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Abstract: Chronic wounds are a major concern for global health, affecting millions of individuals
worldwide. As their occurrence is correlated with age and age-related comorbidities, their incidence
in the population is set to increase in the forthcoming years. This burden is further worsened by the
rise of antimicrobial resistance (AMR), which causes wound infections that are increasingly hard to
treat with current antibiotics. Antimicrobial bionanocomposites are an emerging class of materials
that combine the biocompatibility and tissue-mimicking properties of biomacromolecules with the
antimicrobial activity of metal or metal oxide nanoparticles. Among these nanostructured agents,
zinc oxide (ZnO) is one of the most promising for its microbicidal effects and its anti-inflammatory
properties, and as a source of essential zinc ions. This review analyses the most recent developments
in the field of nano-ZnO–bionanocomposite (nZnO-BNC) materials—mainly in the form of films,
but also hydrogel or electrospun bandages—from the different preparation techniques to their
properties and antibacterial and wound-healing performances. The effect of nanostructured ZnO
on the mechanical, water and gas barrier, swelling, optical, thermal, water affinity, and drug-release
properties are examined and linked to the preparation methods. Antimicrobial assays over a wide
range of bacterial strains are extensively surveyed, and wound-healing studies are finally considered
to provide a comprehensive assessment framework. While early results are promising, a systematic
and standardised testing procedure for the comparison of antibacterial properties is still lacking,
partly because of a not-yet fully understood antimicrobial mechanism. This work, therefore, allowed,
on one hand, the determination of the best strategies for the design, engineering, and application of
n-ZnO-BNC, and, on the other hand, the identification of the current challenges and opportunities
for future research.
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1. Introduction

Wounds are a major global healthcare issue that have been defined as a “silent epi-
demic” [1,2] for their prevalence and profound effects on global health and patients’
lifestyles and psychological wellbeing. Overall, it has been estimated that chronic wounds
alone affect 1–2% of the population in developed countries [1]. This problem is set to
worsen as the incidence of chronic wounds is correlated with age and other age-related
co-morbidities, such as diabetes. In European Union countries, wounds have an annual in-
cidence of 4 million people [3]. In a study carried out across several countries, 65% of which
were European, chronic wound prevalence was found to be 1.67 per 1000 individuals [4].
Chronic wounds are also deadly: a study by Eaglstein and co-workers [5] reported that
chronic wounds, such as diabetic ischemic ulcers, diabetic foot ulcers, and lower extremities
chronic wounds, have mortality rates of 52%, 49%, and 28% respectively, comparable with
those of several types of cancer.

The economic implications are also relevant. In developed countries, chronic wound
care costs account for 1–6% of total healthcare expenditures [6].
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Burns are another type of concerning wound. According to the World Health Or-
ganization, 180,000 people die every year because of burn injuries, most frequently in
low-income countries [7].

In the United States alone, the annual cost of acute and chronic wound care ranged
from USD 28.1 billion to USD 96.8 billion in 2018 [8]. This also implies massive and
indirect economic burdens correlated with decreased productivity, early retirement, and
wage losses [9].

The severity and mortality of wounds are also expected to increase due to their
exposure to antimicrobial-resistant pathogens. A study by Sen [8] reported how wound
infections already cause 75% of post-operative deaths. As far as burns are concerned,
while the mortality rate has decreased over the years due to improvements in medical
techniques (such as fluid resuscitation, nutritional support, early excision of the wound
eschar, and skin grafting) [10], infection and sepsis are still common and often fatal: 51% to
75% of patients who experience a major burn die [10,11]. This fact is, in part, attributed
to impaired immune system functioning [12]. With the rise of antimicrobial resistance
(AMR), treating wound infections is becoming increasingly harder [13]. It has already been
discovered that 90% of the S. aureus strains isolated from wounds worldwide in nosocomial
environments are resistant to penicillin [14]. S. aureus, E. coli, and P. aeruginosa are the most
common pathogens isolated from infected wounds, showing very high rates of single- or
multi-drug resistance [15,16].

This calls for advanced wound dressing solutions. In time, the functions and features of
wound dressings have evolved from passive protection of the injured site from the external
environment to active involvement in the healing process, mediated by the ability of these
advanced materials to interact, both physically and biochemically, with the surrounding
tissues and environment, for instance, by triggering cellular proliferation pathways or by
eradicating bacterial infections [17,18]. In these regards, bionanocomposites (BNCs) are
gaining increasing attention owing to their promising biomedical properties. BNCs are
composite materials whose matrix is constituted by biomacromolecules, i.e., nature-derived
macromolecules with bioactive features and the ability to form films, hydrogels, or fibres.
In fact, traditional generic wound dressings, such as sterile gauzes, have been replaced
over time by new dressings with enhanced ability to promote healing and that are targeted
for specific wound types [19]. For instance, foams and hydrogels have been developed
for highly exudating wounds, while hydrocolloids are recommended to support wound
debridement. Films are preferred when flexibility, transparency and gas permeability are
important, such as in the case of burns [20,21]. Biomacromolecules are very well suited
for the fabrication of these devices, and intense research activity is undergoing on the
development of films, hydrogels, and fibrous membranes. In many cases, these molecules
are also very abundant and easy to source, which makes them a competitive alternative to
petroleum-derived compounds, also from an economic standpoint. The dispersed phase of
BNCs is instead represented by nanomaterials, materials which have at least one of their
dimensions in the nanoscale, i.e., below 100 nm. Under this condition, new properties are,
disclosed enabling unprecedented applications. One of these properties is the much higher
surface-to-volume ratio and specific surface area compared with that of bulk materials. As
materials interact with the outer environment through their surface, a larger surface means
a larger number of interactions and a larger surface energy, and, therefore, greater reactivity
and efficacy in several applications [22]. The specific surface area can also be largely
increased in the presence of pores, which can then be filled with other substances, such
as drugs or antibiotics for targeted and controlled delivery. Another important property
is the reduced size, which allows nanoparticles (NPs) to diffuse more effectively in the
extracellular environment and to get in contact with—or, in some cases, to penetrate—the
surrounding cells [22].

During the last few years, many nanomaterials have been obtained, designed, and
studied for wound-healing and antimicrobial applications. For the latter, a major parting
line can be drawn between carbon-based and metal-based nanomaterials. The first group
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includes carbon nanomaterials, such as carbon quantum dots, carbon nanotubes, graphene,
and fullerenes, which have all shown antimicrobial and skin regeneration-promotion
effects [22,23]. Lipid and polymer NPs can also be included in this category, although they
are mostly applied as carriers in drug delivery. The second group includes metal NPs—
namely silver and gold NPs—and metal oxide NPs, such as iron, copper, titanium, and zinc
oxide NPs. These NPs have been proven to be effective in eradicating multi-drug-resistant
species and in promoting wound healing and re-epithelialization [22,23]. Nanoparticles are
frequently embedded into BNC hydrogels, foams, and films as a strategy to leverage their
wound-healing and antimicrobial properties [24], but they can also be used to coat suture
materials [25] or be applied in the form of gels and stabilised dispersions [26] or injectable
aqueous suspensions [27]. Among these, nanostructured zinc oxide (nZnO) has shown
anticancer [28,29], antimicrobial, anti-inflammatory [30], and anti-diabetic properties [31],
as well as applications in bioimaging [32], even though some biocompatibility concerns
have been recently brought to the attention of the scientific community [33]. Contrary to
other antimicrobial materials, such as gold, silver, or titanium dioxide NPs, nZnO shows
lower toxicity [23] and acts as a supply of zinc, which is an essential element for the human
body owing to its role in the proper functioning of metabolism, immune system, and
wound healing processes [34–36].

