP, Np band) were selected
after visual inspection of the power spectral density (PSD) of signals grouped by
class, as they were considered significant for capturing intra-class similarities and
inter-class differences. For example, the PSD of class 3 has a higher peak and wider
distribution along the signal bandwidth than the other classes. Specifically, in classes
0 and 1, most of the signal power is in the band below 1 Hz, while a shift toward
higher frequencies (i.e., up to 5 Hz) was observed for class 2 data. Based on these
observations, features were extracted that can represent the signal power in some
specific frequency bands (e.g., Pb [0-1] Hz, Pb [1-2] Hz), along with the power ratio
between different bands (e.g., RAPP [0-1]/[1-5] Hz), and the number of spectral
peaks in some specific bands (e.g., Np band [0-1] Hz, Np band [1-5] Hz).
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Table 3.12 Data set of features extracted from each component of acceleration and angular
velocity signals

ID Study Feature (Description)

1,2,3 Present Study Mean, SD, Variance
4,5,6 [264],[265],[266] Minimum, Maximum, Range

7 [267],[175] Root Mean Square
8 [267],[173] Average COM velocity
9 [173],[266] Jerk (measure of postural adjustments)

10 Present Study Mean Jerk
11 [268] MAD (mean absolute deviation)
12 [268] MALA (mean absolute linear acceleration)
12 [268] SMA (simple moving average)
13 [268] ZCR (zero crossing rate)
14 Present Study Displacement

15,16 Present Study Kurtosis, Skewness
17,18 [267],[266] Total Power, Maximum Power
19,20 [267] Mean Frequency, Peak Frequency

21 Present Study Shannon spectral entropy

22,23 [267] [173]
F50, F95 ( Fn is the frequency value below which

is present n% of total power)

24 Present Study Pb (power in different bands)
25 Present Study RAPP (ratio of power in different bands)
26 Present Study Np (number of spectral peaks)
27 Present Study Npband (number of spectral peaks in different bands)
28 Present Study F0 amplitude (amplitude of the fundamental harmonic)
29 Present Study F0 width (width of the fundamental harmonic)
30 Present Study F0 (frequency-value of the fundamental harmonic)

31 Present Study
Npth (number of peaks over
50% of the maximum value)

Feature selection. The purpose of this task is to identify the most significant fea-
tures, defined as those that obtain the highest correlation with the clinical score. Start-
ing from the entire set of features, features with high correlation with the target (most
significant) and low correlation with each other (non-redundant) were selected. For
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this purpose, the vector containing all N features is defined as f = { f1, f2, · · · , fN}.
The vector r f t = {r f1t ,r f2t , · · · ,r fNt} contains the Pearson correlation coefficient r
between the features and the target t, while the correlation between each pair of
features is defined as r f f = {r fi f j}, i, j = 1, · · · ,N. Given the large dimensionality
of the initial data set, features with a r < 0.4 were discarded, as this represents a
weak correlation. Therefore, redundant features were removed, keeping only those
features that achieve a r f t much higher than the maximum correlation with the other
features (r f f ). For clarity, the feature selection procedure is described in Algorithm
2.

Algorithm 2 Feature selection Algorithm

Require: f1, f2, . . . fn, t ▷ N features, target vector

Ensure: f1, f2, . . . fm ▷ M<N features

procedure FS( f1, f2, . . . fn, t) ▷ Feature Selection function

while i < N do ▷ Iterate for each feature

if r fit > 0.4 & r fit > 1.33 ·max j ̸=i{r fi f j} ▷ Look for significant and
non-redundant features

select fi ▷ Add ith to the feature subset

end while

f1, f2, . . . fm ▷ End up with a subset of M features

end procedure
=0

To test whether further dimensionality reduction was possible, PCA was per-
formed on the resulting subset of features after checking the normal distribution
of each feature. The first three principal components explained 82% of the total
variance; this was not considered sufficient to justify further dimensionality reduc-
tion of the feature subset. The feature selection process concluded with 8 features,
reported in Table 4.27, along with the original ID, source, component specification,
and correlation coefficient.
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Classification

The selection of one of the many available ML algorithms is often inappropriate
and/or difficult to justify. For this reason, several ML models were implemented,
including kNN, DT, SVM, and RF. The models were fed with the entire initial data
set, i.e., all features extracted from all components of subjects belonging to all classes.
For each, the optimization procedure was based on a Bayesian approach aimed at
minimizing the misclassification rate; the number of iterations was set at 30.

First, a multi-class classification problem was set up. However, considering the
simple data acquisition protocol, i.e., subjects at rest in the standing position with
a single smartphone mounted at the waist, multi-class classification (i.e., able to
distinguish both controls from PD subjects and PD patients with different PS scores)
is presumably very challenging. Therefore, the multi-class classification problem
was divided into multiple binary classification tasks [269], in order to take advantage
of the well-known generalization ability of SVM, which has been used in several
literature studies on PD [248, 270, 135]. In this study, a new approach was proposed
to address multi-class classification problems. It consists of using a first classification
layer, employed to obtain a coarse assessment of postural stability. Subsequently, a
finer classification is performed in the second layer. em First layer. This classifi-
cation step aims to create a scale whose lower and upper limits represent subjects
with extreme (optimal or severely impaired) postural control. Given the availability
of inertial data from the control population, a binary classification problem was set
up, employing control subjects (i.e., people with the best possible postural control)
and class 2 PwPD (i.e., people with the worst level of postural control among the
considered population) as elements of the two classes. The performance of the ML
models was evaluated and eventually the one that provided the best performance
was selected. Once the model was trained and subjected to a LOSO validation, a
subsequent test was performed on PwPD belonging to classes 0 and 1. Then, the
soft output, i.e., the a posteriori probability that a data point belonged to one of the
two classes, was obtained from all subjects tested. The correlation between this soft
parameter and the labeled clinical classes was calculated in order to evaluate the
accuracy of this measure in classification tasks.

em Second Layer. To go beyond the simple correlation value and perform finer
classification, the algorithm was refined by implementing three classifiers, thus
reducing the initial single multi-class problem to three binary classification tasks.
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The input to each SVM was the entire set of features, with reference only to the
classes that were to be distinguished by the specific SVM model (e.g., classes 0 and
2 were input to the classifier that was to distinguish subjects in class 2 from those in
class 0).

3.3 Gait impairment

The following two studies aim to automatically assess gait impairment in PwPD.
The studies share subjects, data acquisition procedures, and preprocessing steps.
Specifically, participants were equipped with a sensor on the thigh and asked to
perform the TUG, both in ON and OFF conditions. While the objective of the first
work (Section 3.3.1) is to predict the score provided by the clinical assessment, the
second work (Section 3.3.2) aimed to assess the self-perceived gait impairment, i.e.,
that reported by patients.

3.3.1 Prediction of postural instability and gait difficulty using a
single inertial measurement unit

In this study, patients were equipped with a single IMU on the thigh and asked to
perform a TUG test. The walking pattern of PwPD was analyzed using different
feature sets and dimensionality reduction methods. A regression model was opti-
mized for predicting the level of gait impairment and postural stability in PD, further
evaluating the effect of therapy and FOG.

Subjects

Thirty-one PwPD were enrolled by the Movement Disorders Outpatient Clinic of the
Department of Human Neuroscience at the Sapienza University of Rome, based on
the following inclusion criteria: diagnosis of idiopathic PD; absence of dementia (i.e.,
MMSE > 24); ability to walk independently; absence of neurological, orthopedic, or
rheumatic comorbidities that may affect walking. Two neurologists with expertise in
movement disorders verified the presence of FOG in all patients. Overall, 17 PwPD
showed definite FOG (FOG+), while the other 14 never experienced FOG (FOG-).
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The following standardized scales were used for clinical assessment: H&Y, MDS-
UPDRS part III, FOG-Q, MMSE, FAB, HAM-D, and BAI. To further assess axial
impairment, the postural stability and gait difficulty (PIGD) score was calculated,
measured as the sum of items 2.12, 2.13, 3.10, 3.11, and 3.12 of the MDS-UPDRS,
in both the OFF and ON states of therapy. These items are related to ambulation,
balance, and FOG, both reported by patients and assessed during a direct clinical
examination. Patients were clinically evaluated both in the OFF state (i.e., after
discontinuation of L-Dopa for at least 12 hours) and in the ON state (1 hour after
taking L-Dopa). In addition, LEDDs were calculated for each patient according to
standardized procedures. The demographic and clinical characteristics of the PwPD
enrolled in this study are summarized in Table 3.13. The experimental procedures
were approved by the institutional review board and performed according to the
Declaration of Helsinki.

Table 3.13 Demographic and clinical features of patients enrolled in the present study
(mean ± standard deviation). Measures are reported in terms of mean ± standard deviation.
H&Y: Hoehn and Yahr; MDS-UPDRS-III: Movement Disorder Society—unified Parkinson’s
disease rating scale part III; OFF: not under dopaminergic therapy; ON: under dopaminergic
therapy; PIGD: postural instability/gait difficulty score.

# Subjects (Male) 31 (23)
Age (Years) 71.9 ± 6.9

Disease Duration (Years) 10.9 ± 5.9
Hoehn & Yahr score 2.4 ± 0.8

Mini-mental state examination 28.1 ± 1.9
Frontal assessment battery 14.7 ± 2.8
Hamilton depression scale 12.9 ± 6.8

Levodopa equivalent daily dose (mg) 819 ± 406
MDS-UPDRS-III OFF 35.9 ± 13.9
MDS-UPDRS-III ON 27.9 ± 13.7

PIGD OFF 7.3 ± 5.7
PIGD ON 6.3 ± 4.6

Data acquisition

Patients were asked to perform a 7 m TUG test that consisted of the following
procedures: get up from a chair, walk in a straight line for 7 m, turn around, walk
back, and sit down. To maximize the ecological value of the recordings and trigger
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the possible occurrence of FOG, the 7-m TUG test was performed in a free house-
like environment with a number of factors simulating a home environment (e.g., a
transition from a spacious room to a narrow, furnished hallway with the interposition
of an open door) [145]. The patient’s gait was videotaped through a camera and
monitored by a single IMU positioned and attached to the thigh through an elastic
band (Figure 3.13). The positioning of the IMU on the patient’s thigh was made
so that when the patient was standing, the y axis represented the inverse gravity
vector and the x axis was in the frontal plane. Therefore, angular velocity around
the x axis provided a good representation of thigh motion during linear gait. The
prototype system-on-board neMEMSi [245] from STMicroelectronics was used
for the experiments. The sensor range was set up to 16 g and 2000 dps for the
accelerometer and gyroscope, respectively. A sampling rate of up to 200 Hz can
be used. The dimensions of the device (including the battery) are 25 mm × 30
mm × 4 mm (Figure 3.13). Table 3.14 shows the technical characteristics of the
inertial sensors incorporated in the IMU (specifications refer to those established
in this study). Prior to placement, a preliminary conventional calibration of the
inertial sensors was performed, including software correction of the displacement
of the IMU with respect to the Earth framework. Specifically, static acquisitions of
the accelerometer and gyroscope data were performed as indicated in [271, 272].
The IMU was arranged in specific positions on a table. Operations to correct or
align the sensor with the reference frame were performed in real-time, with the
NeMEMSi transmitting data via Bluetooth to the PC. Orientation was obtained from
the measurements and compared with the earth observation frame. The rotation
between the sensor and earth quaternions was calculated at each position tested by
the IMU and used for orientation correction. Once the calibration procedure was
completed, the IMU was placed on the patient. The data obtained were sent in
real-time to a personal computer through the neMEMSi Bluetooth module and saved
progressively in CSV format. Each CSV file was related to a single test. The data in
the CSV files were processed offline as described in the next section.

Table 3.14 Inertial sensors technical characteristics.

Sensor Range Sensitivity Sampling rate

Accelerometer ±2 g 61 µg/LSB 60 Hz
Gyroscope ±245 dps 8.75 mdps/digit 60 Hz
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Fig. 3.13 Sketch of sensor position, together with an exploded view of the neMEMSI device.

Preprocessing

In this Section, the signal processing steps performed prior to the statistical analysis
and the regression task are described. First, a sensor fusion process was performed
to compute the orientation signal from the raw accelerometer and raw gyroscope
readings. Then, the orientation signal was used to detect walking bouts from the
entire TUG recording. Finally, inertial data were segmented, and temporal and
spectral features were extracted from each stride.

Orientation estimation. A Kalman filter [273] was used to estimate the sensor
orientation from the fusion of raw acceleration and angular velocity records. The
sensor fusion algorithm iteratively alternates between two processes, including a
prediction step and a correction step. The first consists of an approximation of the
orientation estimate, performed by integrating the gyroscope readings; the second
exploits the accelerometer readings to correct for the drift due to the integration
of the slow-changing bias that affects the gyroscope measurements [274]. Figure
3.14 shows the raw gyroscope (a) and accelerometer (b) readings and the orientation
estimate (d) obtained with the Kalman filter (c).

Filtering. After orientation estimation, the acceleration, angular velocity, and
orientation signals were filtered to retain only the frequency components of inter-
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Fig. 3.14 Schematic of the Kalman filter, together with input and output. Raw gyroscope (a)
and accelerometer (b) readings are input to the Kalman filter (c) to provide an estimate of
orientation (d).

est, eliminating average values, low-frequency trends, and high-frequency noise.
A second-order zero-lag Butterworth bandpass filter was used to retain only the
components in the 0.5-20 Hz band, avoiding phase distortion.

Detection of walking bouts. In order to select only the walking data segments, an
approach based on CWT, which is often used for walking step detection algorithms
[196, 184], was implemented. A Morse mother wavelet was used in this study
because of its similarity to the pattern of the orientation signal during walking. In
addition, the scaling parameter a was set to perform the frequency analysis in the
range of 0.5-2 Hz. This was done considering that stride time is quite heteroge-
neous in PwPD, due to the variability of motor characteristics among patients [235],
pharmacological condition [145], and gait speed [257]. In [275], stride time in PD
was found to be 1.13 pm 0.21 s, taking into account eleven studies on parkinsonian
gait. The scalogram obtained from CWT is shown in Figure 3.15 (restricted in the
frequency range 0–1 Hz), where the yellow areas correspond to the signal walking
segments. To identify the walking intervals, the intensity profile was calculated for
each value of the frequency scale; then, the obtained profiles were averaged; finally,
the regions where the average intensity profile exceeded the standard deviation value
were selected. The result of this procedure is shown in Figure 3.16, where the
walking intervals in the orientation signal are identified.
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Fig. 3.15 Absolute value of the CWT plotted as a function of time and frequency. Yellow
zones represent the walking segments of the signal.

Fig. 3.16 Orientation signal (blue) and walking bouts detected by the algorithm (orange).

Detection of gait events. In each walking segment of the orientation signal, the
initial contacts (ICs) were identified as the positive peaks of the orientation signal
[276]. To avoid the detection of any double peaks, the orientation signal was filtered
with a second-order zero-lag Butterworth low-pass filter, with a cutoff frequency of
2 Hz. In addition, only peaks greater than the standard deviation of the signal and
at least 0.5 s apart were selected. As suggested in [276], the final contacts (FCs)
correspond to the negative peaks following the ICs. The recordings of acceleration,
angular velocity, and orientation were segmented into windows corresponding to
the strides (i.e., from one IC to the next IC) in order to prepare the data for the
subsequent feature extraction step.

Feature extraction. From each stride, a total number of 102 features were
extracted from the acceleration, angular velocity, and orientation signal. Features
include spatial-temporal gait parameters, and both time- and frequency- domain
features. For each stride i, stride time, stance time, and swing time were computed
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as follows:

Tstride = ICi+1 − ICi Tstance = FCi − ICi Tswing = ICi+1 −FCi

Tables 3.15 and 3.16 list features extracted from the time and frequency domains,
respectively. The listed features describe different aspects of gait motion. For
example, Range,Std, and RMS relate to the amplitude and intensity of the motion;
Etot and binEnergy measure the energy content of the signal; Entropy and sEntropy
describe the signal complexity; DHwidth and DHratio relate to the movement
regularity. Spectral characteristics were calculated from the FFT of the signal. In
order to have homogeneous spectral representations of all stride durations of all
patients, the number of points at which to represent the FFT was set to n = T̄stride ·Fs,
where T̄stride is the mean stride time found in the PwPD [275] and Fs is the sampling
rate. For stride durations longer than barTstride, there is a small loss of spectral
resolution, while for stride durations shorter than barTstride, a few points, obtained
as a linear interpolation of the actual data points, are added to the FFT. In any case, a
spectral resolution of at least 1 Hz is expected, which is adequate for calculating the
features listed in table 3.16.

Feature selection. The Pearson correlation coefficient r between the extracted
features and the PIGD score was calculated in patients both OFF and ON treatment.
To reduce the dimensionality of the entire feature set (i.e., 102 features), the least
significant features (i.e., those with r < 0.4) were discarded. To further reduce the
dimensionality of the set, features were ranked according to their predictive ability.
This was done by exploiting two different approaches and evaluating their effect
on the final prediction ability. The first approach consisted of sorting the features
in descending order of r and selecting the first N features. The second approach
used PCA to reduce the dimensionality of the feature set, keeping only the first N
principal components. The N parameter was adjusted in a range from 5 to 25 in
order to estimate the effect of different dimensionality of the feature set on model
performance.
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Table 3.15 List of time-domain features extracted in the present study, together with equations
and some brief explanations. α: acceleration; ω: angular velocity; θ : orientation.

