
08 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ERODE: Error Resilient Object DetEction by Recovering Bounding Box and Class Information / Valpreda, Emanuele;
Palumbo, Giuseppe; Caon, Michele; Masera, Guido; Martina, Maurizio. - ELETTRONICO. - (2023), pp. 277-280.
(Intervento presentato al convegno 18th International Conference on PhD Research in Microelectronics and Electronics
tenutosi a Valencia (Spain) nel 18-21 June 2023) [10.1109/PRIME58259.2023.10161894].

Original

ERODE: Error Resilient Object DetEction by Recovering Bounding Box and Class Information

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/PRIME58259.2023.10161894

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2979532 since: 2023-07-04T09:02:48Z

IEEE

ERODE: Error Resilient Object DetEction by
Recovering Bounding Box and Class Information

Emanuele Valpreda*, Giuseppe Palumbo*†, Michele Caon*, Guido Masera*, Maurizio Martina*
*Department of Electronics and Telecommunications, Politecnico di Torino, Italy

†ST Microelectronics, Italy
Email:{emanuele.valpreda, michele.caon, guido.masera, maurizio.martina}@polito.it, giuseppe.palumbo@st.com

Abstract—Fault resilience in computer vision algorithms is
paramount in critical applications such as autonomous driving or
surveillance. Convolutional neural networks (CNNs) are usually
used in these tasks to identify objects of interest, which are
passed to other decisional algorithms and used to take specific
actions. However, incorrect detections due to computation errors
could pose a safety risk. In this work, we present ERODE
(Error Resilient Object DetEction), a framework that can be
paired with a CNN to filter the detections by identifying possible
errors and restoring the correct predictions, improving the fault-
resilience of the system. The proposed framework leverages
the temporal correlation among consecutive images and CNN
outputs, using motion estimation and tracking techniques to
infer whether computation errors have occurred and, in that
case, produce a new set of outputs. In order to evaluate the
performance, precision and recall of the CNN with and without
ERODE support have been computed and compared using the
MOT17DET dataset, and EfficientDet D0 quantized to 16-bit,
with errors injected in the activations computed during the
inference. The experimental results show significantly reduced
task accuracy degradation induced by bit-flips, proving that
ERODE can increase the system’s fault resilience.

Index Terms—error detection, neural networks, object detec-
tion, object tracking, fault resilience

I. INTRODUCTION

Convolutional neural networks (CNNs) have become the
standard approach in computer vision tasks, such as image
classification and object detection. They are increasingly used
in safety-critical applications such as autonomous driving,
or traffic surveillance [1], [2]. The presence of detection
errors and glitches in the CNN output must be considered
before the deployment to avoid safety risks. For example, the
CNN could detect pedestrians, cars, or trucks in autonomous
driving applications. The overall autonomous driving system
will take decisions on accelerating, braking, or turning the
car depending on the existence and position of those objects.
A detection error can lead to an unsafe scenario for the
driver, pedestrian, or objects surrounding the car. Atmospheric
neurons, ionizing particles, voltage/temperature variations, and
other interference may perturb a transistor’s state, generating
bit flips in memory or current spikes in logic circuits that, if
latched, lead to an error [3], [4]. Moreover, bit flips in CNN’s
DRAM can be generated by row hammer attacks [5].
In this work, we present ERODE, a low-complexity approach
to mitigate errors in the computation of CNNs for object
detection, leveraging motion estimation techniques to predict

the future position of known objects and eliminate tempo-
rary wrong detections. We use the spatio-temporal correlation
between consecutive input images and output predictions to
detect errors and eliminate glitches from the CNN output or
restore the correct output that would have been corrupted
otherwise. ERODE is orthogonal to any CNN model or
hardware architecture executing it. It is developed to be a
plug-in to preserve the task accuracy in the presence of errors.
The remainder of this paper is organized as follows: Section
II introduces relevant works addressing the topic of fault
detection and resilience, Section III explains our methodology,
Section IV presents the experimental results that validate our
approach and Section V summarizes and concludes the paper.

II. RELATED WORKS

Draghetti et al. [3] propose to use inter-frame spatio-
temporal correlation to detect errors in the CNN’s inference.
The basic assumption is that if the absolute pixel difference
between two consecutive images is small, the inputs are almost
equal, and the predictions made by the CNN will be very
similar. If this condition does not occur, an error in the
inference is hypothesized. Since the similarity is measured
with a user-defined threshold, a change in brightness, noise,
or camera movement could trigger a wrong error detection.
In addition, the threshold would require fine-tuning for each
environment in which the image sensor is used. In this work,
we overcome this limit by using relative pixel differences,
using well-known motion estimation techniques [6], [7], and
considering the input-output spatio-temporal correlation over
more consecutive images. Moreover, a deep analysis of faults
occurring during the inference of quantized CNN models and
their impact on the task accuracy is carried out in [4], [8].
These works highlight that activation errors impact CNNs’
accuracy more than weight errors. Additionally, in [4], it
is noted that modern CNNs are inherently more resilient
to errors than older models, particularly when compressed
through quantization for deployment. Therefore, in this work,
we target bit-flips in activations and use EfficientDet D0, a
modern CNN for object detection [9], quantized to 16 bits.

