
01 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An analysis of widget layout attributes to support Android GUI-based testing / Fulcini, Tommaso; Coppola, Riccardo;
Torchiano, Marco; Ardito, Luca. - ELETTRONICO. - (2023), pp. 117-125. (Intervento presentato al convegno IEEE
International Conference on Software Testing Verification and Validation Workshop, ICSTW tenutosi a Dublin (Ireland)
nel 16-20 April 2023) [10.1109/ICSTW58534.2023.00033].

Original

An analysis of widget layout attributes to support Android GUI-based testing

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICSTW58534.2023.00033

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977201 since: 2023-03-17T15:09:38Z

IEEE

An analysis of widget layout attributes to support
Android GUI-based testing

Tommaso Fulcini, Riccardo Coppola, Marco Torchiano and Luca Ardito
Department of Control and Computer Engineering

Politecnico di Torino
Turin, Italy

first.last@polito.it

Abstract—In the context of GUI testing, identifying robust
locators (i.e., attributes to unambiguously identify on-screen
widgets to be used in test sequences) is still considered an
unsolved challenge by the researchers’ community. The frequent
variation of attributes between different releases of the System
Under Test (SUT) leads in fact to testing fragility, i.e., test
case failing because of invalidated locators. Recent studies have
highlighted the benefits of adopting multi-locator approach, i.e.,
the combination of multiple locators to enhance the robustness
of widget identification.

The objective of this work is to provide insights into the
composition of Android applications, assessing the characteristics
of different layout-based properties and their suitability to be
used as locators for widgets in the context of GUI-based testing.

We investigated the state of the practice by analysing the
distribution of widget values within 30 real apps selected from
the Google Play Store. For those apps, we selected two different
versions to examine how they evolved over time from both visual
and structural perspectives.

The results of our analysis showed that missing values,
variability, and instability of attributes make it hardly possible
to identify a single attribute or technique (either coordinate-
, property-, or visual-based) capable of providing robust GUI
testing over multiple releases of mobile SUTs.

Index Terms—GUI testing, GUI testing repair, Software Test-
ing, Software Engineering, GUI testing fragility

I. INTRODUCTION

The mobile application industry is growing; its revenues are
expected to reach 201 billion dollars by 2023, according to
recent projections [1]. From 2016 to 2021, the yearly number
of global app downloads increased by 63.5% with an average
year-over-year growth rate of 10.56% [2].

These impressive figures attracted the interest of several
companies that started offering support for mobile applications
in most of their services, especially during 2020, when due
to the Covid-19 pandemic, most of the work has been done
remotely. In fact, business app downloads increased by 102%
in 2020, with a massive 225% spike solely in march of 2020
[2].

As a consequence, this growing interest in mobile applica-
tion development brought the necessity of having the shortest
possible time to market for companies launching their own
apps. In this scenario, one of the most frequent concerns is the
need for a thorough testing phase, which is still predominantly
performed superficially or neglected, being a costly and time-
consuming activity.

GUI testing plays a key role in this context, as it allows
direct user interaction to be simulated. GUI testing, especially
when automated, makes it possible to quickly and reliably
demonstrate the functional correctness of the Application
Under Test (AUT). Having a suite of automated tests also
makes it possible to quickly perform the same tests on demand
on the target AUT, guaranteeing the non-regression of the
application if the tests are successful.

When an automated test suite is built, its purpose is to
ensure that all the components of an app are correctly working:
when a test case fails, it should reflect misbehavior in the
application. Although this is mostly always true when testing
the application with a low-level focus, such as unit testing and
integration testing, when testing apps through their GUI, tests
may also fail due to changes in their locators. Locators are
the means to identify an element on-screen to target, allowing
tests to access widgets’ functionalities.

During the evolution of an app, it is common that the visual
appearance of its GUI, the inner description, or its properties
change over time, either with small attribute differences in
certain widgets or with a radically different visual appearance
on specific screens. In both cases, tests might fail when the
locators of the widgets change between different releases, with
the necessity of repairing tests with a new, correct locator.
These test failures are not caused by a malfunction of the
app itself but by a failure in the location process of a widget.
Therefore, additional effort is required at each test failure to
(1) understand whether the failure reflects an actual defect; and
(2) fix the locators that are no longer valid (namely, broken
locators). This widespread issue for GUI testing is known as
fragility by literature in the field.