For all these reasons, despite some concerns existing around the toxicity of nanopar-
ticles for human health [37], nZnO has great potential to positively impact wound care.
Many nanocomposite films, patches, membranes, and bandages have been designed using
nZnO as a filler, and the number of research studies addressing the antimicrobial uses of
these materials has been rising steadily over the past 10 years, as shown in Figure 1.
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The present review considers the work conducted since 2012 to gain deep insights into
the latest advancements in the development of antimicrobial nZnO-BNC films, with the
goal of identifying common traits and emerging opportunities, as well as gaps and open
questions in research. Films have been considered with particular attention as they do not
experience the drawbacks of hydrocolloids and some hydrogels (wound maceration and
bad smell) or foams (painful removal and excessive drying of the wound bed) [23]. Previous
works have addressed this topic with a particular focus on the most diffused natural
polymers used as matrixes in the fabrication of antimicrobial nZnO-BNCs, such as chitosan,
alginate, and cellulose [38]. However, other materials are being increasingly used, and more
sophisticated combinations of polymers and fillers are being investigated. Similar efforts in
this direction have been made by Zahran et al. [39] for nanocomposites containing metal
NPs, mostly silver NPs. In this study, biomacromolecules, such as cellulose, starch, chitin,
chitosan, dextran, gelatin, alginate, pectin, guar gum, rubber, and fibrin, were considered.

Special attention here is given to the relationships existing between the matrix and
the nZnO filler as key factors in the successful design of nanocomposite films, and to their
influence on the resulting physico-chemical and antimicrobial properties.

2. Biomacromolecules for Wound Dressings
2.1. Overview

As mentioned in the introduction, biomacromolecules are particularly promising
for the fabrication of novel, more effective antimicrobial wound dressings. Contrary to
the petroleum-derived synthetic polymers, traditionally utilised, biomacromolecules are
more biocompatible and conductive towards re-epithelialization, and can be easily and
sustainably processed into films and hydrogels [40]. When these properties are combined
with the antibacterial and wound-healing action of nZnO, new biocomposite materials
emerge. Biocomposites provide better conditions for injured tissues to re-grow while
preventing infections, decreasing healing times, and improving patients’ health. Many
biomacromolecules, alone or in a blend, have been used for nZnO-BNC film and dressings
obtaining different properties and peculiarities. An overview has been reported in Table 1.

Table 1. Overview of biomacromolecules for wound dressing films.

Biopolymer Properties Refs.

Polysaccharides

Alginate Biocompatible, non-toxic, non-immunogenic, biodegradable, antimicrobial, and haemostatic [39,41–43]
Chitosan Non-toxic, biocompatible, biodegradable, moisture retentive, and haemostatic [44–48]

Chitosan oligosaccharide Antibacterial, anti-inflammatory, and immune-stimulating [49]
Cellulose Biocompatible, hydrophilic, microporous, transparent, and non-toxic [50–53]

Carboxymethyl-cellulose Biocompatible and biodegradable [54–57]
Carboxymethyl-chitosan Amphoteric and hydrophilic [58–60]

Gum acacia Biocompatible, nontoxic, and water-soluble [61]
Starch Low-cost, biocompatible, biodegradable, easy preparation, and good film-forming properties [62–65]

Carrageenan Water-soluble, and good film-forming abilities and mechanical properties [66–68]
Cellulose acetate Water-insoluble, high transparency, and good mechanical and chemical resistance [69,70]

Cellulose acetate phthalate Hydrophilic and biodegradable [71]
Oxidised starch Low viscosity, and high stability and transparency [64]

Dextran Active in wound healing and controls bacterial growth [39,72]
Chitin Biodegradable, haemostatic, and cytocompatible [73]

β-glucans Immunostimulatory, and biodegradable [74]
Hyaluronic Acid Primary component of connective tissue, safe long-term, and reduces bacterial adhesion [75,76]

Proteins

Collagen High biocompatibility and biodegradability. Bioactive [77]
Keratin Low-cost and highly suitable for hydrogels, but concerns about wastes [78,79]

Fish protein isolate High film-forming ability [80–82]
Gelatin Biodegradable, biocompatible, and cell-recognizable [39,56,81,83–85]

Soy protein isolate Biocompatible, non-immunogenic, non-toxic, low-cost, biodegradable, and highly stable [86]
Silk fibroin Biocompatible, biodegradable, and minimum inflammatory reactions [87]

Among these, some have attracted more attention in the scientific communities, which
can be classified into two major categories: polysaccharides and proteins.
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2.2. Polysaccharide-Based Polymers

Chitin is a natural polycationic polymer of N-acetylglucosamine. It is typically ob-
tained from the cuticles of crustaceans, insects, and cell walls of fungi [88,89]. Chitin
deacetylation produces chitosan, a renowned antimicrobial material [90] that is also ac-
tive against some resistant strains, such as the methicillin-resistant Staphylococcus aureus
(MRSA) [91]. Chitosan is biocompatible, non-toxic, haemostatic, and, thus, frequently used in
biomedicine, also for wound healing [92–95] and the delivery of drugs and biomolecules [96].
Owing to these properties and due to its good processability, it is often mixed with other
polymers, such as poly(ε-caprolactone) [97,98], polyurethane [99], or poly(vinyl)alcohol [100]
to produce advanced wound dressing films, hydrogels, and membranes. It also lends itself
very well for use in new techniques, such as electrospinning [101,102].

Cellulose is a polymer of β-bonded D-glucose units that can be obtained from plants
or synthesised by bacteria [103,104]. It is non-toxic, biocompatible, and biodegradable. It
is water-insoluble and possesses good thermal stability. It is gaining increasing attention,
particularly in its nanostructured forms [105–108], and extensive research exists exploring
drug loading and combination with nanomaterials [109–111]. Gopi and Zhong offered a
wide review of its uses and applications in the medical field, including wound dressing
and drug delivery [104,112]. Here, bacterial cellulose emerged as particularly promising
for the fabrication of films and fibrous mats for wound therapy [113,114]. Several cellulose
derivatives can also be obtained by modifying cellulose molecules with different functional
moieties, such as carboxyl [115] and allyl [116] groups. This allows the manipulation of
key properties, such as hydrophilicity, or enabling its conjugation with drugs or other
medical compounds.

Hyaluronic acid, a glycosaminoglycan, is a component of the extracellular matrix.
It is typically extracted from animal tissues or produced by the fermentation of some
Streptococcus strains [117,118].

Its biocompatibility and hydrophilicity are valuable for the development of biomedical
materials, especially hydrogels [119]. Recently, Graça and coworkers [120] offered a review
of its applications in wound dressings, underlying its highly beneficial role in wound
repair and cell signalling [121,122]. Another review by Ucm focused on the synthesis of
hyaluronic acid by bacteria and its applications—including wound healing [123].

