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The interaction of two cavity solitons in a driven semiconductor laser above lasing threshold is investigated.
We focus on the case in which the background field of the solitons is turbulent because the laser is below
the injection locking point. We show that the solitons move spontaneously and either reach some equilibrium
distance or merge. Different behaviors are found depending on how far from the injection locking point the
laser is. The laser is modeled by a set of effective Maxwell-Bloch equations which include an equation for the
macroscopic polarization that mimics the complex susceptibility of the semiconductor. In that way we avoid
the emergence of an unphysical behavior of the background which instead appears when the polarization is
adiabatically eliminated, which amounts to assuming infinite gain linewidth. The simulations are slow because
the time scales of the different dynamical variables differ by four orders of magnitude. Yet, we show that the
results of the complete set of equations can be accurately reproduced with a reduced set of equations where the
polarization is adiabatically eliminated but a diffusion term is included in Maxwell equation, which accounts for
the finiteness of the gain linewidth.

DOI: 10.1103/PhysRevE.101.042210

I. INTRODUCTION

Semiconductor lasers are very sensitive to external pertur-
bations, i.e., optical injection and external optical feedback
due to a combination of intrinsic, material-related properties
leading to relaxation oscillations and self-phase modulation.
Such instabilities are manifestations of highly complex struc-
tures of nonlinear dynamics and bifurcations [1,2]. It is also
well known that in broad area vertical cavity surface emitting
lasers (VCSELs) with external optical injection, complex
spatial patterns and cavity solitons (CSs) can be formed due
to the interplay among dispersive or absorptive nonlinearities,
paraxial diffraction, dissipation and feedback [3,4].

CSs, or autosolitons, were initially predicted in a bistable
nonlinear resonator containing a two-level instantaneous
medium [5]. With the aim of modeling experiments performed
with a driven VCSEL, a more refined model was then intro-
duced which accounts for the properties of the semiconductor
medium by including phase-amplitude coupling through the
α factor in the equation for the electric field and coupling it
with an equation for the slow gain [6,7]. Such a model can
be thought of as the rate equation limit of a Maxwell-Bloch-
like set of equations where the material polarization P is
adiabatically eliminated. The model was applied successfully
to the first experimental demonstration of CSs in a broad
area VCSEL slightly below the lasing threshold [8,9]. In the
experiment the VCSEL was pumped above transparency, so
that it acted as an amplifier, but slightly below the lasing
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threshold, which means that the gain experienced by light in
the amplifier was not sufficient to overcome cavity losses and
the VCSEL would not emit light unless it was driven by an
external coherent field.

When the laser is above threshold, however, a competition
arises between the lasing frequency and the frequency of the
injected field, which results in an oscillatory instability as
long as the amplitude of the injected field is below a critical
value which marks the injection locking point. Above that
critical value the laser is locked to the external frequency.
In a spatially extended system, the oscillations below the
injection locking point affect also the transverse modes of
the electric field, giving rise to complex spatiotemporal dy-
namics, or turbulence. In that case, it was shown that the
simple adiabatic elimination of the polarization variable is not
correct because below the injection locking point it leads to
oscillatory instabilities with a spuriously high critical wave
number [10]. For that reason a set of effective semiconductor
Maxwell-Bloch equations that includes an equation for the
macroscopic polarization was used by Hachair et al. [11]
to model the first experiment where CSs were observed in
a driven VCSEL above lasing threshold. It was found that
a Hopf instability, typical of driven lasers above threshold,
affects the lower intensity branch of the homogeneous steady
state, while the higher intensity branch is unstable due to a
Turing instability. In agreement with the experimental find-
ings the model predicts that CSs exist and are stable even
when the lower branch of the bistable curve is unstable,
although the CSs are no longer stationary and display irregular
intensity and phase oscillations, due to the turbulence of the
background [11,12].