To address the issue of fragile tests, we aim to define a
more robust widget localization strategy than the state-of-the-
art localization strategies that are based on single locators
(i.e., they use a single locator value to identify an attribute
on the screen of the app). Our objective is to study the
use of a combination of multiple locator values to guarantee
higher location robustness. This paper reports the results of a
preliminary study aimed at studying the distributions of values
of locators in popular Android applications to understand
which attributes are less prone to changes and can guarantee
more stability to test suites when used as locators. The study
replicates the approach used in a study by Nass et al., [3],

that performed the same analysis for web-based application
testing.

In our study, we analyze how 30 applications from Google
Play Store1 are assembled, breaking down all the attributes
of their widgets. This analysis will provide the following
insights regarding Android apps: a set of guidelines and
recommendations for developers, a starting point to develop
a new test localization algorithm, and directives on how to
select and identify corresponding widgets.

II. BACKGROUND AND RELATED WORKS

Android apps are software applications designed to run
on Android, an operating system with a layered architecture,
consisting of several layers including the Linux kernel, native
libraries, the Android runtime (with a Virtual Machine able to
be run on several devices), the application framework, and the
user-facing apps.

In the present section, we only focus on the top layer and
its testing-related issues and challenges, leaving out what lies
underneath.

The topmost layer is the user-facing apps, which are the
apps that the user interacts with. They are handled by the
Application framework, an Android component that takes care
of the lifecycle of the app, providing the app with the needed
services and resources such as layouts and strings. Among
them, built-in apps such as the home screen, the phone dialer,
and the browser are included.

When it comes to the architecture of Android applications,
there are several popular architecture patterns, such as Model-
View-Controller (MVC), Model-View-ViewModel (MVVM),
and Model-View-Presenter (MVP) which are used to structure
the code. These patterns help separate the concerns of the
app’s data, user interface, and control flow. In all three
architectures, the concept of separation of concern is the
main focus, intending to separate functional duties from the
layout and aesthetic. The first implementation of Android
Components decoupling is based on the declaration of UI
layouts in XML files (containing the definition of the static
visual aspect of a component) and their inflation at runtime.
The said components can also be updated programmatically
during their lifecycle, with changes in the visual aspects or in
their internal state.

Newer recommendations (March 2022) from Google devel-
opers suggest relying on Jetpack Compose toolkit (a collection
of Kotlin APIs) for UI development [4]. It appears to be an
intuitive declarative way of defining flexible stateless compo-
nents that can be reused, customized, and tested easily.

Testing Android apps through their Graphical User Interface
(GUI) can be cumbersome and time-consuming due to their
complexity and the gestures-driven nature of the interactions to
be reproduced. Evidence in the literature shows that automated
testing approaches are far from being adopted on a large
scale [5] [6]. GUI test suites can be automatically generated,
with a low cost associated with the generation process but

1https://play.google.com/store/apps

a higher maintenance cost, or manually scripted, with an
inherent building complexity.

Automated GUI testing of Android applications can be clas-
sified based on different criteria. The first general classification
proper of scripted GUI testing, valid for Android apps and
web applications, is based on the widget localization strategy.
There exist three main methods to find a widget in an Android
app during its execution [7]:

1) Coordinate-based locators: elements are identified by
means of the coordinates relative to the position on the
screen of an element;

2) Layout-based locators: widgets are accessed via the app
layout, using their properties value;

3) Image-based locators: starting from a screenshot some
algorithms for image recognition are used to find the
corresponding Android element.

The first technique (also called first-generation locator)
is nowadays considered outdated due to the high device
fragmentation in Android-based smartphones, which reflects
a wide variety in screen sizes. First-generation based locators
are reportedly considered to be fragile due to their strong
dependence on the device on which the app runs [8]. The sec-
ond location strategy is one of the most used and widespread
to date [9]. It uses a specific value of a layout property to
retrieve the corresponding Android widget. It is considered a
more refined approach with respect to the previous one, in
fact, it is also called a second-generation technique. Lastly,
the third-generation and more recent manner are based on
image recognition algorithms, able to detect, from an existing
screenshot, the most similar screen element.

Although progress in improving both the second and the
third approaches has been made over the years, some frailties
remain inherent in the nature of the approaches. Namely, test
breakage can be caused by a failing locating property for
second-generation ones and by a radical appearance change for
those of third-generation. For example, a GUI test checking
for a specific button on the screen may break if the button’s
location or text changes. Similarly, a test that checks for the
presence of a specific element on the screen may fail if that
element is removed or its layout is modified. This phenomenon
is known as test fragility.

