
14 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Structure of Starch-Sepiolite Bio-Nanocomposites: Effect of Processing and Matrix-Filler Interactions / Bugnotti, Daniele;
Dalle Vacche, Sara; Esposito, Leandro Hernan; Callone, Emanuela; Orsini, Sara Fernanda; Ceccato, Riccardo;
D'Arienzo, Massimiliano; Bongiovanni, Roberta; Dirè, Sandra; Vitale, Alessandra. - In: POLYMERS. - ISSN 2073-4360. -
ELETTRONICO. - 15:5(2023), p. 1207. [10.3390/polym15051207]

Original

Structure of Starch-Sepiolite Bio-Nanocomposites: Effect of Processing and Matrix-Filler Interactions

Publisher:

Published
DOI:10.3390/polym15051207

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977531 since: 2023-03-28T08:33:54Z

MDPI



Citation: Bugnotti, D.; Dalle Vacche,

S.; Esposito, L.H.; Callone, E.; Orsini,

S.F.; Ceccato, R.; D’Arienzo, M.;

Bongiovanni, R.; Dirè, S.; Vitale, A.

Structure of Starch–Sepiolite

Bio-Nanocomposites: Effect of

Processing and Matrix–Filler

Interactions. Polymers 2023, 15, 1207.

https://doi.org/10.3390/

polym15051207

Academic Editor: R.A. Ilyas

Received: 31 January 2023

Revised: 17 February 2023

Accepted: 21 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Structure of Starch–Sepiolite Bio-Nanocomposites: Effect of
Processing and Matrix–Filler Interactions
Daniele Bugnotti 1, Sara Dalle Vacche 2,3 , Leandro Hernan Esposito 2, Emanuela Callone 1 ,
Sara Fernanda Orsini 4 , Riccardo Ceccato 1 , Massimiliano D’Arienzo 4, Roberta Bongiovanni 2,3 ,
Sandra Dirè 1,* and Alessandra Vitale 2,3,*

1 Department of Industrial Engineering, University of Trento, 38123 Trento, Italy
2 Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
3 INSTM-Politecnico di Torino Research Unit, 50121 Firenze, Italy
4 Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
* Correspondence: sandra.dire@unitn.it (S.D.); alessandra.vitale@polito.it (A.V.)

Abstract: Sepiolite clay is a natural filler particularly suitable to be used with polysaccharide ma-
trices (e.g., in starch-based bio-nanocomposites), increasing their attractiveness for a wide range
of applications, such as packaging. Herein, the effect of the processing (i.e., starch gelatinization,
addition of glycerol as plasticizer, casting to obtain films) and of the sepiolite filler amount on the
microstructure of starch-based nanocomposites was investigated by SS-NMR (solid-state nuclear
magnetic resonance), XRD (X-ray diffraction) and FTIR (Fourier-transform infrared) spectroscopy.
Morphology, transparency and thermal stability were then assessed by SEM (scanning electron mi-
croscope), TGA (thermogravimetric analysis) and UV–visible spectroscopy. It was demonstrated that
the processing method allowed to disrupt the rigid lattice structure of semicrystalline starch and thus
obtain amorphous flexible films, with high transparency and good thermal resistance. Moreover, the
microstructure of the bio-nanocomposites was found to intrinsically depend on complex interactions
among sepiolite, glycerol and starch chains, which are also supposed to affect the final properties of
the starch–sepiolite composite materials.

Keywords: yuca starch; plasticized starch; sepiolite filler; crystalline structure; bio-composite;
nanocomposite

