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Abstract—Parkinson’s disease (PD) is characterised by a pro-
gressive worsening of motor functionalities. In particular, limited
hand dexterity strongly correlates with PD diagnosis and staging.
Objective detection of alterations in hand motor skills would
allow, for example, prompt identification of the disease, its
symptoms and the definition of adequate medical treatments.
Among the clinical assessment tasks to diagnose and stage PD
from hand impairment, the Finger Tapping (FT) task is a well-
established tool. This preliminary study exploits a single RGB-
Depth camera (Azure Kinect) and Google MediaPipe Hands to
track and assess the Finger Tapping task. The system includes
several stages. First, hand movements are tracked from FT video
recordings and used to extract a series of clinically-relevant
features. Then, the most significant features are selected and
used to train and test several Machine Learning (ML) models,
to distinguish subjects with PD from healthy controls. To test
the proposed system, 35 PD subjects and 60 healthy volunteers
were recruited. The best-performing ML model achieved a 94.4%
Accuracy and 98.4% F1 score in a Leave-One-Subject-Out
validation. Moreover, different clusters with respect to spatial
and temporal variability in the FT trials among PD subjects
were identified. This result suggests the possibility of exploiting
the proposed system to perform an even finer identification of
subgroups among the PD population.

Index Terms—Parkinson’s Disease, Finger Tapping, Pervasive
Health, Telemedicine, Machine Learning, Azure Kinect, Medi-
apipe

I. INTRODUCTION

Parkinson’s Disease (PD) is a neurodegenerative disorder
with a prevalence of 1% in the population over 65 years old
[1], which is expected to rapidly increase as the global popu-
lation grows older [2]. Patients affected by PD manifest alter-
ations in motor functionalities – e.g., bradykinesia, akinesia,
muscle stiffness, tremors, balance impairments – that worsen
along with disease progression [3]. PD diagnosis and staging
mainly relies on the assessment of motor symptoms during
outpatient visits in clinical facilities, through well-standardised
motor tasks, as those included in the Unified Parkinson’s
Disease Rating Scale (UPDRS) [4]. However, this kind of
evaluation suffers from two main issues: on the one hand,
different clinicians could disagree on the scoring assigned to
the various tasks [5], since the evaluation is solely based on
subjective observation and personal expertise. On the other

hand, outpatient visits are infrequent (generally scheduled on
a 6-month to 1-year basis); thus, the occurrence of specific
symptoms might be identified and treated by clinicians only
after several months from its onset. This clearly translates in
a reduced quality of life for patients and decreased efficacy of
the (therefore delayed) treatment. For these reasons, techno-
logical solutions for the objective diagnosis of the disease and
the continuous follow up of PD patients, in a pervasive health
scenario, are being largely investigated [6]–[8].

Among the standardised tasks of UPDRS, those related to
hand impairment have a significant correlation with PD symp-
toms such as bradykinesia (i.e., reduced movement speed) and
hypokinesia (i.e., reduced movement amplitude). Specifically,
the Finger Tapping (FT) task is one of the most widely used
by clinicians. It consists in tapping the tip of the thumb and
index fingers as rapidly as possible, with the largest amplitude,
for a fixed number of repetitions or seconds. Several studies
aimed at objectively evaluating FT. Three main groups can
be identified: (i) solutions based on wearable devices, such
as inertial measurement units or instrumented gloves [9]–
[11]; (ii) smartphone-based assessment [12]–[14], in which
the interaction with the screen of the device is translated to an
FT-equivalent; (iii) vision-based systems, using either RGB,
RGB-Depth or Depth videocameras [15]–[17]. The first type of
solutions are generally more invasive, might be less practical
in unsupervised settings and therefore complex to be managed
by patients on their own. Smartphone-based solutions only find
indirect correspondence between the metrics collected by the
touchscreen and the severity scores, and could be complex
to interpret with respect to the standardised task. Finally,
vision-based approaches exploit videocameras and markerless-
tracking systems based on shallow or deep learning models,
which first estimate a 2D or 3D hand skeleton and then
evaluate a series of features describing FT. These features can
be used to either classify subjects or estimate a severity score.
The 2D tracking systems [18], [19] are easier to implement
thanks to deep learning, but may provide limited insight into
the real movement, since one relevant dimension is missing. At
the same time, many 3D solutions still rely on some wearable
component (e.g., gloves with markers [19], [20]) or allow for



tracking only inside a limited volume (e.g., using Leap sensor
[21], [22]). Nevertheless, some recent works have proposed
innovative 3D tracking systems which provide high level of
accuracy, while leveraging simple Depth or RGB-Depth video
streams [15]–[17].

