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Chapter 9 

Dissipative solitons in microresonators 

Cristina Rimoldi, Bennet Fischer, Luigi Di Lauro, Mario Chemnitz, Alessia 

Pasquazi, David J. Moss, and Roberto Morandotti 

Abstract   In this Chapter we will illustrate the state-of-art in the generation of dis-

sipative solitons in Kerr microresonator-based systems. After a brief introduction 

on the origin of this field of research, we will discuss the modeling of these micro-

cavities using the generalized Lugiato-Lefever equation. Further, we will discuss 

the different techniques used for dispersion engineering in these systems. We will 

then focus on the description of the frequency combs generated by microring reso-

nators in the Kerr soliton regime and illustrate different schemes that have been 

developed in this context to grant better control of the microcavity dynamics. Fi-

nally, we will review the large number of applications that these objects have orig-

inated in several fields of optics. 

9.1 Introduction 

In the past 10 years, microresonators have revolutionized the field of optics with 

several applications in sensing [1–3], spectroscopy [4, 5], communication [6–9], 

astronomy [10, 11], and quantum optics [12–20]. These devices, generally featuring 

a high quality (Q) factor, can be realized under many forms, such as micro-toroids 

[21], spheres [22, 23], disks [24], rods [25], and integrated ring resonators [26, 27]. 

Further, they have been studied in many different materials, such as calcium [28] 

and magnesium [29] fluorides (CaF2, MgF2, respectively), lithium niobate (LiNbO3) 
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[30], aluminum nitride (AIN) [31], tantalum pentoxide (Ta2O5) [32], silica glass 

[33], diamond [34], silicon [26, 35], silicon nitride (Si3N4) [36], oxynitrides (Si-

OxNx) [37], and high-index glass [38, 39], each offering specific advantages (and 

disadvantages) depending on the considered application. While these devices and 

materials have since been thoroughly investigated for the generation of frequency 

combs [40–42], the first direct demonstration of dissipative solitons in microreso-

nators only dates back to 2014 [29], building upon the first experimental observa-

tion of Kerr solitons in a fiber cavity [43]. Kerr solitons arise from the mutual inter-

play of, on the one hand, dispersion and nonlinearity, and on the other hand, gain 

and losses. The resulting broadband frequency combs exhibit a high level of coher-

ence, which is of fundamental importance for applications in spectroscopy, com-

munications, and quantum measurements, as illustrated later in this Chapter.  

Frequency combs, generated through cascaded four-wave mixing (FWM) in the mi-

croresonator blue-detuned regime, can exhibit either an aperiodic temporal wave-

form, due to arbitrary and constant phases of the comb lines, or coherent sidebands 

with a low repetition rate and reduced bandwidth [28, 44]. In contrast, soliton fre-

quency comb lines display synchronized phases with higher repetition rates and 

bandwidths, thus resulting in an extremely narrow pulsed temporal shape [29, 45, 

46]. Differently from solitons generated through mode-locked laser techniques ex-

ploiting incoherent pumping schemes, Kerr soliton frequency combs present the 

pump frequency within their spectrum and their generation does not make use of 

saturable absorbers for stabilization [47, 48]. The first experimental demonstration 

of dissipative Kerr solitons (DKSs) in microresonators [29] was performed in an 

MgF2 crystal driven by a continuous wave (CW) pump laser. Here, solitons were 

observed when the optical system undergoes the transition between the effectively 

blue- and red-detuned regimes. In particular, while scanning for decreasing values 

of pump frequency, the system first displays primary sidebands in the frequency 

domain due to FWM, which are then followed by secondary lines. When the broad-

band radio-frequency (RF) signal transitions to a low-noise beatnote, a series of 

discrete steps in the transmission is observed and identified as a clear sign of the 

generation of Kerr solitons, which were then temporally characterized by the au-

thors through frequency-resolved gating (i.e. FROG measurements). While for the 

general description of the microresonator system dynamics we refer the reader to 

[49], in the following we are going to discuss the details of the most used modeling 

approaches. 

9.2 Modeling 

The generation of dissipative Kerr solitons in microresonators can be described by 

means of the Lugiato-Lefever equation [50, 51] (LLE). This model was first devel-

oped for the description of pattern formation in the transverse plane (i.e., the plane 
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orthogonal to the propagation direction) of a Kerr medium, contained in a high-

finesse cavity [50]. It is derived from Maxwell’s equations considering nonlinear 

contributions, under paraxial, slowly varying amplitude, and mean-field approxi-

mations in the low-transmission limit [52, 53].  