1. Introduction

Starch is a biopolymer composed of two D-glucose homopolymers: amylose, char-
acterized by linear chains based on α-D(1-4)-glucan bonds, and amylopectin, which is
essentially a highly branched amylose through α-D(1-6) links [1]. Depending on the nat-
ural source, the amylopectin content is about 60–90% [1]. In the case of yuca starch, the
amount of amylose is about 20% [2]. Starch is found in any plant stored in grains, tubers
and roots in the form of semicrystalline granules which possess a hierarchical structure
made of concentric rings, representing the alternation of crystalline and amorphous re-
gions. The amorphous region is a mixture of amylose, amylopectin branching points and
amylopectin, whereas the crystalline region is mainly formed by amylopectin chains and
characterized by different polymorphs [1]. Starch represents an ecological alternative to
common petroleum-based plastics, due to its high availability, low cost, good biocompati-
bility and high biodegradability; moreover, having a moderate oxygen permeability, it may
be a promising material for packaging [3,4]. However, due to its crystallinity, film-forming
ability, transparency and flexibility are not assured. Moreover, films can show relatively
poor mechanical properties while the high hydrophilicity causes low stability in aqueous
media and low water barrier properties.
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Thus, as a mitigation strategy of the limited performance of starch films in terms
of mechanical and barrier properties, composites can be prepared. An interesting nat-
ural filler is sepiolite [5], a magnesium silicate clay of particular interest due to its low
cost and high availability, remarkable chemical and mechanical stability and anisotropic
particle shape [6]. The structure of sepiolite is reported to be an octahedral Mg(II) sheet
embedded by two layers of tetrahedral SiO4, giving the chemical formula [Si12O30Mg8
(OH)4(OH2)4 nH2O]. In sepiolite, the edges are shared with the neighboring ones, resulting
in a “checkerboard” pattern with the remarkable formation of tunnels (Figure 1). Inside
these tunnels, two water molecules (structural water) are coordinated to each of the external
Mg ions and hydrogen bonded to zeolitic water molecules. This particular configuration
provides excellent adsorptive properties to sepiolite clay [7]. For instance, as concerns on
food packaging applications, a high ethylene adsorptive efficiency was reported [8]. Ethy-
lene is a plant hormone that causes quick ripening and easily alters fresh products, along
with microbial growth; thus, in packaging technology, sepiolite could act as an ethylene
scavenger/adsorber replacing either unsafe oxidizing materials (e.g., metals, potassium
permanganate) or non-biobased nanotubes and carbon dots [9,10], suggesting that sepiolite
composite films could be exploited for active packaging.

Sepiolite can be combined with starch to form bio-nanocomposites by different tech-
niques, such as solvent exchange process [11], dry-blend process with organo-modified
sepiolite [12] or mechanical mixing and ultrasonication in water [13]. Sepiolite nanofillers
have been demonstrated to have a good reinforcing effect, to improve water resistance
and to reduce the water absorption of starch, allowing attractive bio-composites to be
obtained for a wide range of applications [14–16]. In particular, as the silanol groups
of the sepiolite clay can form hydrogen bonds with the hydroxyl groups of starch [12],
the interactions at the filler–matrix interface are expected to greatly influence the final
properties of the nanocomposites [17–20]. However, such interactions in starch–sepiolite
bio-nanocomposites have not yet been deeply studied in the literature.
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Figure 1. Sepiolite structure. Numbers refer to silicon atom positions (Si1, Si2, Si3). Figure
adapted from [21].

In this research work, composite films made of starch as the matrix and sepiolite as
the filler were produced and characterized, particularly studying the effect of the process-
ing and of the introduction of sepiolite filler on the structure of the starch-based films,
to lay the background for the development of sustainable materials potentially suitable
for packaging applications. Starch gelatinization and the addition of glycerol were used
to obtain flexible films by disrupting the rigid lattice structure of semicrystalline starch.
Mechanical mixing in water was chosen as a processing route to obtain a homogeneous
dispersion of sepiolite in starch solutions. The structure and morphology of the poly-
mer were investigated by SS-NMR (solid-state nuclear magnetic resonance), XRD (X-ray
diffraction), FTIR (Fourier-transform infrared) spectroscopy, and SEM (scanning electron
microscope). Thermal stability and transparency of the composite films were investigated
by TGA (thermogravimetric analysis) and UV–Vis spectroscopy, respectively.
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2. Materials and Methods
2.1. Materials

A yuca starch powder originated from Colombia was used. Glycerol (≥99.0%) was
purchased from Sigma-Aldrich (Milan, Italy).

Sepiolite clay Pangel S9 (40–150 nm width and 1–10 µm length, Figure S1 in the
Supplementary Material) was provided by Tolsa (Madrid, Spain) and extracted from the
landfill of Vallecas (Madrid, Spain).