III. METHOD

ERODE leverages the spatio-temporal correlation between
consecutive images within the video sequence to update the

position of detected objects using motion estimation tech-
niques, adjusting the bounding box size and coordinates
without processing the image with the CNN. Additionally,
velocity and direction are evaluated to check that the trajectory
of objects is constant or changes. This set of predictions
and additional properties is compared against the predictions
generated with the inference and is used to check the presence
of errors by searching for abrupt changes in the identified
objects’ properties. For instance, a sudden change in the label
attributed to a bounding box that had another one in the past
images or an instant acceleration of a bounding box that was
previously stationary could be caused by computation errors
during the inference. The ERODE framework is depicted in
Figure 1 and comprises of three parts, detailed later in this
section: the tracker, the keep-alive register, and the predictor.
The CNN generates the predictions, composed of bounding
boxes and the corresponding label, passed to the tracker, which
assigns a unique ID to each detected object. ERODE saves
the IDs in the keep-alive register to identify the presence of
objects through multiple images and selects which objects are
relevant, i.e., persistent. The predictor then updates relevant
object features (bounding box coordinates, dimensions, and
velocity) by leveraging motion estimation techniques [6], [7].
The overall system’s output comprises the keep-alive register
entries, which substitutes the CNN’s initial output predictions.

Fig. 1. The ERODE framework building blocks.

A. Tracker

The tracking algorithm gives a unique ID to each object in
the image, which is used to observe its behavior in different
time instants. In this work, we apply the tracking technique
used in [10] to create a correlation between two consecutive
CNN outputs and use the Hungarian algorithm [11] to solve
the assignment problem, using the intersection over union
(IoU) metric to compute the cost function. A cost matrix for
each detection is generated from previously identified objects
with labels and bounding boxes. First, the entries of the keep-
alive register at the time n − 1 (previous time-instant/image)
are inserted in the rows, then the objects detected by the CNN
at the time n (current image) are inserted in the columns.
After that, the IoU between rows and column entries are

evaluated. Where the IoU is high, the position in the current
time instant is similar to the position in the past; therefore,
objects of consecutive images can be associated with a unique
ID encoded as a positive integer. On the other hand, objects
with a low or zero IoU are considered new entries and are
named with the first positive number available in the system.
New entries could be either new relevant objects identified
by the CNN or glitches due to computation errors. Finally,
objects of the previous time instant with no association with
those detected in the current one could no longer be present
in the image or not detected due to computation errors.

B. keep-alive Register

The decision to assign, add or remove IDs is made con-
sidering the features related to every single object stored in
the keep-alive register. When an object enters the image, it
is immediately stored in the keep-alive register, depicted and
described in Figure 2.

Fig. 2. The keep-alive register is a data structure that contains features
produced by the CNN (class, bounding box coordinates) and features produced
by ERODE algorithms. The two objects in this figure are included to provide
a hypothetical utilization.

For each CNN’s detection, the keep-alive register is scanned
to see if any objects are already stored in the structure. If
the object is already in the register, that entry is updated with
the newly detected features. If not, a new entry is created,
and the first available number is assigned. The keep-alive
register’s primary function is to filter the CNN’s detection.
As stated previously, new detections could result from correct
or faulty inference. In order to filter correct detections from
errors, only objects that are present in multiple frames are
shown in the system’s output. The initial number threshold
sets the minimum number of consecutive detections for each
object, before they are considered correct and not glitches due
to computation errors. This concept is borrowed from [12] and
the initial number threshold indicates the degree of selectivity
of the filter: a low threshold means that few detections in
consecutive images are required to accept the object as an
output of the system. The initial number counts the number
of consecutive images from the first detection of the object,
and, if it reaches the initial number threshold, the object can be
considered as existing in the image and so it can be shown as
an output of this system. On the contrary, the object is deleted
from the system’s memory because it is identified as an error.
Any object in the keep-alive register can have two different
fates when the subsequent detection is performed: if detected,
the algorithm assumes that it is present in the image, and so
that the detection is correct, whereas if it is not detected, it
could be due to an error or to the object actually leaving the

image. To model this, keep-alive features are used. Similarly,
objects which are not detected for one or two frames could
no longer be present in the image or again be the result of
computation errors. The keep number indicates the number
of consecutive images in which the CNN does not detect an
object. If the object is detected, this number is reset to zero for
all its consecutive detections. Therefore, the keep number gives
essential information to the overall algorithm, indicating when
a prediction is needed. If the keep number is equal to zero, the
object’s position is given by the detector; otherwise, it must
be evaluated using the predictor. Since the predicted position
is a guess and the object can leave the image anytime, a
limitation on the number of consecutive times a prediction can
be used is given [13]. This limit is set by the keep threshold, a
user-defined parameter and is increased for each consecutive
detection and, conversely, decreased for each non-detection.

