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Abstract 

In this work, we present the Gaussian Class-Conditional Simplex (GCCS) loss: a novel approach for training deep 
robust multiclass classifiers that improves over the state-of-the-art in terms of classification accuracy and adversarial 
robustness, with little extra cost for network training. The proposed method learns a mapping of the input classes 
onto Gaussian target distributions in a latent space such that a hyperplane can be used as the optimal decision sur-
face. Instead of maximizing the likelihood of target labels for individual samples, our loss function pushes the network 
to produce feature distributions yielding high inter-class separation and low intra-class separation. The mean values 
of the learned distributions are centered on the vertices of a simplex such that each class is at the same distance 
from every other class. We show that the regularization of the latent space based on our approach yields excellent 
classification accuracy. Moreover, GCCS provides improved robustness against adversarial perturbations, outperform-
ing models trained with conventional adversarial training (AT). In particular, our model learns a decision space that 
minimizes the presence of short paths toward neighboring decision regions. We provide a comprehensive empirical 
evaluation that shows how GCCS outperforms state-of-the-art approaches over challenging datasets for targeted and 
untargeted gradient-based, as well as gradient-free adversarial attacks, both in terms of classification accuracy and 
adversarial robustness.
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1  Introduction
Over the course of the last few years, deep learning has 
been applied to several multimedia, scientific, and indus-
trial applications thanks to its ability to generalize well 
over unseen data. The performance of these techniques 
has reached similar or even greater accuracy levels than 
humans in multiple and complex visual and classifica-
tion tasks [1, 2]. More recently, deep networks have also 
shown remarkable performance at learning complex 
mappings for image translation and segmentation [3–5]. 

However, the ever-growing use of neural networks in our 
society raises serious concerns in the matter of security, 
as they can be targeted by malevolent adversaries.

In particular, many barriers affect the use of deep neural 
networks in applications where security is of key impor-
tance, such as medical diagnostics and autonomous driv-
ing [6, 7]. One of the most severe threats to deep learning 
is represented by adversarial perturbations, a collection 
of methods that are designed to interfere with neural net-
works’ input data to produce undesired outputs, shift the 
expected outcome, or more in general cause algorithm 
malfunctions and performance reductions. This hap-
pens in the face of modifications that are very difficult to 
detect, to the extent that they are often undetectable to 
the human eye.
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Lately, numerous methods have been devised to apply 
successful adversarial perturbations [8, 9]. Against such 
techniques, neural networks can be considered unreliable 
when employed in applications involving security and 
safety. Despite many solutions have been proposed, the 
community has not yet been able to establish a conclu-
sive defense mechanism against the wide range of adver-
sarial perturbations. In particular, recent works such as 
[10–13] consider the importance of performing correct 
evaluations of adversarial attacks and defense algorithms, 
introducing a rigorous benchmark method to evaluate 
adversarial robustness on image classification tasks and 
to produce certified defenses against adversarial attacks. 
The main factor hindering the robustness of deep net-
works is that the learned boundaries in which the feature 
space is partitioned are highly complex and non-lin-
ear. Works such as [14, 15], specifically addressing this 
problem, observed that most of the mass of data points 
is actually positioned very close to the learned decision 
boundaries, in such a way that the robustness of the clas-
sifier is heavily affected by adversarial perturbations. 
Among the most widespread techniques employed for 
improving robustness figures adversarial training [16], 
which consists in augmenting with adversarial samples 
the training data fed to the network, also when working 
with large datasets [17].

However, adversarial training is a very time-consuming 
process. To generate an adversarial image, each stochas-
tic gradient descent (SGD) iteration requires multiple 
gradient computations in addition to those needed to 
update the network parameters. On medium or large 
datasets such as ImageNet, CIFAR-10, and CIFAR-100, 
this is a burdensome task. To this end, several alterna-
tives have been developed. Some recent works include 
[17, 18], where authors study ensemble adversarial train-
ing and generative adversarial perturbations for large-
scale datasets such as ImageNet. These methods lead 
to improved robustness, but at the cost of reducing the 
classification accuracy in the case of no attacks. Further, 
recent works that tackle the robustness problem try to 
devise efficient adversarial defense methods such as 
curvature regularization [19], logits regularization [20], 
injection of noise [21], and unlabeled data [22] at infer-
ence time, while others focus on the use of randomized 
classifiers for improved robustness [23, 24].

In this paper, we address the adversarial robustness 
problem to devise a method that can protect from both 
gradient-based and gradient-free attacks without requir-
ing computationally intensive training. To this end, we 
design a novel loss function for the classifier that enables 
the learning of features maximizing inter-class separation 
and minimizing intra-class separation. The proposed loss 
function provides state-of-the-art classification accuracy 

while ensuring a large degree of adversarial robustness 
without any other specific training trick. In the proposed 
method, the network learns a mapping of input data onto 
well-defined, Gaussian target distributions in a regular-
ized latent space. The employed loss maximizes linear 
separability of the learned distributions in the latent 
space, enabling straightforward classification based on 
simple thresholding of the decision variable. Ultimately, 
this is a general-purpose technique that improves on the 
traditional cross-entropy loss function. We show that the 
proposed method achieves higher classification accuracy 
with respect to cross-entropy even when no attacks are 
applied while exhibiting notably improved robustness 
against multiple adversarial attacks. Indeed, our design 
requires significantly stronger attacks to induce the same 
classification errors than other methods, thanks to the 
maximized distances between adjacent decision regions. 
Furthermore, the proposed loss function can be generally 
employed in the fine-tuning of any pre-trained classifier, 
allowing for improvements in robustness and accuracy 
while also reducing the training overhead.

1.1 � Contributions
In this work, we extend and improve on our previous 
work [25]. We provide an in-depth analysis of how GCCS 
improves the classification accuracy by correctly mapping 
the samples that are typically misclassified by competing 
approaches, while at the same time showing the motiva-
tion behind such higher misclassification. We include 
thorough ablation experiments to evaluate the effects 
of the GCCS loss parameters on classification accuracy. 
Further, we show that GCCS achieves higher robustness 
compared to conventional adversarially trained models 
with no additional cost with respect to natural training. 
In particular, we show that adversarial training combines 
well with our proposed method, which proves to be more 
robust against a broad range of attacks than competing 
methods even when coupled with AT. We report a thor-
ough investigation and experimental evaluation of the 
proposed method for classification over widespread data-
sets such as MNIST [26], FMNIST [27], SVHN [28], and 
the very challenging CIFAR10 and CIFAR100 [29]. Also, 
we assess the performance of our technique showing that 
it outperforms the state-of-the-art defence methods by a 
considerable margin in terms of robustness against tar-
geted (TGSM [30], JSMA [31]) and untargeted (DeepFool 
[32], FGSM [33], and PGD [16]) gradient-based adversar-
ial attacks. Also, we evaluate the adversarial robustness 
of our method when dealing with the very challenging 
gradient-free SPSA [34] attack. Finally, we analyze the 
behavior of our method when used together with adver-
sarial training via a detailed graphical representation of 
the latent space, showing that the combination further 
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improves model robustness. In particular, to assess adver-
sarial robustness, we refer to the guidelines presented by 
[13, 35] and [36].