Years after its original formulation, the model was then adapted towards its highly 

successful temporal/longitudinal version [51] by Haelterman et al., where the dif-

fraction is replaced by the group velocity dispersion term and two independent tem-

poral variables are introduced, the time 𝑡 and the retarded time 𝑡 − 𝑧/𝑣𝑔, where 𝑣𝑔 

represents the group velocity and 𝑧 is the propagation direction. Such a formulation 

describes a field that is uniform in the transverse plane while propagating along the 

cavity. A form equivalent to the temporal/longitudinal LLE, with quantities related 

to the parameters of a microring resonator (MRR), is the following 

𝜕𝐸

𝜕𝑡
= 𝐹 − 𝐸 − 𝑖𝛿𝐸 + 𝑖|𝐸|2𝐸 − 𝑖

𝛽

2

𝜕2𝐸

𝜕𝜃2
  

where 𝐸 is the electric field and 𝐹 is the optical injected field amplitude. The detun-

ing term 𝛿 between the cavity frequency 𝜔0 and the closest input frequency 𝜔𝑝 is 

normalized to the cavity decay rate and 𝛽 is proportional to the group velocity dis-

persion (𝜕𝑣𝑔/𝜕𝜔)𝜔=𝜔0 
, while the time variable 𝑡 is normalized to the cavity decay 

time. The azimuthal angle is defined as 𝜃 = 𝑧/𝑅, where 𝑅 is the MRR radius, and 

𝑧 is the propagation variable [54, 55]. Note that for any solution of the LLE in the 

above form with periodic boundary conditions in −𝜋 < 𝜃 < 𝜋, 𝜃 will then need to 

be substituted by 𝜃 − (𝑣𝑔/𝑅)𝑡 [52]. 

While most early descriptions of Kerr frequency comb generation have often em-

ployed coupled mode theory (CMT) for the description of FWM in the frequency 

domain, the LLE, which can also be derived from CMT [54, 56], was later used to 

give a picture of the mean field in the temporal domain [57]. Indeed, although CMT 

equations offer an easy control of frequency-dependent absorption and coupling 

terms, they do not give direct access to the information in the time domain, which 

is instead easily obtained through the LLE [56]. Further, the LLE, which can be 

easily described as a driven, detuned, and damped nonlinear Schrödinger equation, 

allows for the straightforward inclusion of additional terms for Raman scattering 

and higher-order dispersion, as we will discuss in more detail in the following sec-

tions. On the other hand, thermo-optic effects, which can represent a limitation for 

Kerr combs in MRRs [58], have been successfully modeled in some systems 

through coupled mode equations [59, 60] as well as using the LLE [29]. For the 

modeling of resonator dynamics through CMT, we refer the reader to [40, 61]. 
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9.2.1 Higher-order dispersion 

In some experimental cases, solitons with sufficiently short temporal duration ex-

hibit a spectral bandwidth that extends towards the normal dispersion region. Such 

solitons cannot be properly described through the LLE in the above-mentioned 

form, which in fact needs to be adjusted (in its temporal version [40, 51]) through 

the addition of higher-order dispersion terms of the form [62] 

𝐷𝑛 = 𝑖𝑛+1
𝛽𝑛

𝑛!

𝜕𝑛𝐸

𝜕𝜏𝑛
  

for 𝑛 > 2, where 𝛽𝑛 is the n-th order dispersion coefficient and 𝜏 is a time variable, 

proportional to the previously mentioned retarded time. These additional terms al-

low for the modeling of soliton bandwidth restrictions in realistic cavities as well as 

dispersive wave generation [55], where the soliton repels a fraction of its energy 

into a radiant mode, an effect that can be interpreted as the optical analog of Che-

renkov radiation. Additionally, higher-order dispersion mediates the interplay be-

tween FWM and dispersive wave formation, in turn giving rise to a spectral recoil, 

where the soliton spectral peak shifts from the original pump frequency [62, 63]. 

Finally, we would like to point out that higher-order dispersion terms are often ac-

companied by a self-steepening effect, as described in [64]. 

