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Abstract: A systematic microstructural characterization of alumina joined to Hastelloy C22® by means
of a commercial active TiZrCuNi alloy, named BTi-5, as a filler metal is reviewed and discussed. The
contact angles of the liquid BTi-5 alloy measured at 900◦C for the two materials to be joined are 12◦

and 47◦ for alumina and Hastelloy C22® after 5 min, respectively, thus demonstrating good wetting
and adhesion at 900 ◦C with very little interfacial reactivity or interdiffusion. The thermomechanical
stresses caused by the difference in the coefficient of thermal expansion (CTE) between the Hastelloy
C22® superalloy (≈15.3 × 10−6 K−1) and its alumina counterpart (≈8 × 10−6 K−1) were the key
issues that had to be resolved to avoid failure in this joint. In this work, a circular configuration of the
Hastelloy C22®/alumina joint was specifically designed to produce a feedthrough for sodium-based
liquid metal batteries operating at high temperatures (up to 600 ◦C). In this configuration, adhesion
between the metal and ceramic components was enhanced after cooling by compressive forces created
on the joined area due to the difference in CTE between the two materials.

Keywords: joining; Al2O3; Hastelloy; active brazing; thermal expansion; feedthrough; batteries

1. Introduction

Alumina is a ceramic that is widely used in a variety of industries due to its particular
properties such as corrosion resistance, high-temperature strength, electric insulation,
and low thermal conductivity. In many cases, alumina is also used in combination with
different types of metals [1–4], which makes the study of metal–ceramic joints particularly
interesting for different applications. The development of a reliable metal-to-ceramic bond
is particularly challenging because of the difference in the coefficient of thermal expansion
(CTE) between the two substrates and the poor wetting of most of the metals on ceramic
surfaces. In the past, several solutions have been investigated, such as welding, diffusion
bonding, and brazing [1,5–7].

Active metal brazing is a technique in which the filler metal contains some elements
that react with the ceramic surface at high temperatures, thus promoting wetting on
the ceramics [8,9]. Titanium and zirconium, which are used in several alloys, such as
AgCuTi [10–12], CuTi [13], CuSnTi [14,15], and TiZrCuNi [16], are typical active elements
that are effective in metal-to-ceramic joints. Ti-based alloys are widely used, in particular
in high-temperature and highly corrosive environments [17,18]. Among others, TiZrCuNi
filler metal alloys are considered one of the most popular [19] and have been already
successfully used to join ceramics such as zirconia, SiC, and SiC matrix composites to
metals [20–22]. Moreover, these amorphous alloys exhibit a CTE that is close to that of
Al2O3, and its peculiar ductility [18]—potentially beneficial in mitigating the residual
thermal stress after brazing—makes them particularly promising in alumina-to-metal
coupling.
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In the case of highly corrosive environments—such as in the chemical processing,
energy, oil and gas, and pharmaceutical areas—the Hastelloy alloy C family is commonly
used [23–26]. Indeed, the presence of Cr ensures the formation of a passive layer that
has a high breakdown potential, while Mo promotes repassivation mechanisms [27–29].
Hastelloy C22® (H-C22) is the first alloy of this family that was designed with a high
content of Cr in order to enhance corrosion resistance [30]. Therefore, the possibility of
coupling corrosion-resistant Ni superalloys with alumina could be particularly interesting
for all applications in which high-temperature and corrosion resistances need to be coupled,
such as in the energy and aerospace industries [31,32].

The novelty of this work concerns the design and the microstructural characterization
of dissimilar joints between alumina and H-C22 for the production of a feedthrough to
be used in sodium-based liquid metal batteries operating at high temperatures (up to
600 ◦C [33–36]), where hermeticity and corrosion-resistant characteristics are required [34].
The ceramic inner tube, in particular, guarantees the electric insulation of the inner pin
electrode from the external case to avoid short circuits, while the metal external part needs
to be corrosion-resistant. Indeed, the presence of Na liquid and vapor, as well as liquid
Na salts, may negatively affect the feedthrough hermeticity through both the corrosion of
the shell materials and the deterioration of the quality of the sealing. For these reasons,
the development of the coupling of two corrosion-resistant materials, such as alumina
and H-C22, can represent a great opportunity to face two of the main challenges for
liquid metal batteries, as reported by Kim et al. in their review [34]: the identification of
corrosion-resistant cell components and the design of reliable seals.