This work investigated a possible system to objectively
characterise FT from RGB-Depth video recordings, with the
goal of automatically recognising PD and its symptoms (e.g.,
bradykinesia, hypokinesia). The system exploits an innovative
approach for 3D-hand tracking (i.e., the GMH-D algorithm
[15]) and Machine Learning (ML) methods to address this re-
search problem. Moreover, an experimental session involving
60 healthy controls (HC) and 35 PD patients to test the system
was performed, and it is reported in the remainder of the paper,
along with its implementation and experimental results.

II. MATERIALS AND METHODS

A. Acquisition & Processing System Pipeline

The overall system pipeline is described in Figure 1. The FT
acquisition block is based on the GMH-D algorithm [15] for
tracking hand joints during clinical assessment tasks involving
hands. The fusion of the depth estimation provided by the
Azure Kinect camera and the marker-less tracking provided
by Google Mediapipe Hands [23] allows for the precise and
objective tracking of hand joints trajectories also during highly
dynamic tasks as FT. This property ensures high stability and
precision in the estimation of features related to the motion
of fingers. Moreover, the authors proved that the algorithm
can be used to extract features to characterise FT at different
speeds and with altered amplitude, achieving good automatic
classification results in simulated trials performed by a group
of healthy subjects.

Frontal recordings of FT tasks, lasting 10-seconds each,
are acquired through a custom implementation of GMH-D
developed in Unity® (Unity Technologies, San Francisco, CA,
USA) running on a minipc equipped with a 9th generation
Intel® CoreTM processor (2.4 GHz quad-core), 16 GB RAM,
NVIDIA GeForce RTX 2060 6GB GDDR6, HDMI and USB3
ports, Windows 10 operating system. Video recordings are
processed in real-time (30 frame per seconds) by the acqui-
sition software, to produce in output a JSON-file containing
the trajectories of 21 virtual hand joints. In the second block,
offline data processing is carried out to: (i) compute the
evolution over time of the distance between Index-Finger-Tip
(IFT) joint and Thumb-Tip (TT) joint and then segment it, such
that single FT movements are identified; (ii) extract a series
of features describing the mean FT movements characteristics
and their regularity over the whole task, through the coefficient
of variation and spectral properties; (iii) select the optimal
feature set (Fopt) to distinguish the PD subjects from the HC
group. In the last block of the system, a classification based
on optimal features is carried out through well-established
shallow learning models. The comparison and evaluation of
such models is performed by employing the Leave-One-
Subject-Out (LOSO) procedure, to reduce the possible impact
of model overfitting during the testing stage.

Fig. 1. Overall pipeline of the system proposed in this work.

B. Study Participants and Experimental Session

An experimental study was carried out to test the capability
of the proposed system to automatically assess in an objective
manner FT and its capability to support PD diagnosis and
follow up. The experimental phase involved a total of 95
participants, including both people with PD and HC. A total
of 35 PD subjects (15 females, 65.1 ± 9.2 years), enrolled at
the association “Associazione Amici Parkinsoniani Piemonte
ONLUS” (Turin, Italy) took part in the data collection. Both
the recruitment and the experimental sessions occurred at the
Association’s Offices; hence, it was not possible to retrieve
clinical information regarding the disease stage or the symp-
toms progression. The HC group, enrolled among the PD
subjects’ caregivers and the association personnel, comprised
60 people (27 females, 53.8 ± 7.9 years), with no history
of neurological and cognitive disorders. Exclusion criteria, for
both groups, included dementia or any psychiatric conditions
that would prevent appropriate task completion.