Feature Component Equation Explanation

Min αy,αz,ωx,θx - minimum value
Max αy,αz,ωx,θx - maximum value
Mean αy,αz,ωx,θx x = 1

N ∑
N
i=1 xi average value

Std αy,αz,ωx,θx σx =
√

1
N ∑

N
i=1(xi − x)2 standard deviation

RMS αy,αz,ωx,θx xRMS =
√

1
N ∑

N
i=1 x2

i root mean square value
Range αy,αz,ωx,θx rx = xmax − xmin range of values

Entropy αy,αz,ωx,θx Ex = x log(x+ ε),ε = 10−5 Shannon signal entropy

nPeaks αy,αz,ωx,θx - number of peaks
higher than Std

hPeaks αy,αz,ωx,θx - average height
of nPeaks

vPeaks αy,αz,ωx,θx - standard deviation
of hPeaks

Zc αy,αz,ωx,θx - zero-crossing rate

Corr αy,αz,ωx,θx r(i, j) = cov(i, j)
σ(i)σ( j)

correlation between
pair of axes

Regression

This section describes the statistical processing following the extraction of the entire
feature set for each patient stride, in order to investigate the clinical significance
of the extracted features. First, a correlation analysis was performed between the
engineered features extracted from the strides and the clinical scores; this was done
by calculating the Pearson correlation coefficient and the corresponding p-value
for each feature-clinical score pair. Then, a regression model was implemented to
predict the PIGD score of PwPD. The analysis was performed on patients in both
the OFF and ON states of therapy to evaluate the effect of drug treatment on the
performance of the prediction model. Finally, to also evaluate the effect of FOG on
model performance, patients were divided according to the clinical presence of FOG.
Figure 3.17 schematically reports the entire process, including the test populations
and dimensionality reduction methods.

Feature scaling was applied to each feature using z-score normalization, which
consists in removing the mean value and dividing by the standard deviation. This
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Table 3.16 List of spectral-domain features extracted in the present study, together with
equations and some brief explanations. α : acceleration; ω : angular velocity; θ : orientation.

Feature Component Equation Explanation

DH frequency αy,αz,ωx,θx - frequency of the
principal harmonic

DH height αy,αz,ωx,θx - amplitude of the
principal harmonic

DH width αy,αz,ωx,θx - width of the
principal harmonic

Etot αy,αz,ωx,θx ∑
Fs/2
f=1 X f total signal energy

DH ratio αy,αz,ωx,θx - ratio between the energy of the
principal harmonic and Etot

sEntropy αy,αz,ωx,θx X f log(X f + ε)
Shannon entropy of

the signal FFT

binEnergy αy,αz,ωx,θx - ratio between energy in
specific frequency bands and Etot

was done to uniform the feature range while reducing the effect of possible outliers.
Then, range normalization was performed both on the feature set and on the target
vector (i.e., PIGD score) to rescale data in the range [0, 1].

Regression. Regarding the regression model, a support vector regression (SVR)
model was implemented [277, 278]. In order to provide a robust performance
evaluation, the model was tested using the LOSO CV, which resembles the realistic
working condition of the model. To optimize the model parameters, a LOSO-
based training-validation procedure was performed, selecting the parameters that
provided the best performance on the validation set. The kernel function, kernel
scale, and misclassification cost (box-constraint) parameters were optimized for
each SVR model, while the tolerance margin (ε parameter) was set to the default
value corresponding to one-tenth of the standard deviation of the PIGD score. The
goodness of fit was evaluated using r, RMSE, and MAE.

Effect of therapy. The inertial data of PwPD were divided according to the
pharmacological condition. Two independent data sets were obtained from patients
on OFF and ON therapy. The motor conditions of the OFF and ON patients were
compared by performing the Wilcoxon test on the MDS-UPDRS part III and the
PIGD score in the two pharmacological conditions. The analysis shown in Figure
3.17 was then performed to optimize the model. The performance obtained on
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Fig. 3.17 Schematic representation of the analysis performed. The processing was performed
for both pharmacological conditions, different populations, different sizes of the feature set,
and different dimensionality reduction methods. ON: under dopaminergic therapy; OFF: not
under dopaminergic therapy; FOG: patients with Parkinson’s disease and freezing of gait;
FOG-: patients with Parkinson’s disease without freezing of gait; PCA: principal component
analysis.

OFF and ON patients was compared using different feature set sizes, different
dimensionality reduction methods, and optimizing regression model parameters.
Finally, the performance of the model in OFF and ON patients was compared.

Effect of FOG. The dataset was divided according to the clinical presence of
FOG. Then, the Mann–Whitney U test was used to compare both clinical scores
and engineering characteristics of FOG+ and FOG- patients. The analysis shown in
Figure 3.17 was then performed, optimizing the model. The performance obtained
on patients with and without FOG was compared using different feature set sizes,
different dimensionality reduction methods, and optimizing the parameters of the
regression model. The entire procedure was performed for each pharmacological
condition. Finally, the effect of FOG on model performance was evaluated.

All the experiments were executed in Matlab R2020a, using a personal computer
with Microsoft Windows 10, a 2.4 GHz Intel® Core Processor i5-6200, 8 GB RAM,
and 4 GB GPU.

3.3.2 Prediction of self-perceived gait impairment

The objective of this work [279] was to establish the usefulness of motion data taken
using a single inertial sensor for the prediction of axial impairment as self-reported
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by the patients themselves during daily activities. These latter are related to the sum
of MDS-UPDRS items 2.11-2.13 (in the following reported as axial impairment
measure - AIM), taken as the reference metric to evaluate the performance of the
proposed algorithm. Specifically, part II of the UPDRS is a questionnaire related to
motor aspects of experiences of daily living. Items 2.11-2.13 refer to the following
aspects: getting out of bed or a deep chair, walking and balance, and FOG. Data and
preprocessing procedures are those used in Section 3.3.1. Starting from the features
extracted in the previous study, an RF regression model was optimized to predict the
AIM.

Preprocessing

The initial set of features was divided into a training set and a test set, based on the
LOSO test. At each iteration, the following processing steps were performed. First,
the training and test sets were normalized using range normalization (Equation 3.3).
Then, the features X of the training and test sets were normalized according to the
minimum and maximum value of these features in the training set.

X ′ =
X −min(Xtrain)

max(Xtrain)−min(Xtrain)
(3.3)

Pearson’s correlation coefficient r of features in the training set was used to
discard redundant and non-significant features from both the training and test sets.
Specifically, features that were highly correlated with other features (r > 0.9) and/or
poorly correlated with the target (r < 0.4) were discarded. The F-test was used to
rank the features in descending order of importance. The number of selected features
n f was adjusted in the range 1-N f , where N f is the total number of features.

Regression

In this work, an RF regression model was implemented. It is a supervised ML
algorithm that averages the predictions of multiple decision trees to compute the final
output. The number of learners nl is an internal parameter to be optimized. Other
parameters to be adjusted are the minimum leaf size mls, the maximum number
of subdivisions mns, and the maximum parent size mps. During the optimization
procedure, nl was adjusted in the range 3–40, mls in the range 1–30, mns in the
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range 1–20 and mps in the range 1–20. A k-fold CV was implemented. Data from a
given PwPD were included in either the training or validation set to ensure patient
independence. In this study, k was set to 10, resulting in data from 3 PwPD in each
validation fold. A grid search approach was used to optimize the number of selected
features and model parameters. For each combination of n f , nl , mls, mns, and mps,
a 10-fold CV was performed and the RMSE was calculated using the predictions
of the validation set. The optimal combination of parameters was identified by
searching for the minimum value of RMSE. The performance of the model was
evaluated using LOSO validation. First, since several observations (corresponding
to different strides) of each PwPD were available, they were averaged to obtain a
single measure for each PwPD. The results were reported in terms of r, RMSE, and
MAE. In addition, the correlation plot was obtained from the PwPD OFF and ON
treatment.

3.4 Bradykinesia

The aim of this work was to develop an automatic scoring system for the evaluation
of lower limb bradykinesia. Data from a large cohort of PwPD were recorded using
a single smartphone on the thigh, while patients performed the MDS-UPDRS leg
agility (LA) task (item 3.8). The inter-rater variability was evaluated and the average
raters’ score was used to train and validate the computer scoring system, providing
an objective and unbiased evaluation of bradykinesia.

Subjects

A total of 93 PwPD were recruited in the study. The inclusion criteria were a clinical
diagnosis of PD with motor signs and symptoms, no major cognitive impairment
or other conditions that prevented the patient from performing the task correctly.
Because data acquisition was done during scheduled outpatient visits, most patients
were in the daily on condition. In some special cases (scheduled late morning visits
- about 4% of patients), some of them showed an end-dose effect. However, the
number of these patients was not sufficient to perform a differential analysis, so
they were not differentiated by motor condition. This is not likely to affect system
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performance in any way, given the small number of subjects. The characteristics of
the population are summarized in Table 3.17.

Table 3.17 Demographic and clinical characteristics of PD population. Measures are reported
in terms of mean ± standard deviation.

# patients (male) Age (years) Disease duration (years) H&Y LA score

93 (65) 69 ± 10 9.0 ± 6.5 2.5 ± 0.8 2 ± 1

Data acquisition

During the examination, subjects were asked to sit in a straight-backed chair and place
their feet on the floor in a comfortable position. Then, after being properly instructed
by experienced neurologists as recommended by the MDS-UPDRS guidelines, they
performed the LA with each leg separately. A simple Velcro armband equipped
with a smartphone was placed around the patient’s thigh, with the y-axis parallel
to the direction of the femur. The smartphone recording application was started
before and stopped after the task was performed, so each recording included a single
LA performance. Experiments were videotaped to allow for multi-rater evaluation.
Figure 3.18 shows the experimental setup. A total of 184 LA tests were recorded (2
patients were able to perform the test with only one leg).

The LA task was rated by four experienced neurologists according to the MDS-
UPDRS scale, either directly or after inspection of the video sequences. The rounded
mean ratings were used as class labels for the supervised classification algorithms.
Figure 3.19 shows the distribution of assigned MDS-UPDRS scores. It is worth
noting that the data set includes a few cases belonging to MDS-UPDRS-3 and 4
classes. In fact, the clinical conditions of patients belonging to these classes are
severe and may even prevent them from performing the task. In particular, although
five MDS-UPDRS-4 patients were tested, the usefulness of including them in a
monitoring system is questionable. Therefore, as also suggested by medical experts,
patients with MDS-UPDRS-4 were excluded from further analysis. Acceleration,
angular velocity, and orientation data were collected via the SensorLog application,
stored locally on an SD card, exported in CSV format, and processed offline with
MATLAB, version 2018a for Windows 10.
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Fig. 3.18 Smartphone position adopted for the LA task scoring.

Preprocessing

The inertial signals were recalibrated to compensate for deviations from ideal po-
sitioning, i.e., gravity acting only on the vertical component (the z-axis of the
accelerometer). The method proposed in [254], which consists of a 3-axis accelerom-
eter orientation correction by applying a quaternion rotation transformation to the
raw device data, was applied.

Filtering. After the removal of the mean value, the pitch, acceleration, and
angular velocity data were filtered with a low-pass filter to remove high-frequency
noise. A second-order zero-lag Butterworth low-pass filter with a cutoff frequency
of 4 Hz was chosen to maintain at least 90% of the signal power (calculated using
the FFT on all data).

Feature extraction. Then, a set of 36 kinematic features (shown in Table 3.18)
was extracted from each signal, representative of the main features that distinguish
movement in PwPD and unaffected controls. Indications from the literature on
other similar studies were taken into account [185, 280–283]. In addition to cross-
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Fig. 3.19 Distribution of the MDS-UPDRS scores assigned to the LA tasks. 0: normal. 1:
slight. 2: mild. 3: moderate. 4: severe.

correlation, which provides information in the spectral domain, the FFT of the signal
was calculated and used to extract features such as the frequency, amplitude, and
width of the dominant harmonic, the total number of harmonics, and the power ratio
between the main harmonics and other harmonics. Some features were then further
combined to increase their discriminatory power (for example, the average peak
value feature takes into account the number and width of harmonics in the FFT).

Feature selection. To identify the most significant features, a feature selection
procedure was performed, based on the correlation between feature values and the
target. Figure 3.20 shows the Pearson correlation coefficient for each feature.

The optimal subset of features, i.e., the one containing the most informative
features while maintaining a small size was obtained as follows. First, the features
were sorted in descending order according to Pearson’s correlation coefficient, and
those with a correlation of less than 0.4 (i.e., weak correlation) were discarded. Then,
three thresholds were set, shown in Figure 3.20 as C1, C2 and C3, corresponding
to a significant difference in the correlation value between adjacent features. The
three resulting feature subgroups were used as inputs for common ML algorithms,
including SVM, kNN, DT, and a new ANN approach. The final subgroup was the
one that provided the best results in terms of accuracy. The optimal value turned
out to be C2, which yielded 16 selected features (Table 3.18). A brief description
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Table 3.18 List of features extracted, along with the selected components. θx: pitch signal
around the x-axis. ωx: Angular velocity around the x-axis. αz: acceleration along the vertical
direction. - indicates that none of the components were selected.

Selected component Extracted features

θx,ωx,αz Dominant frequency
- Entropy
- Minimum

ωx,αz Maximum
ωx,αz Root Mean Square
ωx,αz Range
ωx,αz Spectral Entropy
ωx,αz Mean amplitude
ωx,αz Regularity

αz Dominant Ratio
- Standard deviation
- Mean peak value

of some features is given below. The dominant frequency is the frequency value
corresponding to the highest peak of the FFT function. Spectral entropy is the
Shannon entropy calculated on the FFT of the signal. Regularity is the amplitude of
the first positive peak of the autocorrelation function, normalized to the maximum of
the correlation function, as described in [284]. The dominant ratio is the ratio of the
power of the dominant frequency band to the total power.

Classification

Common ML algorithms were used for comparison with other studies (e.g., [185, 241,
186]). Moreover, a novel ANN approach was implemented, providing a continuous
output.

Optimization. To identify the best combination of ML model parameters, a
Bayesian optimization algorithm was run. The CV error was used as the objective
function to be minimized in a LOSO validation. The following hyperparameters
were optimized: kernel function, kernel scale, and box constraint (cost) for one-
vs-one SVM; number of neighbors, distance metric, and distance weight for kNN;
maximum number of splits and split criterion for DT. As for ANN, stop conditions
were set at a maximum of 2000 iterations, gradient value at 10−5, initial learning rate
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Fig. 3.20 Feature ranking based on Pearson’s correlation coefficient r. C1, C2, C3 identify
significant differences in r-values of adjacent features.

at 0.01, increasing and decreasing values at 10 and 20%. Then, the best architecture
was investigated. In particular, the number of hidden layers, the number of hidden
neurons per layer, and the transfer function were tuned. Finally, the ANN architecture
that provided the lowest classification error was selected.

Evaluation. The performance of ML algorithms was evaluated in terms of
accuracy and AUC in LOSO validation. In this case, the target class was obtained by
rounding the mean of the clinical scores. To better understand the behavior of the
proposed classifiers, the cumulative distribution function (CDF) was calculated as
a function of the absolute classification error, i.e., the absolute difference between
the classifier algorithm and the rounded mean MDS-UPDRS class provided by
neurologists. In addition, the continuous classifier result was compared with the
mean clinical score using Pearson’s correlation coefficient and RMSE. Finally,
inter-rater variability in LA assessment was visually assessed by pie charts and
computationally estimated by calculating the intra-class correlation coefficient. In
addition, the Bland-Altman plot was generated to evaluate the significant differences
between the clinical score and the output of the developed classification model.
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Results

4.1 Freezing of gait

4.1.1 Prediction of freezing of gait using lower limbs inertial
sensors

Offline clinical evaluation of video recordings by two independent neurologists with
expertise in movement disorders identified 41 episodes of FOG in on-treatment
PwPD and 54 episodes of FOG in off-treatment PwPD. All episodes were used for
the FOG detection task. On the other hand, 6 and 10 episodes were excluded from
the pre-FOG analysis, for patients ON and OFF therapy, respectively, because they
occurred during the gait initiation task, that is, during the transition between getting
up and starting to walk.

FOG Detection

Table 4.1 summarizes the algorithm performance, in terms of sensitivity, specificity,
accuracy, PPV, NPV, and F-score, in detecting FOG episodes in PwPD both ON and
OFF therapy.
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Table 4.1 Algorithm performance in FOG detection in patients under (ON) and not under
(OFF) dopaminergic therapy. cv: cross-validation; NPV: negative predictive value; PPV:
positive predictive value; LOSO: leave-one-subject-out.

Evaluation metric Condition 10-fold CV 70-30 training-test LOSO

Sensitivity
ON 0.959 0.939 0.937
OFF 0.971 0.949 0.939

Specificity
ON 0.954 0.942 0.918
OFF 0.935 0.906 0.850

Accuracy
ON 0.955 0.941 0.926
OFF 0.963 0.931 0.920

PPV
ON 0.953 0.939 0.917
OFF 0.942 0.935 0.868

NPV
ON 0.962 0.941 0.938
OFF 0.957 0.927 0.914

F-score
ON 0.956 0.939 0.927
OFF 0.956 0.942 0.902

All performance metrics showed a slight decrease from 10-fold CV to 70/30
training/test and LOSO validation, due to a progressively larger portion of the data
used as the test set. It is worth noting that LOSO validation provides an estimate
of the algorithm’s performance under real working conditions, i.e., when testing
the model on a new unknown subject. The classification algorithm achieved high
sensitivity, accuracy, and F-score (Table 4.1), always above 90%. In addition, the
training/test procedure demonstrated the absence of model over-fitting, as evident
from the high performance obtained. Comparing patients ON and OFF therapy,
the algorithm achieved similar values of sensitivity, accuracy, and F-score in FOG
detection with LOSO, thus showing no significant dependence of performance on
L-Dopa intake. However, the algorithm showed lower specificity in patients not on
therapy compared with those on therapy, due to the increased number of FPs after
discontinuation of L-Dopa.