9.2.2 Raman effect 

The Raman effect in microresonators has been demonstrated to be non-negligible 

in specific materials, such as Si3N4 and silica [65]. This effect is usually modeled in 

the LLE as a fraction of the cubic nonlinearity of the form [66]  

𝑓𝑅ℎ𝑅 ⊗ |𝐸|2 ≈ 𝑓𝑅|𝐸|2 − 𝑓𝑅𝜏𝑅

∂|𝐸|2

𝜕𝜏
  

often approximated to first order [65], where 𝑓𝑅 is the Raman fraction, ℎ𝑅 represents 

the Raman response function, and 𝜏𝑅 is the Raman shock time. In microresonators, 

the effect of Raman scattering implies the development of a self-frequency shift, 

where the soliton peak frequency is redshifted with respect to the CW pump laser 

frequency. The compensation of this shift through the spectral recoil generated by 

higher-order dispersion has been studied in [65]. Additionally, a new type of soliton, 

called Stokes soliton, has been demonstrated in the presence of Raman gain [67]. In 

terms of Kerr frequency comb generation, it is important to note that stimulated 

Raman scattering can ultimately limit the temporal and spectral width of dissipative 

Kerr solitons [68].  
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9.3 Dispersion engineered cavity dynamics 

One of the key advantages of waveguide-integrated MRRs is the large variety of 

wavelength dispersion properties determining the linear propagation characteristics 

of the optical modes. In contrast to the unilateral geometries of whispery-gallery 

mode and photonic belt resonators [69, 70], the bilateral optical mode confinement 

in MRR opens a large variety of possibilities to adjust the dispersion properties of 

the circumventing modes. These include (a) adjusting the dimensions of the wave-

guide cross-section [71–73] or geometry (e.g. split or “race-track” waveguide) [14, 

74], as well as (b) altering the composition of the waveguide core (see e.g. the recent 

works about Kerr combs in LiNO3 [75], SiOxNy [44, 76, 77], Si3N4 [78], Diamond, 

Si) or the coating/cladding materials [36, 72]. While a very detailed overview of 

emerging materials for integrated microcavities is given in the comprehensive re-

views by Kovach et al. [79] and Kippenberg et al. [47], here we aim to summarize 

the essentials of dispersion engineering in waveguide-based MRRs and its ad-

vantages for altering the temporal dynamics of DKSs.  

9.3.1 Capabilities of dispersion engineering 

The key for dispersion engineering in optical waveguides is a careful balance be-

tween material- and mode-specific waveguide dispersion. The choice of appropriate 

core, cladding, and cover layer materials alters the modal dispersion, while defining 

the guidance and dispersion constraints given by the individual material refractive 

indices. However, the waveguide geometry (i.e., cross-section and dimensions) may 

significantly change the modal confinement, increase the field overlap to the sur-

rounding material (i.e. cladding [36] or cover layer [72]), and thus vary the disper-

sive properties of the mode. Moreover, the lithographic fabrication of photonic on-

chip waveguides allows for the incorporation of gaps or slot layers, which add even 

more free parameters towards tailoring both dispersion and nonlinearity [80, 81]. In 

general, an appropriate choice of the waveguide materials, geometry, and dimension 

enables a plethora of dispersion landscapes, ranging from flat normal (i.e. without 

zero-dispersion) to anomalous dispersion with one, two, or even more zero-disper-

sion wavelengths in the vicinity of the pump field [81–83]. Commercially available 

numerical finite-element solvers are required to find the eigenmodes of the Max-

well’s equations in the boundary problem imposed by the rectangular waveguide 

cross-sections of the MRRs. However, limitations in the fabrication processes, such 

as material inhomogeneity, stress built-up, and lithographic mask imperfections, 

usually limit the range of accessible design parameters. On the positive side, recent 

years have seen a considerable improvement in the fabrication processes (e.g., hy-

brid material systems, stress release patterns, mask improvements) [47, 79] enabling 

ever more access to novel dispersion regimes.  
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9.3.2 Advanced control of dissipative soliton dynamics 

Dispersion engineering allows waveguide-integrated optical MRR to unlock un-

precedented application capabilities. Transferring operation concepts such as con-

trolled dispersive wave emission [84–86], tailored higher-order mode coupling [87–

89], and soliton molecule formation [90–93] from nonlinear fibers to MRR has en-

abled the observation and advanced control over the dynamics of many different 

cavity soliton states in recent years. In the following, we are going to highlight a 

few of these advances.  

Beyond theoretical modeling, physical limitations in the microcavity design, such 

as higher-order dispersion or dispersive nonlinearity, severely impact the formation 

of solitons in terms of bandwidth, power, and mode order. Multiple numerical and 

experimental studies propose practical approaches in order to optimize Kerr comb 

properties. In silicon nitride systems, for example, changes as small as a few hun-

dred nm in the waveguide dimension can lead to a significant extent of the anoma-

lous dispersion region causing a fivefold spectral extension of the Kerr comb [94]. 