Alginate is a linear co-polymer constituting two monomeric units of D-mannuronic
acid and L-guluronic acid. It shares similar properties [124] with hyaluronic acid, namely
its high biocompatibility and hydrophilicity. Commercial alginate is isolated from brown
seaweeds, and its bacterial production has recently gained interest [125]. Its high water-
absorption capacity has been known for a long time; thus, this biomacromolecule has been
extensively used in the production of wound dressings for high-exudate wounds. Alginate
stimulates macrophages’ activation, supporting the healing process [19]. The abundance of
hydroxyl and carboxyl groups in its molecule provides this polymer with high reactivity,
which is also useful in the design of encapsulation and drug-delivery systems [124]. Its
biocompatibility and printability meet the need for biomaterials for tissue engineering and
modern wound dressings [126–128].

Starch is an abundant, plant-derived polysaccharide composed of α-bonded glucose
units. It is endowed with biodegradability, non-toxicity, and film-forming ability. It can be
processed with simple extrusion or solvent casting methods to obtain films [129], as well as
with electrospinning [130].

β-glucans are typically found in the cell walls of fungi, yeasts, algae, and plants. They
are a heterogeneous group of glucose polymers with a common structure comprising a
main chain of β-(1,3) and/or β-(1,4)-glucopyranosyl units, along with side chains with
various branches and lengths.

They are known for their immunostimulatory properties [131] and they have been
shown to stimulate collagen deposition, fibroblasts and keratinocytes migration, and
overall reepithelialisation [132–134]. Therefore, these polysaccharides have been recently
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researched to produce advanced dressings, such as wet gels and nanofibers for hard-to-treat
and chronic diabetic wounds, as well as for antimicrobial films [74,135,136].

2.3. Protein-Based Polymers

Protein-based biopolymers, such as collagen and gelatin [83,137], are also very popular.
Collagen is the main constituent protein of the extracellular matrix and is extracted from
animal skin and hides. It is a source of many bioactive peptides. It favours tissue regenera-
tion, has good moisture-retention properties, and has been used for the controlled release
of bioactive molecules [40]. Several collagen films have been described in the literature for
wound healing and tissue engineering [138–140]. Gelatin is a heterogeneous mixture of
peptides derived from collagen. It has good film-forming ability, transparency, and ease
of combination with functional and reinforcing additives or other biopolymers [141,142].
It has also been used to fabricate scaffolds [143,144], aerogels [145], and antimicrobial
nanofibrous composites [146].

Keratin is a fibrous protein that is usually extracted from feathers, nails, horns, or
wool [147]. This has raised concerns around the extraction methods and the environmental
issues related to the accumulation of waste keratin-containing biomasses [148,149]. It has
been extensively researched for the fabrication of films, hydrogels, and fibres, with uses
in wound healing, drug delivery, and tissue engineering owing to its biocompatibility,
biodegradability, and self-assembly properties [150,151].

Whey proteins are biocompatible and biodegradable byproducts of the dairy industry
and are mostly used as food additives and supplements. Their excellent film-forming ability
and gelation properties have been extensively investigated and used for the formulation
of edible films and particles for the delivery of nutraceuticals. The combination of whey
protein isolate (WPI) with nZnO has been described in a previous study [152].

3. Nanostructured Zinc Oxide (nZnO)

As mentioned in the Introduction section, nZnO has shown many promising biomedi-
cal properties, such as anticancer, antibacterial, antifungal, antidiabetic, and anti-inflammatory
effects, and has been used for imaging and drug delivery. Owing to the extensive literature
and review works available on nZnO [36,153,154], this section aims to briefly recall its main
characteristics, with special attention towards its antimicrobial properties.

3.1. Preparation Methods

Nano-ZnO can be produced through a wide variety of techniques. such as ther-
mal evaporation [155], sol-gel [156,157], mechanochemical [158], sonochemical [159], and
microfluidics methods [160]. Microwave-assisted syntheses [161–164] are also gaining in-
creasing attention due to the shorter reaction times and better size and morphology control
with respect to conventional chemical routes. Wet chemical precipitation is, however, the
most common method for nZnO in nanocomposite preparation, as it is often cheaper, sim-
pler, and yields higher amounts of NPs. It involves the reaction of a zinc precursor—usually
zinc nitrate [58,165], zinc sulphate [166], zinc chloride [167], or zinc acetate [66,157]—with a
base solution—such as KOH or NaOH. The reaction takes place under very mild conditions,
typically at ambient pressure and constant temperatures up to 80 ◦C [168]. The precipitate
is subsequently collected, washed, and finally dried or calcinated [169].

Recently, a growing trend in nanomaterials and nZnO synthesis has been the use of
green compounds, such as plant extracts [170–180], to replace NaOH and KOH as reducing
and capping agents. The extracts that can also functionalise NPs with phytochemicals
possessing anti-inflammatory, antioxidant, or antimicrobial properties, further mitigating
potential toxicity issues.

Ultimately, the selection of reagents and synthesis parameters shapes the final product
in multiple ways. Parameters, such as the reaction or calcination temperatures, pH, or
stirring rate, have all been proven to influence the final size and shape of the nanoparticles,
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as well as their surface charge, crystallite size, or porosity [156,181]. Figure 2 below
summarises how and where these factors are involved in the preparation process.
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3.2. Antimicrobial Mechanisms

Nano-ZnO fulfils its antimicrobial action through three main mechanisms:

• Release of Zn2+ ions. These ions bind to the thiol groups of bacterial respiratory
enzymes, compromising their activity [36]. They have also been found to inhibit active
transport across the plasma membrane and amino acid metabolism [153] in bacteria.

• Production of Reactive Oxygen Species (ROS). Zinc oxide is a direct, 3.3 eV-bandgap
semiconductor. Therefore, electron–hole pairs can be created across its conduction and
valence bands upon exposure to UV radiation. In the presence of water and oxygen
molecules, these charge carriers subsequently trigger redox reactions at the surface
of the material, leading to the production of ROS, such as hydroxyl radicals OH·,
hydrogen peroxide H2O2, and superoxide anion O2

−. The high reactivity of these
species is known to be responsible for the fatal oxidative damage and disruption of
DNA, proteins, and lipids, ultimately leading to cell death [153,154].

• Physical interactions. ZnO NPs accumulate in the proximity of bacterial cells. The
contact is promoted by electrostatic interactions. In fact, bacterial cells are negatively
charged, while ZnO NPs typically possess a positive charge in aqueous suspensions.
In turn, this causes membrane depolarization and deformation, as well as abrasion
caused by nZnO’s sharp surface edges, ultimately leading to cell death [153]. A
graphical representation of these three mechanisms is offered in Figure 3.
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As a rule of thumb that emerged over years of experimental studies on the antimicro-
bial activity of zinc oxide, nZnO tends to be more effective against Gram-positive species
than Gram-negative ones [183,184]. This is attributed to the structural differences in cell
walls that characterise the two types of bacteria. Gram-positive bacteria have a thick layer
made of peptidoglycans surrounding the cellular membrane. In Gram-negative bacteria,
the peptidoglycan layer is thinner, but it is, in turn, surrounded by an additional phos-
pholipid outer membrane. The outer membrane is often considered to be responsible for
the highest resistance of Gram-negative bacteria to nZnO, as it is hypothesised to act as a
shield against Zn2+ and ROS. It has also been found that small concentrations of ZnO can
actually enhance the growth of Gram-negative bacteria [153]. This is a crucial aspect to be
considered; on one hand, it restricts the potential use cases of this nanomaterial; on the
other hand, it offers a clear direction for improvement.