2470-0045/2020/101(4)/042210(7) 042210-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.042210&domain=pdf&date_stamp=2020-04-16
https://doi.org/10.1103/PhysRevE.101.042210


SHAYESTEH RAHMANI ANBARDAN et al. PHYSICAL REVIEW E 101, 042210 (2020)

A relevant feature of CSs is that in a transversally homoge-
neous optical cavity they are marginally stable with respect
to translations. A neutral mode therefore exists, associated
to translational symmetry [13,14]. In a laser with saturable
absorber, where CSs exist even in the absence of optical
injection, this property of CSs allows various kinds of mo-
tion, spanning from spontaneous motion in the presence of
a drift instability for CS as in Refs. [15,16] to CS motion
related to the formation of CS complexes as in Refs. [17,18].
Moreover, in the same system, interesting CS trajectories are
also predicted in the case of collisions between moving CS
and interactions of moving CS with material defects, such as
peaks or wells in the carrier density due to inhomogeneities in
the injected current [19]. Here, however, we are interested in
lasers without a saturable absorber and driven by an external
field, also named the holding beam. In that case the motion of
CSs can be both spontaneous and induced by gradients in the
holding beam itself.

It was shown that in the presence of an amplitude gradient
CSs tend to move towards the nearest local maximum of in-
tensity of the holding beam [7]. This perhaps undesired effect
can be compensated by phase modulations in the holding
beam which allow one to fix the positions of the solitons by
means of a phase mask, as shown numerically in Ref. [7] and
experimentally in Ref. [20].

A constant phase gradient instead makes CSs move at a
constant velocity, proportional to the gradient amplitude [13].
This property makes it possible to realize a delay line using
cavity solitons that drift laterally with typical velocities on the
order of 1 km/s [21]. The above examples refer to a coherently
driven VCSEL below the lasing threshold. In the case of a
coherently driven VCSEL above threshold an ultrafast delay
line has been numerically demonstrated in Ref. [22].

On the other hand, spontaneous motion of cavity solitons
can be induced by thermal effects [23,24]. This slow drift can
be controlled again by using a holding beam with amplitude
or phase modulations [25].

More recently, another kind of spontaneous motion was
demonstrated numerically in a VCSEL above lasing thresh-
old, which occurs when two CSs are excited in different
positions. The two solitons move one towards the other over
long time scales due to an attractive force with which an
exponentially decaying interaction potential can be associated
[26]. No matter how distant initially the two CSs are, they
eventually merge, and the merging time increases exponen-
tially with the initial distance. In Ref. [26] the laser was
operated above the lasing threshold and above the locking
point, and consequently the CSs have a stable background.

In this paper we consider the interaction of two CSs when
the laser is above lasing threshold as before, but it is now
operated below the injection locking point, so that CSs sit over
an unstable background which induces intensity and phase
oscillation in the CSs themselves [11]. We show that the
behavior is quite different from that observed in Ref. [26],
because here, instead of merging, the CSs move and typically
reach an equilibrium distance before they stop, unless they are
initially very close to each other.

We also show that the adiabatic elimination of the polar-
ization variable, which was possible in Ref. [26] because of
the absence of oscillatory instabilities, here produces results

that are substantially different from those of the full model.
Yet, it is enough to add to the equation for the electric field
a diffusion term, which acts as a spectral filter, to recover a
behavior very similar to that of the complete model.

The interest in this study is not purely academic, in that the
mechanism of soliton merging can be viewed as a means to
realize an optical AND gate [22].

It is interesting to recall here that, instead of merging,
CSs in a passive resonator may form stable clusters at
some preferred separation distances, as shown for instance
in Refs. [5,27,28]. In those examples, single localized struc-
tures are found to have oscillatory decaying tails, originating
from diffraction. Numerical simulations [27] and analytical
prediction based on the asymptotic form of the soliton tails
[28] show that the corresponding CS interactions are mediated
by their oscillatory tails and make it possible to predict the
actual separation among CSs in a cluster. Interesting interac-
tion properties of dissipative solitons and, in particular, their
locking at preferred distances have been also recently shown
for the case of oscillating localized structures in a driven
Kerr medium [29] or in a semiconductor laser with saturable
absorber [30].