C. Predictor

The predictor is used when an object is undetected for
one or more consecutive frames, i.e., the keep number is
greater than zero. The predictor updates the position of known
objects by searching for similarities between the current and
previous image, using points of interest derived as the center of
the objects’ bounding boxes. The predictor uses the diamond
search algorithm proposed in [7], with a search window of 15,
to estimate the movement and new coordinates of the bounding
boxes of relevant objects. This motion estimation algorithm
was selected due to its low computational complexity and
adaptability to different ranges of motions.

IV. RESULTS

This section details the computing setup and results, which
comprises the neural network, the error injection algorithm,
the ERODE framework, and the benchmarks. In this work,
the detector used to generate the predictions is EfficientDet
D0 [9], a modern CNN architecture for object detection,
with activations and weights quantized to 16 bits using scale
quantization [14]. The model is then retrained for 20 epochs
using the hyperparameters detailed in [9] to recover from the
accuracy loss induced by the quantization. The fault-free CNN
is then used to generate the baseline detections set for each
image of each sequence of MOT17DET [15], a dataset of
street scenes with images captured with stationary and moving
cameras. The baseline detection set is used to evaluate the
accuracy loss of the CNN executed with computation errors
with and without the support of ERODE, noted as faulty CNN
and ERODE, respectively in Figures 3 and 4. To evaluate the
error recovery capabilities of ERODE, we consider a scenario
where errors occur not on each image but with a frequency
defined as image error rate ∆. For the experiments presented
in this section, we set ∆ ∈ [2, 3, 4, 5], which allows testing
the effectiveness of the keep-alive register in filtering wrong
detections occurring at different rate. For instance, a ∆ equal
to two means that one every two images will be processed with
faults injected during the inference. Moreover, we define the
activations error rate ε of each frame as the percentage of the

total computation volume subjected to bit flips. In the experi-
ments we set ε ∈ [0.001%, 0.003%, 0.005%]. The selection of
which activations are subjected to bit-flips and which bits are
flipped is made by sampling random integer numbers from
a uniform distribution, meaning that each activation within
the tensor and each bit within the activation have an equal
probability of being selected. Only one bit can be flipped
for each activation. The number of errors generated for each
combination of ∆ and ε is reported in Table I.

TABLE I
ERRORS INJECTED DURING THE INFERENCE

∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5
ε = 0.001% 11538852 7679515 5765075 4599007
ε = 0.003% 35107176 23365070 17540350 13992566
ε = 0.005% 58712628 39075335 29334175 23400923

Faults are distributed uniformly over each convolutional layer
of EfficientDet D0 under the assumption that computation
errors occur during the entire inference process.
To evaluate the effectiveness of the proposed method, we
consider true positives detections with an IoU that is at least
50% with the baseline, false positives detections that are not
present in the baseline, and false negatives detections that are
only present in the baseline. Precision and recal are evaluated
as in Equation 1.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(1)

The keep-alive register, presented in Section III-B, has three
parameters that must be defined by the user. Recalling that the
initial filter threshold sets the consecutive detections required
to consider an object as correctly identified, the keep number
threshold sets the limit on consecutive non-detections before
the predictor is used to evaluate the position of the object,
and the keep-alive threshold sets the limit on non-detections
before the object is removed from the register, we set: keep-
alive threshold=10, keep number threshold=5, initial filter
threshold=1. The precision variation with different ∆ and ε
is depicted in Figure 3. First, it is possible to notice how
EfficientDet D0 is very susceptible to computation errors, as
a ε=0.003% is high enough to induce task accuracy loss of
40% compared to the baseline for ∆=2 and ε=0.005% further
drops the accuracy to 70%. When ∆ is increased, inference
errors occur less frequently, and the overall precision loss is
reduced. Similarly, the same behavior can be seen for the recall
results in Figure 4. The discrepancy between the precision
and accuracy loss could mean that the CNN tends to see non-
existing objects rather than not detecting existing ones. An
inspection of a subset of output predictions highlighted the
presence of multiple wrong objects, with a small variation of
the bounding box coordinates of correct objects. When the
CNN is supported with ERODE, the accuracy and recall loss
is significantly reduced. By leveraging the keep-alive register,
it is possible to filter false positives, using the initial filter to
eliminate detections that occur only in the ∆ images due to
computation errors. Moreover, missed detections are restored

with the predictor after the object is not detected for a number
of frames higher than the keep number threshold. ERODE’s
precision degradation could be due to the predictor’s bounding
box estimation, which might not overlap precisely with the
ones generated with the baseline CNN, and to objects no
longer present in the frame that persists for a few time instants
in the keep-alive register. Moreover, the initial filter could also
remove correct objects not detected continuously in all images,
negatively affecting the recall by increasing false negatives.
This can be mitigated by improving the accuracy of the CNN,
so that it detects objects more consistently or by decreasing
the initial number threshold.