It is also important to highlight that the features of nZnO determine the contribution
of each of these mechanisms to the final antimicrobial action. In other words, nZnO—and
nanomaterials more in general—can be designed to maximise its efficacy.

In fact, factors such as the selection of reagents or the stirring rate [156] ensure a good
degree of control of the final characteristics of the NPs, leading to a wide variety of sizes
and shapes, such as nano-spheres [157], nano-rods [178], nano-platelets [185], and nano-
flowers [179]. These morphological features, together with the specific surface area (SSA)
and surface electric charge, have all been found to contribute to nZnO antimicrobial activity,
as reviewed by several authors [38,153,175,180]. For instance, a smaller size and a spherical
shape have been found to increase NPs’ solubility, thus boosting the release of Zn2+ ions.
Similarly, the type of facets exposed—e.g., (100) versus (111)—have different antimicrobial
activities and can thus be considered when developing new types of nZnO [153].

Here, it is crucial to highlight that toxic effects might also arise against eukaryotic
cells. As for fungi, similar mechanisms to those described above for bacteria are considered
responsible for the antifungal activity of nano-ZnO [45,186]. Several studies have examined
the cytotoxicity of nZnO to human cells [33,158,187]. They attributed the toxic effects to
the upregulation of the p53 protein pathway in the presence of nZnO, with the subsequent
induction of cellular apoptosis. This is considered a response to the oxidative stress exerted
on DNA by ROS, which have been described by several authors as the main toxicity driver
in mammalian cells, together with Zn2+ release.

Now that the main features of nZnO and biomacromolecules have been recalled in
relation to their antimicrobial and wound-healing applications, it is time to explore their
synergies when they are combined to form BNCs.

4. Biomacromolecule—nZnO Composites
4.1. Preparation Methods

Several preparation processes exist for nZnO-BNC films or hydrogels. Zahran et al. [39]
offered a useful overview of the preparation methods for polymer–nanoparticle nanocom-
posites. Following that classification, two options are found to be most common for
nZnO-BNCs, namely in situ and ex situ methods.

In situ methods consist of mixing a suspension of nZnO with a monomer solution or
polymeric chain suspension [188]. After sufficient homogenisation of the two components,
the BNCs can be obtained by entangling or crosslinking the polymers, or by polymeriz-
ing, reticulating, or gelling the monomers. This can be achieved through the addition of
a polymerization initiator or crosslinking agent [75], or by solvent evaporation. In this
latter case, solvent casting [48,56,65,68,71,84,99,189,190] is the most common technique
to produce composite films. Freeze-drying [41,191,192] is more used for hydrogel mem-
branes and patches, while electrospinning [69,193,194], spin-coating, or electrophoretic
deposition [195] can be applied to obtain fibrous mats.

In situ methods can be used with low-molecular-weight, well-soluble polymers and
facilitate a good dispersion of the filler. They have been successfully used to produce,
among others, gelatin/hyaluronic acid/chitosan [83], cellulose [196], starch [62], and
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keratin [79] composite hydrogels containing nZnO, as well as WPI films [152]. Moreover,
they are the most common methods for obtaining polyurethane–ZnO composite films,
membranes, and coatings, as demonstrated in the dedicated review work conducted
by Rahman [197].

Ex situ methods consist of immersing an already-formed matrix into a nZnO sus-
pension under agitation in order for the nZnO to migrate inside the matrix and to finally
interact with it, either physically or chemically. These methods are relatively simple, but
are limited to highly porous matrixes with good affinity for the suspension medium, and
are capable of significant swelling in that environment. Indeed, poor penetration of NPs in
the core region of the matrix is a typical issue. Ex situ methods have been applied to craft,
for instance, keratin/chitosan [78] hydrogels, or alginate bandages [41].

Several variations of both the above-described methods have been adopted by re-
searchers. In some cases [75,198], for in situ methods, the direct addition of pre-synthesised
nZnO is replaced by the addition of a zinc oxide precursor. This leads to a solution of
monomers and zinc ions, which is then brought to basic pH to favour the simultaneous
formation of nZnO and polymers. Similarly, in some ex situ routes, the preformed matrix
is immersed into a zinc oxide precursor solution [58,64]. This allows Zn2+ ions to diffuse
into the polymeric network before the formation of ZnO. Figure 4 summarises the main
approaches to BNCs’ fabrication.
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Once together, the interaction between nZnO and the matrix is mostly regulated by
hydrogen bonds and by van der Waals interactions [65,71,73,75,80,189,192,199]. This plays
a significant role in shaping the final nanocomposite and its properties. For instance, a
decrease in matrix crystallinity has been reported in several BNCs made from chitosan
or cellulose [50,53,100,158,189,191,200,201]. This has been ascribed to the disruption of
biomacromolecular order caused by nZnO. In fact, these biomacromolecules are rich
in amino and hydroxyl groups, which, upon interaction with (or shielding by) nZnO,
are no longer available to mediate the intermolecular interactions governing the spatial
organisation and subsequent crystallization of the macromolecular chains.

It is interesting to note how an increase in crystallinity has been reported for some
synthetic poly(vinyl alcohol)-based nanocomposites [52,192,202], as well as in composites
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of non-ionic polymers, such as cellulose acetate, poly(butylene-succinate), and poly(lactic
acid) [69,203,204]. In these cases, given the minor contribution of electrostatic phenomena,
the stabilizing effect of nanophase might prevail, facilitating molecular organisation and
triggering heterogeneous nucleation.

Conversely, when nZnO synthesis is carried out within the BNCs’ preparation process
starting from a precursor, either in situ or ex situ, the resulting nanofiller is affected in
several ways. The existence of an already-formed matrix or the presence of monomers or
macromolecules in the solvent can interfere with nZnO formation by acting as capping
agents that constrain the growth of the NPs and regulate their final shape [75,205].

4.2. Mechanical and Functional Properties

Following the above description of preparation methods, we shall now dive into how the
inclusion of nZnO inside a biomolecular matrix translates into new or modified properties.

4.2.1. Mechanical Properties

Mechanical properties are critical for antimicrobial BNCs for wound healing. Inade-
quate mechanical properties can result in low compliance with the skin and in the inability
to stretch or bend according to patients’ movements, as well as in poor protection from
scratches and punctures. They can also limit the suitable production technologies and drive
an increase in the relative costs.

In general, the addition of nZnO typically has a concentration-dependent reinforcing
effect translating into an increase in tensile strength and elastic modulus, accompanied by
a decrease in elongation at break. A 176% enhancement of tensile strength was reported
by Azizi [52] after reinforcing a poly(vinyl alcohol)/chitosan blend film with nZnO and
cellulose nanocrystals. The polyurethane/chitosan film made by Indumathi [99] achieved
a 56% improvement in tensile strength after a 5% w/w nZnO addition. Similarly, a 5%
w/w nZnO loading allowed increases in the tensile strength and the Young’s modulus of a
bacterial cellulose composite film of 42% and 30%, respectively, according to Jebel et al. [53].
Arfat and co-workers achieved a 36% tensile strength increase by adding 3% w/w nZnO to a
fish protein isolate/fish skin gelatin composite film [81]. Similar results have been obtained
by other researchers as well [65,69,80,99,158,190–192,203,206]. The reasons underlying this
reinforcement are ascribed to the ability of nZnO to limit the movement of polymeric chains
by means of physical, chemical, and mechanical interactions. This effect is further enhanced
by a high degree of dispersion of the filler and by a high surface area, which increases by
decreasing the size of the NPs.