To the best of our knowledge, alumina/H-C22 joints have never been tested before.
In this work, a commercial active TiZrCuNi alloy, named BTi-5, which was specifically
designed for alumina-to-metal joints [37], was selected as the filler metal. First of all, the
chemical compatibility of the brazing material with the metal and the ceramic substrates
was evaluated with a contact angle (CA) analysis. Despite an excellent wettability, as
commonly occurs in most of the metal-to-ceramic joints, the main challenge that has to be
addressed is related to the thermo-mechanical stress generated by the difference in CTE
between the superalloy (≈15.3 × 10−6 K−1) and the ceramic counterpart (≈8 × 10−6 K−1).
In the designed circular joined structure, during the cooling process, the external metal ring
is expected to apply compressive stress onto the filler metal (CTE ≈ 8.5–8.8 × 10−6 K−1)
and the inner ceramic ring, thereby creating a more intimate contact between the surfaces
of the substrates and the filler metal. In order to separately evaluate the thermo-chemical
compatibility between the filler metal and the two substrates, some planar joints between
H-C22/H-C22 and Al2O3/Al2O3 were also studied. The joined samples, as well as the
one obtained from the CA analysis, were characterized by means of SEM, FE-SEM, EDS
analysis, and the Vickers indentation method.

2. Materials and Methods

We used 99.7% pure alumina, provided by VS & S s.r.l (Mesero, MI, Italy) as a substrate
for both configurations. The alumina for the planar configuration was in the form of a
small 10 × 15 × 3 mm block, while a ring with a 3 mm inner diameter and 7 mm outer
diameter was chosen for the circular configuration (Figure 1). Hastelloy C22®, whose
composition is reported in Table 1 and whose melting temperature is commonly ranged
between 1350 ◦C and 1400 ◦C, was purchased from Oric Italiana S.r.l. (Castel San Giovanni,
PC, Italy) in two different shapes: a 12 mm diameter rod and a 300 × 200 × 3 mm plate.
These materials were then cut and drilled into small blocks with the same dimensions as
the alumina samples (10 × 15 × 3 mm), and into small tubes with an inner diameter of
7.2 mm and a thickness of 3 mm.
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Table 1. Range of chemical composition (wt %) of the Hastelloy C22® samples.

(wt %) Ni Cr Mo Fe W Mn S, Co, P, V, C, Si

H-C22 57.0–58.7 21.3–21.8 13.1–13.6 2.8–5.2 2.6–2.9 0.0–0.2 <0.22

The brazing alloy selected for this study is a commercial product named BTi-5, which
was specifically designed for alumina-to-metal joints and is commercialized by Titanium
Brazing Inc. (Columbus, OH, USA). This is an amorphous Ti alloy in the form of a 70 µm
thick foil, which has its nominal composition reported in Table 2, and solidus and liquidus
temperatures of 845 ◦C and 863 ◦C, respectively.

Table 2. Chemical composition (wt %) of the active brazing alloy BTi-5.

(wt %) Ti Zr Ni Cu Hf

BTi-5 foil 39.62 20.20 20.00 19.80 0.38

The surface features of the alumina and H-C22 plates were quantitatively characterized
on 877 × 660 µm areas by means of the confocal technique, using a 3D noncontact pro-
filometer (Sensofar S-neox, Terrassa, Barcelona, Spain), working with a vertical resolution
of 1.5 nm (the green light was selected). Quantitative measurements of the average surface
roughness were performed according to ISO 25178 [38], using the software embedded in
the system (SensoSCAN, Sensofar Metrology, Terrassa, Spain) in order to extract the surface
roughness.

Wetting tests of the liquid BTi-5 alloy were performed on the alumina and H-C22
with the sessile drop method, in a tubular alumina furnace equipped with an optical line
and a CCD camera [39]. Prior to the experiments, small drops of the BTi-5 alloy, weighing
about 0.4 g, corresponding to a volume of ~0.1 cm3, were premelted in an arc melting
device. The wettability tests were performed under a vacuum (<5 × 10−4 Pa) at 900 ◦C;
the alloy/substrate couples were introduced into the preheated furnace by means of an
externally operated push rod. After melting, the drops were kept at the testing temperature
for 5 min and then quickly brought to room temperature in ~30 s. The mass loss due to
evaporation was measured and found to be negligible.