2 � Related works
The idea of manipulating data seeking to disrupt a clas-
sifier’s performance was first formally investigated in 
works such as [37, 38], where the authors were interested 
in countering adversaries in applications like surveillance 
and spam, intrusion, and fraud detection. In the follow-
ing years, many works [33, 39–41] analyzed security 
aspects of deep neural networks. They showed how eas-
ily they could be led into misclassification by receiving as 
input adversarially altered data, i.e., inputs specifically 
modified according to the sign of the gradients of the cost 
function.

The effectiveness of adversarial perturbations extends 
both to the virtual and the physical realms, as reported 
in [42] and [30, 43], where deep networks are respec-
tively shown to be fooled in recognizing faces by specifi-
cally devised adversarial glasses, and in classifying images 
that are printed on paper or 3D-printed after being tam-
pered with adversarial perturbations. Also, Ross and 
Doshi-Velez [44] showed that adversarial attacks devised 
to meddle with one specific network model can eas-
ily transfer to all models trained on the same dataset, 
which are greatly prone to be affected by the perturba-
tion. Adversarial attacks can be crafted and performed 
with remarkable results also without any prior knowledge 
of the targeted image, as thoroughly examined in [45, 
46]. In conclusion, despite being one of the most effec-
tive defense algorithms against perturbations, adversarial 
training suffers from a large gap between training and 
test accuracy [47].

While some of the latest findings suggest that the exist-
ence of adversarial perturbations is a structural weakness 
of deep neural networks [48] and that the strength of the 
applied adversarial attack directly bounds the expected 
robustness of the classifier [49], there is no universal 
agreement on the trade-off between adversarial robust-
ness and generalization. Some authors argue that defense 
methods will inevitably decrease the classification accu-
racy [50], whereas others claim that both adversarially 
robust and general models are indeed possible [51]. This 
situation is reflected in the large variety of methods for 
defending against such attacks.

Authors in [52], after formally characterizing the 
robustness of a classifier against attacks, compute the 
minimum perturbation required to affect classification, 
identifying instance-specific lower bounds dependent 
on the strength of the attack, and then proceed to define 
the Cross-Lipschitz Regularization (CLR) functional, 
whose goal is to constrain differences at data points of 

the classifier functions to be as constant as possible. Ross 
and Doshi-Velez [44] instead offer a method called Input 
Gradient Regularization (IGR) that is applied at train-
ing time and forces the gradients of the network to be 
as smooth as desired; the underlying motivation is that 
models trained with gradients that exhibit a smaller set 
of spike values tend to respond in more understandable 
ways to adversarial attacks while also retailing greater 
robustness. Finally, Jakubovitz et  al. [53] rely on the 
Frobenius norm of the Jacobian of the gradients (JR) to 
craft a low-complexity method that is applied to already 
trained networks to improve robustness. This method 
has also been implemented in a computationally effec-
tive way [54]. Finally, works such as [32, 55, 56] propose 
the idea of introducing adversarial samples in the train-
ing data as a form of augmentation, so that the network 
could learn how to cope with adversarial perturbation at 
training time. However, as shown in [16, 17, 35], adver-
sarial training does not prevent adversaries to interfere 
with classification accuracy, to the extent that universal 
adversarial attacks can actually be devised to be highly 
effective on different datasets and network structures 
[30, 57–59]. Furthermore, adversarial training also comes 
with the extra cost required to generate adversarial sam-
ples that consequently increase the size of the training set 
and hence training time [60].

Approaches in the literature mainly focus on learn-
ing suitable classification boundaries. Instead, in this 
paper, we propose a method that directly learns a map-
ping of the input onto output target distributions in a 
regularized latent space. Despite being a passive defense 
method, the proposed design inherently enjoys high clas-
sification accuracy and robustness against adversarial 
attacks, with almost no training overhead. In particular, 
through the use of an encoder, features of an arbitrary 
number of classes are mapped from their input class dis-
tributions onto Gaussian distributions whose expected 
values lie on the vertices of a simplex in the latent space 
such that inter-class separability is maximized and intra-
class separability minimized at training time. Previously, 
other works have considered a learned mapping onto a 
well-behaved latent space, such as techniques based on 
variational and adversarial autoencoders [61, 62], or even 
discriminant analysis methods that aim at dimensional-
ity reduction [63]. Examples include the approach by 
Stuhlsatz et al. [64] that consists of a generalized version 
of Linear Discriminant Analysis (LDA) relying on deep 
networks, and [65] that first performs LDA on top of a 
neural network and then maximizes eigenvalues on the 
final hidden representation. These approaches, however, 
while showing great effectiveness at increasing the dis-
tance of the centers of distributions for well-separated 
classes, appear to perform poorly in terms of inter-class 



Page 4 of 17Ali et al. EURASIP Journal on Information Security          (2023) 2023:3 

separability when it comes to neighboring classes with 
blurred borders.

Lately, latent space regularization has been used also in 
[66–68]. In these works, deep learning is employed in the 
field of biometric authentication to separate authorized 
users from non-authorized ones. These methods work by 
regularizing a 2D latent space via a cost function derived 
from a simplified version of the Kullback-Leibler diver-
gence. While relevant to the topic, these approaches do 
not scale for higher-dimensional classification, which is 
instead the focus of the proposed GCCS method.

Finally, works such as Gaussian Mixture loss (L-GM 
[69]) and Max-Mahalanobis center loss (MMC [70]) for-
mally showed the inherent property of the cross-entropy 
loss and its variations to learning feature vectors that are 
sparsely spread over the feature space, causing the mod-
els trained in such fashion to be prone to suffer adversar-
ial attacks.