The same study also demonstrated the selection of a suitable pump wavelength as a 

practical tool to alter the Kerr comb spectral extent and power after device fabrica-

tion. If pump wavelength tuning remains inaccessible, fine detuning of the free 

spectral range (FSR), bandwidth, and number of DKS through controlled heating of 

the MRR can offer an attractive alternative [95]. Similar advantages at faster tuning 

rates might be offered in the near future by second-order nonlinear materials such 

as LiNO3-based MRRs [75]. Another promising approach on the fabrication side 

are multi-layer (slot) waveguides [81, 96] and non-uniform MRRs [97] that allow 

for the accurate adjustment of the cavity net-dispersion and nonlinearity, ultimately 

granting precise control over higher-order dispersion terms.  

Such terms (i.e. βn > β2) have been demonstrated to significantly boost the comb 

bandwidth through one-sided or two-sided dispersive wave generation [36, 81, 98]. 

Dispersive wave generation is a nonlinear optical conversion process that requires 

a soliton-like optical pump with a flat phase in order to fulfill the phase-matching 

condition [62, 99]  

Δ𝛽 = 𝛽 − 𝛽𝑠 − (𝜔 − 𝜔𝑠)𝛽1,𝑠 −
1

2
𝛾0𝑃𝑠 = 0 

The condition compares the flat phase of a soliton βs + 1

2
γ0Ps (with nonlinear pa-

rameter γ0 and soliton peak power Ps) with the propagation constant of a linear wave 

β(ω) in the moving frame of the soliton (ω − ωs)β1,s (with ω and ωs angular fre-

quencies of the linear wave and soliton respectively, and β1,s the group dispersion 

of the soliton), which accounts for the group velocity mismatch. The broadband 

spectra generated by the interplay of dispersive wave and soliton are of fundamental 
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use for optical metrology [36, 100] as well as future spectroscopic applications sim-

ilar to [4, 101, 102]. However, due to the nature of this radiation, the dispersive part 

of the spectrum does not contribute to the pulsed waveform of the Kerr soliton and 

thus constitutes a considerable energy loss to the soliton. Moreover, it causes the 

soliton to spectrally shift in order to compensate for the momentum loss (known as 

the soliton recoil effect). Depending on the application of the comb system, these 

effects might be detrimental and worth being reduced through proper dispersion 

design.  

Finally, we like to highlight an unprecedented consequence of dispersion engineer-

ing in microcavities, which is the reduction of thermal noise in so-called quiet soli-

ton combs [103, 104]. A comprehensive study recently revealed that operating in a 

cavity-specific ideal dispersion domain can reduce the thermal instabilities of soli-

ton states up to 60 dB (with 15 dB improvement experimentally shown), thus dras-

tically stabilizing the comb repetition rate and long-term stability [104]. 

9.3.3 Novel phenomena in dispersion-tailored microring 

resonators 

Advanced access to waveguide properties also enables the observation of a few 

unique effects of which no real equivalent exists in optical fiber systems. One of 

these effects is dispersive wave generation induced by avoided mode-crossing. 

Avoided mode-crossings may occur in waveguides with relatively large dimen-

sions, which support more than one (fundamental) transversal mode per polarization 

(i.e., usually TE00 and TM00) within the bandwidth of the optical source. Here, the 

avoided intersections of two transversal modes cause a significant change of the 

individual mode dispersions (see Fig. 1a), which can be a few orders of magnitude 

stronger than any other waveguide-intrinsic dispersion change and perturb soliton 

formation. Similar effects were observed between two different polarization modes 

[105]. 

Since larger waveguide sizes are a necessity for anomalous dispersion and power 

scaling of DKSs [78], intermodal crossings are very likely to occur in MRRs. How-

ever, for the purpose of favorable power scaling of cavity solitons, energy leakage 

due to non-solitonic radiation is largely undesired. Efforts to decrease the impact of 

higher-order modes include the incorporation of tapered sections into the MRRs 

[78, 97] as well as higher-order mode isolation couplers [106].  

On the contrary, it is noteworthy that mode-crossings, in turn, host the unique ca-

pability to steer dispersive-wave formation, since they provide a strong variation of 

the dispersion. Thus, such crossings eventually provide a set of well defined, very 

narrow wavelength regions of perfect phase-matching between a soliton pump (in 

the transversal mode 1) and a dispersive wave (in the transversal mode 2) [103, 
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107]. Hence, the involvement of avoided mode-crossings imposes advantages on (i) 

the tuneability of the overall comb bandwidth, (ii) the accurate spectral relocation 

of dispersive wave energy, as well as (iii) refining the temporal characteristics of 

the dispersive radiation. Most notably, tailored narrow-band mode-crossings were 

utilized for the highly efficient generation of dispersive radiation into a single reso-

nator mode (see Fig. 1b) [103]. The study reports further on hysteresis-like interac-

tion between this strong mode and the spectro-temporal behavior of the soliton as 

well as on the ability of repetition rate stabilization (so-called quiet states), which 

clearly hosts advantages for switching and long-term stable applications. 