In the existing literature, several ways to mitigate test
fragility in Android exist. One approach is to use the Screen
Object Design Pattern [10], a mobile adaption of the Page
Object Design Pattern [11], which separates the test code from
the implementation details of the app, making the test more
loosely coupled to the app logic and more robust to changes.
Another approach is to use more robust selectors to identify
application layout elements. Robust locators are selectors that
are less likely to break when changes are made to the code or
layout of the application. They are generally based on stable
and reliable widget properties; nevertheless, it should be noted
that they are not immune to failure if the identifying properties
change or if the elements they refer to are removed.

According to the literature review carried out by Nass et al.,
this topic is one of the main issues that the community should

address, and that could reflect improvements in other existing
challenges [12].

III. RESEARCH METHODOLOGY

The final goal of our study is to analyze the composition of
popular Android applications in terms of the attributes used
and the different values that these attributes can assume. We
also want to analyze how these attributes can vary over time
when the applications evolve.

To review the composition of different applications, we
decided to assess real apps from the market. In the following
section, we will explain the research method, and the selection
process followed to identify the pool of subjects to analyze,
and then we will discuss the widget analysis process we
adopted.

A. Research Questions

To drive our research, we first established our research
questions (RQ) to frame the remainder of the methodology:

• RQ1: What is the variability of the attributes in Android
applications, and how frequently are they valued with
meaningful values?

• RQ2: How often do widgets change visually and how do
their properties change between two releases?

The first RQ is meant to review how attributes are used,
assessing the presence and usage of their values: to answer
this question we will divide this RQ into separate analyses.

The first aspect we consider is the population of attributes.
Some of the attributes are in fact related to functional aspects
of the widget (e.g. clickable, focused, scrollable, ...). These
attributes are typically boolean and always valued (default
to false). Another category of widgets represents the textual
content of the widget, if any, or provides a description to
identify the widget (e.g., id, content-desc, ...). For these
widgets categories, we seek to understand how frequent the
possibility to have a value, and how diverse is the set of values
that are assumed over the applications. The rationale behind
this analysis is that an attribute is more suitable to be used as
a locator if it is frequently valued (i.e., not empty) and if it is
sufficiently diverse over the set of applications. Attributes that
have low variability, in fact, will not be able to distinguish
efficiently between different widgets on the same screen or
application.

For the second RQ, we assess the way the attribute values
evolve over two different releases. We manually define a set
of corresponding widgets, i.e. widgets that are present in
two versions of the applications with the same functionality,
and we compare the attribute values in the two versions in
order to observe if and how their attributes change over time.
Computing these statistics allows us to estimate the stability
of the attributes, indicating which are the best attributes to
be used as a locator (the less stable, the more is likely to
break). The second step of this RQ is meant to shed light
on the visual differences that can be appreciated by a visual
inspection of the GUI: we classify the changes according to
the visual mutation characterization provided by Alégroth et

al. [13] in order to associate to each corresponding widget
its alteration if any. For our labeling process, we adopted a
subset of the full characterization (reported in Table II), since
some mutant operators did not suit our case. In particular,
removal and insertion are not applicable as, by construct, we
searched corresponding widgets present in two app versions.
Other types of mutations related to window resizing cannot
be replicated for Android applications, as resizing was not
enabled in the considered virtual device. We considered mutant
operator pairs M11-M13 and M15-M16 as mutually exclusive.
The first is because both mutants involve a modification of
the original coordinates, respectively by assuming a generic
different value, and by overlapping other widgets. The pair
M15-M16 inherently is referred an alteration of the visual
aspect of the widget, either due to a change in the type of
a widget or with a general variation. During the labeling
process, we noted that each modification in the type of a
widget reflected its appearance: to achieve a more specific
characterization we decided to mark the said condition as the
M16 mutant operator. Finally, to express cases where nothing
changed we introduced the mutant operator M0.

B. Dataset selection

To analyze the variability and presence of valued attributes,
we resorted to selecting a set of popular mobile applications.
To find a set of suitable applications, we used two web re-
sources: AppBrain2, a website that provides statistics about the
popularity of Android applications released on the Google Play
Store; and APKMirror3, a website providing the history of
packaged Android apps (APK files), as opposed to the Google
Play Store where only the last release of each application can
be found.

To guarantee external validity to our results we selected
popular applications for all the categories that are listed on the
AppBrain website. We thus browsed the website by category,
sorting the results according to the most downloaded apps.