3 � Proposed method
The goal of the proposed GCCS method is to learn the 
most discriminative features of the input and map them 
onto target distributions with the mean values centered 
on the vertices of a simplex, as shown in Fig.  1: a deep 
network that consists of a feature extractor and a latent 
space mapper receives as input labeled training data 
( X ) to tackle a multi-class classification problem. The 
feature extractor learns nonlinear functions that trans-
form arbitrary input data distributions and produces 
discriminative, highly separable features. The subse-
quent latent space mapper is composed of one or more 
fully connected layers that map the output decision 
variable ( z ) onto desired target distributions that lie in a 
D-dimensional latent space, where D denotes the number 
of classes. In particular, we do not employ any nonlinear 
activation in the mapper’s last layer. Also, it is impor-
tant to notice that our proposed GCCS technique is not 
dependent on a particular feature extraction design. 
Hence, any deep architecture might be employed.

In the following, we describe the three fundamental 
components of the proposed approach, namely, a target 
model for the feature distributions in the latent space, a 
cost function devised to ensure that such distributions 
could be obtained, and last, a decision rule for classifi-
cation. Ablation studies for the relevant parameters are 
reported in Section  4.

3.1 � Model for the target distributions
The GCCS method projects high-dimensional data 
belonging to D classes onto a lower-dimensional space. 
This is done by employing a latent space that has the 
same number (D) of dimensions as the number of classes 
so that each dimension corresponds to a class-condi-
tional statistical distribution.

First, we denote the desired target distribution for 
class Ci , i = 1, . . .D as Pi . In particular, we choose 
Pi to be a D-variate Gaussian distribution, such that 
Pi = N (µTi,�T ) , where N  indicates the Gaussian dis-
tribution. In particular, µTi and �T  indicate the target 
mean and standard deviation vectors, i.e., µTi = µTei 
and �T = σ 2

T ID , where ei refers to the ith standard unit 
vector, while ID is the D × D identity matrix. Hence, 
the target statistical distributions are centered on the 
vertices of a regular (D − 1)-simplex at µTei , such that 
every distribution Pi has a mean value in the direction 
determined by ei . The µT  and σT  parameters, refer-
ring to the characteristics of the target distributions 
we want to enforce at training time, are defined arbi-
trarily keeping in mind that, to avoid mixing of the 
classes as D increases and to have more separable dis-
tribution, the parameters should take values such that 
µT /σT >

√
2D . In other words, the choice of µT  and σT 

influences the inter-class/intra-class separability at the 
classification stage.

The defined target model exhibits several advantages. 
First, assuming the simplex to be regular ensures that 
each of the classes is equidistant from all others. For this 
reason, there is no specific class that is “weaker” than 

Fig. 1  The proposed GCCS architecture learns a mapping of features onto output Gaussian target distributions lying in the latent space
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the others from an adversarial point of view. Moreover, 
the parameters µT and σT are chosen so as to maximize 
inter-class separability, leading to improved robust-
ness. Secondly, since we choose Gaussian distributions 
as learning target, the optimal decision boundaries are 
simple hyperplanes. This design leads to better accuracy 
and greater robustness, in contrast to the typical behav-
ior of neural networks which learn very complex decision 
boundaries.

3.2 � Loss function
At this point, it is necessary to define a loss function 
that allows us to minimize a suitable distance metric 
between the latent output distributions and the target 
ones. Such a loss function is intended to simultaneously 
constrain the classes’ distributions in order to maximize 
separability. Given x ∈ R

n , the input data belonging to 
D different classes, we refer to the output of the network 
as z = H(x) , where [z1, . . . , zD] ∈ R

D , and H indicates 
the concatenation of the feature extractor and the latent 
space mapper (i.e., the whole network architecture). In 
other words, our method learns an encoding function of 
the input data z = H(x) such that z ∼ Pi if x ∈ Ci . Dur-
ing training, the network receives as input single b-sized 
batches of samples X ∈ R

b×n , and outputs encoded 
data Z ∈ R

b×D . In particular, we can estimate their first 
and second-order statistics for each class as the sam-
ple mean µOi and sample covariance �Oi . Once target 
distributions and batch statistics are known, we can 
define a suitable loss to compute how distant the batch 
statistics are from the target distributions. To this end, 
we employ the Kullback-Leibler (KL) divergence. The 
KL divergence with respect to Gaussian target distribu-
tions, for the sample distribution of any class Ci , can be 
calculated as:

By extension, we can compute the cumulative loss for all 
classes such as L = D

i=1 Li . In particular, L reaches its 
minimum value when the sample statistics of the D dis-
tributions exactly match the target ones. For a small 
batch size, however, it is difficult to control how the tails 
of the distributions behave relying only on KL. Hence, we 
also employ the Kurtosis Ki,j [71] of the j-th component 
of the i-th target distribution, defined as 
Ki,j =

(
zi,j−µOi,j

σOi,j

)4
 . When enforcing multiple i.i.d. uni-

variate normal distributions at training time, the target 
Kurtosis for each of the classes is Ki,j = 3 . This term can 
then be added to the cumulative loss, leading to the final 
proposed loss LGCCS defined as

(1)
Li = log

|�T |
|�Oi|

− D + tr(�−1
T �Oi)+

(µTi − µOi)
⊺�

−1
T (µTi − µOi)

where Ki = 1/D ·
∑

j Ki,j . � is a parameter that balances 
the effect of the Kurtosis term with respect to the effect 
of the KL divergence.

3.3 � Decision rule
Last, when the training converges properly using the 
GCCS loss, the proposed method allows us to define 
optimal decision boundaries in the learned latent space. 
In particular, for the chosen target distributions, opti-
mal boundaries are defined by the partition of the latent 
space into Voronoi regions such that all the points are 
respectively closer to their region centroid, i.e., the mean 
vector µTi , than any other in the (D − 1)-simplex. For 
this reason, the resulting decision rule requires the com-
putation of the distance between output feature points 
and all centers of the regions and consequently classi-
fies the sample as belonging to the class at the minimum 
distance:

In particular, given a feature extractor output zi , Eq. 3 
outputs the index of the predicted class for the corre-
spondent input test sample.

4 � Experiments
In this section, we first consider the case of no attacks, 
while specifically assessing adversarial robustness later 
on. We assess our method’s pure classification accuracy 
as compared to the three considered state-of-the-art 
defense approaches Jacobian Regularization [53], Input 
Gradient Regularization [44], and Cross Lipschitz Regu-
larization [52], as well as compared to a plain structure 
trained with a cross-entropy loss (No Defense). We first 
validate the choice of the distribution parameters, then 
analyze the quality of the features in terms of separation 
and classification accuracy. In more detail, we consider 
two different training settings in each case, namely regu-
lar training, where the network is trained with plain SGD, 
and fine-tuning, where a model that has been already 
pre-trained with a standard cross-entropy loss is further 
trained for 100 epochs with the proposed GCCS loss. 
The analysis of this second case is aimed at showing that, 
potentially, our proposed method could efficiently be 
employed on top of an already-trained network, allowing 
for improved adversarial robustness with little fine-tun-
ing effort. The complete analysis of the robustness against 
adversarial attacks is then presented in Section 5.