 
Fig. 1 a). Dispersion of a cavity soliton with avoided mode-crossing. b) Spectrum of soliton comb 

featuring a single-mode dispersive wave (blue). (a-b) adapted (labels, font size and line widths) 

from [103] under CC BY 4.0 license. c) Illustration of a soliton crystal state and d) respective 

measured spectrum. (c-d) adapted (font size) from [108] under CC BY 4.0 license. 

A further specialty of MRRs is the greater ability to reach stable control over the 

formation of multi-soliton states. Here, mastering of cavity stability through a bal-

ance of dispersion, nonlinearity, gain and loss, allows for the formation of multiple 

cavity solitons. In particular, the fine control over the dispersive properties of the 

cavity via thermal tuning as fast as 100 µs ultimately enables an on-demand increase 

of the soliton number and the controlled study of multi-soliton behavior [95]. These 

achievements resulted in the observation and active control of soliton crystals [33, 

109]. Here, nonlinear nearest neighbor interactions allow phase-locked multi-pho-

ton states distributed over an equidistant temporal grid. The robustness of this highly 

ordered temporal alignment, in combination with the control over spacing and the 

existence of vacancies (i.e. Schottky defects) in the temporal grid, gives rise to the 

name soliton crystals in analogy to solid-state atomic crystals. The narrow spacing 
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of the solitons in the MRR allows for a very practical indirect read-out through their 

spectra. For instance, through straight-forward Fourier transform rules, the number 

of solitons in the crystal can be read from the FSR of the most dominant cavity 

modes, while the number and positions of vacancies become apparent from the un-

derlying modulation structure of the secondary modes (see Fig. 1c,d). The manifold 

of crystal states and their robustness open up unique and unprecedented applica-

tions, among which we can mention background-free soliton lasers with GHz repe-

tition rates [110], ultra-dense data transmission for telecommunications [111], as 

well as activation functionalities for photonic neural networks [108].  

9.4 Soliton comb generation schemes 

Although Kerr frequency combs promise a powerful alternative to fiber-based fre-

quency comb systems, they come with certain limitations that prevent their wide-

spread use. Indeed, the generation of Kerr combs and their reliable long-term stabi-

lization is currently one of the major bottlenecks that prevent a successful 

commercialization. In particular, DKSs (a subgroup of Kerr combs) are of high in-

terest for a variety of applications due to their inherent GHz [112] to THz [113] 

repetition rates, short pulse durations, as well as their high phase stability between 

comb lines. In order to reach stable soliton operation, several different techniques 

have been developed in recent years and are briefly described below. For a more 

thorough review of soliton comb generation schemes, see for example refs. [16, 40, 

47, 114].  

In general, the majority of developed schemes rely on a tunable narrow linewidth 

CW laser source that is swept into the microcavity to reach the red-detuned soliton 

operation point. In 2013, Matsko et al. theoretically showed how to achieve DKSs 

through continuous scanning of the pump frequency, from blue-detuned to red-de-

tuned values (i.e. from a higher optical frequency to a lower optical frequency with 

zero detuning from the center of the resonance) [115], as was also reported in later 

works [29, 64, 116]. When an MRR reaches a regime that allows for the propagation 

of stable DKSs, the intra-cavity energy experiences a sudden drop in intensity. The 

understanding of this behavior led to the demonstration of DKSs in microresonators 

in 2014 by Herr et al. [29]. These were previously observed in 2013 by Saha et al. 

under the form of femtosecond stable pulses in Si3N4 MRRs [117].  

In 2009, Strekalov and Yu proposed a pumping scheme based on the use of a bi-

chromatic source to produce frequency combs in MgF2 MRRs, exploiting cascaded 

FWM rather than optical parametric generation [118, 119], leading to highly effi-

cient DKS generation. Similarly, an electro-optic pumping scheme was exploited 

by Papp et al. [120, 121], which has experimentally shown the realization and con-

trol of extremely precise equidistant comb lines, essential for achieving ultra-stable 

solitons.  
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Additionally, techniques adapted from classical metrology such as the locking of 

the carrier-envelope-offset (CEO) frequency via self-referencing (i.e. f-2f interfer-

ometry [122]) of the generated comb have been investigated in order to obtain fully 

stabilized frequency combs in a compact footprint [123, 124]. Towards long-term 

stabilization, several techniques such as Pound-Drever-Hall feedback control sys-

tems [103], servo feedback loops [125], or sideband modulation [126, 127] have 

been explored. 