In Sec. II we introduce the dynamical equations and find
the stable CSs branch below and above the locking point, in
Sec. III we analyze the dynamical behavior of two interacting
CSs for different values of the holding beam intensity, and
in Sec. IV we discuss the validity of reduced models where
the polarization P is adiabatically eliminated and a diffusion
term is added or not in the equation for the electric field. The
conclusions are drawn in the final section.

II. MODEL

We consider a VCSEL-type laser which contains a multiple
quantum well structure as the active medium. The laser is
pumped above lasing threshold and it is driven by a broad area
and stationary holding beam. The spatiotemporal dynamics
of the laser can be modeled by the effective semiconductor
Maxwell-Bloch equations [11,31]

Ė = σ [EHB − (1 + iθ )E + P + i∇2E ], (1)

Ḋ = μ − D − (E∗P + P∗E )/2 + dD∇2D, (2)

Ṗ = ξ (D)[(1 − iα)D(1 − βD)E − P], (3)

where E and P are the cavity field and the macroscopic
semiconductor polarization variables, respectively, D is car-
rier density, σ is the scaled photon decay rate, EHB is the
amplitude of the holding beam, θ is the detuning between
cavity and optical injection, α is the linewidth enhancement
factor, μ is the pump parameter, dD is the carrier diffusion
constant, and β is the nonlinear gain coefficient.

Diffraction is described by the Laplacian operator, ∇2,
and the spatial variables are scaled to the square root of the
diffraction parameter (typically of the order of 4–5 μm). Time
is scaled to the carrier decay time, which is assumed to be 1 ns.
Assuming also that the photon lifetime in the cavity is about
2.5 ps, the scaled photon decay rate is σ = 400.

The complex function ξ (D) is defined as ξ (D) =
�(D)(1 − iα) + 2iδ(D) and the two real functions �(D) and
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FIG. 1. Homogeneous stationary solution (solid and dashed
lines) and stable branch of CSs (error bars and circles) for α = 4,
θ = −2, β = 0.125, μ = 1.2μth, σ = 400, and dD = 0.052. The
homogeneous stationary solution is unstable in the lower branch
from the origin to the injection locking point (ILP) due to a Hopf
instability, in the negative slope branch between the two turning
points TP1 and TP2, and in the upper branch from the turning point
TP2 in all the visible range due to a Turing instability. It is stable only
in the small portion of the lower branch between ILP and TP1. The
vertical dotted lines passing through ILP mark the boundary between
stable, stationary CSs with stable background (circles) and stable
CSs with a turbulent background. The peak intensity of the latter
oscillates between the limits of the vertical bar.

δ(D) account for the dependence on the carrier density of the
effective semiconductor susceptibility. In particular, �(D) is
associated with the gain linewidth and δ(D) is the detuning
between the reference frequency and the frequency where
gain is maximum. In this paper, we set �(D) = (0.560D +
0.293) × 104 and δ(D) = (0.155D − 0.146) × 104 [11,22].
The value of the nonlinear gain coefficient β that we use
here is β = 0.125. It is obtained as the best fit of the gain
calculated with the microscopic model. For this value of β,
the lasing threshold current is μth = 1.17. The other param-
eters are α = 4, θ = −2, μ = 1.2μth, and dD = 0.052. For
this choice of the parameters, the homogeneous stationary
solution, obtained by setting ∂t E = 0, ∇2E = 0, is S shaped,
as shown in Fig. 1. The only stable part of this curve is the
small portion of the lower branch represented with a solid line.
The dashed part of the lower branch is Hopf unstable up to the
injection locking point. The negative slope branch is unstable
as usual, for a stationary instability, and the upper branch is
modulationally (Turing) unstable in the range shown in the
figure.

By use of a split-step method with periodic boundary
conditions in the transverse plane, the full set of dynamical
equations (1)–(3) including the polarization equation were
integrated numerically.

Stable CSs exist in the interval 0.7–1.05 of the holding
beam intensity, which includes the locking point, which is
|EI |2 = 0.945, |E |2 = 0.239. Therefore, CSs can be excited in
the Hopf unstable region before the locking point, where they
coexist with an unstable background and display random in-
tensity oscillations whose amplitude depends on the intensity
of the holding beam [31]. As we move away from the locking

point the amplitude of the oscillations increases, as shown in
Fig. 1. We notice that the CSs do not undergo a different Hopf
instability than the homogeneous stationary solution: they
display irregular oscillations just below the injection locking
point where the homogeneous stationary solution is turbulent.