Following the popularity sorting of the application, we
searched the apps on APKMirror, where several past versions
of the same app can be found. We selected only applications
for which multiple versions were available. For each app,
we downloaded the latest version and applied the Inclusion
Criteria that are described below. Each time the first four
criteria were met, we iteratively tested each version available
on APKMirrorfrom the newest to the oldest, until we found a
version that met condition IC5.

To determine whether an app was eligible to be included in
the study, we defined a set of Inclusion Criteria (IC), each app
had to fully meet all the IC. We do not list explicit Exclusion
Criteria (EC) since we considered them as the opposite of the
ICs. The inclusion criteria have been defined as follows:

• IC0: The app is ranked in AppBrainand at least two dif-
ferent versions are available for download in APKMirror.

2https://www.appbrain.com
3https://www.apkmirror.com

TABLE I: List of selected apps and versions

Category Name of the app Old Version Old Version Date New Version New Version Date

Art Sketchbook 4.1.5 1/22/2019 5.3.1 11/27/2022
Auto CarMax 2.47.1 8/30/2018 3.7 8/13/2019
Beauty Mirror Plus 2.9.1 9/24/2016 4.2.1 9/25/2022
Books YouVersion Bible app 6.4.2 12/21/2016 9.16.2 11/2/2022
Business UPS mobile 4.5.0.1 8/7/2016 9.7.72 11/16/2022
Comics Cdisplayex 1.1.107 11/27/2018 1.3.36 11/3/2022
Communication Firefox Fast & Private Browser 65.0.1 2/13/2019 107.1.0 11/14/2022
Education Google Classroom 4.5.212 6/12/2018 8.0.421 11/2/2022
Entertainment Tubi 3.7.0 12/1/2020 4.21.1 3/10/2022
Events Gametime 11.2.15 3/28/2019 2022.17.2 11/2/2022
Finance Wise 7.29.1 10/13/2021 7.83.1 11/28/2022
Food Burger King 6.2.0 5/14/2019 6.25.8 11/8/2022
Health Calm 5.1 8/10/2020 6.12.1 11/17/2022
House Angi 21.0.18 11/26/2021 22.46.0 11/21/2022
Libraries Allinone toolbox 6.4.3 8/8/2016 8.2.8.1 7/18/2022
Lifestyle Pinterest 8.39.0 10/24/2020 10.42.0 11/17/2022
Maps Transit 4.3.1 11/16/2017 5.11.3 4/13/2022
Media Video downloader for Instagram 1.1.98 9/21/2020 1.1.60 7/27/2018
Medical Nevada COVID trace 1.4.7 9/14/2022 1.2.11 9/14/2022
Music Soundcloud 2017.12.14 12/14/2017 2022.16.11 11/16/2022
News NewsBreak 4.6.4 11/27/2019 22.47.0 11/25/2022
Personalization Backgrounds hd 4.8.25 1/17/2017 5.0.052 1/19/2022
Photography Lightroom 4.4 8/13/2019 8.0.1 11/18/2022
Productivity HP smart 4.7.104 5/1/2018 9.6.2.3732 11/10/2022
Shopping Walmart 22.1.1 1/15/2022 22.43.4 11/19/2022
Social Reddit 2020.30.0 8/13/2020 2022.44.0 11/30/2022
Sports FOX Sports 5.0.0 7/20/2020 5.60.0 11/22/2022
Tools Google translate 5.12.0 9/8/2017 6.49.0 11/9/2022
Travel Booking.com 24.0 11/9/2020 34.5 11/18/2022
Weather AccuWeather 4.8.2 7/6/2017 8.7.1 11/17/2022

TABLE II: List of GUI mutants.

Mutant Operator

M0 No changes affected the widget
M11 Modify the location of a widget to a proper location
M13 Modify the location of a widget to overlap with another
M14 Modify the size of a widget
M15 Modify the appearance of a widget
M16 Modify the type of widgets (e.g. Button changed to TextView)

• IC1: Both the selected versions of the application had
to run without crashes, and without requiring any system
updates on the Android Virtual Devices.

• IC2: The two versions selected must have at least one
perceptible visual difference.

• IC3: It must be possible to identify at least one corre-
sponding widget, not necessarily with the same aspect.

• IC4: The application must not require an explicit regis-
tration or login process to directly reach the home screen.
This criterion does not include the usage of a login based
on external APIs (such as login via Google, Facebook,
or Twitter), whose case is considered valid.

• IC5: The older version must be the most recent version
working on the Google Nexus 5X Android Virtual Device
(AVD).