Table 4.2 reports the performance of the algorithm in detecting FOG after training
with data recorded from patients ON therapy and tested on patients OFF therapy
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and vice versa. The performance is satisfactory in both cases, with accuracy and
F-score above 89%. It can be observed that, in general, and especially with regard
to sensitivity, the algorithm provided higher performance in FOG detection when
trained with data from patients OFF therapy.

Table 4.2 Algorithm performance in FOG detection after training with patients under
dopaminergic therapy (ON) and testing on patients not under dopaminergic therapy (OFF),
and vice versa. NPV: negative predictive value; PPV: positive predictive value.

Train - test set Sensitivity Specificity Accuracy PPV NPV F-score

ON - OFF 0.880 0.903 0.890 0.919 0.858 0.899
OFF - ON 0.962 0.890 0.926 0.894 0.961 0.927

Pre-FOG Detection

Table 4.3 summarizes the accuracy of different ML classifiers in identifying pre-
FOG periods in patients ON and OFF therapy, also considering different sizes of the
pre-FOG window (from 2 to 5 s).

Table 4.3 Accuracy of different classifiers in pre-FOG recognition by considering various
pre-FOG window lengths. kNN: k-nearest neighbor; LDA: linear discriminant analysis; LR:
linear regression; SVM: support vector machine.

Window length (s)
SVM kNN LDA LR

ON OFF ON OFF ON OFF ON OFF

2 0.913 0.921 0.847 0.898 0.917 0.947 0.890 0.906
3 0.861 0.887 0.802 0.847 0.856 0.864 0.844 0.852
4 0.778 0.846 0.694 0.804 0.786 0.826 0.752 0.818
5 0.649 0.746 0.589 0.793 0.658 0.754 0.449 0.711

All models showed a progressive reduction in accuracy in pre-FOG recognition
with increasing window length. In fact, as the length of the pre-FOG window doubled,
an average reduction in accuracy of about 14% and 10% was observed for patients
ON and OFF therapy, respectively. Overall, the accuracy in detecting pre-FOG
in patients who are not on therapy was higher than that of patients on therapy. In
addition, the SVM and LDA classifiers performed best in terms of accuracy, with a
sensitivity of 0.684 and 0.662, respectively.
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Figures 4.1 and 4.2 report the sensitivity, accuracy, and F-score of SVM and
LDA classifiers when detecting pre-FOG periods in patients ON and OFF therapy,
respectively, and considering different FN cost values.

(a) SVM (b) LDA

Fig. 4.1 False negative tuning in PD patients under dopaminergic therapy (ON) for support
vector machine and linear discriminant analysis classifiers.

(a) SVM (b) LDA

Fig. 4.2 False negative tuning in PD patients not under dopaminergic therapy (OFF) for
support vector machine and linear discriminant analysis classifiers.

As FN cost increases, sensitivity improves but, in turn, accuracy and F-score
decrease due to the presence of FPs. This has an impact on all performance evaluation
metrics other than sensitivity. Figures 4.1a and 4.2a show that considering the SVM
classifier and setting an FN cost equal to 5 leads to a sensitivity of 0.875 and 0.892
in patients ON and OFF therapy, respectively while maintaining high accuracy and
F-score values. In contrast, the increase in sensitivity using the LDA classifier is less
satisfactory than SVM, as shown in Figure 4.1b and Figure 4.2b.
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Table 4.4 reports the sensitivity, accuracy, and F-score in pre-FOG detection
using SVM and LDA classifiers separately, with and without FN cost optimization,
as well as the combination of SVM and LDA classifiers in PwPD ON and OFF
therapies.

Table 4.4 Performance of support vector machine (SVM) and linear discriminant analysis
(LDA) classifiers, separately and in combination, with and without optimized false negative
cost, in pre-FOG detection in PD patients under (ON) and not under (OFF) dopaminergic
therapy

Model
Sensitivity Accuracy F-score

ON OFF ON OFF ON OFF

SVM 0.684 0.750 0.918 0.921 0.712 0.719
LDA 0.662 0.751 0.917 0.947 0.678 0.778

SVM + LDA 0.721 0.792 0.917 0.929 0.667 0.757
SVM (optimized cost) 0.875 0.892 0.902 0.894 0.723 0.681
LDA (optimized cost) 0.782 0.822 0.901 0.910 0.660 0.698

The combination of SVM and LDA classifiers resulted in higher sensitivity
in detecting pre-FOG in both ON and OFF patients compared with the separate
performance of SVM and LDA classifiers. The FN cost of 7 and 6 for the LDA
classifier (Figure 4.1b and Figure 4.2b) showed satisfactory performance in patients
in ON and OFF therapy, respectively. The SVM classifier with an FN cost of
5 achieved the highest performance in pre-FOG detection, especially in terms of
sensitivity, with comparable accuracy values in both ON and OFF therapy patients
(Figure 4.1a and Figure 4.2a).

Table 4.5 summarizes the sensitivity, specificity, accuracy, PPV, NPV, and F-score
of the pre-FOG classification algorithm in a LOSO validation in patients on ON and
OFF therapy.

Table 4.5 Performance of the pre-FOG classification algorithm in the leave-one-subject-out
validation in patients under (ON) and not under (OFF) dopaminergic therapy.

Therapy Sensitivity Specificity Accuracy PPV NPV F-score

ON 0.841 0.859 0.855 0.651 0.935 0.734
OFF 0.85.5 0.863 0.861 0.662 0.930 0.746

Comparing patients ON and OFF therapy, the classification algorithm demon-
strated different performances in recognizing pre-FOG periods, with the highest
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values of sensitivity, specificity, accuracy, and F-score after L-Dopa withdrawal (i.e.,
in OFF patients compared with those on ON therapy). In addition, the implemented
models detected pre-FOG periods with different latencies in patients on OFF and ON
therapy. More specifically, when considering patients ON therapy, pre-FOG periods
were recognized 4 pm 1.1 steps before the onset of FOG. In contrast, pre-FOG
periods were recognized 6 pm 1.3 steps before the onset of FOG in patients OFF
therapy. This is probably because the pattern of rhythm degradation in patients OFF
therapy is more evident than in those ON therapy, where it is (partially) corrected by
L-Dopa.

Figure 4.3a and 4.3b report the ROC curve of the SVM classifier, in patients ON
and OFF therapy, respectively.

(a) ON therapy (b) OFF therapy

Fig. 4.3 Receiver operating characteristic curves of the final classification model, for patients
under (ON) and not under (OFF) dopaminergic therapy.

ROC curves show a similar pattern in both conditions and the AUC value is
identical. For specificity values over 0.8, slightly higher values of sensitivity can be
observed for patients OFF therapy, compared to those ON therapy.

Table 4.6 reports the algorithm performance in pre-FOG detection after training
with data recorded from patients ON therapy and then tested on data from those OFF
therapy, and vice versa.

As is evident, the different tests on patients ON and OFF therapy led to opposite
results in terms of both sensitivity and specificity in detecting pre-FOG periods. In
more detail, the algorithm trained with data from patients ON therapy and tested on
data from patients OFF therapy showed significantly higher sensitivity and lower
specificity than the algorithm trained with data from patients OFF therapy and tested
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Table 4.6 Algorithm performance in pre-FOG detection after training with Parkinson’s disease
patients under dopaminergic therapy (ON) and testing on PwPD not under dopaminergic
therapy (OFF), and vice versa.

Train- test set Sensitivity Specificity Accuracy PPV NPV F-score

ON - OFF 0.840 0.883 0.874 0.667 0.952 0.744
OFF - ON 0.566 0.925 0.863 0.779 0.882 0.656

on data from patients ON therapy. In fact, in the latter case, sensitivity was severely
impaired and reached values below 0.6.

Finally, Figure 4.4 shows the Spearman correlation coefficient, calculated for
the most frequently selected features in patients ON and OFF therapy during the
pre-FOG periods. All corresponding p-values were <0.001.

Fig. 4.4 Spearman correlation coefficient between selected features and class label (i.e., 0
and 1 for gait and pre-FOG respectively). A negative correlation denotes decreasing values
of features during pre-FOG. ON: under dopaminergic therapy; OFF: not under dopaminergic
therapy

4.1.2 Real-time detection of freezing of gait using a single ac-
celerometer

CNN architecture and parameters

The optimization process aimed to find the best CNN architecture, model parameters,
and learning settings led to the following results.
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A batch size of 256, a learning rate of 0.001, and a maximum number of iterations
of 120 epochs were selected for training, optimization, and testing procedures. The
final CNN architecture is schematically reported in Figure 4.5. It consists of a three-
head CNN block connected to classification (dense) layers. Each head is composed

…

FOG

no-FOG

…

…
…

…

ConvolutionPooling

Pooling

Convolution 

Flatten
Concatenation

Dense

Output

Input

Fig. 4.5 Architecture of the optimized multi-head convolutional neural network model.

of two convolutional and two max-pooling layers. Each of these heads processes the
input (80 time-steps * 3 channels) simultaneously using a different kernel size. The
outputs of the CNN heads are flattened and concatenated to compose a vector that
feeds a single dense layer (16 units and a dropout rate of 0.5), and a final output layer
with two outputs corresponding to the probability of FOG or no-FOG, respectively.
Convolutional layers have 16 filters and ReLU activations each, with different kernel
sizes in each head of the CNN. Specifically, kernel sizes of 6 and 3 were selected in
the two convolutional layers of the first head, 12 and 6 in the second head, and 18
and 9 in the third head. The stride length was set to 1 in all the convolution layers
with no padding to gradually reduce the size of the input signal. In addition, a pool
size of 3 and a dropout rate of 0.5 was used for all convolutional layers, while the
regularization term was set to 0.1 in the softmax layer.
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Table 4.7 Multi-head convolutional neural network layers, features, and parameters. n:
number of filters; k: kernel size; d: dropout rate; p: pool size.

Layer Features Shape # param.

Input - (80,3) 0
H

ea
d

1

conv n = 16, k = 6 (75,16) 304
dropout d = 0.5 (75,16) 0

pool p = 3, s = 3 (25,16) 0
conv n = 16, k = 3 (23,16) 784

dropout d = 0.5 (23,16) 0
pool p = 3, s = 3 (7,16) 0

flatten - 112 0

H
ea

d
2

conv n = 16, k = 12 (69,16) 592
dropout d = 0.5 (69,16) 0

pool p = 3, s = 3 (23,16) 0
conv n = 16, k = 6 (18,16) 1552

dropout d = 0.5 (18,16) 0
pool p = 3, s = 3 (6,16) 0

flatten - 96 0

H
ea

d
3

conv n = 16, k = 18 (63,16) 880
dropout d = 0.5 (63,16) 0

pool p = 3, s = 3 (21,16) 0
conv n = 16, k = 9 (13,16) 2320

dropout d = 0.5 (13,16) 0
pool p = 3, s = 3 (4,16) 0

flatten - 64 0

merge - 272 0

dense - 16 4368
dropout d = 0.5 16 0

softmax - 2 34

Model layers and parameters are reported in Table 4.7, together with the features
and output shape of each layer. The implemented model includes a total number of
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10834 trainable parameters, 6432 of which from convolutional layers and 4402 from
the densely connected layers.

Performance

Training, validation and test sets from the REMPARK data set were arranged as
in Table 4.8. As it can be observed, participants’ age, symptoms duration, disease
progression (measured by the H&Y score), and motor impairment (measured by
the total MDS-UPDRS-III) are similar across the subsets. Participants included in
the test set have a slightly larger FOG-Q score compared to those included in the
training set, and the difference is more evident if compared to the validation set.

Table 4.9 reports the performance of the model on the training, validation, and
test set of the main data set. Model performance is similar in the three sets, with a
negligible impairment when moving from the training to the test set. This proves the
high generalization capability of the classification algorithm, providing good results
also on the test set, which includes data from completely unknown patients.

Table 4.8 Demographic and clinical features of PD patients include in training, validation,
and test set. H&Y: Hoehn and Yahr score; MMSE: mini-mental state examination; FOG-Q:
freezing of gait questionnaire; MDS-UPDRS: unified Parkinson’s disease rating scale; ON:
under dopaminergic therapy; OFF: not under dopaminergic therapy.

Set (# subjects) Train (12) Val (4) Test (5)
Age (years) 69.5 66.5 72.2

Symptoms duration (years) 11.0 15.5 12.6
H&Y 3.1 2.8 3.2

MMSE 27.9 27.5 27.4
FOG-Q 15.1 11.8 18.6

MDS-UPDRS-III ON 18.5 13.0 16.0
MDS-UPDRS-III OFF 36.3 37.5 33.6

As far as concerns the true FOG episodes detected in the REMPARK data
set, 100% of episodes were correctly identified by the algorithm, with an average
percentage of 84.8% of FOG detected in each episode. More specifically, the average
proportion of FOG detected in each episode was found to be 76.4%, 87.5%, and
90.2% in FOG episodes of duration 0-5s, 5-10s, and >10s respectively (Table 4.10).
Similar results were obtained for the 6MWT data set when considering episodes of
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Table 4.9 Performance of the implemented classification model on training, validation, and
test set of the main data set. EER : equal error rate; AUC : area under the curve.

Set Train Validation Test
Sensitivity 0.884 0.879 0.877
Specificity 0.885 0.880 0.883

Geometric mean 0.885 0.880 0.880
F-score 0.886 0.838 0.830

EER (%) 11.5 11.9 11.9
AUC 0.955 0.947 0.946

duration larger than 5s, while a reduction in the detection rate was observed for FOG
episodes of duration smaller than 5s.

Table 4.10 Percentage of FOG episodes detected.

Data set
FOG episodes detection rate (%)

0-5s 5-10s >10s

REMPARK 100 100 100
6MWT 87 100 100

FPs duration was found to be 2.7 ± 1.5 s, with 37.7%, 61.1%, and 83.0% of false
episodes less than 5s, 10s, and 20s far from the closest real FOG, respectively. This
suggests that false FOG episodes are relatively short and distributed close to real
FOG events.

Concerning the time resolution in FOG detection, 52.3% of the FOG episodes
were predicted before the actual onset, with an average advance of 3.1s (SD = 2.6s,
min = 0.5s, max = 11s), while 47.7% of FOG episodes were detected with an average
delay of 0.8s (SD = 0.6s, min = 0.5s, max = 3s).

Testing the classification algorithm on the external 6MWT data set yielded
sensitivity 0.796, specificity 0.933, geometric-mean 0.862, accuracy 0.929, and AUC
0.953.

Figure 4.6 reports the ROC curve of the implemented classification model tested
on the main (REMPARK) and the external data set (6MWT). ROC curves are similar
in the two data sets, with slightly better performance obtained in the external data
set. This may be due to the different compositions of the two data sets. Specifically,
while the REMPARK data set includes data from patients ON and OFF therapy
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performing free walking activities, in the 6MWT data set participants were in daily
ON condition and performed a simple 6MWT. However, even considering these
differences, no performance impairment is observed when testing the classification
algorithm on a different data set, with data collected from different patients, under
different conditions, and using a different sensor setting.

Fig. 4.6 Receiver operating characteristics of the classification model tested on the main and
the external data set.

As far as concerns the true FOG episodes detected, 91.2% of episodes were
correctly identified by the algorithm, with an average percentage of 68.7% of FOG
detected in each episode. More specifically, 87%, 100%, and 100% of episodes of
duration 0-5s, 5-10s, and >10s were identified by the system on the 6MWT data set,
with an average proportion of 67.8%, 68.8%, and 74.5% of FOG detected in each
episode (Table 4.10).

The false FOG episodes duration was found to be 2.5 ± 1.1 s, with 14.6%, 23.7%,
and 33.9% of false episodes less than 5s, 10s, and 20s distant from the closest true
FOG episode, respectively.

As for the time resolution in FOG detection, 32.5% of the FOG episodes were
predicted before the actual onset, with an average advance of 1.3s (SD = 0.8s, min
= 0.5s, max = 3.5s), while 50% of FOG episodes were detected with an average
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delay of 1.1s (SD = 0.7s, min = 0.5s, max = 3s). The remaining 17.5% of FOG
episodes were detected with a time delay larger than 3s. Analyzing the activities
corresponding to false FOG episodes resulted in 6.7% of gait and 1.4% of stance
classified as FOG. When testing the model on the control subjects of the 6MWT data
set, a specificity equal to 1 was obtained, demonstrating excellent performance in
rejecting false positives from elderly subjects without PD.

Specificity 0.977 was obtained when testing the model on the external ADL data
set, which actually does not encompass true FOG episodes. The analysis of activities
corresponding to false FOG episodes resulted in 4.7% of gait classified as FOG, 0.9%
of stance, 3.4% of postural transitions (i.e., standing up, sitting down), 21% of the
pull test, and 6.8% of the foot-tapping task, while the rest of the FPs were registered
during unlabeled activities. However, it is worth noting that some activities (e.g.,
pull test, foot-tapping) are performed only during the MDS-UPDRS evaluation, and
do not represent common ADLs.

Computational complexity

Figure 4.7 reports the testing time required by the model for different dimensions of
the input data. More specifically, 43 ms are necessary for testing a single window,
which represents the actual working condition for real-time applications. Moreover,
11 ms and 65 ms are required to classify 1000 (8.4 min of data) and 10000 windows
(1.4 h of data) of data, respectively. Taking into consideration a FOG detection system
receiving raw acceleration data from a single inertial sensor, the time required for the
pre-processing steps should be taken into consideration. In fact, before undergoing
the classification stage, mean removal should be performed on the raw signal, and the
resulting data should be properly reshaped for input to the classification algorithm.
However, the pre-processing time was found to be negligible compared to the
classification time, with 0.07 ms required for mean removal and 0.003 ms for data
reshaping. Finally, the total memory required by the model was 54.94 KB, with a
single data window (i.e., 80 samples; Fs = 40 Hz) accounting for 44.10 KB, while
the CNN parameters require only 10.84 KB.