(2)LGCCS =
D∑

i=1

[Li + �(Ki − 3)],

(3)ŷ = arg max
i

zi.
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4.1 � Datasets and training parameters
To evaluate the performance of GCCS and other meth-
ods, the five datasets MNIST [26], FMNIST [27], 
SVHN [28], CIFAR-10, and CIFAR-100 [29] have been 
employed. For the less complex MNIST, FMNIST, and 
SVHN datasets, we employed ResNet-18 [72] as a feature 
extraction network. For the challenging CIFAR-10 and 
CIFAR-100, the Shake-Shake-96 and Shake-Shake-112 
[73] regularization networks were used respectively, 
using a widen factor equal to 6 for the former and 7 for 
the latter. A fully connected layer that outputs a vector 
with dimension D follows the last layer of the encoder. 
The same baseline architectures were then used to com-
pare our results with competing methods. After choosing 
fixed µT and σT values, as better explained in the follow-
ing, the networks are trained for a total of 1800 epochs. 
For better network convergence, we employed cosine 
learning rate decay [74] with an initial value of 0.01 as 
well as weight decay with a rate set to 0.001. To avoid 
over-fitting, we apply dropout regularization [75] with a 
0.8 keep probability to all the fully connected layers in the 
network. For every experiment, if not differently speci-
fied, we use a training batch size equal to 200, as better 
detailed in Section  4.4. The additional 100-epoch train-
ing we perform in the fine-tuning configuration are car-
ried out with a learning rate of 1e−3 , without learning rate 
decay.

4.2 � Target distributions parameters
We explore the behavior of the target distributions by 
setting different target mean and variance values. We fix 

the mean µT and variance σT values for the target distri-
butions so that they are centered on the vertices of a reg-
ular (D − 1)-simplex. For this reason, the main parameter 
affecting our design is the µT /σT ratio, i.e., how far apart 
the distributions are with respect to the chosen variance.

In the experiment, we set σT = 1 so that the target 
distributions can be written as Pi = N (µTei, ID) . Then, 
we compute the classification accuracy as a function of 
µT ∈ [5, 300] . Figure 2 shows the accuracy as a function 
of µT /σT on the MNIST, SVHN, and CIFAR10 dataset. It 
can be observed that in the µT ≥ 30 region the accuracy 
is even higher than that obtained with the cross-entropy 
loss. In the following, assuming unitary standard devia-
tion for the target distributions ( σT = 1 ), we set µT = 70 
which corresponds to the maximum test accuracy on 
the CIFAR10, SVHN, and MNIST datasets, as shown in 
Fig.  2. As expected, small values of µ cause the learned 
distributions to be too close in the latent space, leading 
to difficult class separability and poor classification per-
formance. On the other hand, it can be noticed how, for 
more challenging datasets like CIFAR10 and SVHN, the 
classification accuracy gain ensured by GCCS increases 
for the chosen value µT = 70 . Specifically, we hypothe-
size that values around µT = 70 ensure the best trade-off 
between the separability of the different distributions in 
the latent space and the enforceability of the target dis-
tributions during training. On the other hand, greater 
µT /σT ratios are more likely to cause instability during 
training due to harder constraints on the target distri-
butions, resulting in worse classification accuracy. Our 
empirical findings lead us to the assumption that the µT 

Fig. 2  Classification accuracy gain (%) for GCCS with respect to Cross-Entropy with ResNet-18, as a function of µT /σT  ( σT = 1 ), on the CIFAR10, 
MNIST, and SVHN datasets
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value could be tuned by training just once on a specific 
dataset and the obtained value used also with datasets 
with the same number of classes, without the need for an 
exhaustive and expensive search based on multiple train-
ing experiments.

4.3 � Kurtosis factor
In this section, we analyzed the effects of the Kurto-
sis factor in the loss formulation over the classification 
accuracy. We set µT = 70 and investigate performance 
as a function of the balancing parameter � , taking val-
ues in the range � ∈ [0, 1] on the CIFAR10, SVHN, and 
MNIST datasets. By looking at Table 1, one can observe 
a significant performance drop when the Kurtosis factor 
is not included in the loss (i.e., when � = 0 ). For this rea-
son, throughout the whole experimental evaluation, we 
set the value to � = 0.2 as we experimentally verified it 
ensures the greatest class separability and hence classifi-
cation accuracy.

4.4 � Training batch size
Keeping fixed the value of the µT , σT , and � parameters 
to µT = 70 , σT = 1 , and � = 0.2 , we now investigate the 
effect of different training batch sizes on the accuracy of 
our GCCS method. Similarly to Table 1, Table 2 reports 
the GCCS classification accuracy as a function of the 
training batch size on the CIFAR10 and MNIST data-
sets. Table 2 shows that, for smaller batch sizes, the train-
ing does not converge to high accuracy. This happens 
because the batch size is too small to allow the network 
to learn distributions that are Gaussian and therefore 
well-separable in the latent space. On the other hand, 
as the training batch size increases, the accuracy does 
not significantly improve. While it might be possible to 
reach slightly better accuracy by further increasing the 
training batch size, it is worth noticing that, as the batch 
size increases, so does the complexity of the training, 
and with it the training time. For this reason, we choose 
to keep the training batch size equal to 200 for all our 
experiments, as it represents a sweet spot in the trade-off 
between high accuracy and problem size.

4.5 � Features extraction and separation
Feature selection is of key importance for the classifica-
tion accuracy and robustness of a neural network. Often 

in the literature, inter-class and intra-class separation are 
considered independently, while, as said, our approach 
yields high inter-class and intra-class separation at the 
same time.