Of the 32 categories found in AppBrain, 30 apps from

different categories were selected: for two categories (namely,
Dating and Parenting) all the apps on the retrieved list did
not fulfill the Inclusion Criteria. For this reason, these two
categories were excluded.

The complete list of used apps can be seen in Table I: for
each application, we report its category, the package name,
the release name, and the publication date of the two versions
considered.

C. Analysis Process

For each selected app, once the two selected versions were
downloaded and installed in the Google Nexus 5X AVD, a
setup process was necessary to prepare the app to get to the
home screen, i.e. performing login with external APIs when
necessary, and closing all the one-time screens or wizards
appearing the first time an app is opened on a device. Then,
we started analyzing its XML layout, which was obtained by
means of the command UIAutomator dump.

Once obtained the dump file, we created a script to filter
out all the Android Views that are used only as containers and
that are never directly visualized on screen. We then parsed
all the remaining widgets to create a CSV file containing the
names of all the possible attributes and, for each widget, the
values assumed. Reviewing the obtained files, we noted that
no unique identifier, corresponding to the XPath for the web,
was present in Android apps. Thus, we decided to introduce

in the generated CSV file a progressive number allowing us
to distinguish between all the widgets unambiguously. The
CSV file containing the attribute values was obtained, for each
application, for both the old and the new version.

We took a screenshot of the home screen for each version,
in order to easily get the actual visual representation if needed
during the analysis process.

To analyze how the attributes varied for the same widget
in two different versions of the same application, we had to
identify all the pairs of corresponding widgets, i.e., widgets
that have the same role in the old and new versions of the
application. To get this set of corresponding widget pairs, we
manually inspected all the pairs of versions of the 30 selected
apps and identified widgets that had the same conceptual
meaning and were used to perform the same operations in the
application. By applying this manual identification of widget
correspondence, we came up with a set of 201 corresponding
widget pairs. Then we retrieved – through a lookup in the
CSV files – the variations in the attributes that were linked
to the same conceptual widget in the application. Using this
information it is possible to assess the suitability of an attribute
as a locator from a perspective of attribute evolution. The key
criterion is that an attribute which is more likely to change
in future releases of the application can be considered less
dependable as a locator.

IV. RESULTS

To answer the identified Research Questions, we collected
all the related data and plotted the corresponding distributions,
in order to compare the different properties of the widgets.

A. RQ1 - Attribute Emptiness and Variability

The first analysis is based on the number of valued at-
tributes. At first glance, we noticed that all attributes of the
boolean type are endowed with values: this is due to the
fact that they are set by default by UI Automator to their
corresponding state at the time of the extraction of the dump
file.

For this reason, we separated the two value analyses in order
to avoid mixing information of different natures. In Figure
1 we report the distribution of the values that are empty
(i.e., an empty string is present in the UIAutomator dump
in correspondence of such attribute) or are valued (i.e., any
string is present as a value in the dump in correspondence of
such attribute). From the graph, it is possible to note that only
three attributes (resource-id, text, content-desc) are not always
characterized by the presence of values. The attributes that
have 100% valued instances are those which are generated
by Android Studio, or by UIAutomator itself. In particular,
the class attribute always corresponds to the Java class of the
widget, the bounds attribute refers to the upper-left and lower-
right corners of the widgets on the screen. Instead, the index
attribute reports the pointer to the widget in the hierarchical
tree structure of the app. Finally, the package attribute is
automatically set by Android Studio when a new View is
generated in the context of the app. Although NAF is actually

NAF

content−desc

text

resource−id

bounds

class

index

package

0 25 50 75 100

Percentage of values

A
ttr

ib
ut

es Value

Empty

Present

Fig. 1: Distribution of empty and valued attributes in the
selected apps

checked

checkable

focused

long−clickable

selected

scrollable

password

clickable

focusable

enabled

0 25 50 75 100

Percentage of values

A
ttr

ib
ut

es Value

False

True

Fig. 2: Distribution of values for boolean attributes in the
selected apps

a boolean attribute, in most cases it is not provided (in the
form of a NULL Value).

In figure 2 we report the distribution of values for the
boolean attributes extracted by the UIAutomator dump. We can
see the distribution of values in the different attributes: most
of the widgets are enabled, while only approximately 25% of
them are clickable, i.e. allowing interaction. Although boolean
values are by no means usable for the purpose of locating
widgets per se, it is worth noting that, since their presence
is always guaranteed by UI Automator, the use of a weighted
combination of such values can be useful to corroborate others,
yet stronger locators. This aspect will be discussed as an
implication in the Future Work section.