The proposed model requires a total of 0.399M FLOPs to perform a prediction
on a single (2s) window. This result is comparable with related DL methods such as
that proposed in [217] (0.337M FLOPs), and significantly lower than those proposed
in [156] (3.14M FLOPs) and [158] (4.76M FLOPs).
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Fig. 4.7 Testing time for different input dimensions.

The STAT-ON device employs a lithium-polymer battery with 1200mAh capacity
and a battery life of 7 days when continuously working for 8 hours [285]. The sensor
has an average consumption of 4.1±4.2mA in current conditions, taking into account
that the Bluetooth process is the most consuming process. In normal conditions, the
Bluetooth system does not switch on and the consumption decreases to approximately
3.7mA. Currently, the total time spent by the microprocessor computing between
samples is 0.279ms (25 ms available between samples) and the operations need
9.7ms every window to compute the window outcome plus 12.47ms to write the
information to the Flash memory [135]. Given that the current algorithm needs 0.399
MFLOPS per window (2 seconds) and the processor executes approximately 210
Dhrystones Mega instructions per second (MIPS), the needed time in the current
processor would be around extra 1.9ms in a period of 2 seconds. Thus, the change
in battery life is practically insignificant, corresponding to an increase of 0.095%
on-time extra that the battery needs to be active.

Activity threshold

Figure 4.8 reports the performance of the developed FOG detection algorithm,
in terms of sensitivity and specificity, and the ratio of discarded windows while
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increasing the threshold on the magnitude vector. The analyses were performed on
the validation set. As can be observed, for threshold values smaller than 0.4, the

Fig. 4.8 The effect of the activity threshold tuning on the performance of the detection
algorithm and on the ratio of discarded windows.

performance does not change significantly (-0.2% sensitivity and +0.4% specificity),
while the ratio of discarded windows increases from 0 to 0.287. Further increasing
the threshold value until 1g leads to a progressive improvement of specificity (from
0.884 to 0.941) and discard ratio (from 0.287 to 0.580), with an evident impairment
of sensitivity (from 0.877 to 0.560). Table 4.11 reports the performance of the
algorithm and the discard rate in absence of the activity threshold and for values
equal to 0.4 and 0.7. Increasing the threshold from 0.4 to 0.7 produces a reduction
of -10.8% in sensitivity and an increment of +2.6% in specificity and +11.8% in the
rate of discarded windows.

Table 4.11 The effect of different activity thresholds on the performance of the detection
algorithm and on the ratio of discarded windows.

Activity threshold Sensitivity Specificity Discard rate
0 0.879 0.880 0

0.4 0.877 0.884 0.287
0.7 0.769 0.910 0.405

The effect of the activity threshold on the test set of the REMPARK data set, and
on the two independent data sets is reported in Table 4.12. In general, the effect
of the activity threshold is a progressive sensitivity reduction and slight specificity
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improvement, as expected. Such an effect is more evident in the REMPARK data
set than in the external data sets. Specifically, setting the threshold value to 0.4g
produces a -3.1% reduction in sensitivity and a +2.5% increment in specificity in the
REMPARK data set, while performance is not affected in the two external data sets.
On the other hand, 27% and 20% of data were discarded prior to classification in the
REMPARK and 6MWT data sets, respectively, while up to 63.2% of windows were
discarded in the ADL data set.

Table 4.12 The effect of the activity threshold on the main test set and on the two independent
data sets.

Data set Performance
Activity threshold

0 0.4 0.7

REMPARK
sensitivity 0.877 0.846 0.801
specificity 0.883 0.908 0.911

discard rate 0 0.270 0.376

6MWT
sensitivity 0.796 0.796 0.744
specificity 0.933 0.934 0.938

discard rate 0 0.201 0.227

ADL
specificity 0.977 0.978 0.981

discard rate 0 0.632 0.692

4.2 Postural stability

4.2.1 Turn quality and postural stability assessment using smart-
phones

Participants in G-PD1 performed an average of 3.6 turns per patient, with a total of
213 turns recorded. In G-PD2 subjects, 126 turns were recorded, with an average
of 9.7 turns per patient. Specifically, 59 turns were recorded from patients with
moderate impairment and 67 from the severe impairment class. The final set of
selected features is shown in Table 4.13. Interestingly, 5 out of 9 features are related
to vertical angular velocity, which provides a measure of turning speed and has
previously been reported to be sensitive to motor symptom severity in [286, 256].
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Table 4.13 List of features selected for binary classification. α and ω represent acceleration
and angular velocity, respectively.

Feature Component r p-value

1 ωx,αz,αx 0.66, 0.54, 0.49 < 0.001
2 ωx 0.63 < 0.001
3 ωx,αz 0.63, 0.54 < 0.001
6 ωx 0.55 < 0.001
9 ωx,αz 0.58 < 0.001

The classification performance obtained by the ML algorithms is shown in terms
of accuracy and AUC in Table 4.14. LDA provided the best accuracy and AUC, with
sensitivity, specificity, and precision of 0.955, 0.881, and 0.901, respectively. The
confusion matrix is shown in Figure 4.9. LDA detects 95.5% of the 180 rounds that,
with a probability of 90.1%, were performed by patients belonging to the S class.
Of the 67 (59) turns performed by patients belonging to class S (M), 64 (52) were
correctly classified and only 3 (7) were incorrectly classified.

Table 4.14 Performance of different machine learning models for the binary (moderate vs
severe motor impairment) classification task.

Classifier Parameters Accuracy AUC

KNN
Number of neighbors: 33.

Distance metric: Euclidean.
Distance weight: equal

0.881 0.93

Linear SVM Kernel function: linear.
Boxconstraint: 0.13

0.913 0.95

LDA Delta: 1×10−6.
Gamma: 4×10−4 0.921 0.97

LDA also achieved the best results in LOSO validation. More specifically, it
correctly classified all 7 subjects belonging to the S class and misclassified only
one subject with motor conditions M. Therefore, it achieved a unit sensitivity in
identifying patients with severe motor conditions and an accuracy of 0.880. This
demonstrates a good generalization ability of the model. On the other hand, the
number of misclassified subjects was 2 for SVM and KNN and 3 for DT.

The LDA classifier was then tested on the 59 PwPD belonging to the G-PD1
subgroup. The Pearson correlation coefficient between the QoM index and clinical
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Fig. 4.9 Confusion matrix related to LDA classifier.

scores is given in Table 4.15. It can be observed that the QoM index has a strong
correlation (r > 0.7) with MDS-UPDRS item 3.12 "postural stability" and with the
mean motor score of the MDS-UPDRS Part III. The boxplot of QoM values as a
function of the patient’s PS score is also shown in Figure 4.10.

It is worth noting that the QoM index evaluation involved 59 PwPD not engaged
in the training phase, with different disease progression and gait/postural impairment.
This demonstrates the significance of the QoM index and the reliability of the
proposed method. In addition, these patients performed a simple walking protocol
(i.e., the task required for clinical assessment of MDS-UPDRS item 3.10 "gait"),
which is representative of walking during daily activities. Therefore, the proposed
method may be suitable for implementation in an unsupervised home setting.
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Table 4.15 Pearson correlation coefficient r between the QoM index and some clinical MDS-
UPDRS part III scores.

Clinical score r p-value

3.9 arising from chair 0.5 < 0.001
3.10 gait 0.61 < 0.001

3.12 postural stability 0.73 < 0.001
H&Y 0.66 < 0.001

Average Score 0.75 < 0.001

Fig. 4.10 Boxplot of QoM index vs Item 3.12 "postural stability" score.

4.2.2 Postural stability assessment during quiet stance using
smartphones

The final feature subset obtained from the feature selection algorithm is reported in
Table 4.16.

The performance of the models in the multi-class classification task is reported
below. In the LOSO validation, SVM with linear kernel provided the best results,
achieving an accuracy of 0.701 and an average F-score of 0.673. The RF model
provided an accuracy of 0.650 and an average F-score of 0.486. The results obtained
with the proposed approach are given in the following. Regarding the first level of
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Table 4.16 The most significant and non-redundant features. All the correlation coefficients
reported were associated with a p-value < 0.05.

ID Study Feature Component r

3 Present Study Variance z 0.4
21 Present Study Spectral Entropy y, z 0.44, 0.53
22 [267],[173] f50 x, z 0.52, 0.55
25 Present Study RAPP (2−3)Hz

(0−2)Hz x,y 0.69, 0.54

25 Present Study RAPP (1−2Hz)
(0−1)Hz x 0.58

classification, which aims to classify subjects with very different postural control,
the results obtained for the different ML models are shown in Figure 4.11, in terms
of confusion matrices.

(a) Linear-SVM (b) kNN (c) DT

Fig. 4.11 Confusion matrices of different ML models. Label -1 and 2 indicate control and
class 2 subjects, respectively.

The results were obtained using LOSO validation. As can be observed, SVM
provided the best performance in differentiating controls from PwPD with severe
impairment of postural control. Therefore, this model was used in the subsequent
processing steps. Figure 4.17 shows the soft output of the SVM model, along with
the line of best fit, i.e., the line that minimizes the MSE. There is a significant gap
between controls and class 0 subjects, as well as between class 0 and class 2 subjects.
In addition, class 1 data partially overlap with class 0 and 2 data. However, a high
Pearson correlation coefficient was achieved between soft SVM output and clinical
score, i.e. r = 0.76withp < 0.0001. These results prove the potential effectiveness
of the proposed approach.
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Fig. 4.12 Distribution of the continuous output provided by the SVM model, along with the
best-fit line.

The performance of the three binary SVM models (second layer) is reported in
Figure 4.13, in terms of confusion matrices, and in Table 4.17, in terms of accuracy,
sensitivity, specificity, precision, and F-score.

(a) Control vs Class 0 (b) Control vs Class 1 (c) Class 0 vs Class 2

Fig. 4.13 Confusion matrices obtained with three binary SVM classifiers. Label -1 and 0 and
2 denote control, class 1, and class 2 subjects respectively.

As can be observed from Figure 4.13 and Table 4.17, the performance obtained is
very satisfactory, with high accuracy in three of the five classification tasks. However,
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Table 4.17 Classification performance achieved using the three binary SVM models.

Task Accuracy Sensitivity Specificity Precision F-score

Control vs Class 0 1 1 1 1 1
Control vs Class 1 0.950 1 0.860 0.940 0.970
Class 0 vs Class 1 0.828 0.857 0.800 0.800 0.828
Class 0 vs Class 2 1 1 1 1 1
Class 1 vs Class 2 0.720 0.636 0.786 0.700 0.712

the classification task gives lower performance when trying to distinguish subjects
belonging to adjacent classes. This may be due to both a more difficult classification
task and the intra- and inter-rater variability, which represents an inherent uncertainty
of one class in the clinical assessment [98, 29, 70]. The latter consideration suggests
that one should not rely on such fine grading between adjacent classes, as it may
provide misleading results. It is worth noting that these results were obtained using
only 8 features and three very simple SVM models.

Satisfactory performance was obtained for multiple binary classifications, allow-
ing discrimination between control subjects and patients with mild, slight, and severe
postural instability. Regarding the practical use of the algorithm, a first approach may
be to use the regression model described in Figure 4.17 to obtain an initial indication
of the extent of postural control impairment (e.g., mild). Then, the appropriate binary
SVM model can be applied to perform finer classification. This approach could
be reasonable and efficient. For completeness, since the input is a short inertial
signal and only 8 features and simple SVM were employed, the processing time
was extremely short (5 ms for data loading, 50 ms for feature extraction, and 2 ms
for classification). This makes possible a real-time on-board implementation of the
algorithm.
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4.3 Gait impairment

4.3.1 Prediction of postural stability and gait difficulty using a
single inertial measurement unit

Clinical-Behavioural Correlations

Pearson’s correlation analysis showed that most of the time and frequency domain
features were significantly correlated with PIGD scores. In more detail, as axial
motor control worsened, the minimum value of inertial signals increased, while the
maximum and mean square value of signals, mean peak height in the time domain,
and dominant harmonic height decreased. Table 4.18 summarizes the Pearson
correlation coefficients and respective p-values for the different feature–PIGD pairs.
Only the most informative features for both treatment conditions, that is, those with
a Pearson correlation coefficient with a PIGD score greater than 0.5, were included
in the table. Figure 4.14 shows the scatter plots of the mean height of the dominant
harmonic (mean DH height) versus the PIGD OFF and ON scores.

Table 4.18 Correlation between engineered features and PIGD score. Results are reported in
terms of Pearson correlation coefficient and relative p-value. For each feature, significant
components are reported. α: acceleration; ω: angular velocity; θ : orientation.

Feature Component
Pearson Correlation Coefficient (p-value)

PIGD OFF PIGD ON

Min αy 0.54 (0.002) 0.58 (<0.001)

Mean ωx 0.64 (<0.001) 0.54 (0.002)

RMS αy

ωx

−0.67 (<0.001)
−0.74 (<0.001)

−0.57 (0.002)
−0.72 (<0.001)

hPeaks αy

ωx

−0.70 (<0.001)
−0.74 (<0.001)

−0.58 (<0.001)
−0.60 (<0.001)

DH height
αy

ωx

θx

−0.59 (<0.001)
−0.71 (<0.001)
−0.69 (<0.001)

−0.57 (<0.001)
−0.70 (<0.001)
−0.65 (<0.001)
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Fig. 4.14 Correlation plot between the average principal harmonic height for the x-axis
angular velocity (DH height 4) and PIGD score. Data and PIGD score refer to patients OFF
(left) and ON (right) therapy. PIGD: postural instability and gait difficulty.

PIGD Score Regression

This section reports the results of the optimized SVR model in LOSO validation.
Specifically, the effect of L-Dopa was evaluated by comparing regression models in
PwPD OFF and ON therapy. For each pharmacological condition, the best model
configuration was identified and the performance of the regression models was
compared. The effect of FOG was evaluated by comparing the regression models in
FOG+ and FOG-. The best model configuration was extracted for each subgroup of
patients, and the performance of the regression models was compared.

The Effect of L-Dopa

Wilcoxon’s test showed that both MDS-UPDRS part III score and PIGD score were
different in OFF and ON therapy patients (p < 0.001). Table 4.19 summarizes the
performance of the regression model in terms of Pearson correlation coefficient,
RMSE, and MAE, in PwPD OFF and ON therapy. Results are reported for different
dimensions of the feature set and different methods of dimensionality reduction.
Based on the results in Table 4.19, the following considerations can be made. SVR
with linear kernel was selected in % of cases; the best performance was obtained
with linear kernel and small values of the box-constraint parameter (i.e., < 0.009).
Increasing the size of the feature set did not provide progressively better performance.
The best results were obtained with n = 15 features, both on patients OFF and ON
therapy. For larger feature sets (i.e., # features > 15), PCA-based dimensional-
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ity reduction always provided better results, compared with those obtained with
correlation-based feature selection. PCA-based dimensionality reduction led to the
best results for both PwPD OFF and ON therapy. Regression models provided better
performance in OFF patients than in ON patients. Accordingly, the best regression
model parameters were identified for each therapy condition. Then, these models
were trained on patients ON (OFF) therapy and tested on patients OFF (ON) therapy.
This procedure resulted in r = 0.70 (0.67), RMSE = 0.57 (0.42), and MAE = 0.47
(0.15). When the model was tested using LOSO on all available data, regardless of
therapy, r = 0.64, RMSE = 0.22 and MAE = 0.17 were obtained from an SVR with
linear kernel and box-constraint = 0.07. Figure 4.15 shows the scatter plot of the true
score versus the predicted score, together with the best-fit line.

Table 4.19 Performance of regression models in different pharmacological conditions using
leave-one-subject-out validation. Results were obtained for different sizes of the feature set
and different dimensionality reduction methods. Best performance are marked with bold
type.

# Features Therapy
Dimensionality Reduction Model parameters Performance

Method Value Kernel Cost r RMSE MAE

5
ON

r (min-max) 0.65–0.72 linear 10.9 0.71 0.22 0.18
var (%) 82.9 linear 0.09 0.71 0.25 0.20

OFF
r (min–max) 0.76–0.77 gaussian 2.67 0.76 0.21 0.18

var (%) 77.3 linear 0.006 0.77 0.21 0.16

10
ON

r (min–max) 0.58–0.72 linear 0.54 0.27 0.22
var (%) 93.0 linear 0.07 0.55 0.26 0.20

OFF
r (min–max) 0.74–0.77 linear 0.35 0.69 0.23 0.19

var (%) 88.7 linear 1.91 0.51 0.28 0.23

15
ON

r (min–max) 0.56–0.72 linear 0.003 0.67 0.23 0.19
var (%) 97.5 linear 0.009 0.75 0.20 0.16

OFF
r (min–max) 0.68–0.77 gaussian 253.51 0.69 0.23 0.19

var (%) 94.7 linear 0.001 0.79 0.19 0.15

20
ON

r (min–max) 0.55–0.72 linear 0.002 0.71 0.22 0.16
var (%) 99.2 linear 641.6 0.5 0.28 0.24

OFF
r (min–max) 0.66–0.77 linear 0.004 0.79 0.20 0.15

var (%) 97.9 gaussian 0.87 0.76 0.21 0.15

25
ON

r (min–max) 0.52–0.72 linear 0.005 0.66 0.24 0.19
var (%) 99.8 linear 0.003 0.71 0.22 0.16

OFF
r (min–max) 0.62–0.72 linear 0.004 0.78 0.20 0.15

var (%) 99.5 cubic 0.19 0.75 0.21 0.16
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(a) (b)

Fig. 4.15 Regression results for patients under different pharmacological conditions. Data
are plotted using a scatter plot and the regression line is reported as the best-fit line. (a)
Patients under dopaminergic therapy. (b) Patients not under dopaminergic therapy.