On the other hand, a worsening of mechanical properties has been reported in some
cases, occurring above the initial concentration-dependent improvement, at the highest
nZnO contents [71,100,189,207]. In fact, after a critical concentration threshold, the agglom-
eration of nZnO into larger aggregates is triggered, thereby causing a worsened ability to
transmit loads across the composite microstructure. The use of a capping agent wrapped
around nZnO has been shown to mitigate these side effects by preventing agglomeration
and favouring dispersion [56].

Aside from the role of the nZnO content, a weak matrix–filler interaction causes a
decrease in the mechanical properties, where the resulting nanocomposite shows higher
elongation at the break and decreased tensile strength and elastic modulus, as reported by
Kanmani et al. [68] for carrageenan, carboxymethyl cellulose, and agar-based composites ob-
tained in situ via solvent casting. Similar results were obtained by other researchers [66,73,204].
A summary of these findings is offered in Table 2.

4.2.2. Surface Roughness and Wettability

Many of the studies examined in this work found that the incorporation of nZnO
into the matrix usually leads to an increase in the surface roughness due to the presence
of the nanomaterial in the upper layers of the film and at the interface with the external
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environment [80,99]. This has an important impact on another important property, that
is, wettability.

Table 2. Effect of nZnO on the elastic modulus (EM) and tensile strength (TS) of films.

Matrix Type
EM (mPa) TS (Mpa)

nZnO (% wt) Refs.
Pure Filled Pure Filled

Agar 1004.9 109.8 34.6 13.0 - [68]

Carrageenan 1112.1 130.4 44.6 12.3 - [68]

Carboxymethyl-cellulose 20.5 14.0 6.4 5.1 - [68]

Gelatin 1451.2 262.5–344.4 50.1 29.8–33.4 - [56]

Chitosan 1821 3304 12.84 41.73 1–2 [48,189]

Starch 7.8 25.44 4.11 12.73 2–3 [65,207]

Poly(lactic acid)/poly(butyleneadipate-
co-terephthalate 800 970–1220 14.5 16.8–26.9 3 [190]

Bacterial cellulose 93.8 132.11 26.3 45.21 5 [53]

Poly(lactic acid) 3118.8 2610.64 47.78 39.96 3 [204]

Poly(caprolactone) nanofibers 3.70 5.25–3.78 1.40 1.60–0.98 1–6 [194]

Wettability is defined as the affinity of a given surface for a liquid, typically water.
The traditional measure of wettability is the water contact angle (WCA). There is wide
agreement in the community that the addition of nZnO to biopolymeric materials causes an
increase in the WCA, meaning an increase in hydrophobicity [66,68,71,99,190,192,208,209].
One of the causes is, indeed, the increase in the surface roughness, which opposes capillary
forces to the penetration of water droplets into the material. Another cause is the lower
water affinity of nZnO compared with biomacromolecules. A third reason is, in some
cases [192], the enhanced crystallinity of the surrounding matrix: more tightly packed
crystalline phases are more difficult to be penetrated by water. A high water affinity—and
thus a low WCA—is important for wound dressings as it ensures good adhesion to the
underlying tissue. In many cases, it goes in parallel with the ability of the dressing to
absorb wound exudate. Given that nZnO increases the WCA, it could be argued that its
effect is, in fact, detrimental on this important feature of a good dressing. However, the
emergence of a hydrophobic behaviour upon the addition of nZnO, i.e., a WCA greater
than 90◦, is extremely rare. In most cases, hydrophilicity is preserved, as shown in Table 3.

Table 3. Effect of nZnO’s presence on the WCA of different films.

Matrix Type
WCA (deg)

nZnO (% wt) Refs.
Pure Filled

Agar 66.5 68.8 - [68]
Carrageenan 61.6 84.5 - [68]

Carboxymethyl-cellulose 31.6 55.2 - [68]
Gelatin 52.4 62.15 - [56]
Starch 51 43 2–3 [65,207]

Poly(lactic acid)/poly(butyleneadipate-co-terephthalate 82 78.1–88.3 3 [190]
Chitosan-cellulose acetate phthalate 57 81 5 [71]

Cellulose acetate nanofibers 47 124 - [210]

4.2.3. Porosity and Swelling

Porosity is also influenced by the presence of nZnO, and both increases [51,55,75,78]
and decreases [41,53,73] in porosity were reported by authors.
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A high porosity may be beneficial for the swelling ratio (SR)—defined as the percentage
increase in the weight of a specimen after immersion in a liquid medium with respect to the
dry weight. SR has been reported to increase in composite films and hydrogels after the ad-
dition of nZnO [51,55,58,75,79,192]. In addition to a higher porosity, this was also attributed
to the electrostatic charge on the surface of nZnO, which causes ionic osmotic pressure
build-up inside the matrix, thereby inducing higher water uptake to counterbalance it.
However, high concentrations of nanofiller might too-strongly reduce the intermolecular
movements at the basis of the swelling phenomenon—the so-called knot-tying function—
thereby reducing the swelling ratio in some cases [41,43,61,64,73,196,211,212]. Another
reason for this decrease in the swelling ratio of nanocomposites can be the overall lower
water affinity of the system due to the diminished net electrostatic charge of the matrix
caused by the shielding effect imparted by nZnO.

4.2.4. Gas Barrier Properties

Barrier properties to oxygen and water vapour can also be very important for wound
dressings. A very high water permeability might lead to wound dehydration, whereas
limiting oxygen afflux can promote angiogenesis through hypoxia [213].

The diffusion rates of both water and oxygen have been found to decrease with increas-
ing zinc oxide content. Priyadarshi and Negi measured the water-vapour-transmission rate
(WVTR) of chitosan/nZnO films [48]. In their study, the measured WVTR of chitosan films
was 0.0067 g/m2/day, which decreased to 0.0028 and 0.0011 g/m2/day upon the addition
of nZnO in amounts equal to 1% and 2% w/w, respectively. The decrease was attributed to
the occupation of pore volume by the nZnO. Arfat and co-workers studied the properties
of fish protein isolate/fish skin gelatin–ZnO BNCs [81].