It is worth noting that, even if an attribute is given a value
frequently, such an attribute will be of no use as a locator
if the value is always the same for all different widgets. In
that case, in fact, it would not be possible to discriminate
between different widgets based on such value of the locator.
This leads to the need of deepening the analysis by mixing
the information on the availability of values for an attribute,
with the different values assumed by such specific attribute.

The second step for a deeper analysis regarding the nature
of attribute usage is to consider the diversity of values that
are assumed by an attribute. Figure 3 plot the measure of how
different values are distributed for each property: in particular,
the value refers to the ratio between the number of different
values assumed over the number of valued widget properties.

package

index

class

NAF

content−desc

resource−id

bounds

text

0 25 50 75

Variability over the valued widgets

A
ttr

ib
ut

es

Fig. 3: Distribution of different values for each attribute
over the number of valued attributes

NAF

package

content−desc

index

class

text

resource−id

bounds

0 25 50 75

Variability over the total widgets

A
ttr

ib
ut

es

Fig. 4: Distribution of different values for each attribute
over the total number of attributes

Although this indicator shows that the greatest variability
is concentrated in the text, NAF, and content description
attributes, from the previous finding we infer that these are
more prone to be left unassigned. Thus, to combine the
information regarding the variability with that coming from the
previous RQ, we considered the ratio between the number of
different values of a property and the total number of widgets.
This particular distribution highlights that the bounds attribute
is the most variable, with several different values, followed by
resource id and text attributes.

Although the bounds attribute has the highest variability,
the usage of this attribute as a location strategy can be
traced back to outdated first-generation tools, characterized by
well-known drawbacks. Nevertheless, corroborating position-
related properties with other locators could harden existing
location strategies.

Notwithstanding the result, it must be taken into account
that, the value comparison was performed in a boolean way,
which implies that for the bound attribute, the widgets must
have coincident positions and dimensions to obtain two corre-
sponding values. This constraint appears to be rare, leading
us to wonder whether position-related metrics comparisons
should be based on more sophisticated treatments such as the
percentage of screen overlapping.

checkable
checked
enabled
package

scrollable
focused

long−clickable
NAF

password
selected
clickable

focusable
content−desc

class
text

index
resource−id

bounds

0 20 40 60 80
Instability

A
ttr

ib
ut

es

Fig. 5: Attribute instability for the selected corresponding
widgets

B. RQ2 - Corresponding Widgets Analysis

The second research question concerns the detection of
corresponding widgets, i.e. widgets that are present in different
versions of an app with the same functionality. Defining a
corresponding widget is important in software testing main-
tenance since it allows the identification of an artifact in the
screen that, regardless of its possible graphical evolution, is
associated with a precise function. RQ2 has been formulated
to find a robust and reliable way to use attributes to identify
corresponding widgets in an app.

To drive our analysis of how attribute values can be used
to locate corresponding widgets when the application evolves,
we manually selected and classified a set of corresponding
widget pairs. For each of the selected corresponding widgets,
we analyzed the value of all the attributes in both the selected
versions to understand which attributes are the most stable
during the evolution of the SUT.

Figure 5 ranks corresponding widgets attributes based on
their variability over the two versions, i.e. their instability. The
attribute resulting as the most unstable is unsurprisingly the
bounds one (with an approximate value of 80% of instability),
in accordance with the drawbacks of coordinate-based locators
pointed out by the existing literature. For this reason, even if
the said attribute has the highest presence and diversity in
assumed values, its instability makes it unsuitable to be used
as a locator. A change in bounds attribute is often reflected
in the alteration in the value of index attribute since different
coordinates may imply a change of position not only in the
visual arrangement but also in the tree structure.

Resource-id is ranked second for instability with a variabil-
ity of 50%: even though Android Developers recommend the
usage of this attribute to identify a resource [14] uniquely, half
of the widgets changes are actually affecting this identifier.
This statistic partly invalidates the usage of the resource-id
as a locator for testing since, differently from an internal
usage where developers can refactor the identifier in the whole
project, the access to widgets is based on the knowledge of
the ids and the structure. Also, textual and content description
attributes are quite unstable, with a variability of 23% and

Fig. 6: An Example of visual changes affecting corresponding
widgets between different releases

M0

M11

M13

M14

M15

M16

0 30 60 90
Count

M
ut

an
t O

pe
ra

to
r

Fig. 7: Occurrence of visual changes for the selected corre-
sponding widgets

17%, respectively, which, when added to the frequent absence
of values, makes these attributes unreliable.