2.2. Samples Formulations and Preparation

First, 2.5% w/w starch solution in water was prepared by stirring at 70 ◦C for 30 min to
achieve gelatinization. The solution was cast onto a polystyrene Petri dish and oven-dried
at 40 ◦C. The film obtained was labeled Yf. As a reference, yuca starch in form of powder
(Yp) was also analyzed.

Plasticized starch films (YGf) were prepared by adding 40% w/w of glycerol with
respect to starch before proceeding with gelatinization as described above.

To prepare nanocomposite film samples with different filler contents (i.e., 3, 5, 10 and
15% w/w with respect to starch), sepiolite was suspended in water and mixed overnight
with a magnetic stirrer at room temperature prior to starch and glycerol addition. The
suspension was then stirred at 70 ◦C for 30 min to achieve gelatinization. The film-forming
solution obtained in this way was cast onto a polystyrene Petri dish and oven-dried at
40 ◦C. The obtained films were about 50 µm thick. Samples labels and compositions are
reported in Table 1.

Table 1. Samples list and labelling (Y = yuca starch, G = glycerol, S = sepiolite). Percentages are with
respect to starch content.

Sample Glycerol (% w/w) Sepiolite (% w/w) Sample Form

Yp 0 0 Powder
Yf 0 0 Film

YGf 40 0 Film
YG3Sf 40 3 Film
YG5Sf 40 5 Film

YG10Sf 40 10 Film
YG15Sf 40 15 Film

Y5Sf 0 5 Film
Y10Sf 0 10 Film

In addition, two film samples of starch and sepiolite (at 5% and 15% w/w with respect
to starch, namely Y5Sf and Y15Sf) were manufactured without glycerol and were analyzed
only by 29Si CPMAS NMR.

Finally, an amorphous standard sample for crystallinity determination was pre-
pared by boiling a 0.01 g/mL starch suspension in water for 30 min and oven-dried
at 60 ◦C overnight.

2.3. Structural Characterization
2.3.1. Solid-State Nuclear Magnetic Resonance

SS-NMR spectra of the samples were recorded with a Bruker (Billerica, MA, USA)
400WB spectrometer operating at a proton frequency of 400.13 MHz under the follow-
ing conditions for cross polarization magic angle spinning (CPMAS) experiments: 13C
frequency: 100.48 MHz, contact time 1.5 ms, decoupling length 5.6 µs, recycle delay 3 s,
2 k scans. 29Si frequency: 79.48 MHz, contact time 5 ms, decoupling length 6 µs, recycle
delay 8 s, 10 k scans. Samples were packed in zirconia rotors, which were spun at 7 kHz.
Adamantane and Q8M8 were used as external secondary references. Crystallinity was
evaluated following the methodology of Tan et al. [22]. Line shape analyses of NMR spectra
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were carried out with Bruker TopSpin software (version 3.6.4). The results were considered
acceptable with confidence level > 95%.

2.3.2. X-ray Diffraction

Long-range order was analyzed by means of XRD analyses performed on a Rigaku
(Tokyo, Japan) DMAX III diffractometer in Bragg–Brentano geometry, equipped with a Cu
source (λ = 1.54056 Å) in the following conditions: 2θ range from 2◦ to 45◦, steps of 0.05◦

and 3 s counting time. Crystallinity was evaluated following the methodology proposed
by Lopez-Rubio et al. [23]. In order to precisely measure d-spacing in sepiolite composites,
XRD was also carried out in asymmetric scattering with a fixed incident angle of 1.5◦, with
the other parameters unchanged. In this case the film was fixed to the sample holder by
a small piece of modeling clay to avoid misalignment. The asymmetric scattering was
necessary to eliminate any reflections that would have come from the modeling clay.

Profile fitting analysis of XRD patterns were performed with Origin Pro 2018. Results
were considered acceptable with R2 > 0.98.