4.5.1 � Latent space analysis
When dealing with a multiclass classification problem, 
it is difficult to evaluate latent space features as dimen-
sionality increases. Without loss of generality, Fig.  3 
illustrates the distributions in the latent space z for 
three classes of MNIST, where points represent samples 
of a particular class (green, blue, and red respectively). 
Figure  3a–e show the distribution of the decision vari-
able with different methods when no adversarial attack is 
applied. Figure 3a reports the latent space distribution for 
GCCS: one can observe that features are mapped onto 
distributions that are centered on the vertices of a sim-
plex with a fixed variance and also that classes exhibit the 
same inter-class and intra-class distances. Moreover, the 
overlap between samples of different classes is negligible 
for GCCS, while it is not for the cross-entropy loss and 
the other considered methods, as in Fig.  3b–e. Further, 
GCCS ensures remarkably low intra-class variance as 
compared to the other cases, enabling much more robust 
decision boundaries. In fact, thanks to the GCCS loss 
that ensures both high separability and uniformity of the 
target distributions, we can observe the lack of a short 
path between neighboring distributions and the resulting 
lower misclassification rate with respect to competing 
methods, where instead class distributions are not uni-
formly optimized.

Further, while the figure is only meant to offer a 
qualitative insight into why GCCS significantly outper-
forms competing methods in the considered scenarios, 
it offers precious insight nonetheless. Specifically, we 

Table 1  Classification accuracy (%) for GCCS with ResNet-18 as a function of � (Eq. 2), evaluated on CIFAR10, MNIST, and SVHN

� 0.0 0.1 0.2 0.3 0.4 0.5

CIFAR10 79.33 81.89 82.97 81.40 82.05 82.10

SVHN 94.10 95.06 95.58 94.82 94.89 95.32

MNIST 99.20 99.51 99.58 99.40 99.43 99.38

Table 2  Classification accuracy (%) for GCCS with ResNet-18 as 
a function of the training batch size, evaluated on CIFAR10 and 
MNIST

Training Batch Size 50 100 200 400

CIFAR10 77.33 82.11 82.97 82.93

MNIST 95.14 99.35 99.58 99.56
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Fig. 3  Visual representation of the output distributions in the latent space on the three MNIST classes [0, 1, 9] (red, green, and blue colors respectively) 
without adversarial training for GCCS, cross-entropy (ND), Jacobian Regularization [53] (JR), Input Gradient Regularization [44] (IGR), and Cross 
Lipschitz Regularization [52] (CLR) methods : a–e when no adversarial attack is applied; f–j when applying FGSM; k–o when applying PGD (5 
iterations); p–t when applying TGSM (5 iterations); u–y when applying JSMA (200 iterations, 1 pixel). To better understand the measure in which 
our method outperform the competitors, one should also consider the scale on the axis of each individual plot, which clearly show how the latent 
distributions for GCCS are significantly more distant in the latent space, hence separable
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chose to visualize the latent distributions of MNIST 
classes [0,  1,  9] (red, green, and blue colors respec-
tively) to offer a representation of how the learned 
distributions of potentially similar classes of digits (0 
and 9) would behave in the latent space compared to 
the distributions of geometrically dissimilar classes (0 
and 1). What can be observed from Fig.  3a compared 
for with Fig.  3b–e is that the learned distributions for 
similar digits in the GCCS case are not closer to each 
other than the distributions for the dissimilar ones. The 
same cannot be said for ND and the other competing 
methods. Instead, in these cases, the red and blue dis-
tributions (i.e., the learned distributions for the 0 and 
9 classes respectively) appear to be closer to each other 
compared with the distance from the green distribution 
(i.e., class 1). Finally, we analyze the remaining Fig. 3f–y 
in Section 5.

4.5.2 � Classification accuracy and inter‑class/intra‑class 
separation

We can now examine the quality of the features extracted 
by measuring the distance of each sample with respect to 
every other sample. We evaluate separability by meas-
uring the average inter-class/intra-class distances in the 
latent space when no adversarial attack is performed. With 
n samples in the class A, n latent space feature vectors 
{zA1 · · · zAi · · · zAj · · · zAn } are generated for each class, where 
vector zAi  represents the i-th sample in class A. Hence, we 
define the intra-class distance of class A as:

(4)dintra =

√√√√
n∑

i=1

n∑

j=1

(
zAi − zAj

)2
,

such that the distance between a sample and itself in 
the latent space is zero [76]. On the other hand, we can 
define the inter-class distance between n samples in class 
A and m samples in class B as:

Finally, we can define the ratio of the inter-class and 
intra-class distance between two classes A and B as:

According to the rAB definition, higher ratios corre-
spond to higher robustness and lower misclassification 
rate thanks to greater separability and simpler decision 
boundaries. Table  3 shows the average rAB ratio for all 
possible pairs of classes over different datasets and dif-
ferent methods, together with the corresponding confi-
dence intervals.

It can be observed that GCCS leads to much higher 
rates than the cross-entropy loss and the considered 
competing methods when no attacks are carried out. 
This directly translates to excellent classification accu-
racy both for the regular training and fine-tuning, as 
reported in Table  4 which shows the maximum accu-
racy over multiple datasets for the different methods. 
In more detail, it can be seen that, in some cases, other 
techniques might even cause a drop in classification 
accuracy with respect to the standard cross-entropy 
loss function, especially for challenging datasets such 
as CIFAR-10 and CIFAR-100 where instead GCCS 
improves the plain cross-entropy loss testing accuracy. 

(5)dinter =

√√√√
n∑

i=1

m∑

j=1

(
zAi − zBj

)2
.

(6)rAB = dinter/dintra.

Table 3  Ratio  rAB  of inter-class to intra-class distance obtained through regular-training vs fine-tuning over different benchmark 
datasets with different competing techniques when no adversarial attack is performed

Method MNIST ResNet-18 FMNIST ResNet-18 SVHN ResNet-18 CIFAR-10 ResNet-18 CIFAR-10 
Shake-
Shake-96

CIFAR-100 
Shake-
Shake-112

GCCS (regular training) 18.50 ± 1.45 7.64 ± 5.42 5.37 ± 0.65 2.89 ± 1.01 9.21 ± 3.52 2.34 ± 0.87

GCCS (fine-tuning) 18.11 ± 1.59 8.29 ± 5.69 7.33 ± 0.85 2.91 ± 1.22 9.57 ± 3.16 2.16 ± 0.51

No Defense (cross-entropy loss) 3.12 ± 0.71 3.13 ± 1.24 1.94 ± 0.21 1.71 ± 0.31 2.71 ± 0.48 1.62 ± 0.26

Jacobian Reg. (regular training) 
[53]

3.35 ± 1.01 3.64 ± 1.22 1.94 ± 0.21 2.03 ± 0.68 - -

Jacobian Reg. (fine-tuning)[53] 4.09 ± 0.81 3.71 ± 1.24 2.43 ± 0.26 2.35 ± 0.63 - -

Input Gradient Reg. (regular 
training) [44]

3.70 ± 0.92 2.71 ± 0.85 2.12 ± 0.24 1.57 ± 0.24 2.70 ± 0.55 1.63 ± 0.27

Input Gradient Reg. (fine-tuning) 
[44]

3.65 ± 0.97 3.18 ± 1.03 2.11 ± 0.27 1.68 ± 0.31 2.97 ± 0.59 1.60 ± 0.25

Cross Lipschitz (regular training) 
[52]

4.43 ± 1.07 4.44 ± 3.24 2.40 ± 0.29 1.91 ± 0.41 - -

Cross Lipschitz (fine-tuning) [52] 6.72 ± 2.23 4.42 ± 3.09 2.62 ± 0.28 1.85 ± 0.31 - -
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The missing entries in the tables for the CIFAR-10 and 
CIFAR-100 datasets account for the cases in which it 
was not possible to apply the particular adversarial 
defense method because of very high computational 
requirements.