The researchers measured a concentration-dependent decrease in water vapour per-
meability (WVP) up to a 3% w/w nano-ZnO loading. At 4% loadings, agglomeration
determined the loss of matrix integrity, thus causing an increase in WVP. In the gelatin/β-
glucan/ZnO nanocomposites prepared by Azari et al. [85], the WVP decreased from
2.15 × 10−8 g m−1 h−1 Pa−1 for neat gelatin films to 1.58 × 10−8 g m−1 h−1 Pa−1 for com-
posite films containing 20% w/w β-glucans and 5% w/w nZnO. The decrease was explained
by an increase in matrix compactness induced by the higher number of intermolecular
interactions, as well as with the higher tortuosity imposed on the path of water molecules.
Peighambardoust et al. [65] found similar results for starch-based BNC films. Furthermore,
the authors found that nZnO was more efficient in decreasing WVP compared with CuO
and Ag NPs owing to its superior dispersibility, which ultimately translated into maximum
path tortuosity. Chu and co-workers [204] measured, instead, an increase in WVP for a
polylactic acid film upon the addition of nZnO. However, a possible explanation for that
can be found in the microstructural changes imparted to the continuous polymeric phase
by the nano-filler that introduced some voids to the matrix, as shown by the SEM images. A
higher water vapour permeability was also observed in the study by Shankar et al. [56], and
was attributed to the higher porosity of the composite in the proximity of the separation
between the gelatin film and the filler phases.

As for oxygen permeability, Indumathi et al. [71] reported a concentration-dependent
decrease in the oxygen transmission rate (OTR) in chitosan/cellulose acetate phthalate/nZnO
films, with a minimum of 1490.43 cm3 m−2 d−1 in correspondence with the highest nZnO
loading of 7.5% w/w. This value was lower than that of traditional synthetic polymeric
films, such as polyethene. The same was observed by Petchwattana et al. in poly(butylene
succinate)/nZnO-BNC films [203]. The presence of nZnO constitutes an obstacle to oxygen
molecules’ migration across the material. Similar results have been observed in numerous
other studies [62,66,68,71,80,158,190,192,207,214].

4.2.5. Ultraviolet Light Barrier

Wound dressings shall also be capable of protecting the injured area from harmful
radiation. As a semiconductor with a band energy gap of around 3.3 eV, ZnO has excellent
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UV-blocking properties. Quantum confinement effects at the nanoscale can also increase the
energy gap, thereby promoting the absorption of even higher frequencies of the spectrum.
This property is always successfully transferred to the nanocomposites [56].

5. Applications in Wound Healing
5.1. Controlled Drug Release

nZnO-BNCs can be a promising platform for the controlled delivery of substances and
agents that stimulate the healing process. In fact, the ability to release drugs loaded into
the matrix is also modified by the simultaneous presence of nZnO in the system, as shown
by Rath [212] for cefazolin-loaded nanofibrous gelatin mats, with incorporated nZnO, for
surgical wounds. When designing a drug-delivery device, a controlled release profile is
highly desired, as well as an optimal drug-loading capacity. Researchers have found that the
nZnO content is an active parameter in optimising the drug-loading capacity [51,196,215]
due to its previously discussed ability to influence the water uptake and swelling behaviour
of the BNCs. In addition to this, drug release is also found to become slower and more
controlled in proportion to the amount of nZnO included in the matrix. This may be due
to the higher tortuosity that the nanofiller imposes on the path of the drug molecules
upon release [197].

5.2. Antimicrobial Properties

As mentioned in Section 3.2, nZnO acts through three main antimicrobial mecha-
nisms. These shall be reconsidered in the context of the BNCs and their application as a
wound dressing.

The matrix can influence the release kinetics of zinc ions or of the nZnO itself, thus
regulating the antimicrobial activity of the BNCs. Jebel et al. [53] and Villanueva and co-
workers [79] examined the release properties of zinc ions or nZnO from bacterial cellulose
(a polysaccharide) and keratin (a protein) BNC film and hydrogel, respectively. In the
first case, it was found that greater release occurred in a medium with pH 8 as opposed
to a medium with pH 4. This was attributed to the higher SR achieved under basic
conditions, which promoted the diffusion of ions and nZnO. In the second case, it was
found that two-month-old samples showed significantly lower release, presumably due to
a slow rearrangement of molecules occurring during ageing and that translated into greater
hindrance to diffusion. Therefore, both the pH and the ageing phenomena of the matrix
were shown to play a role. This is relevant not only for the final application, but also for
the storage conditions and time prior to use.

Release phenomena—of zinc ions or of nZnO particles—have also been investigated
for other BNCs. Sudheesh Kumar [73] showed that 12% of the nZnO contained inside a
β-chitin hydrogel was released after 1 week of immersion in phosphate-buffered saline.
Azizi and co-workers investigated the release of Zn2+ from a poly(vinyl alcohol)-chitosan
BNC film [52] through the inductively coupled plasma technique in water and showed
a sustained and nZnO-concentration-dependent release of zinc ions in water throughout
a period of 8 days, reaching a final concentration of 0.7 mg/L. In a work by Chu [204],
the antimicrobial activity of a polylactic acid/nZnO film against E. coli was measured
immediately after exposure to the samples and after 12 h. Inhibition was only reported
after 12 h and attributed to the gradual release of nZnO from the porous matrix.

In general, the antimicrobial efficacy of nZnO-BNCs increases with the content of
nanofiller [216,217], although in some cases, agglomeration might cause a reduction in the
antimicrobial potential of nZnO [100]. In some systems, such as chitosan-based BNCs, the
matrix itself possesses antimicrobial properties that can act in synergy with nZnO [48].
Carefully tuning the amounts of nZnO loaded in the composite films is important to
maximise the antibacterial action without inducing cytotoxicity side effects to surrounding
dermal cells [33]. As will be shown in the next section, nZnO-BNCs have actually been
shown to be safe in several in vivo studies.

Figure 5 below shows a schematic representation of all these phenomena at work.
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Regarding nZnO, most BNCs tend to have greater inhibitory activity against Gram-
positive bacteria, while a minority are more effective against Gram-negative bacteria; main
results are summarized in Table 4. In particular, around 65% of the studies considered
for the present review, employing the disk-diffusion method, reported a more marked
effect on Gram-positive species. Examples of these nZnO-BNCs include carboxymethyl–
chitosan/ZnO [58], oxidised starch/ZnO [64], cotton–starch/ZnO [63], keratin [79], fish
protein isolate–fish skin gelatin/ZnO [80], bacterial cellulose [50], and many other BNCs ob-
tained from either proteins or polysaccharides [47,48,85,194,200,207,210,218–220]. Similar
to the case of bare nZnO, also in this case, the lower effect against Gram-negative bacteria
is attributed to the lipopolysaccharide outer membrane covering their thin peptidoglycan
layer, which would protect them from the antimicrobial species released by the nano-oxide.

On the other hand, nZnO-BNCs that are more effective against Gram-negative species
than Gram-positive species include hyaluronic acid/nZnO [75] and chitosan/ZnO
BNCs [83,100,166,189]. The reported results are attributed to the fact that the thicker pep-
tidoglycan layer of Gram-positive bacteria is more difficult to penetrate by antimicrobial agents.