9.4.1 Frequency scanning 

Initial schemes have utilized a simple, yet effective technique in order to overcome 

the issue of thermal cavity drifts [29, 115]: By shifting the CW laser source from 

the blue- to the red-detuned regime, an intracavity thermal equilibrium can be 

reached, allowing the stable generation of soliton combs. Here, the sweeping speed 

of the laser is crucial for the generation of the soliton combs and should match the 

microcavities photon and thermal lifetime, which can be difficult to achieve for 

some material platforms. As described earlier, the detuning of the pump starting 

from the blue side leads first to a primary frequency comb, formed through the intra-

cavity power build-up, which in turn seeds FWM within the cavity. Further detuning 

of the pump laser results in to the generation of ‘subcombs’ and unstable combs 

formed by modulation instabilities (MI). The common feature of these combs in the 

blue-detuned regime is high noise in the RF-domain, due to multiple and broad RF 

beatnotes arising from MI. Once the red-detuned regime is reached, the intracavity 

power shows an abrupt decline in power and the so-called soliton steps can be ob-

served, which show characteristic step sizes depending on the chosen material plat-

form. Here, the generated solitons feature very narrow RF beatnotes as well as sta-

ble optical comb outputs. At the beginning of this regime, multi-soliton states are 

generated and, with increased detuning, they subsequently break down until a single 

soliton-state is reached. The goal of the frequency scanning method is, to stop the 

frequency detuning of the laser, once the single soliton state is obtained, which is 

easier achievable if the soliton step-sizes feature longer time durations (~ms for e.g. 

MgF2 [29]). 

9.4.2 Power Kicking 

The power-kicking method [36, 128] is a widely used technique that allows for the 

generation of soliton combs in materials that feature a high thermo-optic coefficient. 

In these materials (such as Si3N4), the observed soliton steps exhibit very short time 

durations (~µs), which prevent the effective use of the frequency scanning method 

(i.e. to precisely stop the laser frequency on one of the soliton steps). Instead of 
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using only a single tunable CW laser, two intensity modulators (acousto-optic and 

electro-optic modulators, AOM and EOM, respectively) are included before the mi-

crocavity. The use of the EOM is necessary to obtain the required speed, which 

cannot be provided by the AOM alone. Here, the AOM reduces the pump power of 

the source before tuning into the resonance, allowing to quickly reach the soliton 

steps. Subsequently, the AOM increases the pump power in order to stabilize the 

reached soliton step. After the AOM, an EOM helps diminishing thermal instabili-

ties by effectively reducing the pump power right before the zero-detuning point 

(i.e. the resonance center), which also ensures a fast transition to the soliton steps. 

When the settings (and timings) for the laser frequency sweeping and both modula-

tions are correctly chosen, this method allows for the reliable generation of soliton 

combs in materials featuring higher thermo-optic coefficients. 

9.4.3 Thermal Tuning 

A more inexpensive method can be realized with on-chip resistive heaters on top of 

the microcavities [95, 129]. In this scheme, the tunable CW laser is replaced by a 

fixed frequency CW laser diode and the cavity resonance is thermally tuned by in-

ducing a refractive index change caused by the thermo-optic effect. This can be 

realized through, for example, an electrode on top of the microcavity, which is cur-

rent controlled. This allows for relatively fast speeds (given the small structure and 

thermal mass of the electrode) as well as for the fine tuning precision (determined 

by the bit-depth of the used digital-to-analog converter) required to directly obtain 

the short (~µs) soliton steps. Furthermore, although similar to the frequency scan-

ning scheme, the thermal tuning technique offers advantages due to the use of single 

frequency lasers with lower RF noise as well as narrower linewidths (compared to 

tunable lasers), resulting in combs with lower noise. However, for use in more com-

plex photonic integrated circuits (PICs), local heating of the chip might pose addi-

tional restrictions as other integrated elements would need to be shielded from any 

temperature gradients and effects (i.e. thermal crosstalk), thus potentially limiting 

the scope of this technique [130]. 

9.4.4 Self-injection locking and laser-based configurations 

The previously reported schemes rely on the use of CW lasers for pumping, which 

are far from being monochromatic sources (with linewidth shifts of tens of kHz), 

suffer from instabilities due to noise, and require extensive optical pump power (~ 

Watt level), as well as elaborate feedback control systems. Additionally, thermal 

instabilities can strongly affect the ability to generate and stabilize coherent states, 
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since solutions may experience thermal drifting, hence, leading to the destruction 

of the coherent soliton regimes.  