Three types of planar joined samples were produced: two specimens were made
with the same substrate by brazing two alumina plates and two H-C22 plates, separately,
while the other sample, consisting of the two dissimilar materials, was made using the
alumina–C22® plates. The first two samples were separately used to evaluate the thermo-
mechanical compatibility of the filler metal with the two substrates. The planar samples
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were prepared by placing two BTi-5 foils (70 µm thick each) between the two substrates
and introducing an external load of 2.28 × 103 Pa. Furthermore, the circular configuration
was obtained by rolling three turns of alloy foil around the inner alumina ring and fitting it
inside the outer metal ring (Figure 1). All the samples were brazed at 900 ◦C for 12 min in
a high-vacuum furnace (XVAC, Xerion Berlin Laboratories GmbH, Berlin, Germany) at a
heating rate of 350 ◦C/min. A dwell was maintained for 20 min at 750 ◦C to equalize the
temperature inside the chamber (during the heating) and release thermal stresses (during
the cooling). A vacuum grade of at least 5.5 × 10−3 Pa was maintained inside the furnace
throughout the entire process.

The morphology of the joined samples was characterized by analyzing their cross-
sections with a scanning electron microscope (SEM) JCM-6000 plus (Joel, Peabody, MA,
USA) and a field-emission scanning electron microscope (FE-SEM, Merlin electron micro-
scope, ZEISS, Oberkochen, Germany), equipped with an energy-dispersive spectrometer
(EDS) (EDS, Zeiss Supra TM 40, Oberkochen, Germany), to analyze the composition of the
different phases that had formed during the thermal treatment. The cross-section of the
joined samples was previously polished using SiC papers (grit size 120–4000), and coated
with Pt to obtain a conductive surface.

The Vickers indentation test was performed by a Remet HX 1000 microdurometer
(Remet, Casalecchio di Reno, BO, Italy) on the joining interfaces, in three different spots for
each interface. The applied load of 1 kg was held for 15 s.

3. Results and Discussion

The preliminary surface characterization of the two planar substrates produced the
two images reported in Figure 2. The surface roughness was measured as 4.9 and 1.4 µm
for the H-C22 and alumina surfaces, respectively. These values are quite high and, as
no specific surface treatment was conducted before the wetting and joining tests, both
materials appeared to be somewhat rough.
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Figure 2. Three–dimensional noncontact profilometry images of the two planar substrates: (a) H-C22
and (b) alumina.

Figure 3 shows the evolution of the contact angles (θ) vs. time the BTi-5 drop was on
the solid substrates. Both systems exhibited an evolution of the contact angle over time,
which led to good wetting. The final contact angles, after 5 min of liquid–solid contact at
900 ◦C, were 12◦ and 47◦ for the alumina and H-C22, respectively.
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Figure 3. Values of the contact angle of BTi-5 on Hastelloy C22® (blue line) and Al2O3 (gray line)
planar substrates with respect to the time of the thermal treatment carried out at 900 ◦C in a vacuum
atmosphere of at least 5 × 10−4 Pa.

Figure 4 shows a cross-sectioned BTi-5/Al2O3 sample after the wettability test at
900 ◦C for 5 min: the bulk of the solidified alloy presented a eutectic-like structure (compo-
sitions in Table 3), in accordance with the literature that describes quaternary Ti-Zr-Cu-Ni
alloys as eutectic alloys, which, due to the mutual solubility in the Ti-Zr and Cu-Ni systems,
are constituted by phases of the (Ti, Zr)x(Cu, Ni)y type [17,18]. The SEM instrument did not
reveal the typical reactively formed phases at the active braze/ceramic interface [37,40].
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Figure 4. SEM images of the cross-sectioned alumina/BTi-5 interface after the wettability test at
900 ◦C for 5 min.
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Table 3. EDS analysis (at %) of the selected area of the alumina/BTi-5 sample (Figure 4).

Analyzed Area Ti (at %) Ni (at %) Cu (at %) Zr (at %)

A 44.7 20.7 18.4 16.2
B 61.2 25.0 7.8 6.0

The dissolution of the H-C22 substrate by the liquid BTi-5 alloy was very minimal: as
shown in Figure 5, the zone of mutual solubility at the interface was limited to a thick strip
of about 3 µm enriched with Cr and Mo. Apart from this thin layer, no extensive mutual
interdiffusion occurred. Again, the bulk of the solidified drop formed as a eutectic-like
structure.
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Figure 5. SEM image of the Hastelloy C22®/BTi-5 interface and the related element maps after the
wettability test at 900 ◦C for 5 min.