The Effect of Freezing of Gait

Table 4.20 reports the demographic and clinical characteristics of PwPD with and
without FOG, along with the significance level calculated with the Mann–Whitney U
test. In PwPD with FOG, the duration of FOG was 4.8 pm 2.7 and the total FOG-Q
score was 15.4 pm 4.4. Regarding engineering characteristics, Mann–Whitney’s
U test showed that patients with FOG had higher Min and lower Mean, RMS,
DHheight, and Etot than those without FOG (p < 0.001).

Table 4.20 Demographic and clinical features of patients enrolled in the present study (mean
± standard deviation).

Group # Patients (Male) Age (Years) MDS-UPDRS-III OFF (ON) PIGD OFF (ON)

FOG+ 17 (13) 72.0 ± 7.6 40.9 ± 13.2 (32.9 ± 14.1) 11.2 ± 4.5 (9.6 ± 3.4)
FOG- 14 (10) 71.8 ± 6.4 29.7 ± 12.3 (21.9 ± 10.8) 2.6 ± 2.5 (2.4 ± 2.3)

p 0.353 (0.531) 0.811 0.054 (0.030) <0.001 (<0.001)

Table 4.21 reports the performance of the optimized regression models for FOG+
and FOG- patients ON state of therapy.

When the feature set size increased, the regression models provided comparable
performance in FOG+ and FOG-. This is particularly evident for n = 25 features,
for which r and RMSE were very similar in the two populations, regardless of the
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Table 4.21 Performance of regression models in patients with (FOG+) and without (FOG-)
freezing of gait, both under dopaminergic therapy. Results were obtained for different feature
set sizes and different dimensionality reduction methods. Best performances are marked
with bold type.

# Features Group
Dimensionality Reduction SVM parameters Performance

Method Value Kernel Cost r RMSE MAE

5
FOG+

r (min–max) 0.58–0.69 linear 0.007 0.7 0.28 0.22
var (%) 85.2 linear 0.02 0.63 0.30 0.25

FOG-
r (min–max) 0.77–0.84 linear 0.07 0.85 0.19 0.13

var (%) 82.1 linear 0.007 0.77 0.22 0.15

10
FOG+

r (min–max) 0.55–0.69 linear 1.69 0.5 0.34 0.26
var (%) 96.6 linear 0.03 0.47 0.34 0.29

FOG-
r (min–max) 0.69–0.84 linear 0.02 0.83 0.19 0.15

var (%) 96.5 linear 0.004 0.83 0.19 0.15

15
FOG+

r (min–max) 0.53–0.69 linear 0.51 0.71 0.27 0.21
var (%) 99.8 linear 0.06 0.64 0.30 0.24

FOG-
r (min–max) 0.66–0.84 quadratic 0.019 0.7 0.25 0.20

var (%) 99.8 linear 0.15 0.76 0.22 0.18

20
FOG+

r (min–max) 0.50–0.69 linear 0.007 0.58 0.32 0.28
var (%) 99.9 linear 0.46 0.67 0.29 0.23

FOG-
r (min–max) 0.64–0.84 linear 0.004 0.81 0.20 0.25

var (%) 99.9 linear 0.01 0.76 0.22 0.17

25
FOG+

r (min–max) 0.46–0.69 linear 0.014 0.7 0.28 0.24
var (%) 99.9 linear 4.02 0.71 0.27 0.22

FOG-
r (min–max) 0.62–0.84 linear 0.02 0.77 0.22 0.19

var (%) 99.95 linear 85.9 0.76 0.22 0.18

dimensionality reduction method. From the above results, the following observations
can be made. SVR with linear kernel was selected in 95% of cases; the best
performance was obtained with linear kernel and small values of the box-constraint
parameter (i.e., < 0.51). Increasing the size of the feature set did not provide
progressively better performance. The best results were obtained with n = 15 (n
= 5) features in patients with (without) FOG. Correlation-based and PCA-based
dimensionality reduction methods provided similar results regardless of feature set
size. The correlation-based dimensionality reduction method yielded the best results
for both FOG+ and FOG- patients. Regression models provided better performance
in FOG- patients, as reflected by the higher values of r and lower values of RMSE.
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Based on the above considerations, the feature set size was set at 15 (5) for FOG+
(FOG-) patients, and the dimensionality reduction method was based on correlation
for both populations. Then, the best regression model was trained on FOG+ (FOG-)
patients and tested on FOG- (FOG+). This procedure produced r = 0.34 (0.40),
RMSE = 0.43 (0.39), and MAE = 0.37 (0.35), respectively.

The performance gap between PwPD with and without FOG may be due to
the different discrimination power of some features in the two populations. From
Table 4.21, it appears that for each dimension of the feature set, the correlation
between top-ranked features and PIGD score is higher in patients without FOG. The
top-ranked features for these patients were found to be Min (r = 0.79, p = 0.001),
vPeaks (r = −0.75, p = 0.004), RMS (r = −0.72, p = 0.006), hPeaks (r = −0.72, p =
0.006), hPeaks (r = −0.70, p = 0.008) from the orientation signal of the x axis, and
Etot (r = −0.79, p = 0.001) from the angular velocity signal of the x axis. As far as
concerns PwPD with FOG, top-ranked features included Min (r = 0.66, p =0.004),
DHheight (r = −0.62, p =0.008), RMS (r = -0.58, p =0.015), hPeaks (r = −0.58, p
= 0.016) from the y-axis acceleration signal, and DHheight (r = −0.65, p =0.005)
from the x-axis orientation signal.

Table 4.22 reports the performance of the optimized regression models for FOG+
and FOG- OFF state of therapy.

Based on the above results, the following considerations can be made. SVR with
linear kernel was selected in 95% of cases; the best performance was obtained with
linear kernel both in patients with and without gait freezing. Increasing the feature set
size did not provide progressively better performance. The best results were obtained
with n = 25 (n = 15) features in patients with (without) gait freezing. PCA-based
dimensionality reduction (correlation) was chosen for patients with (without) FOG.
Regression models provided slightly better performance in patients without FOG,
in terms of RMSE, regardless of model configuration; performance in terms of r
depended on regression model parameters, with better results in patients with FOG
(Table 4.22).

Based on the above considerations, the feature set size was set to 25 (15), and
the PCA-based dimensionality reduction method (correlation) for FOG+ (FOG-).
Then, the best regression models were trained on emphFOG+ (emphFOG-) patients
and tested on emphFOG- (FOG+). This procedure yielded r= 0.73 (0.69), RMSE =
0.36 (0.33), and MAE = 0.25 (0.25), respectively.
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Table 4.22 Performance of regression models in patients with (FOG+) and without (FOG-)
freezing of gait, both not under dopaminergic therapy. Results were obtained for different
feature set sizes and different dimensionality reduction methods. Best performances are
marked with bold type.

# Features Group
Dimensionality reduction SVM parameters Performance

Method Value Kernel Cost r RMSE MAE

5
FOG+

r (min–max) 0.58–0.65 linear 2.7 0.54 0.33 0.29
var (%) 83.1 gaussian 2.3 0.65 0.30 0.25

FOG-
r (min–max) 0.70–0.76 linear 0.01 0.74 0.23 0.16

var (%) 83.5 linear 0.06 0.65 0.26 0.20

10
FOG+

r (min–max) 0.55–0.65 linear 0.93 0.76 0.25 0.18
var (%) 95.7 linear 0.004 0.78 0.25 0.22

FOG-
r (min–max) 0.69–0.76 linear 83.9 0.75 0.23 0.18

var (%) 97.2 linear 0.003 0.75 0.23 0.15

15
FOG+

r (min–max) 0.52–0.65 linear 0.03 0.67 0.29 0.24
var (%) 99.7 linear 118.5 0.63 0.30 0.26

FOG-
r (min–max) 0.63–0.76 linear 0.006 0.79 0.21 0.15

var (%) 99.6 linear 0.002 0.69 0.25 0.16

20
FOG+

r (min–max) 0.50–0.65 linear 0.37 0.82 0.22 0.19
var (%) 99.8 linear 0.05 0.79 0.24 0.21

FOG-
r (min–max) 0.61–0.76 linear 0.009 0.78 0.22 0.14

var (%) 99.8 linear 0.002 0.71 0.24 0.16

25
FOG+

r (min–max) 0.48–0.65 linear 621.2 0.81 0.23 0.19
var (%) 99.9 linear 24.2 0.83 0.22 0.19

FOG-
r (min–max) 0.59–0.76 linear 0.69 0.75 0.23 0.16

var (%) 99.9 linear 0.12 0.69 0.25 0.17

Table 4.23 shows all the results obtained for each test population and for each
pharmacological condition; the results were obtained using the LOSO test. As is
evident from the table, the performance of the model improves when patients with
different pharmacological conditions are considered separately. Regarding the effect
of FOG, if the model is specifically trained on FOG+ and FOG- separately, the
performance improves significantly in patients without FOG in the ON condition and
in patients with FOG in the OFF condition. Table 4.24 reports the results obtained by
training and testing the regression model on different populations (i.e., therapy ON vs.
therapy OFF, FOG+ vs. FOG-). The prediction errors provided by the global model
(i.e., the regression model trained and validated on all subjects, regardless of therapy
condition and gait freeze) were compared with those obtained using different models



138 Results

for each pharmacological condition separately. The Wilcoxon test showed that the
difference in prediction errors was not statistically significant (p = 0.074); therefore,
a single model can be used to estimate the PIGD score. On the other hand, training
the model on specific subgroups (e.g., patients with FOG, patients ON therapy)
and testing on different subgroups resulted in a large reduction in performance, as
evident from the RMSE values shown in Table 4.24. Summarizing these results, it is
possible to implement a very general algorithm, but care must be taken to collect
a very general dataset, including patients in different therapy conditions as well as
patients with and without FOG.

Table 4.23 Performance of regression models on different populations under different phar-
macological conditions.

Therapy FOG
Performance

r RMSE MAE

All All 0.64 0.22 0.17

ON
All 0.75 0.20 0.16

FOG+ 0.71 0.27 0.21
FOG- 0.85 0.19 0.13

OFF
All 0.79 0.19 0.15

FOG+ 0.83 0.22 0.19
FOG- 0.79 0.21 0.15

Table 4.24 Performance of the regression model for different combinations of training and
test samples.

Training sample Testing sample
Performance

r RMSE MAE

ON OFF 0.70 0.57 0.47
OFF ON 0.67 0.42 0.15

FOG+ (ON) FOG- (ON) 0.34 0.43 0.37
FOG- (ON) FOG+ (ON) 0.40 0.39 0.35

FOG+ (OFF) FOG- (OFF) 0.73 0.36 0.25
FOG- (OFF) FOG+ (OFF) 0.69 0.33 0.25

The large prediction errors observed during training and testing of the model
on different populations may be due to the different discrimination power of some
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features. As can be seen in Figure 4.16, the sensitivity of some features to changes
in the PIGD score depends on the medication condition. Some features have a strong
correlation with PIGD in patients ON therapy but not in those OFF therapy, and vice
versa. The same behavior is observed when training and testing the regression model
on patients with and without FOG while on therapy. As already reported in Table
4.21, the highest-rated features were different in FOG+ and FOG- patients, so the
performance of the prediction model deteriorates when it is trained and tested on
different populations.

Fig. 4.16 Pearson correlation coefficient between features and PIGD score. DH ratio and DH
frequency refer to the component θx; Min and vPeaks refer to the component ωx; RMSE and
Range refer to the component αy.

Finally, from Table 4.24, it can be observed that performance was not significantly
impaired when the model was trained with data from FOG+ (FOG-) patients and
tested on data from FOG- (FOG+) patients while OFF therapy. In this case, the most
common features classified were the minimum value, mean square value, and mean
peak height of the orientation signal; the mean value of the angular velocity signal;
and the height of the dominant harmonic of the acceleration signal along the y axis.

4.3.2 Prediction of self-perceived gait impairment

Table 4.25 reports the performance of the proposed predictive model, in terms of
Pearson’s correlation coefficient with AIM (i.e., the sum of items 2.11-2.13 of the
MDS-UPDRS), in patients on OFF and ON therapy. The model provided better
performance in PwPD in the absence of therapy, as reflected by all performance eval-
uation metrics. Wilcoxon’s test showed that predictions were significantly different
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in PwPD OFF and ON therapy (p = 0.014). Figure 4.17 shows the correlation plot
for PwPD OFF and ON therapy. The best-fit line equation, Pearson’s correlation
coefficient, and sample size are given. In PwPD OFF therapy, higher correlations
and smaller prediction errors are observed.

Table 4.25 Pearson correlation coefficient of the prediction model with AIM (sum of MDS-
UPDRS items 2.11-2.13), in PDPs under (ON) and not under (OFF) dopaminergic therapy.

Therapy r (p) RMSE MAE

OFF 0.86 (<0.001) 1.72 1.52
ON 0.76 (<0.001) 2.30 1.70

Fig. 4.17 Correlation plot for PDPs OFF (left) and ON (right) therapy.

Table 4.26 reports the Pearson correlation coefficient and respective p-value for
other prediction-clinical score pairs, in PwPD OFF and ON therapy. The predicted
score showed a moderate to strong correlation with disease progression (as measured
by H&Y score), the clinically assessed level of motor impairment (as measured by
MDS-UPDRS total score part III), and axial impairment (as measured by PIGD
score). Again, higher correlations are observed for off-therapy PwPD.

Table 4.27 shows the final set of features used by the prediction model for
PwPD OFF and ON therapy. As can be observed, the features selected for PwPD
ON therapy are a subset of those used for PwPD OFF therapy. As AIM worsens,
the minimum and average values of the inertial signals increase, while the motion
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Table 4.26 Correlation between prediction and various clinical scores, for PDPs OFF and
ON therapy.

Clinical score
r (p-value)

OFF ON
H&Y 0.68 (<0.001) 0.48 (0.007)

MDS-UPDRS-III 0.58 (<0.001) 0.53 (0.002)
PIGD 0.79 (<0.001) 0.69 (<0.001)

intensity (measured by the standard deviation) and signal energy (measured by the
total energy and the amplitude of the dominant harmonic) decrease.

Table 4.27 Feature selected in the optimization procedure, for patients OFF and ON therapy.
α : acceleration; ω : angular velocity; θ : orientation

Feature
Component

Trend
OFF ON

Min ωx,θx θx increase
Mean ωx - increase
Std αy,αz,ωx,ωy,θx ωx decrease

DHh αy,αz,ωy,ωx ωx decrease
Etot αz,ωx ωx decrease

It is worth noting that the regression model was trained and validated to predict
the sum of MDS-UPDRS items 2.11-2.13. In addition to demonstrating excellent
predictive ability on that metric, which represents the subjective perception of motor
impairment in the preceding days, the output of the algorithm was found to be
correlated with important clinical items. Comparing the present results with that
of [239], a higher correlation with the MDS-UPDRS part-III total score (r = 0.58
and r = 0.53 in PwPD OFF and ON therapy vs r = 0.48) and PIGD score (r = 0.79
and r = 0.69 in PwPD OFF and ON therapy vs r = 0.61) was obtained in this study.
Furthermore, whereas in [239] data from 3 sensors were recorded during different
activities (i.e. gait, turn, stance), in this study, only gait data recorded with a single
sensor were analyzed. Compared with [216], the correlation with PIGD is the same
in patients not under therapy, while a lower correlation is observed in patients ON
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therapy (r = 0.69 vs r = 0.75). However, it is worth noting that the proposed algorithm
was not developed for the prediction of PIGD, as this is not the main objective of
this study.

4.4 Bradykinesia

The final parameters selected for each addressed classification algorithm were as
follows. Linear kernel function and cost equal to 36 for SVM. Number of neighbors
equal to 5, euclidean distance, and equal distance weight for kNN. Gini-Simpson
diversity index [204] split criterion and maximum number of split equal to 4 for
DT. Number of hidden layers equal to 2, number of neurons per layer of 16, and
hyperbolic tangent sigmoid transfer function for ANN.

4.4.1 Classification results

Table 4.28 summarizes the performance of each model in terms of AUC.

Table 4.28 Performance of several ML methods in case of discrete output.

Method Accuracy AUC

DT 0.591 0.53
kNN 0.603 0.82
SVM 0.609 0.80
ANN 0.777 0.92

The ANN model shows the best performance among the implemented ML
classifiers (accuracy 0.777), exceeding the results reported in the literature (e.g.,
in [241, 185] an accuracy of 0.430 is reported). All methods, with the exception
of DT, misclassify by a maximum of one step on the MDS-UPDRS scale, i.e., the
misclassification error is 1 in 100% of cases. This error is comparable to inter-rater
variability, as also discussed in [185].

When using the continuous ANN output, the error histogram shown in Figure
4.18 reports leq0.5 error in more than 80% of instances. This suggests that a finer
discretization (i.e., 0.5 instead of unit steps) could certainly improve the performance
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of the algorithm and provide a more accurate score. For completeness, the Bland-
Altman diagram shown in Figure 4.19 shows the difference between the results of the
implemented ANN model versus the average scores of the four physicians. Finally,
in Table 4.29 the results of the present study are compared with those of similar
works.

Fig. 4.18 Histogram of the distance between mean clinicians score and ANN outcomes.
Continuous values were taken into account for assessment.

Table 4.29 Comparison with state-of-the-art algorithms. ∗Dedicated Application-performed
evaluation. ∗∗ Values not explicitly reported within the text.

Study Device # subjects # sensors # raters r RMSE ICC

[282] IMU 42 5 3 0.79 0.46 –
[185] IMU 34 3 3 0.79 – –
[242] Smartphone 14 1 0∗ 0.5 – –
[188] Smartphone 44 1 0∗ – – 0.88
[186] IMU 19 2 3 0.83 0.53 0.89
[187] IMU 50 2 2 n.r. ∗∗ n.r. ∗∗ n.r. ∗∗

Proposed Smartphone 93 1 4 0.92 0.42 0.88
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Fig. 4.19 Bland-Altman Plot of mean clinicians score and ANN outcomes.