 
Fig. 2 Nested cavity setup for soliton generation. a) The setup consists of a high-doped index 

silica glass (Hydex) MRR (Microcavity) nested in an external feedback fiber cavity, composed of 

a short-length erbium-ytterbium co-doped fiber amplifier (EYDFA), an optical isolator to ensure 

unidirectional propagation, a tunable optical bandpass filter (BPF), a tunable delay line, a polarizer 

(PBS), a waveplate (λ/2) for polarization control and three optical collimators (OCs). The external 

propagation cavity modes sustain the microcavity pulses, which are broadened by the Kerr non-

linearity over the gain bandwidth. This setup allows to reach stable soliton states with a variable 

repetition rate in the order of megahertz. b) Soliton generation for two equidistant solitons per 

round-trip, with 150 mW output power from the amplifier and 30 mW output from the MRR. The 

experimental (blue) and theoretical (red) values of the spectrum measured with an optical spectrum 

analyzer (OSA) and autocorrelation trace are shown in the left and right insets, respectively. The 

temporal intensity output from the fiber cavity is monitored with a photodiode (PD) and a fast 

oscilloscope c) Intracavity spectrum (blue), showing the mode lasing within each microcavity res-

onance. Adapted (cropped with modified font size and labels) with permission from figures (3,S6) 

in Bao et al. Nature Photonics 13: 384-389 [110]. 

Thermo-optical nonlinearity, originating from the thermal capacitance of the micro-

resonator material, modifies the steady-state solutions of the intra-cavity field, by 

creating a slow dependence of the refractive index from the temperature. This, in 

turn, induces an additional detuning with respect to the pump frequency, which 

competes with the ultra-fast Kerr red-shift, resulting in a variety of non-solitonic 
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nonlinear regimes, such as self-pulsing and deterministic chaos [49, 60, 85, 115, 

131–134].  

In order to address stabilization issues, Yi et al. [125] proposed an active approach 

by employing a feedback loop for the self-adjustment of the output power. Such a 

configuration allowed to achieve coherent states that are robust against thermal in-

stabilities over long times. This in turn led to the development of even more efficient 

schemes that allow for the generation of stable solitons through passive driving and 

control of the cavity parameters, known as passive self-injection locking. This tech-

nique was proposed in an initial work by Liang et al., to narrow the linewidth of a 

distributed feedback laser with an MRR [135].  

Injection-locking schemes based on free-running diode lasers have gained increased 

interest for the use in simplified, small footprint turn-key soliton generators [136–

139]. Here, instead of using a tunable CW laser for pumping (which needs to be 

optically isolated from the microcavity – a difficult task for monolithic integration), 

the microcavity is directly attached to a semiconductor laser diode (e.g. a distributed 

feedback laser, DFB), which is operated in a free-running mode. Small back-reflec-

tions inside the microcavity are being utilized to lock the free-running diode to the 

microcavity resonance, which subsequently allows for stable soliton generation. 

In 2020, Shen et al. demonstrated a turn-key soliton comb generator based on a 

DFB laser coupled to a Si3N4 microresonator chip packaged inside a commercially 

available butterfly package [138]. The authors showed reliable soliton comb gener-

ation with an FSR of 40 GHz spanning 30 nm, requiring only 30 mW of optical 

pump power. Remarkably, the demonstrated system not only allows for reliable 

turn-key operation (meaning that repeated on and off switching results in the same 

comb output) but it also exhibits much lower noise figures than other monolithic 

integrated lasers and even off-the-shelf tunable external cavity lasers.  

In 2019, Bao and coauthors used a nested cavity configuration scheme for produc-

ing Kerr solitons [110, 133, 140], based on a nested configuration where an MRR 

is embedded in an external fiber cavity, which allows for signal reinjection into the 

ring.  

This setup, illustrated in Fig. 2, is inspired by a passive laser mode-locking setup, 

first demonstrated by Pasquazi, Peccianti et al. in 2012 [40, 141–146], which em-

beds an MRR in an active laser loop. The result is a mode-locking almost insensitive 

to thermally-induced fluctuations. Remarkably, Bao et al. recently demonstrated a 

new class of DKSs that can be generated upon a free-CW background, with a tuna-

ble repetition rate of megahertz, sustained by the gain of the lasing medium, with a 

mode efficiency of 75% at average powers that are one order of magnitude lower 

than the energy threshold for soliton generation predicted by the LLE [110]. 
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9.5 Nonlinear dynamics of DKS 

Cavity solitons in MRRs can exhibit a rich variety of nonlinear dynamical regimes 

and intriguing nonlinear effects that have been exploited in a plethora of practical 

applications in spectroscopy, sensing, and telecommunications (see the following 

section for more details). Some examples of the available regimes are bright and 

dark solitons states [147], soliton Cherenkov radiation [62], Stokes solitons [67], as 

well as soliton crystallization [109, 111, 148], switching [149], and breather states 

[150, 151]. 