4.5.3 � F‑score
Further, we assess the performance of our method by 
computing the F-score directly from the confusion 
matrix and then compare the results with state-of-the-
art methods. Also in this second set of experiments, 
we only deal with the case in which no adversarial 
attack is performed. The F-score, defined as the har-
monic mean of precision and recall, is considered to 
be a more precise measure of the classification accu-
racy for uneven datasets such as SVHN. Table 5 illus-
trates the F-scores for all the considered datasets, and 
it shows that GCCS outperforms the state-of-the-art 

also according to this metric. As anticipated, the gap is 
more significant for SVHN than for the other datasets.

5 � Adversarial robustness evaluation
To assess the robustness of our proposed method, we 
follow the guidelines proposed in [13, 35, 36] to pro-
vide a rigorous comparison with existing methods 
when applying different adversarial attacks. First, we 
consider gradient-based attacks applied in a white-box 
scenario, e.g., assuming the attacker has access to the 
model parameters and the loss function. Specifically, we 
carry out large-scale experimentation with non-targeted 
(DeepFool, FGSM, and PGD) and targeted (TGSM, 
JSMA) gradient-based attacks. Then, we evaluate robust-
ness against the gradient-free SPSA attack, which does 
not exploit knowledge of the gradients with respect to 
the loss. In all the experiments, we have employed adver-
sarial attacks on a batch of images of a given size equal 
to 100. In other words, we simulate an attacker trying to 

Table 4  Maximum test accuracy obtained through regular training vs fine-tuning over different benchmark datasets with different 
competing techniques when no adversarial attack is performed

Method MNIST ResNet-18 FMNIST 
ResNet-18

SVHN ResNet-18 CIFAR-10 
ResNet-18

CIFAR-10 
Shake-
Shake-96

CIFAR-100 
Shake-
Shake-112

GCCS (regular training) 99.58 92.69 94.20 82.97 96.19 76.53

GCCS (fine-tuning) 99.64 93.83 95.58 81.52 97.06 77.48

No Defense (cross-entropy loss) 99.35 91.91 94.12 78.59 95.78 76.30

Jacobian Reg. (regular training) [53] 98.99 91.79 94.11 70.09 - -

Jacobian Reg. (fine-tuning) [53] 98.53 92.43 93.54 82.09 - -

Input Gradient Reg. (regular training) [44] 97.98 88.45 93.77 78.32 96.50 74.89

Input Gradient Reg. (fine-tuning) [44] 99.11 92.55 93.17 76.15 96.90 75.68

Cross Lipschitz (regular training) [52] 96.78 92.54 91.42 80.10 - -

Cross Lipschitz (fine-tuning) [52] 98.77 92.41 93.50 79.39 - -

Table 5  F-score obtained through regular training vs fine-tuning over different benchmark datasets with different competing 
techniques when no adversarial attack is performed

Method MNIST ResNet-18 FMNIST 
ResNet-18

SVHN ResNet-18 CIFAR-10 
ResNet-18

CIFAR-10 
Shake-
Shake-96

CIFAR-100 
Shake-
Shake-112

GCCS (regular training) 99.58 92.66 94.17 82.93 96.18 76.49

GCCS (fine-tuning) 99.64 93.80 95.28 81.46 97.05 77.72

No Defense (cross-entropy loss) 99.35 91.88 93.7 78.59 95.77 76.55

Jacobian Reg. (regular training) [53] 98.98 91.73 93.68 69.32 - -

Jacobian Reg. (fine-tuning) [53] 98.51 92.41 93.24 82.2 - -

Input Gradient Reg. (regular training) [44] 97.96 88.51 93.26 78.70 96.58 76.24

Input Gradient Reg. (fine-tuning) [44] 99.08 92.38 92.62 76.39 96.98 75.59

Cross Lipschitz (regular training) [52] 96.64 92.52 90.55 80.15 - -

Cross Lipschitz (fine-tuning) [52] 98.75 92.39 92.97 79.22 - -
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maximize the loss over the whole batch with respect to 
the true class.

We evaluate classification accuracy as a function of 
a tunable parameter ǫ that indicates how strong is the 
applied attack, such that �n�∞/�x�∞ ≤ ǫ , where n is 
the added noise vector, and x is the input signal. In more 
detail, given an attack model Aǫ(x) dependent on the 
input x , a classifier C, and the expected output y , the 
accuracy of the classifier against the attack is computed 
as:

In more detail, we first evaluate the robustness of 
GCCS against attacks without employing any adversarial 
training. Our goal is to show that the proposed regulari-
zation of the latent space offers an advantage with respect 
to adversarial training since it is not trained for a specific 
attack. Hence, the proposed technique performs better 
than other defense methods even when adversarial train-
ing is employed at the same time. Then, since actually the 
proposed method and adversarial training are not mutu-
ally exclusive, we apply GCCS together with adversarial 
training and show even greater combined robustness. 
To perform adversarial training, as explained in the fol-
lowing, we consider FGSM perturbations with ǫ = 0.03 , 
averaging the plain GCCS loss with the adversarial one 
as done in the standard approaches [44]. In particular, 
we employ adversarial training by fine-tuning an already 
trained model for a total 100 epochs. Without loss of 
generality, we fine-tune models that have been trained 
with the regular training setting (as defined in Section 4), 
but our findings can be extended straightforwardly also 
to the fine-tuning configuration.

(7)Acc (C ,Aǫ(x)) =
1

N

N∑

i=1

[C(Aǫ(xi)) = yi].

5.1 � Gradient‑based attacks
5.1.1 � Non‑targeted attacks
The general goal of non-targeted attacks is to cause a 
misclassification in labeling the input, so that the output 
decision differs from the actual class the input belongs to.