2.3.3. Fourier-Transform Infrared and UV–Vis Spectroscopy

Changes in conformational order were investigated by Fourier-transform infrared spec-
troscopy (FTIR) in attenuated total reflectance (ATR) mode on a Nicolet iS50 spectrometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA), equipped with a Smart iTX-Diamond
ATR accessory. Spectra were averaged over 32 scans in the 4000–550 cm−1 range, with
4 cm−1 resolution. The crystalline-sensitive region of the spectra 1200–800 cm−1 was iso-
lated, baseline corrected with a straight line and fitted with Gaussian peaks; then, the area
ratio of 1040 cm−1/1016 cm−1 peaks was calculated.

Profile fitting analysis of FTIR-ATR spectra was performed with Origin Pro 2018.
Results were considered acceptable with R2 > 0.98.

UV–Vis spectroscopy was carried out with a JENWAY 6850 UV/Vis spectrophotometer
(Cole-Parmer, Stone, Staffordshire, UK).

2.3.4. Scanning Electron Microscopy

SEM analyses were performed by a Vega TS5136 XM Tescan (Milan, Italy) microscope
in a high-vacuum configuration. The electron beam excitation was 30 kV at a beam current
of 25 pA, and the working distance was 12 mm. In this configuration, the beam spot was
38 nm. The samples were applied on carbon tape onto an aluminum substrate and covered
with gold coating.

2.3.5. Thermogravimetric Analysis

The TGA was performed using a Mettler Toledo (Milan, Italy) TGA/DSC1 STARe
system under N2 flux. The materials were equilibrated at 30 ◦C for 15 min and then heated
from 30 to 1000 ◦C at the rate of 10 ◦C min−1.

3. Results and Discussion
3.1. Effect of Processing on the Crystalline Structure of Starch

The film-forming solution was prepared by gelatinization, a process in which the
suspension of starch granules in water undergoes the action of temperature and the swelling
of amorphous regions, resulting in destruction of crystalline domains [24]. Through SS-
NMR, XRD and FTIR-ATR analyses, the amorphization and plasticization of yuca starch
was investigated.

The 13C CPMAS NMR spectra of pristine starch powder (Yp), starch film (Yf) and
plasticized starch film (YGf) samples are reported in Figure 2, with carbon labels specified
in the inset. C1 carbon resonance is detected at 94–105 ppm, C4 at about 80–84 ppm, C2,3,5
resonances give rise to a complex band in the range 68–77 ppm and C6 in the 58–64 ppm
region, as also reported in the literature [25].
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methylene peak.

The most interesting sites are C1 and C4, as they are involved in glycosidic bonds, and
they are the most sensitive to starch conformations, since they are defined by the geometry
of glycosidic linkages [25,26]. As a matter of fact, the C1 region showed differences between
Yp and Yf and YGf film samples. Yp was characterized by a shoulder at 102.9 ppm attributed
to a V-type polymorph [22,26] and the typical triplet signal of an A-type polymorph at 101.6,
100.3 and 99.6 ppm [22,25]. From the profile-fitting analysis of the C1 signal (Figure S2 in
the Supplementary Material), double helices accounted for 44.4% and V-type single helix
component for 2.5%. Yf and YGf film presented a completely different shape of C1 site,
typical of amorphous starches [23,26].

The line shape of C2,3,5 substantially changed as the components merged together
into a broader and less resolved signal. It is worth noting that the C4 site, the intensity of
which relates to the amorphous part of starch [25], increased in intensity. These features
indicated the amorphization of starch as a consequence of film processing. In addition, the
YGf sample presented glycerol resonances, namely CH2-OH at 63.8 ppm and the CH-OH
at 72 ppm, which is overlapped to C2,3,5 signals of starch [27,28].

From XRD patterns (Figure 3), the typical reflections of the A-type polymorph were
found in Yp at 2θ 9.97◦, 11.24◦, 14.95◦, 17.10◦, 17.80◦, 23.00◦ and 26.42◦, with the V-type
reflection at 2θ 19.94◦ [23]. Profile-fitting analysis of the Yp pattern (Figure S3 in the
Supplementary Material) resulted in a crystallinity equal to 45.2%, while the V-type content
was 1.5%. These results are in good agreement with the NMR analysis. Moreover, the
higher V-type content determined through NMR highlighted the presence of single helices
in the amorphous domain [23].
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XRD patterns of Yf and YGf samples (Figure 3) were characterized by an amorphous
halo, with the loss of crystalline features due to amorphization, confirming NMR results.
The different position and intensity of the amorphous halo in YGf could be explained by
chain–glycerol interactions.