Out of the total of 201 corresponding widgets, 174 are those
that have undergone mutation of at least one attribute. The total
number of attribute value changes was 536, with an average
of three attributes alteration.

Regarding visual mutations that corresponding widgets un-
derwent, results are shown in Figure 7. Unsurprisingly Lo-
cation Change is the one with the highest frequency (M11,
57% corresponding widget pairs), in accordance with the high
instability of the bounds attribute. The second visual mutation
by frequency is the change in the graphical appearance of a
widget (M15, occurring in 46% corresponding widget pairs).
In most cases, a visual alteration of the application was
accompanied by at least a partial reorganization of the widgets
(e.g. search bar and photo icon in Figure 6), while only a
few cases presented a restructuring of the composition of the
GUI while maintaining the same general appearance (what
happened to the hamburger menu in Figure 6).

The rescaling mutation (M14, occurring in 24% correspond-
ing widget pairs) ranked third, closely followed by the absence
of mutation (M0, occurring in 24% corresponding widget
pairs). It is partly due to the readjustment required following a
change in the layout, as happens for ”Log in” and ”Sign Up”
buttons in Figure 6, in other cases a rescale can be a symptom
of a variation of the importance of the function associated with
the widget.

Next to last, by frequency, was the mutation related to
changes in the widget type (M16, occurring in 17% corre-
sponding widget pairs): this type of mutation mainly concerns
widgets that, from a given release, acquire new functions
that cannot be associated with the previous type. A recurring
example is a transition from ImageButton to ImageView or
vice versa.

The less frequent mutation among those considered is a
change in the position to overlap a different widget (M13,
occurring in 4% corresponding widget pairs), meaning that
maintaining a clean and uncluttered look is important for the
graphical evolution of an app. An exception is the inclusion of
a Floating Action Button that allows a particular functionality
to stand out from the rest of the GUI, being clearly visible.

V. DISCUSSION

The results that we gathered to answer our research question
allowed us to collect information about three properties of
Android widget attributes, when used as locators: presence,
variability and instability.

The presence of an attribute is an index of how often such
an attribute is provided with a meaningful value. We consider
the presence of values as a fundamental prerequisite for an
attribute to be a valid locator for a widget.

We defined variability as the possibility for an attribute
to assume different values for different widgets. Therefore, a
high variability for an attribute over a widget population can
encourage the use of such an attribute as a locator, since it is
more likely that a specific value of the attribute can identify
a single widget on a given SUT.

Finally, we defined instability as the possibility that the same
attribute, on the same widget, varies when the application
evolves. We assume that a high instability of an attribute
makes it unsustainable as a locator over different releases of
an application. That would, in fact, require multiple test case
repairs to fix the locator values that are changed.

As a last analysis, we performed an inspection of the visual
mutations that were applied to the widgets during the evolution
of the SUTs, to analyze if the changes in the widgets were only
related to their layout attribute values or were also reflected
by their on-screen appearance.

Based on our findings, we can argue the following about
locators for Android application testing:

• Regarding presence, some attributes are always present
by construction (package, index, class, bounds). Of them,
only the bounds assume values that are specific to differ-
ent elements on a screen;

• Regarding variability, text, resource id, and content de-
scription have a very high variability over different at-
tributes so they may have an use as locators. However,
such attributes are not always valued (e.g., content-desc
is present in less than 10% of widgets) so they cannot be
used as locators alone;

• Regarding instability, we measure a very high change
rate for bounds (as expected) but also for resource-ids,
undermining the suitability of such attribute as a locator
for tests to be used over multiple releases of the same
app;

• Regarding the graphical mutations, we have measured
the frequency of occurrence of different types of graphical
changes on the widgets in a frequency range between 4%
and 57% of oracles. Therefore, visual locators cannot be
depended if used alone to locate widgets.

In summary, the high frequency of changes in both widget
position (bounds), layout attributes and visual aspect denotes
how coordinate-based, layout-based, and image-based local-
ization strategies may be unsuitable for robust GUI testing of
mobile applications on the run of multiple releases, when used
alone and without the combination of multiple attributes

This general picture of Android apps highlights the neces-
sity of shifting from a single-attribute (or single-technique)
localization process to a multi-locator and multi-technique ap-
proach, mixing different attributes and methodologies together,
as proposed for GUI testing in web applications [3].

A. Threats to Validity

As an External Validity threat to our study, we identify
the possibility that the selected sample of SUTs may not be
representative of the entire population of Android apps. To
mitigate this threat, we have based our app selection on an
available categorization and we have selected a single item
for each category.