The procedure has been conducted in accordance with the
Declaration of Helsinki and approved by the Ethics Commit-
tee of A.O.U. Città della Salute e della Scienza di Torino
(Approval No. 00384/2020). All participants received detailed
information on the study purpose and execution, and provided
written informed consent for observational study.

As such, the experimental session was part of a broader
observational study, entailing a high number of items and
tasks in order to assess symptoms from different perspec-
tives. Therefore, one single acquisition was performed by
each subject involved in the study. The control group only
performed the task with their dominant hand; on the contrary,
as Parkinson’s may lead to different impairment degrees in
the left and the right upper limbs, the PD subjects underwent
the task twice – i.e., with both the right and left hands, re-
spectively. Moreover, since clinical scoring separately assesses
the two limbs extremity, the left and right FT executions were
considered as single data points in the subsequent analysis.

C. Data Pre-processing and Feature Extraction

All data were pre-processed prior to the feature extrac-
tion; both pre-processing and feature extraction were carried
out with custom-written MATLAB® code (R2021b). Pre-
processing was carried out on the 3D joint trajectories, and it



TABLE I
EXTRACTED KINEMATIC PARAMETERS FOR FT, ALONG WITH

DESCRIPTION AND UNIT OF MEASURE.

Parameter Description Unit

mom Range of motion as max - min amplitude
(Mean)

mm

mocv Range of motion as max - min amplitude
(Variation Coefficient)

mm

mam Maximum amplitude of movement (Mean) mm
macv Maximum amplitude of movement (Variation

Coefficient)
mm

mosm Maximum opening speed (Mean) mm/s
moscv Maximum opening speed (Variation Coeffi-

cient)
mm/s

mcsm Maximum closing speed (Mean) mm/s
mcscv Maximum closing speed (Variation Coefficient) mm/s
durm Movement duration (Mean) s
durcv Movement duration (Variation Coefficient) s
freqlow Frequency of voluntary movement Hz
powlow Power of voluntary movement −
freqband Frequency of tremor movement Hz
powband Power of tremor movement −
pacevar Variation in pace for low frequencies −

involved resampling and filtering procedures. All signals were
resampled at 50 fps to discard framerate jitter and increase the
smoothness of the signal. A low-pass, zero-phase Butterworth
order 3 filter (10 Hz cut-off frequency) was applied to decrease
high-frequency noise; indeed, only the relevant human body-
movements frequency band was retained in the analysis.

After pre-processing, the distance between IFT and TT
joints was computed for the whole FT task. The obtained
signal, which likely approximates a periodic sinusoidal signal
in a healthy condition, is automatically segmented to identify
single FT movements. The segmentation is carried out by
means of a maxima and minima search on the signal, through
proper thresholding. The points are then mapped to START,
CLOSURE (during finger tapping) and END instants of single
movements. Features are then extracted from both the single
segments and the whole IFT-TT distance signal, following
[20]. All extracted features are detailed in Table I. These
parameters allow for the evaluation of hand impairment in
PD and account for the span of the movements, in terms of
time and amplitude. In more detail, they assess the duration
of the FT exercise – from start to completion – the opening
and closing velocity, as well as the frequency of the voluntary
movements and tremor, and any variation in pace. In particular,
the distinction between closing and opening speed is a finer de-
scription that is not commonly considered, since usually only
the overall velocity is evaluated. As regards the amplitude,
the extracted parameters describe the movements range and
the opening amplitude. Given that the extracted parameters are
described on different magnitude scales, z-score normalisation
was applied to all features to allow for proper implementation
of the ML algorithms.

D. Feature inspection, selection and automatic classification

The computed features were first inspected through statis-
tical testing to evaluate their distribution in the two groups.

This analysis was conducted using the open-source statistical
tool Jamovi [24]. First, the normality of the features was
investigated by means of the Shapiro-Wilk test. Since all fea-
tures resulted to be non-normally distributed, a non-parametric
approach was selected, employing the Mann-Whitney inde-
pendent sample U-Test, to identify characteristics differently
distributed between the PD and HC groups. Finally, Spear-
man’s correlation was also computed to evaluate the degree
of linear dependency between the exploited features and the
group label (either PD or HC).