However, no sufficient evidence has been found to correlate the differences in the
experimental conditions or in antimicrobial systems with these asymmetric results. One of
the main reasons might be found in the use of different bacterial species and strains in these
studies, which could have different susceptibilities to antimicrobials. Ahmed et al. [101]
tested the antimicrobial efficacy of a chitosan–poly(vinyl alcohol) nanofibrous blend against
E. coli and S. aureus, both in the presence and in the absence of nZnO. The results of
the disk-diffusion method for the composite blend showed comparable inhibition zones
of 20.2 ± 1 mm and 21.5 ± 0.5 mm, respectively, while the inhibition zones of the neat
chitosan-poly(vinyl alcohol) blend were 14 ± 0.5 mm and 5 ± 0.5 mm, suggesting that the
matrix may play a role in complementing the weaker effect of nZnO against Gram-negative
bacteria. This is supported by several studies on the ability of chitosan to disrupt the Gram-
negative cell membrane by means of electrostatic interactions [221–223]. Chitosan matrixes
are indeed the most frequent among the abovementioned studies reporting greater activity
against Gram-negative bacteria [83,100,166,189]. Similar results can be found in [200],
which shows how chitosan-only films have greater antimicrobial activity against E. coli than
against S. aureus. Data in [71] showed instead that chitosan-only films were more effective
against S. aureus than against E. coli in an analogous disk-diffusion test, even though
the chitosan used for film preparation had the same molecular weight in both studies
and comparable deacetylation degrees. However, neither of the two studies reported the
S. aureus and E. coli strains used, which might have explained the different results.

To elucidate the role played by the matrix, Kanmani and Rhim [68] prepared three
different BNCs via an in situ method combining the same type of nZnO with three matrixes,
namely agar, carrageenan, and carboxymethylcellulose. The matrixes altered the final
aggregation and dispersion of the nanofiller. Additionally, the agar/nZnO composite was
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found to be less transparent to ROS-inducing UV light. The carrageenan/nZnO composite
exhibited the lowest moisture content and water vapour permeability. The differences in
these three matrixes did not result in any significant relative differences in the antimicrobial
activity of the nanocomposites against the pathogens E. coli O157:H7 ATCC 43895 and
L. monocytogenes ATCC 1531. However, Gram-positive L. monocytogenes was always found
to be more susceptible to the BNC than E. coli.

On the other hand, to evaluate the role of morphologically different ZnO nanostruc-
tures coupled with the same matrix, Shankar et al. [56] tested nZnO obtained from different
precursors in the same gelatin matrix against E. coli (Gram-negative) and L. monocytogenes
(Gram-positive). Additionally, in this case, no significant difference in antimicrobial ef-
ficacy was observed, even though it could be noticed that the nZnO obtained from zinc
acetate was slightly more effective against L. monocytogenes than the nZnO obtained from
zinc nitrate.

These studies confirm that BNCs are effective against a wide variety of bacterial strains.
This is fundamental to prevent wound infection and subsequent delayed or impaired
healing, with potentially fatal consequences for patients. Still, many questions remain
open about their actual mechanism of action. Moreover, it shall be noted here that most of
the antimicrobial studies conducted did not test the BNCs against biofilms, which are the
most common form in which bacteria are found in wounds [224]. This stands as another
important gap that research should address to make a significant leap forward. Gaining
insights into these aspects will, therefore, make a great contribution to a more rational
design of better solutions. Additionally, research is also advancing to answer another
important question: are BNCs effective in healing wounds?

Table 4. Antimicrobial efficacy of different nZnO-BNCs against different strains measured either via
disk-diffusion tests or end-point assays.

Matrix Type nZnO (% wt) Test Type * Tested
Microorganisms Test Results ** Ref.

Polyurethane/chitosan with mahua oil 5 Disk diffusion (10) S. aureus 20 [99]E. coli 25

Chitosan/Poly(vinyl alcohol) 5 Disk diffusion

S. aureus 14
[100]E. coli 17

C. albicans 2
A. niger 2

Gelatin/hyaluronic
acid/chitosan and asiatic acid

- Disk diffusion (3) S. aureus 4.9 ± 0.6 [83]E. coli 5.3 ± 0.2

Alginate 5 Disk diffusion (13) MRSA 15 ± 2 [41]

Chitosan 2 End-point assay B. subtilis 3 mg/mL [48]E. coli 6 mg/mL

Bacterial cellulose - Disk diffusion (20)
E. coli 27± 0

[50]P. aeruginosa 25 ± 1
S. aureus 28.6 ± 1.15

C. freundii 26 ± 0

Chitosan–cellulose 10–30 (% w/v) Disk diffusion S. aureus 13.75 ± 1.50 [51]T. rubrum 12.00 ± 1.82

PVA/chitosan/CNC 5 Disk diffusion S. aureus 6.3 [52]S. choleraesuis 4.9

Bacterial cellulose 5 Disk diffusion (5) S. aureus 11.8 [53]E. coli 5.6

Carboxymethylcellulose - Disk diffusion (10)
S. aureus 13

[54]B. subtilis 16
P. aeruginosa 20

E. coli 16

Gelatin
-

End-point assay
L. monocytogenes 1 LogCFU/mL

after 12 h [56]
E. coli c.a. 5.3 LogCFU/mL

after 12 h

Carboxymethylchitosan
-

End-point assay
S. aureus 99% reduction in

viability after 4 h [58]
E. coli 99% reduction in

viability after 6 h
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Table 4. Cont.

Matrix Type nZnO (% wt) Test Type * Tested
Microorganisms Test Results ** Ref.

Chitosan–carboxymethyl
cellulose–oleic acid 2 Disk diffusion (4) A. niger 30.10 ± 1.50 [59]

Gelatin-chitosan nanofibers 5 Disk diffusion (12)
E. coli 25.06 ± 0.24

[84]S. aureus 33.13 ± 0.67
P. aeruginosa 12.95± 0.18

Gelatin/β-glucan - Disk diffusion (12)
S. typhimurium 13.2 ± 1.72

[85]E. coli 15.0 ± 1.52
S. aureus 17.0 ± 2.10

P. aeruginosa 14.2 ± 1.32

Gum acacia/poly(acrylate) - Disk diffusion E. coli 32 ± 0.7 [61]

Hyaluronic acid - Disk diffusion (6) E. coli 19 [75]S. aureus 11

Methacrylated hyaluronic
acid/elastin-like polypeptide 0.2 End-point assay MRSA 28.3 ± 4.7 CFU [76]

Keratin 5 Disk diffusion (5) E. coli 7.7 ± 1 [79]S. aureus 13.5 ± 1.3

Sago-starch 5 Disk diffusion S. aureus 80 mm2 [62]

Oxidised starch - Disk diffusion (5) S. aureus 100% inhibition [64]E. coli 8–11 mm

Carrageenan
-

End-point assay
L. monocytogenes 9 LogCFU/mL

after 12 h [66]
E. coli 0 LogCFU/mL

after 12 h

Chitosan/cellulose/acetate phthalate 5 Disk diffusion (10) S. aureus 23 ± 0.35 [71]E. coli 24 ± 0. 47

Poly(lactic acid) - End-point assay E. coli 3.31 LogCFU/mL
after 12 h [204]

Poly(vinyl alcohol)/chitosan 1 Disk diffusion (20) S. aureus 26 [192]E. coli 25

Poly(caprolactone) nanofibers 5 Disk diffusion (6) E. coli 8.76± 1.2 [194]S. aureus 9.98± 0.6

Chitosan - End-point assay E. coli 2.5 ± 0.421 × 107

CFU/g [189]
S. aureus 9 ± 0.367 × 107

Regenerated bacterial cellulose 2 Disk diffusion (15) E. coli 41 [191]

Cellulose - Disk diffusion S. aureus 10.40 ± 0.50 [196]T. rubrum 9.20 ± 0.20

Starch 5 End-point assay E. coli ~65% inhibitory rate [207]S. aureus 100% inhibitory rate