From Table 4.29 it can be observed that the present work employs the largest
cohort of patients, as well as the largest number of clinicians; this ensures greater
significance of the results. In addition, two of the three performance metrics (i.e.,
r and RMSE) outperform studies in the literature, while the ICC coefficient is in
line with other studies. In particular, a higher Pearson coefficient ensures a higher
correlation with the mean clinical score, and a lower RMSE is indicative of a better
concentration of data around the line of best fit. Finally, it is worth noting that the
correlation between the soft output and the mean clinical score is higher than the
best agreement between clinicians (0.92 vs. 0.88). The issue of inter-rater variability
is discussed in the next subsection. Currently, data acquisition was done during
scheduled outpatient visits. Most patients had taken their usual dose of medication,
although variable intervals of time had elapsed since then and the next scheduled
dose was not forthcoming.
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4.4.2 Inter-rater variability

MDS-UPDRS assessment performed by multiple neurologists may not be homoge-
neous, mainly because of the difficulty in discriminating between adjacent classes
in cases of intermediate severity. In this study, the inter-rater agreement index was
between 0.74 and 0.88.

(a) Clinician 1 (b) Clinician 2

(c) Clinician 3 (d) Clinician 4

Fig. 4.20 For each evaluating clinician, score distribution among MDS-UPDRS part III
Leg-Agility score (CLx stands for score x, x = LA score)
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The possible disagreement in MDS-UPDRS scoring may be justified by the
complexity of discriminating between adjacent classes, as physicians have to pay
attention to different aspects (e.g., movement amplitude, velocity, and regularity). It
is therefore worth asking whether differences between clinical and automatic scores
are due to incorrect selection of features or are inherent in the data. This dilemma is
also addressed in [99], where the authors speculate that automatic methods may prove
more reliable than clinicians themselves for this reason. To this end, the agreement
of neurologists by MDS-UPDRS class was analyzed. The pie charts shown in Figure
4.20 show the distribution of scores for each clinician. The correlation between the
continuous ANN score and the average clinical score provided by four neurologists
examining each patient directly or by videotaped leg movement was higher than the
agreement among the best clinicians (0.92 vs. 0.88). A continuous score provided
by an ML-based instrument can be used as a digital tool to overcome intra- and
inter-rater variability.
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Discussion

The monitoring of PD is very complex, due to several factors. The severity of symp-
toms is assessed during the pre-scheduled outpatient visits, carried out once or twice
a year. Moreover, inter-rater and intra-rater variability affect the evaluation of PD
motor aspects, leading to poor objectivity. Finally, some motor signs of the disease
(e.g., FOG) may not manifest during the clinical examination, and their fluctuation
is commonly assessed only using subjective diaries.

In order to provide objective measures of motor dysfunction, a large variety of
technologies have been used for motion analysis in PD. However, some of them
(e.g., motion capture systems, instrumented walkways, and balance boards) represent
costly and obtrusive instrumentation commonly used in laboratory settings. Such
technology is capable of providing accurate movement analysis but it does not allow
to perform continuous monitoring in free-living settings.

In this context, wearable inertial sensors represents an ecological solution for
the collection of motion data in non-supervised environments. They are capable of
accurately measuring human movement during daily life, providing a large amount
of data that can be used in several applications, including human activity recognition,
mobility assessment, and monitoring of PD.

However, collecting data using ecological solutions (i.e., smartwatch, smart-
phone) requires proper data analysis techniques, the complexity of which depends on
a large number of factors, including the number and type of sensors, their position,
the specific task, and the objective. To this end, signal processing and data mining,
especially with the use of AI methodologies such as ML, have represented essential
tools for the accurate analysis of wearable sensor data. ML and, more recently, DL
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algorithms have been proposed to objectively and continuously evaluate PD motor
symptoms, their fluctuations, and their response to therapy.

The combination of WMS and AI has been successfully employed for the as-
sessment of PD. However, the cost, size, number, and location of sensors may
result in costly and obtrusive solutions, and this limits the suitability of the designed
systems for continuous real-life monitoring. Moreover, the clinical validity of the
developed processing tools is often limited by the small sample size and/or the
non-representative population enrolled in the study. Indeed, the heterogeneity of
the movement patterns and symptoms manifestation in PD makes it challenging to
design digital solutions that can be generalized to the entire PD population. Finally,
information extraction is a critical process in the development of digital solutions for
computer-aided diagnosis or monitoring. The identification of specific characteris-
tics that fully describe movement and discriminate the different patterns in different
populations is of pivotal importance, thus, it should be carefully and exhaustively
performed.

In this study, a single smartphone was used to collect motion data in different
settings. A single smartphone on the thigh was used to assess lower limb bradykinesia
[98] and gait impairment [279, 216]. Such location resembles that of the smartphone
placed in the front pocket, which may represent the usual position of smartphones in
daily life. A smartphone on lower back was employed for the evaluation of postural
stability [140], gait [176], and FOG [157, 287] in semi-supervised and unsupervised
settings. In total, data were recorded from more than 200 PwPD during different
activities (e.g., walk, turn, stand, postural transitions). The choice of simple ADLs
is due to different factors. First, they are non-invasive and easy to perform by
patients with different levels of motor impairment. Moreover, they can reflect the
patient’s mobility and the severity of motor signs. Finally, they are among the most
performed activities in daily life, thus allowing the collection and analysis of a large
amount of data. The developed algorithms were validated on a large patient cohort,
and this reinforces the clinical validity of the obtained results. The experiments
conducted in the present study were designed to answer different practical needs.
First, the clinical need for more objective measures of symptom severity and disease
progression. Second, the limitations of the current literature works, including the
small patient cohort, the lack of classification tools, the performance of the system,
and the complexity of the processing algorithms. Specifically, the main results and
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contributions of this study are discussed in the following, together with their clinical
utility, the comparison with similar literature works, and the limitations.

5.1 Freezing of gait

FOG detection and prediction have been addressed in [157, 219, 287]. A wide range
of wearable solutions and a variety of processing algorithms have been proposed in
the literature. However, few studies have addressed FOG prediction, and none of
them have considered the effect of FOG on detection and prediction performance.
Regarding FOG detection, the proposed algorithm [219] provided high performance
in detecting FOG episodes, comparable to those previously described [288, 289].
Furthermore, in line with previous research [145], the developed algorithm detected
FOG episodes in PwPD ON and OFF therapy with similar sensitivity, thus suggesting
that L-Dopa does not significantly change FOG-related features, but only affects
the frequency and duration of FOG episodes. Despite comparable sensitivity, the
algorithm recognized FOG episodes with lower specificity in patients OFF than in
those ON therapy. This could reflect an increased number of FPs due to the difficulty
in differentiating abnormal spatial and temporal gait parameters, which are important
in patients OFF therapy, from FOG events. Finally, training the algorithm in patients
OFF therapy resulted in better performance in detecting FOG episodes in patients
ON therapy than vice-versa. This likely reflects the higher frequency and duration
of FOG episodes in OFF patients compared to ON patients, thus providing more
data for training [145]. Regarding pre-FOG detection, performance was in line
with recent works, confirming the possibility of predicting FOG in PwPD using ML
algorithms [227, 228]. Pre-FOG window length crucially affected the accuracy of
pre-FOG recognition, with a progressive decrease in performance as the window
length increased. Consistent with previous studies [290], this result suggests that the
degradation of the walking pattern that commonly precedes FOG episodes becomes
increasingly evident as the FOG episode approaches. Therefore, to improve the
overall accuracy of FOG prediction, windows of short duration before FOG (e.g., 2-3
s) should be used. Specifically, during pre-FOG periods, leg movement slows down
(i.e., decrease in range, standard deviation, and maximum velocity), strides become
faster and shorter (i.e., decrease in step, stride, and swing time), stride frequency
content becomes more variable (i.e., decrease in power spectral entropy), and stride
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frequency content shows a shift toward higher frequencies (i.e., decrease in low
power frequency).

When assessing the effects of L-Dopa on ML performance, the accuracy in
detecting pre-FOG was higher in OFF PwPD than in those on therapy, fully in
line with the hypothesis that L-Dopa has an impact on FOG prediction, since the
rhythm degradation pattern in ON therapy is partially corrected by L-Dopa itself. In
further support of the influence of L-Dopa on the prediction of FOG, the classification
algorithm recognized pre-FOG periods earlier in patients in OFF therapy than in those
in ON therapy (6 pm 1.3 and 4 pm 1.1 steps before the onset of FOG, respectively).
In addition, training the algorithm with data from patients ON and OFF therapy
significantly changed the ability to detect pre-FOG. These results agree with the
observation that L-Dopa improves spatio-temporal gait parameters outside FOG
episodes [169, 145]. As a result, L-Dopa modifies the typical degradation pattern
preceding FOG episodes, attenuating pre-FOG periods in patients ON therapy. When
considering the present results, some limitations should be taken into account. First,
although individuals with disabilities were selected based on strict clinical criteria,
lending homogeneity to the cohort, the cohort consisted of a limited number of
subjects. Consequently, to further increase the statistical significance of the results,
future studies should enroll a larger sample of patients. In addition, the use of
independent test sets would increase the validity of the results. The present study,
like most of the works in the literature, made use of laboratory settings and supervised
experiments for data acquisition, and this limits the generalizability of the results
to free-living settings. Finally, as in most proposed FOG detection systems, the
proposed approach relies on offline data processing and is not suitable for real-time
applications.

To overcome these limitations, a real-time FOG detection system was proposed
in [287]. Acceleration data from a large number of subjects (118 PD patients and 21
healthy elderly subjects) were included in the study, with more than a thousand FOG
episodes registered. The analyses were performed on three different data sets, two of
which were employed as independent test sets. This allowed testing the generalization
capability of the detection algorithm when processing data including a large variety
of gait patterns and activities. Data were collected in non-supervised conditions,
during activities similar to those of daily living. The availability of labeled activities
made it possible to get an insight into the context in which false positive events were
detected. The detection algorithm was conceived for use in real-time. It employed
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a single time window, with no pre-processing performed on the entire signal, and
no information regarding past or future data. Moreover, computational complexity,
testing time, memory requirements, and detection latency were carefully estimated.
In-depth post-processing procedures were performed to provide a comprehensive
analysis of the efficacy in detecting FOG and discarding other activities. The effect
of activity thresholding on the performance of the detection system and on the
percentage of discarded windows was evaluated. Actually, an effective tool for
excluding data from the classification process would help reduce the computational
burden and increase the battery life. Performance was found to be stable in the
main data set, demonstrating the good generalization capability of the detection
algorithm. When testing the model on the external data set, a reduction in sensitivity
and an improvement in specificity were observed. This may be due to the different
clinical characteristics and therapy conditions of patients in the two data sets, with
the main corpus including subjects with more severe gait impairment and FOG
manifestations. Moreover, results should be interpreted considering that data from
the main and independent data sets were recorded using a different device positioned
in a different location (left side of the waist and lower back, respectively). Testing
the model on the external ADL data set, encompassing 59 PwPD performing several
activities, resulted in very high specificity, with few FPs registered during common
ADLs. Moreover, false FOG episodes were found to be short and located close to
real FOG episodes, suggesting a degraded walking pattern before and/or after FOG.
Finally, unitary specificity was obtained when testing the algorithm on elderly control
subjects, proving the high capability of rejecting FPs from elderly subjects without
PD. As far as concerns the FOG detection rate, 52.3% (32.5%) of FOG episodes
were predicted 3.1s (1.3s) before their actual onset and 47.7% (50.0%) detected after
0.8s (1.1s), in the main (independent) test set. The results of a previous study [219]
suggested that while it is possible to develop a robust classifier for the detection
of FOG, an evident performance impairment was observed when implementing a
FOG prediction system. A similar performance reduction was observed in [221].
Moreover, data were registered in laboratory settings in both studies, during pre-
defined walking tasks. Data recorded in home environments in non-supervised
conditions provide even more challenges for the prediction of FOG. However, this
study demonstrated that implementing an algorithm for the timely detection of FOG
provides the opportunity to predict up to 50% FOG episodes before their actual
occurrence. Concerning the computation complexity and testing time, minimal
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pre-processing, together with a memory requirement of less than 55 KB and testing
time of 43 ms, makes the algorithm suitable for real-time implementation in a stand-
alone device. Finally, the analysis performed on the activity threshold demonstrated
that it is possible to reduce the computation burden of the detection algorithm
without a significant performance impairment. However, the present work has some
limitations. First, the REMPARK data set included most of the recorded FOG
episodes, but the activity label was not available. On the other hand, the ADL data
set included several annotations of the performed activities, but any FOG episodes
were registered. A large data set including both a large number of patients and a
large number of FOG episodes is necessary, together with a careful annotation of
the most informative activities (e.g., gait, stand, sit, postural transitions). Moreover,
raw input data was used in this study to limit the computation burden and reduce the
processing time. However, this may not represent the solution providing the best
performance. Novel implementations of time-frequency transforms may provide
performance improvement without significantly increasing the computation burden.
Finally, despite computational complexity, memory requirement, and testing time
having been estimated, the developed detection algorithm has not yet been embedded
in a stand-alone device for real-time use in home environments.

5.2 Postural stability

Postural stability represents one of the most significant symptoms of PD, increasing
the risk of injuries. The clinical evaluation of postural stability is conducted following
the MDS-UPDRS guidelines. Specifically, the item 3.12 - "Postural Stability"
consists in a retropulsion test, where patients are pulled back by neurologists to assess
their level of postural response. Such a task can be dangerous both for patients and
for clinicians, as the lack of postural control may lead to falling backward. Moreover,
this task does not represent an activity usually performed in daily living, and this
precludes the possibility of continuous monitoring in real-life scenarios. In this study,
[140], postural stability was evaluated during quiet stance, which represents a safe,
easy-to-perform, and common activity of normal living. The results suggest that it
is possible to provide objective measures of postural stability using data recorded
during a different task, with respect to that used for the clinical evaluation. This
aspect, along with the use of a single commercial smartphone, paves the way for
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remote passive monitoring of PwPD in the home environment. However, the obtained
results should be considered with caution, due to the use of a reduced data set (42
PwPD, 7 control subjects). Due to the cardinality of classes and the simple protocol
selected, the data and algorithm were not adequate to perform a fine classification
between adjacent classes. As for a possible implementation of the algorithm for early
detection of postural impairment in PwPD, a much larger cohort of PwPD in the
early stage of the disease, together with an age-matched control population should
be employed. As for a finer classification between adjacent classes, the cardinality
of each PS class has to be increased, in order to provide much more statistical
meaningfulness to the results. Furthermore, due to the intrinsic intra- and inter-rater
variability, the evaluation should be performed by several neurologists, in order to
employ the average clinical evaluation as the ground truth of the classification task
[98]. Finally, the implementation of the developed algorithm requires the automatic
identification of the static upright position, in order to properly process the data.

5.3 Gait impairment

In this study, gait was analyzed to estimate gait impairment and postural stability
in PD [176, 157, 279]. The walking pattern of PwPD was analyzed to predict the
clinical axial impairment score [157, 279]. To maximize prediction performance,
many time and frequency domain features were computed in addition to the classical
spatio-temporal parameters routinely used in gait analysis studies. The prediction
performance was higher than that reported in previous studies [215, 239]. In addition,
whereas in [239] different tasks (e.g., gait, turn, and stance) were analyzed to provide
the final output, in the present study only features extracted from the walking bouts
were used to predict the PIDG score. Finally, in contrast to the only previous
study that predicted PIGD scores in PD using three sensing devices [239], here
a single wearable, small, and lightweight inertial sensor placed on the thigh was
used, offering a low-cost and minimally invasive solution for daily applications
in free-living contexts. Analyses were performed in PwPD both ON and OFF
therapy, also considering the effect of FOG. A comprehensive statistical analysis
of both clinical scores and engineered features was performed to provide more
insights into the ability of the features to measure axial motor disability in PwPD.
Significant correlations were found between specific sensor-based variables in the
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time and frequency domains and PIGD scores, suggesting that higher PIGD scores are
associated with greater kinematic abnormalities during walking. More specifically,
greater axial motor impairment as measured by PIGD was associated with greater
abnormalities in amplitude, intensity, and regularity of movement. Consistent with
these findings, the authors of [239] found significant associations between PIGD
scores and sensor-based measures, including the number of steps, gait speed, and
sway area. These results also agree with previous studies that have shown greater
impairment of spatio-temporal gait parameters in PwPD who have a PIGD phenotype
with more severe axial dysfunction than those with a tremor-dominant phenotype
[291, 292]. When considering the prediction of PIGD in relation to L-Dopa intake,
the regression models performed better in PwPD in the OFF state than in the ON state
(p = 0.002). This is in line with previous results reporting variable accuracy of ML
algorithms in PwPD under different pharmacological conditions [219]. Indeed, L-
Dopa significantly modifies the spatio-temporal parameters of gait and, consequently,
affects the performance of ML in measuring gait in PD [219, 293]. Since the PIGD
score is composed of several items reflecting postural and gait skills, one possible
explanation for the different ML performances in OFF and ON patients is based on
the heterogeneous L-Dopa sensitivity of balance and gait. In fact, unlike gait, L-Dopa
usually does not have a substantial impact on balance in PD [294–296]. Therefore,
PIGD scores are more accurately predicted in patients in the OFF state than in those
in the ON state, due to a more similar pattern of postural and walking abilities in
patients not on dopaminergic therapy. Different time- and frequency-domain features
were found to have different sensitivity in PwPD with and without FOG, a finding
fully in agreement with previous studies that have shown worse continuous gait
abnormalities in PwPD with FOG than those without FOG, even outside episodes
of FOG [297, 298, 145]. In addition, the different time and frequency domain
characteristics explain another relevant finding of this study, namely that models
trained on patients without therapy do not perform well in patients on therapy and
vice versa. It is likely that in addition to changes in continuous gait parameters
and pharmacological conditions, the unpredictable and sudden onset of FOG affects
the walking pattern in PwPD, worsening ML performance. Furthermore, despite
its direct impact on walking, FOG is not included in the calculation of the PIGD
score and, consequently, is not considered for the assessment of axial impairment
when using this standardized clinical index. The results suggest that it is possible to
implement a single regression model that can predict PIGD in PwPD, regardless of
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therapeutic condition and the presence of FOG. However, data should be collected
from a heterogeneous cohort of PwPD under different pharmacological conditions.
When models were trained on a subgroup of patients (e.g., patients with FOG, patients
ON therapy), impaired performance was observed when tests were performed on
a different subgroup. Future studies are needed to clarify the technical feasibility
of applying the proposed ML algorithms to data recorded using smartphones in
unsupervised environments. In addition, when considering the results of this study,
the lack of validation on an independent test set is a possible limitation to be taken
into account [240]. Consequently, further studies are needed to reproduce these
results in larger cohorts of patients.