Feature selection was performed by means of the the
Speeded Up Robust Features (SURF) algorithm [25], by se-
lecting only those features with a positive score. This reduced
feature set Fopt was employed for classification.

To automatically classify FT executions by PD and HC sub-
jects, four supervised models were explored and implemented
in Python, namely: Support Vector Machine (SVM), K-Nearest
Neighbour (KNN), Random Forest (RF) and Extreme Gradient
Boosting (XGBoost). Since the overall dataset contains few
subjects (< 100) and one or two FT trials (at most) associated
to each participant in the experimental session, a LOSO
cross-validation procedure was implemented, as previously
mentioned. In LOSO, for each investigated shallow method,
N − 1 models are trained, where N is the number of subjects
involved in the study. Hence, each model is trained on the
whole dataset, except for the holdout subject – which is then
used for testing. Model scoring metrics, namely Accuracy,
Precision, Recall and F1-score, are evaluated on the results
obtained by all models. The optimal hyperparameters for
the classification models were identified using k-fold Cross
Validation (CV) (k = 3) combined with a Grid search approach
on the training data only, to further ensure the robustness of
the trained classifiers. A complete summary of the employed
models and the optimised parameters is provided in Table II;
the table displays, for each model, the hyperparameters search
range. Finally, considering the clinical relevance of the spatial
and temporal variability in the execution of the FT movements
– described by the features mocv and durcv – the PD group
was further investigated along these two variables. Indeed, they
describe the extent of motor control in the execution of a
repetitive and fine movement such as the FT. The variables
mocv and durcv were taken as axes, and clusterisation was
applied to the data in the PD group, through Agglomerative
Clustering. This may be considered a preliminary step to prove
the feasibility of the system of recognising subtypes of PD
symptoms related to these two properties (i.e., bradykinesia,
hypokinesia).

III. RESULTS

A. Statistical analysis and features selection

Table III shows the results for the statistical analysis of
the extracted features (normality testing by Shapiro-Wilk and
distribution differences in the two classes by Mann-Whitney
U Test), as well as their correlation with the output label – i.e.,
the presence of PD. First of all, as it can be appreciated from
the numerical results, all features are not normally distributed



TABLE II
SUMMARY OF THE EMPLOYED CLASSIFIERS, THE SEARCHED

HYPERPARAMETERS (PARAMETER AND SEARCH RANGE) AND THE
OPTIMISED CONFIGURATION IN THE FINAL MODEL.

Model Searched Hyperparameters Optimised

SVM

Kernel function: linear, polynomial,
radial basis, sigmoid
Penalty (C): [0.1, 1, 10, 100, 1000]
γ: [1, 0.1, 0.001, 0.0001]

Radial basis function
C = 1
γ = 1

KNN

Minkowski Distance order (p):
[1, 2, 3, 4, 5]
Number of neighbours (K): [3, 5, 7]
Weights (W): uniform, distance-based

p = 2
K = 5
W: distance-based

RF

Number of trees: [50, 100, 150]
Depth: [3, 5, 7]
Minimum Features (leaf): [1, 2, 4]
Minimum Features (node): [2, 5, 10]

Ntrees = 100
Depth = 3
Nleaf = 1
Nsplit = 2

XGBoost
Number of trees: [50, 100, 150]
Depth: [3, 5, 7]
Learning rate: [0.001, 0.05, 0.1]

Ntrees = 100
Depth = 3
Learning rate = 0.1

– indeed, small values of p for the Shapiro-Wilk Test suggest
violation of the normality hypothesis. In the Mann-Whitney U
Test, the p-values suggest that all features are discriminating
well between PD and HC, with the exception of mcsm, mcscv
and freqband, which also show a fairly low Spearman’s ρ.
The first two parameters refer to the closing velocity during
tapping. Overall, PD subjects are expected not to be challenged
by the closing part of the movement, but rather in the starting
phase (opening of the thumb and index), as the disease
is often characterised by difficulty in starting motion with
body limbs. Indeed, the equivalent parameters for the opening
velocity (mosm and moscv) show statistical significance in
the test; hence, they are differently distributed in the PD and
HC groups. Regarding freqband, this feature is related to the
frequency components of tremor. Nevertheless, PD is mainly
identified by resting tremors, which tends to disappear during
the execution of specific movements. In addition to this, few
of the recruited subjects showed this very specific symptom.