DeepFool attack: We start by evaluating GCCS per-
formance when applying the gradient-based Deep-
Fool attack [32]. This particular attack uses a first-order 
approximation of the decision boundaries, altering the 
input towards the closest decision boundary in order to 
cause misclassification. When dealing with DeepFool, 
robustness is usually measured with ρ , which is a param-
eter that indicates the average robustness against the 
attack. ρ is dependent on the estimated minimal pertur-
bation caused by DeepFool and also on the cardinality 
of the considered images dataset, as explained in [32]. 
Table 6 reports the robustness of the considered methods 
over multiple datasets, showing that GCCS provides a 
very significant improvement in robustness compared to 
different methods, both for regular and adversarial train-
ing. The greater robustness obtained by GCCS can be 
explained by the fact that the learned inter-class bounda-
ries are equidistant, so it is more difficult for the attack to 
efficiently alter them and cause misclassification.

FGSM and PGD attacks: Further, we analyze the 
robustness of GCCS against the FGSM [33] and PGD 
[30] gradient-based attacks on MNIST, SVHN, CIFAR-
10, and CIFAR-100. While the former is a single-step 
attack that adds noise in the direction of the gradient of 
the loss function with respect to the input data, the latter 
is an iterative version of FGSM in which noise is added in 
multiple iterations, resulting in the strongest adversarial 
attack that exploits first-order local information about 
the trained model. In the PGD attack, the number of iter-
ations K plays an important role in defining the strength 

Table 6  Robustness to DeepFool attack obtained through regular vs adversarial training over different benchmark datasets with 
different competing techniques, measured with ρ [32]

Method MNIST 
ResNet-18

FMNIST 
ResNet-18

SVHN 
ResNet-18

CIFAR-10 
ResNet-18

CIFAR-10 Shake-
Shake-96

CIFAR-100 
Shake-
Shake-112

GCCS (regular training) 3.79 4.98 1.85 2.53 0.46 0.0034

GCCS (adversarial training) 3.93 4.91 3.05 2.42 0.94 0.0051

No Defense (cross-entropy loss) 1.83 0.55 1.73 1.43 0.27 0.0011

No Defense (adversarial training) 1.10 0.45 0.52 0.48 0.06 0.0013

JR (regular training) [53] 0.55 0.31 1.73 0.32 - -

JR (adversarial training) [53] 1.60 0.39 0.53 0.17 - -

IGR (regular training) [44] 0.48 0.37 1.54 0.83 0.05 0.0013

IGR (adversarial training) [44] 1.79 0.46 0.58 0.46 0.06 0.0017

CLR (regular training) [52] 0.31 0.29 0.33 0.26 - -

CLR (adversarial training) [52] 0.85 0.39 0.36 0.26 - -
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of the attack and the time needed to generate the corre-
sponding adversarial examples. In this work, we consider 
a 5-iteration PGD attack (PGD-5) as done in [49, 77, 78].

In the case of MNIST, we set 0 ≤ ǫ ≤ 0.10 , while 
we chose 0 ≤ ǫ ≤ 0.06 for SVHN, CIFAR-10, and 

CIFAR-100. Figure  4  a–d show that even the regu-
larly trained GCCS model enjoys higher classifica-
tion accuracy with respect to competing methods over 
all the datasets and through all the ǫ range; indeed, in 
many cases and for sensible values of ǫ , GCCS without 

Fig. 4  Test accuracy as a function of ǫ under gradient-based adversarial attacks, both targeted and untargeted (AT indicates also adversarial training 
is employed): a–d FGSM attack; e–h PGD attack (5 iterations); i–l TGSM attack (5 iterations); m–p JSMA attack (200 iterations, 1 pixel)
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adversarial training is almost as good as GCCS with 
adversarial training. This highlights that, despite not 
explicitly enforcing robustness to a specific attack, GCCS 
achieves excellent robustness to any tested attack (dot-
ted lines). The performance gap is especially strong in the 
case of the challenging CIFAR datasets.

In order to gain a better understanding of why the pro-
posed method works much better than the others, we 
refer to Fig. 3f–j that shows a visual representation of the 
distributions in the latent space after an FGSM attack 
( ǫ = 0.2 ) has been applied. In the GCCS case (Fig.  3f ), 
even if the tails of the output distributions become heav-
ier, the classes are still clearly separated, allowing for 
improved classification accuracy and robustness. Our 
findings are valid also in the case of the PGD-5 attack, 
as highlighted in Fig.  4e–h. When tampered with this 
very strong attack, the accuracy ensured by compet-
ing methods very quickly collapses to low values, while 
GCCS enables robust classification even for high ǫ . Simi-
larly to FGSM, Fig. 3k–o depict the latent space after the 
PGD-5 attack is applied. The effect of the attack is much 
more prominent compared to FGSM to the extent that 
the class distributions are significantly overlapped for 
all the competing methods, and classification fails when 
no defense against adversarial perturbations is applied. 
Our proposed GCCS method leads instead to remark-
ably lower misclassification rates and more separable 
distributions. As a matter of example, for ǫ ≥ 0.04 GCCS 
is still able to reach around 85% classification accuracy 
on CIFAR-10, while other methods collapse to random-
guess performance.

5.1.2 � Targeted attacks
In this second case, the attack works by creating an 
adversarial sample that is crafted to be misclassified to 
the desired target class, such that C(xadv) = y∗ . Again, we 
provide robustness curves for both regular and adversar-
ial training as in Section 5.

TGSM attack: In the gradient-based TGSM [30] 
attack, the input samples are perturbed by adding noise 
in the direction of the negative gradient with respect 
to a selected target class, such that the targeted output 
class is yl+1 when the true one is yl . Figure 4i–l present 
the results for a challenging 5-iteration TGSM attack 
(TGSM-5) over the considered datasets.

It can be observed from Fig.  4i–l that GCCS yields 
significantly higher performance compared to the other 
methods, throughout different datasets and with differ-
ent attack strength ǫ both for the regular and adversarial 
training. Figure 3p–t show a visual representation of the 
distributions in the latent space after the TGSM-5 attack 
with ǫ = 0.02 is applied. Figure  3q clearly shows the 
effectiveness of the attack when no defense mechanism is 

employed. Specifically, it can be observed that the distri-
butions’ center of mass shifted their position in the latent 
space to fall exactly onto the position of the distribution 
that has been chosen by the targeted TGSM attack we 
are considering. In other words, the output distributions 
are shifted so as to replace the output distribution of the 
next class, leading to very strong misclassification. In the 
GCCS case instead, as shown in Fig. 3p, it is much more 
difficult for the attacker to successfully swap the positions 
of the target distributions with the ones of the neighbor-
ing classes, as testified by the distributions in the latent 
space, which partially spread out as per the effect of the 
targeted attack, but at the same time they preserve their 
center of mass in the same positions with respect to the 
no-attack case (Fig. 3a) even after the considered amount 
of TGSM iterations. This indeed ensures improved 
robustness and separability for our GGCS method.