To write the CSs two Gaussian address beams of width w

and amplitude E0 centered at (xi, yi ), i = 1, 2 are superim-
posed to the holding beam during a short time interval τin j so
that we replace the holding beam EHB in Eq. (1) with the total
injected field

EI (x, y, t ) = EHB + f (t )
2∑

i=1

E0e−[(x−xi )2+(y−yi )2]/2w2
, (4)

where f (t ) = 1 for t � τin j and f (t ) = 0 for t > τin j .

III. INTERACTION OF CAVITY SOLITONS

Initially we study the dynamics of interacting CSs using the
complete set of Eqs. (1)–(3), in order to avoid the unphysical
effects that could arise from the adiabatic elimination of the
macroscopic polarization P, as commented in the Introduc-
tion. We write simultaneously two CSs in positions symmetric
with respect to the center of VCSEL’s section, either along a
diagonal or along a horizontal line. We let them evolve and
interact until they merge or they reach a constant distance.

We study the interaction of CSs which are excited just
below the Hopf bifurcation point of the homogeneous station-
ary solution (|EHB|2 = 0.9), and in the middle of the Hopf
region (|EHB|2 = 0.75) where the intensity oscillations of the
CSs are large. The injection parameters suitable to write the
CS are E0 = 1 and w = 1, and injection must last 3 ns for
|EHB|2 = 0.9 and 4 ns for |EHB|2 = 0.75.

In the numerical integration we used a 64 × 64 spatial grid,
but then, using the Fourier amplitudes of the field E obtained
in the dynamical simulation, we calculate the field E on a
larger grid 640 × 640. In that way we can follow the motion
of the CSs with a better resolution. Since the space step for
the 64 × 64 grid is 0.5 spatial units (s.u.), the resolution is
0.05. Assuming that a spatial unit is 4 μm, we can follow the
motion of the CSs on a spatial grid with period 0.2 μm.

Figure 2 shows the interaction of CSs just below the
locking point, for |EHB|2 = 0.9. The time evolution of the
distance of the CSs is shown in panel (a) and the trajectory
of the CSs in the transverse plane x, y in panel (b).

For the smallest initial distances, up to 12 s.u., the behavior
is similar to that observed above the locking point, when the
background is stable [26]. The two CSs attract each other and
they move faster and faster until they merge into one at the
center. As in Ref. [26], the merging time increases exponen-
tially with the initial distance. Yet, different from [26], the
motion does not occur on a straight line, as a consequence of
the unstable background. This is shown in Fig. 2(b) for the
initial distance 12 s.u. (green line).

For larger initial distances, between 13 and 21.21 s.u., the
two CSs get closer but they do not merge any longer and
they move until they reach an equilibrium distance equal to
11.4 s.u. In Fig. 2(b) we show the trajectories for the initial
distance 21.21 s.u. (red line) and 13 s.u. (blue line). For the
larger initial distance the two CSs at the beginning move
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FIG. 2. Interaction of two CSs close to the locking point
(|EHB|2 = 0.9). (a) Time evolution of the distance of pairs of CSs
with different initial distance; (b) trajectory of the CSs for initial
distance equal to 21.21 (red), 13 (blue), and 12 (green).

towards each other as in Ref. [26] but then they deviate and
start moving approximately along a circumference in opposite
direction, until they stop when they reach the equilibrium
distance. For the smaller initial distance there is only a small
counterclockwise motion of the two CSs.

Figure 3 shows the interaction of the two CSs in the middle
of the Hopf region, for |EHB|2 = 0.75. The behavior differs
from that of the previous case under several respects.

For initial distances larger than or equal to 8 s.u. the CSs
do not merge. For smaller initial distances they merge but the
motion is so fast (some tens of ns) that we do not plot it in
Fig. 3 because it would be hardly visible on that time scale.