5.4 Bradykinesia

When implementing an automatic tool for the evaluation of bradykinesia [98], results
suggested that a single smartphone can be used to provide objective measures of
movement velocity and regularity in a simple activity as the leg agility task. The
proposed method outperformed the related literature studies [185, 241, 242, 188,
186], despite the use of a single commercial smartphone for the data acquisition task.
Moreover, the clinical scores were obtained from four different raters, allowing to
compute the inter-rater agreement and providing a more robust ground truth. When
considering the continuous ML model output and the average clinical score (instead
of the discrete score provided by the MDS-UPDRS), the model performance further
improved, suggesting that a finer classification would be more suitable for assessing
small changes in patients’ motor performance. Finally, the correlation between the
automatic scoring system and the average clinical score was larger than the best
inter-rater agreement. This suggests that, for very specific motor tasks, computer-
aided scoring systems may provide a more objective and precise evaluation of motor
performance. This result can be justified by the difficulty of discriminating between
adjacent classes, given that clinicians are required to pay attention to several different
aspects of movement, including frequency, velocity, amplitude, and regularity. Given
that the MDS-UPDRS does not provide any suggestion on the relative importance of
one aspect over the others, different neurologists can give different weights to these
different aspects, thus promoting one over the others (e.g., amplitude over velocity,
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regularity over amplitude). Instead, the ML algorithm trained to predict the average
score of many raters results less biased, providing a more objective evaluation.

5.5 Limitations

Overall, the results obtained in the present study provide good opportunities for
the remote monitoring of PD in real-life scenarios. However, while the algorithms
for FOG detection and turn analysis do not require any prior knowledge of the
activity context, the automatic evaluation of bradykinesia and postural stability
(either during stance or walking) requires the proper detection of such activities. To
this end, an accurate HAR algorithm should be implemented, in order to identify
the different activities to be analyzed by the developed prediction models. Actually,
many HAR systems have been proposed with the use of inertial sensors [189], and
even using smartphones [199, 136]. However, most of the studies performed the
analysis on data from healthy young controls, which may not be as accurate when
applied to data from elderly people [299]. Considering the high heterogeneity of
movement patterns produced by PwPD, it turns clear that HAR algorithms should
be trained and validated on a large number of PwPD in real-life settings. Moreover,
besides walking, turning, and static positions, postural transitions (e.g., sit to stand,
stand to sit) represents common ADLs, which were not analyzed in this study.
However, the analysis of such activities using WS could bring important information
regarding mobility and postural stability [300] in daily life, especially in PwPD
[232, 301]. Moreover, postural transitions can be detected and analyzed using a
single sensor on the lower back [302, 301], in line with the methods of the present
study [140, 176, 157, 287].

The major limitation of this study is represented by the offline processing per-
formed in all studies. Specifically, while the data acquisition procedures were
conducted either using smartphones or IMUs, the data processing tasks were per-
formed on the personal computer. Despite most of the developed works can be
easily implemented in stand-alone devices, due to their low memory requirement
and fast processing time [287, 176, 140], the data processing and transmission ca-
pabilities of the employed hardware were not fully exploited. This latter aspect is
fundamental for the development of a stand-alone wearable solution for the passive
monitoring of PD in daily life. Moreover, while some processing tools [287, 176]
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are ready to passively monitor PD symptoms in real-life settings, the generalization
capability of other digital tools [98, 140, 216] should be validated in unsupervised
environments. Finally, the ultimate objective of this work is the generation of a daily
report of patients’ mobility, symptoms severity, and postural stability. To this end,
the extracted measures should be summarized into a few indices representing the
patients’ motor performance. These metrics should be robust and significant, in
order to provide clinicians with accurate information regarding disease progression,
response to therapy, and risk of falls. In this context, the information gathered from
the analysis of different ADLs (i.e., walk, turn, stance, postural transitions) should be
combined and summarized to provide an overall estimation of the motor and postural
impairment.



Chapter 6

Conclusion and future works

In this study, the combination of wearable sensors and ML algorithms was used for
assessing different motor aspects of PD. Simple experimental procedures and unob-
trusive technologies were used for data acquisition, while exhaustive information
extraction, classification, and prediction tasks were addressed by properly exploiting
the potentiality of signal processing, ML, and DL methods. Data were recorded
from more than 200 PD subjects, in different settings, and during different activities.
The results suggest that a single inertial sensor is capable of providing sufficient
information for assessing the presence and severity of motor symptoms. Overall,
this study can provide useful information regarding wearable sensors and processing
algorithms for assessing PD.

The very recent development of smart textiles [303] provides a new opportunity
for a continuous and less invasive large-scale monitoring of physical activity and
physiological parameters. Indeed, wearable sensors embedded in everyday cloth-
ing increase the subjects’ comfort and compliance, fundamental for the long-term
monitoring of chronic diseases.

Future studies will be in the direction of an even more ecological data collection
procedure, possibly using smart clothes. An accurate and efficient activity recog-
nition will represent the basis for both the collection of mobility information and
for triggering the different algorithms developed in this study. Experiments will be
conducted in non-supervised free-living conditions.

Finally, the clinical validity and usefulness of the tools developed (i.e. hardware
and software) should be carefully analyzed. To this end, Goldsack et al. [304]
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provides guidance on determining whether a metric derived from a digital medicine
product is reliable and, by extension, whether that digital medicine product is fit
for purpose. The proposed approach (termed V3) involves several steps, including
verification, analytical validation, and clinical validation. The former involves the
evaluation of sensor results at the sample level and is usually the responsibility of
the manufacturer. Analytical validation evaluates the data processing algorithms
that convert sample-level sensor measurements into physiological metrics, and is
the responsibility of the researchers or developers. Clinical validation serves to
demonstrate that the digital medicine product acceptably identifies, measures or
predicts clinical, biological, physical, functional status or experience in the defined
context of use (which includes population definition). The clinical utility ensures
that the use of the digital medicine product will lead to improved health outcomes or
provide useful information for the diagnosis, treatment, management or prevention
of a disease. Other criteria, such as cost, accessibility, compatibility, burden, and
ease of use, should be considered for determining fitness for purpose.
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et al. Assessing inertial measurement unit locations for freezing of gait
detection and patient preference. J NeuroEngineering Rehabil, 19(1):20, 2022.
doi: 10.1186/s12984-022-00992-x.

[219] L. Borzì, I. Mazzetta, A. Zampogna, A. Suppa, G. Olmo, et al. Prediction of
freezing of gait in Parkinson’s disease using wearables and machine learning.
Sensors, 21(2):1–19, 2021. doi: 10.3390/s21020614.

[220] I. Mazzetta, A. Zampogna, A. Suppa, A. Gumiero, M. Pessione, et al. Wear-
able sensors system for an improved analysis of freezing of gait in Parkinson’s
disease using electromyography and inertial signals. Sensors, 19(4):948, 2019.
doi: 10.3390/s19040948.

[221] S. Pardoel, G. Shalin, J. Nantel, E.D. Lemaire, and J. Kofman. Early de-
tection of freezing of gait during walking using inertial measurement unit
and plantar pressure distribution data. Sensors, 21(6):1–14, 2021. doi:
10.3390/s21062246.

[222] S.T. Moore, H.G. MacDougall, and W.G. Ondo. Ambulatory monitoring of
freezing of gait in Parkinson’s disease. Journal of Neuroscience Methods, 167
(2):340–348, 2008. doi: 10.1016/j.jneumeth.2007.08.023.

[223] M. Bächlin, J.M. Hausdorff, D. Roggen, N. Giladi, M. Plotnik, et al. Online
detection of freezing of gait in parkinson’s disease patients: A performance
characterization. In Fourth International Conference on Body Area Networks,
pages 1–8, 2009. doi: 10.4108/ICST.BODYNETS2009.5852.

[224] S. Mazilu, M. Hardegger, Z. Zhu, D. Roggen, G. Tröster, et al. Online
Detection of Freezing of Gait with Smartphones and Machine Learning
Techniques. In 6th International ICST Conference on Pervasive Comput-
ing Technologies for Healthcare, number 3, pages 123–130, 2012. doi:
10.4108/icst.pervasivehealth.2012.248680.

[225] A. Arami, A. Poulakakis-Daktylidis, Y.F. Tai, and E. Burdet. Prediction of
Gait Freezing in Parkinsonian Patients: A Binary Classification Augmented
With Time Series Prediction. IEEE transactions on neural systems and
rehabilitation engineering, 27(9):1909–1919, 2019. doi: 10.1109/TNSRE.
2019.2933626.



192 References

[226] N. Naghavi and E. Wade. Prediction of freezing of gait in Parkinson’s disease
using statistical inference and lower-limb acceleration data. IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, 27(5):947–955,
2019. doi: 10.1109/TNSRE.2019.2910165.

[227] Y. Zhang, W. Yan, Y. Yao, J.B. Ahmed, Y. Tan, and D. Gu. Prediction of
Freezing of Gait in Patients with Parkinson’s Disease by Identifying Impaired
Gait Patterns. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 28(3):591–600, 2020. doi: 10.1109/TNSRE.2020.2969649.

[228] L. Palmerini, L. Rocchi, S. Mazilu, E. Gazit, J.M. Hausdorff, et al. Identifica-
tion of characteristic motor patterns preceding freezing of gait in Parkinson’s
disease using wearable sensors. Frontiers in Neurology, 8:1–12, 2017. doi:
10.3389/fneur.2017.00394.

[229] N.K. Orphanidou, A. Hussain, R. Keight, P. Lishoa, J. Hind, et al. Predicting
Freezing of Gait in Parkinsons Disease Patients Using Machine Learning. In
IEEE Congress on Evolutionary Computation (CEC), pages 1–8, 2018. doi:
10.1109/CEC.2018.8477909.

[230] F.B. Horak and M. Mancini. Objective biomarkers of balance and gait for
Parkinson’s disease using body-worn sensors. Movement Disorders, 28(11):
1544–1551, 2013. doi: 10.1002/mds.25684.

[231] A. Zampogna, I. Mileti, E. Palermo, C. Celletti, M. Paoloni, et al. Fifteen
years of wireless sensors for balance assessment in neurological disorders.
Sensors, 20(11):1–32, 2020. doi: 10.3390/s20113247.

[232] A. Weiss, T. Herman, A. Mirelman, S.S. Shiratzky, N. Giladi, et al. The
transition between turning and sitting in patients with Parkinson’s disease: A
wearable device detects an unexpected sequence of events. Gait & Posture,
67:224–229, 2019. doi: 10.1016/J.GAITPOST.2018.10.018.

[233] A. Atrsaei, A. Paraschiv-Ionescu, H. Krief, Y. Henchoz, B. Santos-Eggimann,
et al. Instrumented 5-Time Sit-To-Stand Test: Parameters Predicting Serious
Falls beyond the Duration of the Test. Gerontology, 68:587––600, 2021. doi:
10.1159/000518389.

[234] S.F. Castiglia, A. Tatarelli, D. Trabassi, R. De Icco, V. Grillo, et al. Ability of
a set of trunk inertial indexes of gait to identify gait instability and recurrent
fallers in parkinson’s disease. Sensors, 21(10):1–17, 2021. doi: 10.3390/
s21103449.

[235] T. Mitchell, D. Conradsson, and C. Paquette. Gait and trunk kinematics during
prolonged turning in Parkinson’s disease with freezing of gait. Parkinsonism &
Related Disorders, 64:188–193, 2019. doi: 10.1016/j.parkreldis.2019.04.011.

[236] A. Zhan, S. Mohan, C. Tarolli, R.B. Schneider, J.L. Adams, et al. Using
smartphones and machine learning to quantify Parkinson’s disease severity:



References 193

the mobile Parkinson disease score. JAMA Neurology, 75(7):876–880, 2018.
doi: 10.1001/jamaneurol.2018.0809.

[237] A. Landolfi, C. Ricciardi, L. Donisi, G. Cesarelli, J. Troisi, et al. Machine
Learning Approaches in Parkinson’s Disease. Current Medicinal Chemistry,
28(32):6548–6568, 2021. doi: 10.2174/0929867328999210111211420.

[238] J.F. van der Heeden, J. Marinus, P. Martinez-Martin, C. Rodriguez-Blazquez,
V.J. Geraedts, et al. Postural instability and gait are associated with severity
and prognosis of Parkinson’s disease. Neurology, 86(24):2243–50, 2016. doi:
10.1212/WNL.0000000000002768.

[239] D. Safarpour, M.L. Dale, V.V. Shah, L. Talman, P. Carlson-Kuhta, et al.
Surrogates for rigidity and PIGD MDS-UPDRS subscores using wearable
sensors. Gait & Posture, 91:186–191, 2021. doi: 10.1016/j.gaitpost.2021.10.
029.

[240] R. Zia Ur Rehman, L. Rochester, A.J. Yarnall, and S. Del Din. Predicting
the Progression of Parkinson’s Disease MDS-UPDRS-III Motor Severity
Score from Gait Data using Deep Learning. In 43rd Annual International
Conference of the IEEE Engineering in Medicine Biology Society (EMBC),
pages 249–252, 2021. doi: 10.1109/EMBC46164.2021.9630769.

[241] M. Giuberti, G. Ferrari, L. Contin, V. Cimolin, C. Azzaro, et al. Automatic
UPDRS Evaluation in the Sit-to-Stand Task of Parkinsonians: Kinematic
Analysis and Comparative Outlook on the Leg Agility Task. IEEE Journal on
Biomedical and Health Informatics, 19(3):803–814, 2015.

[242] P. Kassavetis, T.A. Saifee, G. Roussos, L. Drougkas, M. Kojovic, et al.
Developing a Tool for Remote Digital Assessment of Parkinson’s Dis-
ease. Movement Disorders Clinical Practice, 3(1):59–64, 2015. doi:
10.1002/mdc3.12239.

[243] R.B. Postuma, D. Berg, M. Stern, W. Poewe, C.W. Olanow, et al. Mds clinical
diagnostic criteria for parkinson’s disease. Movement Disorders, 30(12):
1591–1601, 2015. doi: https://doi.org/10.1002/mds.26424.

[244] .C.L Tomlinson, R. Stowe, S. Patel, C. Rick, R. Gray, et al. Systematic review
of levodopa dose equivalency reporting in parkinson’s disease. Movement
Disorders, 25(15):2649–2653, 2010. doi: https://doi.org/10.1002/mds.23429.

[245] D. Comotti, M. Galizzi, and A. Vitali. nememsi: One step forward in wireless
attitude and heading reference systems. In 2014 International Symposium on
Inertial Sensors and Systems (ISISS), pages 1–4. IEEE, 2014. doi: 10.1109/
ISISS.2014.6782521.

[246] B.R. Greene, D. McGrath, R. O’Neill, Ka.J. O’Donovan, A. Burns, et al.
An adaptive gyroscope-based algorithm for temporal gait analysis. Medical
and Biological Engineering and Computing, 48(12):1251–1260, 2010. doi:
10.1007/s11517-010-0692-0.



194 References

[247] D. Gouwanda and A.A. Gopalai. A robust real-time gait event detection using
wireless gyroscope and its application on normal and altered gaits. Medical
Engineering and Physics, 37(2):219–225, 2015. doi: 10.1016/j.medengphy.
2014.12.004.

[248] T.H. Nguyen, T.P. Pham, C.Q. Ngo, and T.T. Nguyen. A SVM Algorithm for
Investigation of Tri-Accelerometer Based Falling Data. American Journal of
Signal Processing, 6(2):56–65, 2016. doi: 10.5923/j.ajsp.20160602.03.

[249] C. Pérez-López, A. Samà, D. Rodríguez-Martín, A. Català, J. Cabestany, et al.
Assessing Motor Fluctuations in Parkinson’s Disease Patients Based on a
Single Inertial Sensor. Sensors, 16(12):2132, 2016. doi: 10.3390/s16122132.

[250] C. Ni, S. Guan, and Y. Li. Human activity recognition using a improved
model based on multi-head cnn-lstm. In 7th International Conference on
Information Science and Control Engineering (ICISCE), pages 688–693, 2020.
doi: 10.1109/ICISCE50968.2020.00147.

[251] T. Zebin, P.J. Scully, N. Peek, A.J. Casson, and K.B. Ozanyan. Design and
Implementation of a Convolutional Neural Network on an Edge Comput-
ing Smartphone for Human Activity Recognition. IEEE Access, 7:133509–
133520, 2019. doi: 10.1109/ACCESS.2019.2941836.

[252] F.M. Rueda, R. Grzeszick, G.A. Fink, S. Feldhorst, and M. Ten Hompel. Con-
volutional neural networks for human activity recognition using body-worn
sensors. Informatics, 5(2):1–17, 2018. doi: 10.3390/informatics5020026.

[253] T.M. Steffen, T.A. Hacker, and L. Mollinger. Age- and gender-related test
performance in community-dwelling elderly people: Six-Minute Walk Test,
Berg Balance Scale, Timed Up Go Test, and gait speeds. Physical Therapy,
82(2):128–137, 2012.