Comparing the FTIR-ATR spectra of Yp to those of film samples (Figure 4), the effect
of processing is also evident. In Figure 4 the spectra are reported, and main peaks assign-
ments are listed in Table S1 in the Supplementary Material. The broad band centered at
3307 cm−1 and the signal at about 1630 cm−1 are assigned to O-H stretching vibrations
and water scissoring, respectively. In film samples prepared with and without glycerol,
the O-H stretching band shifted to 3282 cm−1, indicating strong hydrogen bonding be-
tween plasticizer molecules (water and glycerol) and starch macromolecules [29]. The CH2
stretching vibrations were clearly visible with peaks at 2925 (C-H asymmetric stretching)
and 2884 cm−1 (C-H symmetric stretching). In the 1500–1200 cm−1 range, the overlapped
bands of CH2 bending and some COH vibrations are found. The most interesting region is
the one delimited by the dashed rectangle in Figure 4 (1200–800 cm−1), characteristic of
the C-O vibrations in COH and COC groups of starch. Particularly, peaks at 1150, 1125
(barely visible in processed starches) and 1103 cm−1 are related to C-O, C-C and C-OH
stretching modes, while signals at 1076, 1040, 1016, 992 and 926 cm−1 are due to C-O-H
bending and CH2-related modes [30–32]. Precise assignment of every peak in this region is
not possible due to poorly resolved and overlapped bands [30,31]. However, this spectral
region is of particular importance as it is sensitive to starch crystalline and amorphous
conformations [33]. In detail, the peaks at 992 and 1040 cm−1 are related to crystalline
domains, while the peak at 1016 cm−1 is related to the amorphous regions [30,31,33].
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Figure 4. FTIR-ATR spectra of Yp, Yf and YGf samples. Main bond vibrations are indicated.

In Yp, a shoulder was clearly visible at 1045 cm−1, while for film samples it was much
less pronounced, with a shift toward 1040 cm−1. Moreover, for film samples, the 1016 cm−1

peak increased in intensity with respect to the 992 cm−1 peak. These differences suggested
structural modifications as a consequence of processing.

An FTIR profile-fitting analysis was carried out to better highlight the peaks attributed
to crystalline and amorphous structures (as an example, the FTIR profile fitting for Yp is
reported in Figure S4 of the Supplementary Material). Ratios of intensities or integrated
areas of the characteristic peaks (e.g., 1040/1016, 992/1016) are usually exploited as an indi-
cator of the degree of ordered structures in starch samples. However, correlations between
XRD and FTIR measurements of long-range order are very weak [30,34], and the analy-
sis is hindered by the hydration sensitivity of 1016 and 992 cm−1 peaks, which can alter
their intensity ratio [31,32]. In this study, the analysis was carried out only to highlight
differences between Yp and film samples with or without fillers. Results of 1040/1016 peak
ratio (Figure S5 in the Supplementary Material) indicated different values between Yp
(1.77), Yf (0.80) and YGf film (1.01), in line with starch amorphization, as a consequence of
film processing.

In conclusion, NMR, XRD and FTIR analyses highlight changes in molecular confor-
mations after starch processing.

3.2. Effect of Sepiolite Addition on Film Microstructure

Starch-based nanocomposite films were prepared by adding sepiolite in different
contents (i.e., 3, 5, 10 and 15% w/w with respect to starch). Uniform and transparent films
were obtained (Figure 5), independently on the filler amount. The presence of sepiolite
imparted a yellowish color to the films, which was more intense in the case of a higher
filler content. The transparency of the samples was analyzed by UV–Vis spectroscopy: the
acquired spectra are shown in Figure 5. To assess the effect of sepiolite, the film with the
highest amount of filler (YG15Sf) was compared with a starch film (Yf) and a plasticized
starch film (YGf). In the visible range, the effect of the addition of glycerol or sepiolite
is negligible. In YG15Sf, an absorbance peak below 300 nm is detected, due to sepiolite
Mg-O-Si bonds [35].
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Figure 5. UV–Vis transmittance spectra and pictures of starch film (Yf), plasticized starch film (YGf)
and nanocomposite films with 15% w/w of sepiolite (YG15Sf).