FIG. 3. Interaction of two CSs far from the locking point
(|EHB|2 = 0.75). (a) Time evolution of the distance of pairs of CSs
with different initial distance; (b) trajectory of the CSs for initial
distance equal to 21.21 (black), 15.56 (red), 15 (green), and 8 (blue).
The CSs merge when the initial distance is smaller than 8 s.u.

Two equilibrium distances are found instead of one, and the
distance increases or decreases depending on the initial value.
When the initial distance is between 8 and 15 s.u. the final
equilibrium distance is 11.7 s.u. For initial distance between
15.56 and 21.21 s.u. the final equilibrium distance is 18.7 s.u.

For this value of the intensity of the holding beam the
equilibrium distance is reached much more rapidly than in the
previous case. We can conclude that the presence of a highly
unstable background makes the dynamics faster and prevents
the CSs from merging, unless they are already very close to
each other at the beginning.

042210-4



INTERACTION OF CAVITY SOLITONS ON AN UNSTABLE … PHYSICAL REVIEW E 101, 042210 (2020)

FIG. 4. Interaction of two CSs far from the locking point
(|EHB|2 = 0.75) according to the reduced set of equations (5) and (6).
The plot shows the time evolution of the distance of pairs of CSs with
different initial distance. The CSs merge when the initial distance is
smaller than or equal to 10 s.u.

IV. REDUCED DYNAMICAL EQUATIONS

The numerical simulations of the previous section were
based on the full set of dynamical equations (1)–(3), which
include the macroscopic polarization P. The presence of the
fast variable P makes the equations stiff and slows down the
numerical simulations. If the polarization P is adiabatically
eliminated setting Ṗ = 0 we obtain the reduced set of equa-
tions

Ė = σ [EHB − (1 + iθ )E + (1 − iα)(1 − βD)DE + i∇2E ],

(5)

Ḋ = μ − D − (1 − βD)D|E |2 + dD∇2D, (6)

which are the same equations used in Ref. [26]. Physically, the
adiabatic elimination of P amounts to assuming that the gain
is flat. In Ref. [26] such an approximation was valid because
the simulations were limited to values of the amplitude of
the holding beam above the injection locking point, where the
CSs are stationary, or quasistationary since they move slowly
one towards the other, and the background is stable. In such
conditions only the transverse modes with small wave vectors
are excited and the assumption of flat gain has no effects.

Here, instead, we are considering values of the amplitude
of the holding beam below the injection locking point, where
the background is unstable. The assumption of flat gain in this
case implies that all the unstable transverse modes with any
value of the transverse wave vector experience the same gain.
In principle this would lead to the unphysical growth of modes
with infinitely small wavelength. In the numerical simulations
this does not occur because the finiteness of the integration
grid sets an upper limit to the transverse wave vector, but what
we observe is the formation of unphysical spatial structures in
the background with a spatial scale equal to the period of the
spatial grid, as shown in the upper panel of Fig. 5.

Although we are aware of the limitations of the model
(5) and (6) for a laser below the injection locking point,
we repeated the simulations of Fig. 3 in order to ascertain
if and how such an unphysical behavior of the background

FIG. 5. Three dimensional plots of the field intensity in the
transverse plane when two CSs are switched on along the diagonal
of the integration window at a distance of approximately 20 s.u. The
upper panel was obtained with the reduced equations (5) and (6)
and shows the formation of irregular spatial structure with the same
period of the integration grid. In the lower panel, instead, Eq. (5) was
substituted with Eq. (7) which contains a diffusion term which damps
the larger transverse wave vectors and regularizes the dynamics of
the background.

affects the interaction of the CSs. The results are shown in
Fig. 4. Two major differences emerge. First, the CSs merge
even for initial distances for which in Fig. 3 they move apart
and reach an equilibrium distance. Second, although we still
have two equilibrium distances for most initial distances, such
equilibrium distances are much different from those found
using the full set of equations (1), (2), and (3).

Therefore, we conclude that indeed the reduced equations
(5) and (6) are not suitable to simulate the dynamics of
interacting CSs below the injection locking point.