JSMA attack: The other gradient-based targeted attack 
we consider is JSMA [31], which consists of iteratively 
computing the Jacobian matrix of the network function 
to form a saliency map. This map is used at every itera-
tion to choose which pixels to tamper with so that the 
likelihood of changing the output class towards a selected 
one is increased. In our case, we consider JSMA-200 
to make the attack more challenging for better perfor-
mance comparison, with a 1-pixel saliency map. Similarly 
to the TGSM case, Fig.  4m–p shows the classification 
accuracy for increasing attack strength ǫ . The proposed 
method confirms its robustness even against the JSMA 
attack, achieving better robustness than other meth-
ods, especially on the challenging CIFAR datasets. Once 
again, Fig. 3u–y show how resilient the proposed GCCS 
method is against the considered adversarial attack as 
compared to competing methods where the position of 
the classes’ distributions after the JSMA attack is com-
pletely swapped, as already previously observed for the 
TGSM targeted attack.

5.2 � Gradient‑free SPSA attack
Finally, we evaluate robustness also against the gradient-
free Simultaneous Perturbation Stochastic Approxima-
tion attack (SPSA [34]) based on [79], which is a method 
to approximate analytic gradients with finite difference 
estimates in random directions. SPSA is an iterative 
attack whose strength is determined by three param-
eters: the perturbation strength ǫ as defined in Section 5, 
the number of attack iterations (IT), and batch size (BS), 
which indicated the number of finite difference estimates 
used before applying each gradient estimate. We tested 
the robustness of our GCCS method against the tradi-
tional cross-entropy loss (no defense) with and without 
adversarial training by measuring test accuracy as a func-
tion of ǫ on the CIFAR10 dataset.
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First, we analyzed the robustness by varying the IT 
and BS parameters, and keeping fixed the adversarial 
perturbation strength to ǫ = 0.02 . In general,  Uesato 
et al. [34] show that the higher the values, the strongest 
the attack. However, the computational cost of apply-
ing SPSA increases very strongly for high BS values. For 
this reason, we are interested in observing how robust-
ness decreases by varying the strength of the attack for 
different (IT,  BS) combinations. Table  7 shows that, 
roughly after IT = 50 iterations and for BS > 1024 , test 
accuracy does not significantly decrease for the higher 
(IT,  BS) combinations appearing on the right side of 
the table. Hence, we assume our working point to be 
(IT = 50,BS = 1024) without loss of generality, as also 
confirmed by [34] which shows that, in many cases, the 
maximum strength of SPSA is reached even when doing 
fewer than ten iterations of the attack.

Figure  5 shows how the proposed method exhib-
its much greater robustness than the traditional 

cross-entropy loss, even when applying adversarial 
training to the models. Since SPSA is generally consid-
ered to be the most effective gradient-free adversarial 
attack, we are able to conclude that GCCS is robust also 
against attacks carried out without the knowledge of the 
gradients.

6 � Training time
To complete the evaluation of the proposed method, we 
also considered computational requirements. Looking 
at Table 8, one can observe that the impact of GCCS in 

Table 7  Test accuracy on CIFAR10 ( % ) when attacking the GCCS 
(bold) and cross-entropy (No defence) models with SPSA [34] 
with parameters (BS, IT) and fixed perturbation strength ǫ = 0.02

IT / BS 512 1024 2048 8192

50 58.57 57.89 57.49 57.01
22.85 21.81 21.07 20.46

100 58.32 57.80 57.29 56.89
22.74 21.70 21.01 20.39

Fig. 5  Test accuracy (%) for GCCS and cross-entropy (ND) on CIFAR10 with and without AT when applying SPSA with parameters 
(IT = 50, BS = 1024) , as a function of ǫ

Table 8  Training time for regular vs adversarial training over the 
MNIST dataset (1800 epochs). The numbers in brackets indicate 
the training time percentage increase caused by the considered 
defense method as compared to the corresponding plain cross-
entropy training case (No Defense)

Applied defense method Training time (minutes)

No Defense (cross-entropy loss) 312

No Defense (adversarial training) 687

GCCS (regular training) 318 (+1.92%)

GCCS (adversarial training) 694 (+1.02%)

JR (regular training) [53] 512 (+64.10%)

JR (adversarial training) [53] 1073 (+56.18%)

IGR (regular training) [44] 617 (+97.75%)

IGR (adversarial training) [44] 1297 (+88.79%)

CLR (regular training) [52] 687 (+120.2%)

CLR (adversarial training) [52] 1456 (+111.9%)
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terms of training time overhead is negligible with respect 
to standard cross-entropy training (No Defense), as it is 
in the order of a few added minutes when training for a 
considerable number of epochs (1800). As highlighted 
in works such as [80], this feature is of great importance 
because it allows to efficiently improve the robustness of 
any deep architecture (even pre-trained) at the expense 
of a negligible additional training effort.

7 � Conclusions
We have presented an approach that employs a loss 
function promoting class separability and robustness by 
learning a mapping of the decision variables onto Gauss-
ian distributions. The proposed GCCS loss enjoys high 
classification accuracy and robustness against adversarial 
attacks, with negligible training overhead. Experiments 
on different multi-class datasets show excellent perfor-
mance of the classifiers trained using the GCCS loss, out-
performing existing state-of-the-art methods both when 
used to train from scratch and when applied as a fine-
tuning step on pre-trained networks. Also, performance 
is investigated both for targeted and non-targeted gradi-
ent-based adversarial attacks in a white-box scenario.

The analysis of the distributions in the latent space 
for the proposed GCCS method shows that the differ-
ent classes tend to remain well separated even in the 
presence of gradient-based targeted attacks, whereas a 
similar attack strength invariably mixes the distributions 
achieved by competing methods.

Also, we have shown that GCCS, when used in com-
bination with adversarial training, can further improve 
the model robustness while maintaining high classifica-
tion accuracy. Finally, we illustrated how the proposed 
method ensures greater robustness when employing the 
challenging gradient-free SPSA [34] attack, which does 
not rely on the loss gradient.
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