Figure 2 shows the ranking of the features, as provided by
the SURF algorithm. For the Fopt, only the features with a
positive score were selected, leading to a final set of size 7. All
selected features were significant in the statistical analysis and
with a high-to-moderate correlation to the classification label.
For the sake of completeness, Figure 3 reports the normalised
violin plots estimated using the Kernel Density Estimation
(KDE) approach, which further confirm the difference in the
distribution of the optimal features between HC and PD.

B. Classification: LOSO Performance

Table IV reports the LOSO performance yielded by the em-
ployed classifiers, in terms of Accuracy, Recall, Precision and
F1 score. All classifiers present with overall Accuracy values
over 90%, which are indicative of very good classification
performance. Accordingly, the F1 score – computed as the
harmonic mean of Recall and Precision – is over 90 %.

Fig. 2. Features rank scores yielded by the SURF algorithm. The selected
features (positive scores) are squared in red.

Fig. 3. Normalised violin plots of features in Fopt, estimated using the KDE
approach, for PD and HC.

This, in particular, implies that the models are robust against
both false positives and false negatives, suggesting that the
employed features are highly predictive of PD. The overall

TABLE III
STATISTICS OF THE FEATURES EMPLOYED IN THE CLASSIFICATION.

LEVEL OF SIGNIFICANCE: ∗∗∗ : p-VALUE < 0.001; ∗∗ : p-VALUE < 0.01; ∗ :
p-VALUE < 0.05.

Feature Shapiro-Wilk W Mann-Whitney U Spearman’s ρ

mom 0.965∗∗ 1001∗∗∗ -0.419∗
mocv 0.846∗∗∗ 313∗∗∗ 0.725∗
mam 0.963∗∗ 1131∗∗∗ -0.361∗
macv 0.826∗∗∗ 316∗∗∗ 0.723∗
mosm 0.976∗∗ 1378∗∗ 0.251∗∗
moscv 0.809∗∗∗ 1448∗ 0.220∗
mcsm 0.965∗∗ 1553 0.173
mcscv 0.807∗∗∗ 1917 0.012
durm 0.961∗∗∗ 265∗∗∗ -0.746∗∗∗
durcv 0.974∗ 830∗∗∗ 0.495∗∗∗
freqlow 0.913∗∗∗ 543∗∗∗ 0.625∗∗∗
powerlow 0.518∗∗∗ 476∗∗∗ -0.652∗∗∗
freqband 0.957∗∗∗ 1542 0.170
powerband 0.380∗∗∗ 1142∗∗∗ 0.356∗∗∗
pacevar 0.923∗∗∗ 1293∗∗ -0.291∗∗∗



TABLE IV
LOSO CLASSIFICATION PERFORMANCE OF THE EMPLOYED CLASSIFIERS.

SVM RF KNN XGBoost

Accuracy 92.8 % 90.4 % 94.4 % 91.2 %
Recall 94.0 % 89.6 % 91.0 % 89.6 %
Precision 92.6 % 92.3 % 98.4 % 93.8 %
F-1 93.3 % 90.9 % 94.6 % 91.6 %

best performing model is KNN (K=3, p=2 – i.e., Euclidean
Distance). This result is likely related to the fact that the SURF
algorithm, employed in the feature selection stage, is based on
the Nearest Neighbour concept; hence, it can be assumed that
the obtained Fopt is remarkably accurate in combination with
such model.

C. PD group inspection by clustering

Starting from the highly positive results that were achieved
in the binary classification, an unsupervised approach was
selected to further investigate the FT trials in PD subjects.
In particular, the analysis focused on studying the variability
in the excursion (mocv) and duration of the single movements
(durcv), for two main reasons.