1 3 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Activation Injection Rate ε · 10−3

m
A

P5
0

va
ri

at
io

n

Faulty CNN ∆=2 ERODE ∆=2
Faulty CNN ∆=3 ERODE ∆=3
Faulty CNN ∆=4 ERODE ∆=4
Faulty CNN ∆=5 ERODE ∆=5

Fig. 3. Precision variation with different ∆ and ε

1 3 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Activation Injection Rate ε · 10−3

m
A

R
50

va
ri

at
io

n

Faulty CNN ∆=2 ERODE ∆=2
Faulty CNN ∆=3 ERODE ∆=3
Faulty CNN ∆=4 ERODE ∆=4
Faulty CNN ∆=5 ERODE ∆=5

Fig. 4. Recall variation with different ∆ and ε

Given the above, ERODE can be effectively used for error-
resilient object detection, as it can filter out wrong detections
and recover information lost due to computation faults. Finally,
we estimate the computational complexity as the average num-
ber of multiplications and sums required to execute ERODE
for each image, reported in Table II. The complexity increases
with the error rate as more glitches are generated in the
CNN’s output, resulting in more bounding boxes evaluated
by ERODE. The overhead is, therefore, negligible compared
to the number of multiply and accumulate operations required
to compute EfficientDet D0, which is ≈2.5 billion [9].

V. CONCLUSION

In safety-critical applications, it is important to ensure fault-
resilient execution of CNN models. In this work, we presented
ERODE, a lightweight framework that can detect errors and

TABLE II
COMPUTATIONAL COMPLEXITY OF THE MOTION ESTIMATION ALGORITHM

AVERAGED OVER ALL THE IMAGES OF MOT17DET.

∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5

ε = 0.001% Products 48 49 49 49
Sums 2565 2599 2611 2619

ε = 0.003% Products 34 43 47 48
Sums 3394 3064 3519 3267

ε = 0.005% Products 97 82 79 64
Sums 14963 9166 8984 5915

recover lost objects’ information, i.e., class and coordinates,
reducing the task accuracy drop and effectively increasing
the fault resilience of the system. We detailed the blocks
composing the system and explained the influence over the
system’s output. Finally, we introduced the experimental setup
used to validate ERODE and presented the results that prove
the effectiveness of our approach.

ACKNOWLEDGMENT

We thank the Nvidia’s Academic Grant for donating the
Quadro RTX A5000 GPU used in this work.

REFERENCES

[1] F. Zhang et al., “Cmnet: A connect-and-merge convolutional neural
network for fast vehicle detection in urban traffic surveillance,” IEEE
Access, 2019.

[2] D. B et al., “Improved object detection in video surveillance using deep
convolutional neural network learning,” I-SMAC, 2021.

[3] L. K. Draghetti et al., “Detecting errors in convolutional neural networks
using inter frame spatio-temporal correlation,” IOLTS, 2019.

[4] N. Fasfous et al., “Mind the scaling factors: Resilience analysis of
quantized adversarially robust cnns,” in DATE, 2022.

[5] M. Son et al., “Making dram stronger against row hammering,” in DAC,
2017.

[6] W. Hassen and H. Amiri, “Block matching algorithms for motion
estimation,” ICELIE, 2013.

[7] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Transactions on Image Processing,
vol. 9, no. 2, 2000.

[8] Y. He et al., “Fidelity: Efficient resilience analysis framework for deep
learning accelerators,” in MICRO, 2020.

[9] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” in CVPR, 2020.

[10] A. Bewley et al., “Simple online and real-time tracking,” ICIP, 2016.
[11] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval

Research Logistics Quarterly, 1955.
[12] E. Bochinski et al., “High-speed tracking-by-detection without using

image information,” AVSS, 2017.
[13] E. Bochinski et al., “Extending iou based multi-object tracking by visual

information,” AVSS, 2018.
[14] H. Wu et al., “Integer quantization for deep learning inference: Principles

and empirical evaluation,” arXiv preprint arXiv:2004.09602, 2020.
[15] A. Milan et al., “MOT16: A benchmark for multi-object tracking,”

arXiv:1603.00831 [cs], Mar. 2016.