The spreading in both nonreactive liquid metal/ceramic and liquid metal/metal
systems usually occurs in less than one second; however, in our system presented here,
equilibrium was achieved in about 200 and 50 s for alumina and H-C22, respectively
(Figure 3). The viscosity values of eutectic glass-forming alloys, such as BTi-5 [41], are
higher (η~101 Pa·s) than those of liquid metals and alloys (η~10−4–10−3 Pa·s) [42,43], so
that the spreading is controlled by viscous forces, which result in longer spreading times.
Moreover, no polishing or cleaning of the surface was performed, and the advancement of
the triple line was therefore hindered by surface asperities [44] and, in the case of H-C22,
by the oxide layer.

The as-joined samples were then produced using the previously described procedure
(900 ◦C for 12 min in a high vacuum furnace and 750 ◦C for 20 min). Some pictures of the
joined specimens are reported in Figure 6.
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planar configurations.
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Some criticality arose during the manufacturing of the joints. In particular, during
the sealing process, the excellent wettability of the brazing alloy on both substrates caused
an overflow of the material from the joint area (which is particularly evident in Figure 6c).
Thus, the expected thickness of the joined area was almost halved, as evident from the SEM
micrographs of the flat samples reported in Figures 7 and 8. In the circular configuration
case, it was observed that when solidification occurred, the brazing foils located close to
the inner region significantly shrank. For this reason, it was necessary to use an excess of
material to fill the whole circumference of the joining area.
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Figure 7. (a) SEM-BED images of the cross-section of the planar joining between the two blocks of
Hastelloy C22® produced at 900 ◦C for 12 min in a high vacuum furnace and 750 ◦C for 20 min, with
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produced at 900 ◦C for 12 min in a high vacuum furnace and 750 ◦C for 20 min and (b) its related
zoomed area. An EDS was performed in this area and the analyzed points and areas are shown in
the picture.

The promising results obtained from the wettability evaluation were confirmed by
an observation of the cross-sectioned joined samples. Indeed, both the H-C22/BTi-5 and
alumina/BTi-5 interfaces exhibited good adhesion in both the flat and circular configu-
rations, thereby resulting in continuous and homogeneous interfaces. A more complex
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microstructure was observed at the H-C22/BTi-5 interface due to the longer dwelling time
of the joining samples at high temperatures (12 min at 900 ◦C and 20 min at 750 ◦C), than
the interfaces obtained after the wetting tests, and some characteristic phases formed. At
least five areas with different compositions were recognizable in the filler metal from the
SEM images (Figure 7) and EDS analysis (Table 4) of the H-C22/BTi-5/H-C22 planar con-
figuration. A continuous ~2 µm thick reaction layer, rich in Ti (~38 at %) and Ni (~42 at %),
formed at the H-C22/BTi-5 interface (point 5 in Figure 7b). An area of interdiffusion could
also be observed on the H-C22 side, close to the filler metal (area 6 and point 7 in Figure 7b),
with a consequent migration of elements from the brazing alloy to H-C22 (Cu, Ti, and Zr),
while other elements of the substrate moved to the joining interface (Ni and Cr).

Table 4. Composition (at %) measured by means of the EDS analysis of the points and areas indicated
in Figure 7b.

Ti (at %) Cr (at %) Fe (at %) Ni (at %) Cu (at %) Zr (at %) Mo (at %) V + Mn + Co + Hf +
W + Si (at %)

1 45.8 - 0.1 22.0 17.6 12.9 0.4 1.2
2 39.9 0.2 0.1 19.0 21.8 16.4 - 2.6
3 37.4 0.1 - 31.9 18.3 9.9 0.5 1.9
4 38.0 0.3 1.4 39.0 11.0 8.5 0.2 1.6
5 37.7 0.4 1.5 42.2 9.6 7.1 - 1.5
6 26.3 10.1 5.4 33.0 11.3 6.5 3.6 3.8
7 14.3 30.1 3.2 34.0 1.9 3.3 11.3 1.9
8 0.4 24.6 5.5 56.7 0.8 1.9 6.3 3.8