The morphology of the composite films was analyzed by SEM. As an example, Figure 6
reports SEM images of YG3Sf and YG15Sf films (i.e., lowest and highest value of filler con-
tent). The sepiolite clay filler, with its characteristic needle-like shape, is well-dispersed in
the starch matrix, and its original dimensions are retained in the composite films. However,
some agglomerates could be detected when 15% of sepiolite was introduced (Figure 6c,d).
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The microstructure of the nanocomposite films was investigated by SS NMR, XRD
and FTIR-ATR analyses. The 13C CPMAS NMR spectra of composites loaded with sepiolite,
together with that of YGf as a reference, are reported in Figure 7. Line shapes of carbon
peaks C1, C4 and C2,3,5 were almost identical to those of YGf, suggesting that sepiolite
did not affect the starch matrix structural conformation, which remained amorphous.
A profile-fitting analysis of the C6 site was carried out for each sample. It was observed
that glycerol CH2-OH resonance position remained constant (centered at 63.9 ppm), but
the peak became broader in the composite films with a reduction in intensity compared to
the YGf sample. The proportion between the C6 area and glycerol peak remained almost
constant among the composite samples; however, the broadening of the glycerol CH2-OH
peak might indicate less chain mobility or increased anisotropy compared to YGf film,
suggesting glycerol–sepiolite interactions [27].
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Figure 7. 13C CPMAS NMR spectra of plasticized starch film (YGf) and of composite films with
sepiolite at different loadings (YG3Sf, YG5Sf, YG10Sf and YG15Sf).

Silicon CPMAS NMR was also employed to analyze sepiolite in nanocomposite films.
The spectra are reported in Figure 8, together with that of neat sepiolite for comparison.
Assignments and labelling of silicon atoms were performed according to the literature [6,36],
where Qn describes the SiO4 unit with n Si-O-Si oxo-bridges. Briefly, sepiolite structure is
characterized by four types of silicon atoms: one Q2 and three Q3. The three well-resolved
resonances accounting for Q3 Si atoms correspond to their different position (see Figure 1):
edge (Si1) at −96.6 ppm, center (Si3) at −92.9 ppm and near edge (Si2) at −90.4 ppm.

In the composite films, the Si1 peak, located at the edges of the octahedral sheets
and very close to structural water, decreased in intensity with respect to neat sepiolite
and downfield shifted of about 0.6 ppm. While the intensity ratio of the Q3 resonances in
the sepiolite sample was about 1:1:1, in the composite films the efficiency of magnetiza-
tion transfer from protons to Si atoms had changed, modifying the intensity ratio of the
three peaks. One possible explanation for such effect could be the substitution of zeolitic
water inside sepiolite’s channel with glycerol molecules. Glycerol could undergo polariza-
tion exchange with structural water or Mg-OH protons, changing the intensity ratio. This
explanation was described by Weir and coworkers in the case of substitution of zeolitic
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water with D2O [36]. Zeolitic water can also be substituted with small organic molecules
(e.g., acetone) inside sepiolite’s channels, as reported in the literature [5,7]. The 29Si CPMAS
NMR spectra of the cited works were very similar to the spectra of the nanocomposite
films with sepiolite herein investigated. It is worth noting that the removal of zeolitic
water by thermal treatment at 120 ◦C is not mandatory prior to its substitution; small polar
molecules such as methanol, ethanol, ammonia or pyridine can enter sepiolite’s tunnel by
displacing zeolitic water molecules [7].
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Figure 8. 29Si CPMAS NMR spectra of pristine sepiolite in comparison with nanocomposite films
with sepiolite at different loadings (YG3Sf, YG5Sf, YG10Sf and YG15Sf).