Bright and dark solitons can coexist in Kerr media that undergo third-order disper-

sion in the normal regime, as studied by Parra-Rivas et al. [152]. Indeed, Xue and 

coauthors have shown that dark soliton states can be observed in the normal disper-

sion regime [153]. Moreover, as outlined earlier, Brasch et al., reported that higher-

order dispersion terms in silicon nitride MRRs, while inducing a spectral broaden-

ing of the coherent states, can enable Cherenkov radiation associated to DKS prop-

agation [36]. Stokes solitons have been also observed in MRRs, where their gener-

ation is mediated by the compensation process between Raman interaction and 

dispersion, which supports stable soliton propagation [47]. This is achieved through 

the exchange of energy with a primary DKS, formed via Kerr nonlinearity, and 

Stokes states, belonging to a distinct mode family.  

Remarkably, in 2019, Karpov et al. demonstrated the generation of deterministic 

soliton crystal states in MRRs for a critical pump power value, corresponding to a 

stable defect-free lattice of optical pulses, sustained by the modulated driving field 

of a CW source [154]. The investigation of soliton crystals revealed the interesting 

dynamical features stemming from the switching of these states into transient chaos 

and the formation of breathers via a melting and recrystallization process.  

9.6 Applications 

Since their first introduction in 2007 [155], Kerr frequency combs (incl. soliton 

combs) have gained increased interest as a powerful, small-scale alternative to tra-

ditional frequency combs [122, 156], arising from their potentially low power con-

sumption [113] as well as their cost-efficient, mass producible integration through 

the same CMOS-processes and infrastructure of the semiconductor industry [80]. 

Moreover, as outlined earlier, the generated Kerr frequency combs can eventually 

span, depending on the chosen material platform and dispersion engineering, the 

ultraviolet [157, 158], the visible [159], the mid-infrared [160], up to the THz re-

gimes [161], offering great opportunities for many fields of application. Further, the 

capability of precisely adjusting the dispersion allows for the generation of combs 

that can intrinsically cover more than one octave (where a frequency and its double 
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both exist within the generated spectrum, e.g. 150 THz (~2 µm) and 300 THz 

(~1 µm)), avoiding the need for further broadening in a preceding nonlinear device, 

which is important for comb stabilization [98, 124] and crucial for most of their 

intended applications. As a result of this versatility, Kerr soliton frequency combs 

have already revolutionized many applications, including classical frequency comb 

adaptions such as dual-comb spectroscopy [4]. Moreover, due to the small struc-

tures of microcavities, high FSRs (ranging from GHz to THz) can be achieved, 

which makes these platforms interesting for telecommunications applications. In 

fact, the FSRs of microcavities can be finely adjusted to match the WDM (wave-

length division multiplexing, 100 GHz) and DWDM (dense WDM, 50 GHz) tele-

com grids, thus allowing for massively parallel and high-bandwidth transmission 

schemes obtained by exclusively using a single optical source [9, 111]. Other novel 

concepts and demonstrations include optical clockworks/gears, which are able to 

coherently link different electromagnetic domains, e.g. from hundreds of THz to 

MHz. This in turn allows the optical frequency of an atomic reference (e.g. Rb) to 

be counted by standard electrics [162–164]. Besides, promising applications includ-

ing optical frequency synthesizers [165], RF processing [166], ultra-fast and multi-

color optical ranging (i.e. LIDAR, light detection and ranging) [167–169], the gen-

eration of THz radiation [161], as well as astrocombs [10, 11, 170] have been all 

demonstrated, to only name a few.  

More recently, advanced ‘hybrid’ approaches such as the combination of microcav-

ities with piezo-electric materials [169], opto-mechanical designs [171], and inte-

grated MRRs in electro-optic materials [75] have been investigated, offering new 

possibilities and functionalities for these powerful microcavity platforms. 

Finally, it is noteworthy that besides the aforementioned soliton applications, mi-

crocavities have attracted significant attention for utilization outside the soliton re-

gime in applications such as biosensing [172, 173], narrow-linewidth lasers 

schemes [174], optical machine-learning [108, 175–178], and quantum technolo-

gies [13, 15, 17, 18, 179–184]. 
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