As Construct Validity threat to our study, we identify the
possibility that the procedure applied for the collection of the
version pairs of the SUTs (section III.B) may privilege the
selection of older versions, therefore raising the probability
of having attribute and visual changes between corresponding
widget pairs. To analyze the effect of release selection on at-
tribute instability, we plan to replicate the study by performing
longitudinal analyses over the entire release histories of the
considered SUTs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we assessed the state of the practice of
Android apps by selecting 30 apps from the most downloaded
ranking in order to perform an analysis of widgets compo-
sition. We provided statistics concerning attribute values. In
particular, it appears that textual attributes are those with the
highest percentage of empty values: more than a quarter of the
widgets have no resource-id defined, only one in four widgets
has a non-empty text attribute. Although their presence is not
guaranteed, the textual properties, in addition to the bounds
attribute, are those whose values exhibit the greatest variability.

When considering changes affecting widgets, starting from
a set of 201 corresponding widgets, we noted that the most
variable attributes are bounds and resource-id.

The present work is to be considered as a preliminary study
for a broader research topic aiming at defining a multi-locator
and multi-technique testing strategy for the mobile domain.

We also plan to apply machine learning-based techniques
on attribute value distributions, to automatically infer the most
suitable combination of attributes for a proper widget local-
ization, by considering widget identification in GUI testing as
a classification problem.

REFERENCES

[1] Statista Research Dept., “Revenue of mobile apps worldwide 2017-
2025, by segment,” 2022, accessed: 2022-12-15. [Online]. Avail-
able: https://www.statista.com/forecasts/1262892/mobile-app-revenue-
worldwide-by-segment

[2] J. Flynn, “40 fascinating mobile app industry statistics [2022]:
The success of mobile apps in the u.s.” 2022, accessed: 2022-
12-15. [Online]. Available: https://www.zippia.com/advice/mobile-app-
industry-statistics/

[3] M. Nass, E. Alégroth, R. Feldt, M. Leotta, and F. Ricca, “Similarity-
based web element localization for robust test automation,” 2022.
[Online]. Available: https://arxiv.org/abs/2208.00677

[4] A. Developers, “Why adopt compose,” 2022, accessed: 2022-01-12. [On-
line]. Available: https://developer.android.com/jetpack/compose/why-
adopt#less-code

[5] R. Coppola, M. Morisio, and M. Torchiano, “Scripted gui testing
of android apps: A study on diffusion, evolution and fragility,” in
Proceedings of the 13th International Conference on Predictive Models
and Data Analytics in Software Engineering, ser. PROMISE. New
York, NY, USA: Association for Computing Machinery, 2017, p.
22–32. [Online]. Available: https://doi.org/10.1145/3127005.3127008

[6] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
“Understanding the test automation culture of app developers,” in 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST), 2015, pp. 1–10.

[7] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Chapter
five - approaches and tools for automated end-to-end web
testing,” ser. Advances in Computers, A. Memon, Ed.
Elsevier, 2016, vol. 101, pp. 193–237. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0065245815000686

[8] L. Ardito, R. Coppola, M. Morisio, and M. Torchiano, “Espresso vs.
eyeautomate: An experiment for the comparison of two generations of
android gui testing,” in Proceedings of the Evaluation and Assessment
on Software Engineering, ser. EASE ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 13–22. [Online].
Available: https://doi.org/10.1145/3319008.3319022

[9] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk, “Continuous,
evolutionary and large-scale: A new perspective for automated mobile
app testing,” in 2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), 2017, pp. 399–410.

[10] D. Zelenchuk, The Screen Object Design Pattern in Android UI Tests.
Berkeley, CA: Apress, 2019, pp. 231–244.

[11] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro, “Improving test
suites maintainability with the page object pattern: An industrial case
study,” in 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops, 2013, pp. 108–113.

[12] M. Nass, E. Alégroth, and R. Feldt, “Why many challenges with
gui test automation (will) remain,” Information and Software
Technology, vol. 138, p. 106625, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584921000963

[13] E. Alegroth, Z. Gao, R. Oliveira, and A. Memon, “Conceptualization and
evaluation of component-based testing unified with visual gui testing:
An empirical study,” in 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), 2015, pp. 1–10.

[14] Android Open Source Project, “App resources
overview,” 2022, accessed: 2022-01-25. [Online]. Avail-
able: https://developer.android.com/guide/topics/resources/providing-
resources