Driven by these hypotheses, two film samples of starch and sepiolite (at 5% and 15%
w/w with respect to starch, namely Y5Sf and Y15Sf) were manufactured without glycerol
to study the shape of the Si1 peak. The 29Si CPMAS NMR spectra of the composites,
reported in Figure S6 of the Supplementary Material, were comparable with the one of neat
sepiolite. This indicated that starch could not interact with sepiolite’s channel. Therefore, it
was confirmed that the presence of glycerol caused the decrement of Si1 intensity, due to
glycerol intercalation in sepiolite’s channel as previously hypothesized.

Long-range order of nanocomposite films was investigated by XRD. From the diffrac-
tograms reported in Figure 9, the basal plane (110) of sepiolite (PDF card n. 13-595) was
centered at about 7.20◦ (corresponding to a d-space of 1.22 nm from Bragg’s law), and it
was clearly visible in all the composite films. Glycerol and starch did not alter the internal
channels of sepiolite, which is consistent with the fact that sepiolite’s sheets are kept to-
gether by covalent bonds, and it cannot be exfoliated [6]. Other sepiolite reflections were
detected at 2θ 19.8◦, 20.5◦ (very weak), 23.6◦ and 26.3◦, which were comparable with the
standard (PDF card n. 13-595). In addition, the crystallite size of sepiolite (12 ± 1 nm, from
Scherrer’s equation) did not show variations in the nanocomposites.
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Figure 9. Diffractograms of pristine sepiolite, plasticized starch film (YGf) and nanocomposites films
with sepiolite at different loadings (YG3Sf, YG5Sf, YG10Sf and YG15Sf).

As expected, the observed peaks increased in intensity with increasing the sepiolite
content, but it is worth noting the relative intensity of (060) reflections at 19.8◦ in the film
samples, which appears higher than in pristine sepiolite.

A similar behavior is shown by the (080) peak at 26.3◦. It should be mentioned that
Chivrac et al. [12] attributed the peak at 26.3◦ to the formation of a new amylopectin crys-
talline structure at the filler interface, and they reported this effect likely to be induced by the
interaction of silanol groups at the edges of sepiolite needles with hydroxyl groups of starch.
A similar effect was described in starch nanocomposites loaded with halloysite clay [29],
and in synthetic polymer matrices, sepiolite has been reported to induce preferential orien-
tation in the matrix {0k0} planes or the formation of different polymorphs [12]. However,
in our samples no characteristic peaks of crystalline starch were detected, meaning that
the amorphous structure of starch did not change upon sepiolite addition, in agreement
with NMR results. Analyzing the sepiolite filler and considering the evolution of both (060)
and (080) planes with the sepiolite loading, the increased intensity for {0k0} reflections
along with the unchanged filler crystallite dimensions and the 13C CPMAS NMR results
suggest the occurrence of the onset of filler-preferred orientation in the bio-composites.
This could be due to interactions with starch leading to sepiolite arrangement into the
matrix, as recently reported by some of us for sepiolite–rubber nanocomposites [6,37].

From FTIR-ATR analyses, the spectra of the composites resulted very similar to the
one of YGf (Figure 10). Profile fitting of the 1200–800 cm−1 region further highlighted the
similarity of the samples; 1040/1016 area ratios (Figure S5 in the Supplementary Material)
were comparable in all the samples, and a clear trend was not observed. From these results,
it was concluded that the addition of sepiolite at any investigated amount did not change
starch conformation in an appreciable manner, in agreement with NMR and XRD results.
As a final remark, sepiolite typical vibrations (MgOH (3700–3555 cm−1), Si-O (1057 and
1000 cm−1), SiOH (976 cm−1) and MgOH (689 cm−1) [6], as shown in the spectrum in
Figure S7 of the Supplementary Material) could not be identified in the spectra of the
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bio-composites (Figure 10), due to the overlapping of the signals with starch vibrations.
Nevertheless, during profile fitting of the crystalline sensitive region, the integrated area of
the peak at about 970 cm−1 increased with increasing of sepiolite content (it was three times
higher in the YG15Sf film than the YG3Sf film). This might be explained by the increasing
presence of Si-OH bond vibration, possibly confirming that some signals were hidden by
starch vibrations.
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Figure 10. FTIR-ATR spectra of plasticized starch film (YGf) and nanocomposite films with sepiolite
at different loadings (YG3Sf, YG5Sf, YG10Sf and YG15Sf).