However, an easy way to account for the finite gain
linewidth without resorting to the full set of equations (1),
(2), and (3) consists in adding a diffusion term in the equation
for the field, i.e., in adding a real part dE to the imaginary
coefficient of the Laplacian. Here the additional diffusive
term has been introduced phenomenologically, although a
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FIG. 6. Interaction of two CSs far from the locking point
(|EHB|2 = 0.75) according to the reduced set of equations (7) and
(6) and dE = 7.5 × 10−4. The plot shows the time evolution of the
distance of pairs of CSs with different initial distance. The CSs never
merge for an initial distance larger than or equal to 8 s.u.

detailed derivation can be found in Ref. [15] for a two-level
system and in Ref. [32] for a VCSEL. In general, a refined
adiabatic elimination of the polarization which goes beyond
simply setting its time derivative equal to zero introduces new
terms in the remaining equations, some of them acting as
spectral filters, thus mimicking the finite gain bandwidth of
the medium.

The equation for the field E reads

Ė = σ [EHB − (1 + iθ )E + (1 − iα)(1 − βD)DE

+ (dE + i)∇2E ], (7)

and the effect of the diffusion term is that of adding a damping
term −σdE k2Ek to any transverse mode Ek with transverse
wave vector of modulus k. The diffusion term can therefore
also be interpreted as a loss term for modes that propagate in
an oblique direction in a transversely finite cavity [33].

We determined the best value of the phenomenological dif-
fusion coefficient dE by imposing that using Eqs. (7) and (6)
with the parameters of Fig. 2, i.e., E2

HB = 0.9, we obtain for
the smaller initial distances approximately the same merging
times as with the full set of equations. Proceeding in that way
we found the value dE = 7.5 × 10−4, which then we used to
repeat the simulations of Fig. 3. In the lower panel of Fig. 5
we can see that the addition of the diffusion term is enough
to regularize the spatiotemporal dynamics of the background,
which now occurs on a larger spatial scale.

The time evolution of the distance displayed in Fig. 6
shows a much better agreement with the full model than
that of Fig. 4. Now the CSs never merge for the considered
initial distances and the values of the equilibrium distances
are also very close to that of Fig. 3. The only noticeable
difference consists in the slightly different value of the critical
initial distance that separates the two sets evolving to the
two equilibrium distances. Such a critical distance is larger
in Fig. 6.

V. CONCLUSIONS

We have studied the interaction of two CSs in a driven
VCSEL above lasing threshold when the laser is operated
below the injection locking point, and compared it to that
recently observed in the same system operated above such
a point [26]. In the latter case, it was shown that the CSs
always merge, independent of the initial distance. Here we
show that, if the laser is below but close to the injection
locking point, the CSs still merge, but only when the initial
distance is below a certain value. Above that value they move
until they reach an equilibrium distance, which is the same for
all initial distances. If we decrease the intensity of the holding
beam so that the laser is farther from the injection locking
point, the CSs do not merge any more, unless they are initially
very close to each other, and they repel or attract until they
reach two possible equilibrium distances.

The reason for the existence of equilibrium distances here
cannot be attributed to the same dynamical mechanisms at
the origin of the formation of clusters of stationary dissipative
solitons [27,28] or oscillatory solitons [29], because here we
do not observe any oscillatory tail in the surroundings of the
CS peak, neither when they are stationary (that is, for injection
intensity above the injection locking point) nor when they sit
on a turbulent background (that is the case presented here, for
injection intensity below the injection locking point).

The dynamics of the CSs is modeled by a set of effective
Maxwell-Bloch equations where the presence of an equation
for the macroscopic polarization P allows one to avoid the
short wavelength oscillatory instability which instead affects
the reduced model obtained with the adiabatic elimination of
P. While such a model is suitable to study the dynamics of
the CSs above the injection locking point, as in Ref. [26],
here we show that below the injection locking point it leads
to incorrect predictions. However, the results of the complete
model are recovered without increasing the complexity of the
model by simply adding a diffusion term in the equation for
the electric field.
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