Chitosan–cellulose - Disk diffusion S. aureus 13.75 ± 1.50 [51]T. rubrum 12.00 ± 1.82

Gelatin nanofibers 3 Disk diffusion (10) S. aureus 27 ± 1 [212]

Hydroxyethylcellulose 0.2 End-point assay E. coli 60.2% inhibition [225]S. aureus 91.5% inhibition

Poly(lactic acid)/acetylated
cellulose nanocrystals

5 End-point assay
S. aureus 100% growth

inhibition rate [226]
E. coli 100% growth

inhibition rate

Carboxymethylcellulose - Disk diffusion (5) E. coli 20 ± 2 [227]S. aureus 28 ± 2

Chitosan/poly(vinyl alcohol) nanofiber - Disk diffusion (15)
E. coli 20.2 ± 1.0

[101]B. subtilis 15.5 ± 0.8
S. aureus 21.5 ± 0.5

P. aeruginosa 21.8 ± 1.5

Cellulose/chitosan nanofibers 5 Disk diffusion (12)
E. coli 25.06 ± 0.24

[228]S. aureus 33.13 ± 0.67
P. aeruginosa 12.95 ± 0.18

Ultrasonicated poly(lactic acid) 1 Disk diffusion (10) E. coli 21.17 ± 0.07 [229]S. aureus 18.13 ± 0.08

Bacterial cellulose - Disk diffusion (6)
E. coli 0

[230]B. subtilis 4 ± 0.13
C. albicans 0

* For disk-diffusion tests, the number between parentheses indicates the diameter of the disk reported in the
reference study, expressed in millimetres. ** For disk-diffusion tests, the number indicates the diameter of the
inhibition zone, expressed in millimetres unless otherwise specified.
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5.3. Wound-Healing Properties

Zinc oxide and biomacromolecules have been combined in different ways to promote
wound healing. Blinov and co-workers formulated different gels by combining nano- and
micro-ZnO with several biomacromolecules, namely maltodextrin, agar–agar, methylcel-
lulose, amylopectin, and hydroxyethylcellulose [231]. The latter was found to be optimal
for gel preparation and was used to treat burns on mongrel white rats, either alone or in
combination with micro- or nano-zinc oxide. The researchers found that adding micro-ZnO
to a hydroxyethylcellulose gel could boost the healing rate of burns in rats by 16.23%
compared with the sole polysaccharide gel. These improvements increased to 24.33% when
micro-ZnO was replaced with nZnO, confirming the promising properties of this oxide in
its nanostructured form.

Biomacromolecules and nZnO have also been used to functionalise cotton pads, as
reported in Hasanin [232]. Cotton pads functionalised with chitosan, glycogen, and nZnO
led to a 99.73 ± 0.24% reduction in wound area in Wistar rats after 17 days, compared with
an 89.14 ± 0.97% reduction in the control group treated only with a cotton pad.

In 2013, Kumar et al. [73] tested the wound-healing potential of a β-chitin hydro-
gel/nZnO composite bandage as a potential solution for different types of infected wounds
with large volumes of exudate. Bandages were tested on Sprague–Dawley rats, facilitating
a 100% skin wound closure after 3 weeks, together with good antimicrobial activity and
collagen deposition.

Rakhshaei and Namazi [233] prepared a nanocomposite hydrogel based on car-
boxymethyl cellulose filled with nZnO-impregnated MCM-41 mesoporous silica, loaded
with tetracycline, a broad-spectrum antibiotic. In addition to the enhancement of the antimi-
crobial properties against E. coli brought by nZnO, a cytotoxicity test was carried out using
adipose tissue-derived stem cells. The tests showed 63% cell viability after 24 h of the nZnO-
containing hydrogels, compared with 81% in nZnO-free hydrogels. However, the viability
continued increasing for the next 7 days in both cases. Similar results were obtained by
Khorasani et al. [192] for a heparinised nZnO/poly(vinyl alcohol)/carboxymethyl cellulose
hydrogel tested on mouse fibroblast cells (L-929). These results led to the conclusion that
the BNCs were, in fact, biocompatible.

Along the same line, Raguvaran et al. [234] demonstrated that embedding nZnO into
sodium alginate–gum acacia hydrogels yielded remarkably lower cytotoxicity than the bare
nano-oxide while retaining good wound-healing properties. In fact, the hydrogel matrix
was able to effectively reduce the contact between nZnO and the cells, and to control Zn2+

release. This is reassuring evidence, considering the existing concerns about the toxicity
of nZnO.

Burn wounds on Bagg’s albino (BALB) mice were treated with bacterial cellulose/nZnO
composites by Khalid et al. [50], who reported wound-healing activity comparable to that
of a commercial silver sulfadiazine cream. Histopathological analyses revealed regenerated
epithelium in the wound beds treated with the BNC. After 15 days, the average wound
area was 98.3 ± 7.6 mm2 after treatment with the BNCs, compared with 143 ± 7.5 mm2 for
the bacterial cellulose dressing alone and 66 ± 5.7 mm2 for the positive control.

In a similar study, re-epithelialisation, dense keratinocytes proliferation, and organised
fibrous connective tissue were observed by Lu and coworkers [44] after wound treatment
with a chitosan/nZnO composite. The composite performed better than a commercial ZnO
ointment gauze. Promising results were also obtained by Amhed and co-workers [101] on
diabetic rabbits treated with an electrospun chitosan/poly(vinyl alcohol) nanofiber mat
loaded with nZnO. The BNC induced a 44.8 ± 4.9% wound contraction by day 4, whereas
the ZnO-free mat only led to a 22.5 ± 3.0% contraction.

6. Conclusions

In the present review, the overview of findings clearly shows the promising role of
BNCs containing nZnO in wound-healing applications. It provides an extensive examina-
tion of nZnO-BNCs’ preparations and applications, showing how biomacromolecules and
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nZnO interact based on their type and on the preparation processes employed, and how
such factors determine their final properties. At the same time, this work highlights the
main challenges to be addressed in order to develop these materials to an advanced stage.
Among the main concerns, the comprehension of the antibacterial mechanism, influenced
by different variables, has to be carefully investigated. To this end, the chosen antimicrobial
test protocol, as well as the bacterial strains tested, are fundamental. For instance, the
presence of an outer membrane in Gram-negative bacteria is likely not sufficient to provide
satisfactory answers to the different results reported in antibacterial tests.

Gaining a deeper understanding of all these aspects through an extensive review is
essential to enable the scientific community to cooperate and work towards better and
more effective wound therapies. A fundamental aspect is the development of new and
affordable medical devices that are able to improve and accelerate the wound-healing
process, particularly in patients affected by burns or chronic wounds. In fact, among
the skin wound types, burns or chronic wounds imply long hospitalization because they
are often worsened by antimicrobial-resistant pathogens. These kinds of wounds have
to be treated with dressings characterised by good water retention, gas permeability,
flexibility, and antibacterial action, such as nZnO-BNCs dressings. The vast range of
biomacromolecules and types of nanostructured zinc oxides, the ease of fabrication, and
the possibility of tuning properties, such as the swelling ratio, stiffness and elongation,
permeability, and antimicrobial action, offers unprecedented opportunities to craft targeted
solutions and to deliver significant progress to wound care.
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