A similar analysis was also conducted on the planar Al2O3/BTi-5/Al2O3 joints. Two
different regions could be distinguished in the brazing alloy from the micrographs collected
in Figure 8: one concentrated mostly at the alumina/alloy interface (area 2 in Figure 8b)
and another composed of heavier elements (point 1). As previously discussed for the
H-C22/BTi-5 interface, the main difference between the microstructure observed for the
sessile drop samples (Figure 4) and that of the joined ones was due to the different thermal
treatments. The EDS analysis reported in Table 5 showed a high content of oxygen dissolved
into the filler alloy region close to the Al2O3/braze interface (points 1 and 2 in Figure 8b).
Both Ti and Zr are able to dissolve a large quantity of O in the solid phase [40,45–48]. In
previous work, Shapiro observed the formation of a double layer of complex oxides at the
interface between alumina and BTi-5 in a Ti-alloy/ceramic joint [37]. The different brazing
conditions (lower temperature and applied pressure) used in the present study may be
sufficient to justify the impossibility of detecting a similar interfacial product by means of
SEM analysis. Nevertheless, the compatibility of the brazing alloy with alumina was not
compromised, and excellent alumina-to-alumina joints were obtained.

Table 5. Composition (at %) measured by means of EDS analysis of the points and areas indicated in
Figure 8b.

O (at %) Al (at %) Ti (at %) Ni (at %) Cu (at %) Zr (at %)

1 13.3 0.9 37.4 17.8 17.5 13.2
2 21.0 0.5 41.6 18.8 11.0 7.1
3 57.7 41.1 - - 0.1 1.1

Concerning dissimilar H-C22/Al2O3 joints, the flat configuration always resulted in
detached samples, while the circular configuration was the only one successfully obtained.
Indeed, in the circular design, the external part of the joint (H-C22) showed the highest
CTE, which thus acted as a compressive force on the inner ceramic part during cooling
and promoted better adhesion between the substrates and the brazing alloy. Vickers
indentation tests were performed at both metal/braze and braze/alumina interfaces. The
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images of the indentation areas are reported in Figure 9. The absence of cracks in the
brazing alloy close to the H-C22/braze interface (Figure 9a) shows the presence of a
ductile region, which can favor a partial relaxation of residual stresses generated during
the sealing process [18]. Figure 9b shows the formation of a crack, which propagated
perpendicularly to the braze/alumina interface, while no cracks were observed in the
parallel direction or in the ceramic. The results of the Vickers indentation test at the
braze/alumina interface showed that the diffusion of oxygen from the ceramic into the
braze leads to (i) the formation of brittle phases and (ii) the presence of tensile residual
stresses on the metal side, with a consequent state of compression on the ceramic [49].
Furthermore, Figure 9b, corresponding to an indentation at the braze/alumina interface,
does not show the propagation of any crack along the interface, thus demonstrating the
good adhesion between the Bti-5 and alumina.
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Figure 9. SEM-BED images representative of the Vickers indentation test performed at (a) H-C22/BTi-
5 and (b) BTi-5/alumina interfaces.

The morphology of the circular H-C22/Al2O3 joints, as characterized by FE-SEM, is
reported in Figures 10 and 11. Analogous to what was observed for the planar joints, the
circular ones showed continuous and defect-free interfaces on both the metal and ceramic
sides. The phases observed at the two different interfaces were morphologically similar
to the ones observed at the corresponding interfaces of the flat configuration samples.
The compositional maps obtained from the EDS analysis on the BTi-5/H-C22 interface
(Figure 10) clearly confirmed the presence of an interdiffusion layer on the H-C22 side to a
depth of about 10 µm.

The EDS maps reported in Figure 11 evidence the formation of an area rich in Ti and
Ni, which is particularly concentrated close to the interface with Al2O3.
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4. Summary

The liquid BTi-5 filler metal from the TiZrCuNi alloy family was demonstrated to have
excellent chemical compatibility with both alumina and Ni-superalloy Hastelloy C22®,
which exhibited contact angles of 12◦ and 47◦, respectively. The interdiffusion of some
elements between the substrates and the brazing alloy, even though limited, promoted
excellent adhesion in the Al2O3/Al2O3 and H-C22/H-C22 joints and showed homogeneous
and crack-free joining areas after a thermal treatment conducted at 900 ◦C as the maximum
temperature. The significant difference in CTE between the metal and ceramic substrates
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made it difficult to achieve a reliable joint between the planar alumina and the H-C22
substrates. However, in this study, it was possible to overcome this issue, and a sound
joint was obtained between such dissimilar materials in a circular configuration, ideal for
feedthroughs to be used in the harsh environment found in sodium-based liquid metal
batteries (high-temperature and corrosive environment). It was also demonstrated that the
compressive forces applied by the outer metal ring onto the joining area favor adhesion,
thus making it possible to achieve good joints between ceramic and metal substrate with
different CTEs up to 7 × 10−6 K−1.
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