[254] M.D. Tundo, E. Lemaire, and N. Baddour. Correcting Smartphone orientation
for accelerometer-based analysis. pages 58–62, 2013. doi: 10.1109/MeMeA.
2013.6549706.

[255] M.D. Latt, H.B. Menz, V.S. Fung, and S.R. Lord. Acceleration patterns of
the head and pelvis during gait in older people with Parkinson’s disease: A
comparison of fallers and nonfallers. Journals of Gerontology, 64(6):700–706,
2009. doi: 10.1093/gerona/glp009.

[256] M. Miller, S.J. Ozinga, A.B. Rosenfeldt, and J.L. Alberts. Quantifying turning
behavior and gait in Parkinson’s disease using mobile technology. IBRO
Reports, 5:10–16, 2018. doi: 10.1016/j.ibror.2018.06.002.

[257] B. Huijben, K.S. van Schooten, J.H. van Dieen, and M. Pijnappels. The
effect of walking speed on quality of gait in older adults. Gait & Posture, 65:
112–116, 2018. doi: 10.1016/j.gaitpost.2018.07.004.



References 195

[258] A. Galán-Mercant and A.I. Cuesta-Vargas. Differences in trunk accelerometry
between frail and non-frail elderly persons in functional tasks. BMC Research
Notes, 7(1):1–9, 2014. doi: 10.1186/1756-0500-7-100.

[259] M. Ponti, P. Bet, C.L. Oliveira, and P.C. Castro. Better than counting seconds:
Identifying fallers among healthy elderly using fusion of accelerometer fea-
tures and dual-task Timed Up and Go. PLoS ONE, 12(4):1–21, 2017. doi:
10.1371/journal.pone.0175559.

[260] A. Weiss, T. Herman, N. Giladi, and J.M. Hausdorff. Objective assessment
of fall risk in Parkinson’s disease using a body-fixed sensor worn for 3 days.
PLoS One, 9(5):e96675, 2014. doi: 10.1371/journal.pone.0096675.

[261] C.J.C. Lamoth, P.J. Beek, and O.G. Meijer. Pelvis-thorax coordination in the
transverse plane during gait. Gait and Posture, 16(2):101–114, 2002. doi:
10.1016/S0966-6362(01)00146-1.

[262] S.M. Rispens, M. Pijnappels, K.S. van Schooten, P.J. Beek, A. Daffertshofer,
et al. Consistency of gait characteristics as determined from acceleration data
collected at different trunk locations. Gait and Posture, 40(1):187–192, 2014.
doi: 10.1016/j.gaitpost.2014.03.182.

[263] R. Moe-Nilssen and J.L. Helbostad. Estimation of gait cycle characteristics
by trunk accelerometry. Journal of Biomechanics, 37(1):121–126, 2004. doi:
10.1016/S0021-9290(03)00233-1.

[264] E.P. Doheny, D. McGrath, B.R. Greene, L. Walsh, D. McKeown, et al. Dis-
placement of centre of mass during quiet standing assessed using accelerom-
etry in older fallers and non-fallers. In Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBS), pages
3300–3303, 2012. doi: 10.1109/EMBC.2012.6346670.

[265] A.P. Stylianou, M.A. McVey, K.E. Lyons, R. Pahwa, and C.W. Luchies. Postu-
ral sway in patients with mild to moderate parkinson’s disease. International
Journal of Neuroscience, 121(11):614–621, 2011. doi: 10.3109/00207454.
2011.602807.

[266] A.J. Solomon, J.V. Jacobs, K.V. Lomond, and S.M. Henry. Detection of
postural sway abnormalities by wireless inertial sensors in minimally disabled
patients with multiple sclerosis: A case-control study. Journal of NeuroEngi-
neering and Rehabilitation, 12(1):74, 2015. doi: 10.1186/s12984-015-0066-9.

[267] M. Mancini, A. Salarian, P. Carlson-Kuhta, C. Zampieri, L. King, et al. ISway:
A sensitive, valid and reliable measure of postural control. Journal of Neuro-
Engineering and Rehabilitation, 9(1):59, 2012. doi: 10.1186/1743-0003-9-59.

[268] C.H. Lee and T.L. Sun. Evaluation of postural stability based on a force plate
and inertial sensor during static balance measurements. J Physiol Anthropol,
37(1):27. doi: 10.1186/s40101-018-0187-5.



196 References

[269] G. Madzarov, D. Gjorgjevikj, and I. Chorbev. A Multi-class SVM Clas-
sifier Utilizing Binary Decision Tree Support vector machines for pattern
recognition. Informatica, 33:233–241, 2009.

[270] C. Ahlrichs, A. Samà, M. Lawo, J. Cabestany, D. Rodríguez-Martín, et al.
Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease
patients. Medical and Biological Engineering and Computing, 54(1):223–233,
2016. doi: 10.1007/s11517-015-1395-3.

[271] L.S. Vargas-Valencia, A. Elías, A. Frizera Neto, and E. Rocón. Body to sensor
calibration procedure for lower limb joint angle estimation applied to imu-
based gait analysis. In XXIV Brazilian Congress on Biomedical Engineering,
pages 777–780, 2014.

[272] B. Sijobert, M. Benoussaad, J. Denys, R. Pissard-Gibollet, C. Geny, et al.
Implementation and validation of a stride length estimation algorithm, using
a single basic inertial sensor on healthy subjects and patients suffering from
parkinson’s disease. Health, 7:704–714, 2015. doi: 10.4236/health.2015.
76084.

[273] D. Roetenberg, H.J. Luinge, C.T.M. Baten, and P.H. Veltink. Compensation of
magnetic disturbances improves inertial and magnetic sensing of human body
segment orientation. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 13(3):395–405, 2005. doi: 10.1109/TNSRE.2005.847353.

[274] M. Caruso, A.M. Sabatini, D. Laidig, T. Seel, M. Knaflitz, et al. Analysis
of the accuracy of ten sensor fusion algorithms for orientation estimation
using inertial and magnetic sensing under optimal conditions: a single outfit
for every season does not work. Sensors, 21(7):2543, 2021. doi: 10.3390/
s21072543.

[275] R. Bouça-Machado, Co. Jalles, D. Guerreiro, F. Pona-Ferreira, D. Branco,
et al. Gait Kinematic Parameters in Parkinson’s Disease: A Systematic
Review. Journal of Parkinson’s Disease, 10(3):843–853, 2020. doi: 10.3233/
JPD-201969.

[276] N. Abhayasinghe and I. Murray. Human gait phase recognition based on thigh
movement computed using IMUs. In IEEE 9th International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
pages 1–4, 2014. doi: 10.1109/ISSNIP.2014.6827604.

[277] A.J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics
and Computing, 14:199–222, 2004. doi: 10.1023/B:STCO.0000035301.
49549.88.

[278] O.L. Mangasarian and D.R. Musicant. Robust linear and support vector
regression. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(9):950–955, 2000. doi: 10.1109/34.877518.



References 197

[279] L. Borzì, A. Manoni, A. Zampogna, F. Irrera, A. Suppa, et al. Correlation
between wearable inertial sensor data and standardised parkinson’s disease
axial impairment measures using machine learning. In IEEE 21st Mediter-
ranean Electrotechnical Conference (MELECON), pages 732–736, 2022. doi:
10.1109/MELECON53508.2022.9843018.

[280] P. Bonato, D.M. Sherrill, D.G. Standaert, S.S. Salles, and M. Akay. Data
mining techniques to detect motor fluctuations in Parkinson’s disease. In
IEEE 26th Annual International Conference of Engineering in Medicine and
Biology Society (EMBS), pages 4766–4769, 2004. doi: 10.1109/IEMBS.2004.
1404319.

[281] S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. Growdon, et al. Monitoring
Motor Fluctuations in Patients With Parkinson’s Disease Using Wearable
Sensors. IEEE Transactions on Information Technology in Biomedicine, 13
(6):864–873, 2009. doi: 10.1109/TITB.2009.2033471.

[282] D.A. Heldman, D.E. Filipkowsk, D.E. Riley, C.M. Whitney, B.L. Walter,
et al. Automated motion sensor quantification of gait and lower extremity
bradykinesia. In Annual International Conference of Engineering in Medicine
and Biology Society (EMBC), pages 1956–1959, 2012. doi: 10.1109/EMBC.
2012.6346338.

[283] J. Kim, Y. Kwon, Y. Kim, H. Chung, G. Eom, et al. Analysis of lower
limb bradykinesia in parkinson’s disease patients. Geriatrics & gerontology
international, 12(2):257–264, 2012. doi: 10.1111/j.1447-0594.2011.00761.x.

[284] R. Moe-Nilssen and J.L. Helbostad. Estimation of gait cycle characteristics
by trunk accelerometry. Journal of Biomechanics, 37(1):121–126, 2004. doi:
10.1016/s0021-9290(03)00233-1.

[285] D. Rodríguez-Martín, J. Cabestany, C. Pérez-López, M. Pie, J. Calvet, et al.
A New Paradigm in Parkinson’s Disease Evaluation With Wearable Medical
Devices: A Review of STAT-ON. Front Neurol., 2(13):912343, 2022. doi:
10.3389/fneur.2022.912343.

[286] L.A. King, M. Mancini, K. Priest, A. Salarian, F. Rodrigues-De-Paula, et al.
Do clinical scales of balance reflect turning abnormalities in people With
Parkinson’s disease? Journal of Neurologic Physical Therapy, 36(1):25–31,
2012. doi: 10.1097/NPT.0b013e31824620d1.

[287] L. Borzì, L. Sigcha, D. Rodríguez-Martín, and G. Olmo. Real-time detection
of freezing of gait in Parkinson’s disease using multi-head convolutional neural
networks and a single inertial sensor. Artificial Intelligence in Medicine, xx
(xx):xx–xx, 2022.

[288] Y. Xia, Z. Yao, Y. Lu, D. Zhang, and N. Cheng. A Machine Learning
Approach to Detecting of Freezing of Gait in Parkinson’s Disease Patients.
Journal of Medical Imaging and Health Informatics, 8(4):647–654, 2018. doi:
10.1166/jmihi.2018.2379.



198 References

[289] B. Li, Y. Zhang, L. Tang, C. Gao, and D. Gu. Automatic Detection System for
Freezing of Gait in Parkinson’s Disease Based on the Clustering Algorithm.
In 2nd IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC), pages 1640–9, 2018. doi:
10.1109/IMCEC.2018.8469471.

[290] R. Chee, A. Murphy, M. Danoudis, N. Georgiou-Karistianis, and R. Iansek.
Gait freezing in Parkinson’s disease and the stride length sequence effect
interaction. Brain, 132(8):2151–2160, 2009. doi: 10.1093/brain/awp053.

[291] H. Terashi, T. Taguchi, Y. Ueta, O. Yoshihiko, M. Hiroshi, et al. Analy-
sis of non-invasive gait recording under free-living conditions in patients
with Parkinson’s disease: relationship with global cognitive function and
motor abnormalities. BMC Neurology, 20(1):161, 2020. doi: 10.1186/
s12883-020-01729-w.

[292] Z. Wu, M. Zhong, X. Jiang, B. Shen, J. Zhu, et al. Can Quantitative Gait
Analysis Be Used to Guide Treatment of Patients with Different Subtypes
of Parkinson’s Disease? Neuropsychiatric Disease and Treatment, 9(16):
2335–2341, 2020. doi: 10.2147/NDT.S266585.

[293] C. Curtze, J.G. Nutt, P. Carlson-Kuhta, M. Mancini, and F.B. Horak. Gait
Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers
for Diagnosis and Symptoms Monitoring. Movement Disorders, 30(10):
1361–1370, 2015. doi: 10.1002/mds.26269.

[294] D. de Kam, J. Nonnekes, L.B. Oude Nijhuis, et al. Dopaminergic medication
does not improve stepping responses following backward and forward balance
perturbations in patients with parkinson’s disease. Journal of Neurology, 261
(12):2330–2337, 2014. doi: doi.org/10.1007/s00415-014-7496-3.

[295] I. Di Giulio, R. St George, E. Kalliolia, A.L. Peters, P. Limousin, et al.
Maintaining balance against force perturbations: impaired mechanisms unre-
sponsive to levodopa in Parkinson’s disease. Journal of Neurophysiology, 116
(2):493–502, 2016. doi: 10.1152/jn.00996.2015.

[296] A. Zampogna, I. Mileti, F. Martelli, M. Paoloni, Z. Del Prete, et al. Early
balance impairment in Parkinson’s Disease: Evidence from Robot-assisted
axial rotations. Clinical Neurophysiology, 132:2422––2430, 2021. doi: 10.
1016/j.clinph.2021.06.023.

[297] M.T. Barbe, M. Amarell, A.H. Snijders, E. Florin, E.L. Quatuor, et al. Gait
and upper limb variability in parkinson’s disease patients with and without
freezing of gait. Journal of Neurology, 261(2):330–342, 2014. doi: 10.1007/
s00415-013-7199-1.

[298] M. Plotnik, N. Giladi, Y. Balash, C. Peretz, and J.M. Hausdorff. Is freezing of
gait in parkinson’s disease related to asymmetric motor function? Annals of
Neurology, 57(5):656–663, 2005. doi: 10.1002/ana.20452.



References 199

[299] Y. Nan, N.H. Lovell, S.J. Redmond, K. Wang, K. Delbaere, et al. Deep learn-
ing for activity recognition in older people using a pocket-worn smartphone.
Sensors, 20(24):1–14, 2020. doi: 10.3390/s20247195.

[300] S. Parvaneh, J. Mohler, N. Toosizadeh, G.S. Grewal, and B. Najafi. Postural
Transitions during Activities of Daily Living Could Identify Frailty Status:
Application of Wearable Technology to Identify Frailty during Unsupervised
Conditions. Gerontology, 63(5):479–487, 2017. doi: 10.1159/000460292.

[301] D. Rodríguez-Martín, A. Samà, C. Pérez-López, et al. Posture transition
analysis with barometers: contribution to accelerometer-based algorithms.
Neural Computing and Applications, 32:335––349, 2020. doi: 10.1007/
s00521-018-3759-8.

[302] A. Atrsaei, F. Dadashi, C. Hansen, et al. Postural transitions detection and
characterization in healthy and patient populations using a single waist sensor.
Journal of NeuroEngineering and Rehabilitation, 17(1):70, 2020. doi: 10.
1186/s12984-020-00692-4.

[303] J. Kubicek, K. Fiedorova, D. Vilimek, M. Cerny, M. Penhaker, et al. Recent
Trends, Construction, and Applications of Smart Textiles and Clothing for
Monitoring of Health Activity: A Comprehensive Multidisciplinary Review.
IEEE Reviews in Biomedical Engineering, 15:36–60, 2022. doi: 10.1109/
RBME.2020.3043623.

[304] J.C. Goldsack, A. Coravos, J.P. Bakker, et al. Verification, analytical validation,
and clinical validation (V3): the foundation of determining fit-for-purpose for
Biometric Monitoring Technologies (BioMeTs). npj Digital Medicine, 3:55,
2020. doi: 10.1038/s41746-020-0260-4.



200 References


	Contents
	1 Introduction
	1.1 Parkinson's Disease
	1.1.1 Symptoms
	1.1.2 Diagnosis and follow-up
	1.1.3 Clinical scales
	1.1.4 Treatment
	1.1.5 Limitations of the current diagnostic and monitoring approaches

	1.2 Technologies for mobility assessment in Parkinson's disease
	1.2.1 Overview
	1.2.2 Wearable inertial sensors

	1.3 Objectives and significance of the study
	1.4 Thesis organization
	1.5 Thesis related publications

	2 Machine learning for human motion analysis and classification
	2.1 Data preprocessing
	2.1.1 Resampling
	2.1.2 Data transformation
	2.1.3 Filtering
	2.1.4 Segmentation
	2.1.5 Feature extraction
	2.1.6 Dimensionality reduction
	2.1.7 Feature selection
	2.1.8 Feature scaling

	2.2 Shallow machine learning algorithms
	2.3 Deep learning methods
	2.3.1 Data preparation
	2.3.2 Deep learning algorithms
	2.3.3 Training

	2.4 Performance evaluation
	2.4.1 Validation methods
	2.4.2 Classification metrics
	2.4.3 Regression metrics
	2.4.4 The problem of class unbalance

	2.5 Related work

	3 Materials and methods
	3.1 Freezing of gait
	3.1.1 Prediction of freezing of gait using lower limbs inertial sensors
	3.1.2 Real-time detection of freezing of gait using a single accelerometer

	3.2 Postural stability
	3.2.1 Turn quality and postural stability assessment using smartphones
	3.2.2 Postural stability assessment during quiet stance using smartphones

	3.3 Gait impairment
	3.3.1 Prediction of postural instability and gait difficulty using a single inertial measurement unit
	3.3.2 Prediction of self-perceived gait impairment

	3.4 Bradykinesia

	4 Results
	4.1 Freezing of gait
	4.1.1 Prediction of freezing of gait using lower limbs inertial sensors
	4.1.2 Real-time detection of freezing of gait using a single accelerometer

	4.2 Postural stability
	4.2.1 Turn quality and postural stability assessment using smartphones
	4.2.2 Postural stability assessment during quiet stance using smartphones

	4.3 Gait impairment
	4.3.1 Prediction of postural stability and gait difficulty using a single inertial measurement unit
	4.3.2 Prediction of self-perceived gait impairment

	4.4 Bradykinesia
	4.4.1 Classification results
	4.4.2 Inter-rater variability


	5 Discussion
	5.1 Freezing of gait
	5.2 Postural stability
	5.3 Gait impairment
	5.4 Bradykinesia
	5.5 Limitations

	6 Conclusion and future works
	List of Figures
	List of Tables
	References