3.3. Thermal Resistance of Nanocomposite Films

The results of the thermogravimetric analysis performed on the film samples are shown
in Figure 11. Table 2 reports the decomposition temperatures T5 and T20, corresponding to
the temperature at which the sample weight losses are 5% and 20%, respectively, and the
residual weights.

The non-plasticized unfilled starch film sample, Yf, showed two main weight loss
events, the first close to 100 ◦C, due to loss of adsorbed water, and the second around
300 ◦C, attributed to the decomposition of starch. The glycerol containing films showed
a reduced amount of adsorbed water. However, an additional weight loss event, between
150 ◦C and 260 ◦C, appeared, lowering the thermal stability of the plasticized films YGf with
respect to the non-plasticized starch film Yf, as demonstrated by the lower T20 (Table 2).
Such behavior was consistent with that observed in other studies of plasticized starch
films [38] and was attributed to the decomposition of glycerol [39,40]. The composite films
containing sepiolite showed a better thermal resistance compared to YGf, increasing the
T5 of around 45 ◦C. However, by increasing the amount of sepiolite, the thermal stability
slightly decreases (T20 decreases of around 20 ◦C from YG3Sf to YG15Sf). These different
behaviors confirm the existence of complex interactions between sepiolite, glycerol and
starch chains. Finally, the residual weights are consistent with the inorganic fraction of the
samples, increasing with the filler amount.
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Figure 11. Thermograms of starch film (Yf), plasticized starch film (YGf) and nanocomposite films
with different loadings of sepiolite (YG3Sf, YG5Sf, YG10Sf and YG15Sf).

Table 2. Thermogravimetric analysis results: decomposition temperatures T5 and T20 (i.e., the
temperature at which the sample weight losses are 5% and 20%, respectively) and the residual
weights at 1000 ◦C.

Sample T5
(◦C)

T20
(◦C)

Residue
(%)

Yf 102 286 10.94
YGf 156 257 5.90

YG3Sf 197 286 10.83
YG5Sf 200 286 12.68

YG10Sf 197 277 17.39
YG15Sf 194 267 20.40

4. Conclusions

In this study, the effect of starch processing (i.e., starch gelatinization, addition of
glycerol as plasticizer, casting to obtain films) and the impact of different filler amounts
on the starch microstructure were evaluated through SS-NMR, XRD and FTIR-ATR tech-
niques. While the crystallinity of the pristine starch was about 45% during processing,
after gelatinization, starch became amorphous and remained amorphous also after the
addition of glycerol and fillers. The obtained bio-nanocomposite films were transparent
in the visible range, and the filler was uniformly distributed in the starch matrix. In the
bio-nanocomposites, a strong interaction between plasticizers and starch hydroxyl groups
was highlighted by FTIR-ATR analysis. The polysaccharide interacted also with sepio-
lite, inducing a preferential orientation of the filler along crystallographic planes {0k0},
as suggested by XRD analyses. Moreover, glycerol interacted with sepiolite by partially
substituting zeolitic water present inside sepiolite’s channel. While plasticization with
glycerol decreased the thermal stability of starch, the addition of sepiolite allowed recov-
ering of the initial thermal resistance. Furthermore, the transparency of the composite
films in the visible range was not affected by the highest amount of sepiolite filler. The
present study demonstrates the existence of complex interactions between sepiolite, glyc-
erol and starch chains that must be totally understood to tune the final properties of the
composite materials.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15051207/s1, Figure S1: SEM images of sepiolite clay filler;
Figure S2: profile fitting of C1 region in Yp

13C CPMAS NMR spectrum; Figure S3: profile fitting
of XRD diffractogram of Yp; Table S1: main FTIR-ATR peak assignment of film samples; Figure S4:
profile fitting of FTIR 1200–800 cm−1 region in Yp; Figure S5: results of FTIR 1040/1016 peak area ratio
for all the samples analyzed; Figure S6: 29Si CPMAS NMR spectra of neat sepiolite in comparison
with Y5Sf and Y15Sf without glycerol; Figure S7: FTIR-ATR of sepiolite filler. References [41,42] are
from supplementary materials.
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