First, they represent the two axes that are implicitly evalu-
ated by the clinicians during outpatient visits (regularity in the
spatial and temporal property of motion). Second, these two
features were found relevant both in the statistical analysis and
in the feature selection procedures, respectively. In particular,
the duration was selected as it accounts both for the variation
in velocity (faster movement, shorter duration and viceversa)
and in frequency properties. Figure 4 shows a scatter plot of
the two variables, using as colourmap for the data points the
clusterisation labels yielded by the Agglomerative Clustering
– carried out on the two selected features only. The optimal
number of clusters was set to 3 after the inspection of the
dendrogram built by the clustering algorithm.

As it can be appreciated, three main subgroups were iden-
tified:

• C0: this cluster corresponds to low spatial variability
in the execution of the movement, but medium to high
duration variability, therefore reduced regularity in the
speed of tapping. This group is likely to include subjects
affected by bradykinesia – i.e., slowness of movement and
speed (or progressive hesitations/halts) as movements are
continued;

• C1: this cluster shows high spatial variability and medium
duration variability. Subjects included in this cluster are
likely to be either affected by hypokinesia – i.e., the
movements amplitude is limited, especially in repeated
sequences – and/or subjects with reduced control in the
opening phase;

• C2: this cluster shows reduced both spatial and temporal
variability; thus, movements are characterised by a good
level of regularity. This implies that the group includes
subjects with a lower level of hand impairment.

Fig. 4. Scatter plot of FT trials by PD subjects according to (mocv) and
(durcv). Colours refer to clusters identified using the Agglomerative clustering
approach.

Overall, these results seem to suggest that the proposed
system and these two specific features evaluated by it could
allow for a finer classification of the PD subjects into specific
subgroups, exhibiting different symptoms related to hand and
overall body movements.

IV. CONCLUSIONS

Parkinson’s Disease is a progressive neurodegenerative dis-
order whose diagnosis is solely based on symptomatic and
subjective evaluation carried out by physicians. The ideal
follow-up procedures for the disease would require a continu-
ous monitoring approach, whereas actual outpatient protocols
are infrequent and might lead to late identification of new
symptoms’ onset.

Among the motor tasks that are generally evaluated in
clinical settings, Finger Tapping is one of the most common,
easy to perform and assess. Besides, it is suitable for smooth
implementation in a pervasive health scenario, where video
recordings of the task can be easily collected and processed.

This works proposes a non-invasive and easy-to-implement
pipeline based on the GMH-D algorithm, to objectively char-
acterise Finger Tapping from video recordings. This is done in
order to extract a series of relevant features that could be used
to automatically identify PD and some specific symptoms,
such as bradykinesia or hypokinesia. The system estimates
a series of spatial, temporal and frequency features of the
evolution of the distance between the thumb and the index
fingers during an FT trial lasting 10 seconds.

From the statistical analysis, the features proved to be
differently distributed across the PD and HC subjects that
were recruited to test the system, with a high correlation
with the PD status (Section III-A). A robust feature selection
method (SURF algorithm) was employed to select the optimal



features set Fopt, which included features related to single
FT movements’ spatial amplitude, duration, and frequency of
voluntary movements. Four Machine Learning models, namely
SVM, XGBoost, RF and KNN, were trained on this subset;
they all achieved Accuracy, F1 score, Precision and Recall
values above 90% in a Leave-One-Subject-Out validation.
The work most suitable for a direct comparison [16], which
similarly exploited a completely markerless 3D solution for
tracking FT, reports a 76.9% Accuracy in a LOSO validation
– though this value refers to a 4 severity-groups classification
task. The results attained through the system proposed in
this work seem to be in line with [16], taking into account
the fact that this paper performs a binary classification only
(PD vs HC). As a limitation, in this work the UPDRS
scores of the single trials were not available. Future work
will focus on investigating the possibility of regressing the
UPDRS score, in accordance with the clinicians’ evaluation,
through the system pipeline proposed in this paper, as similarly
performed in [16]. Nevertheless, the preliminary exploration
of the PD group through unsupervised learning (Agglomera-
tive clustering, Section III-C) already suggested that different
subgroups in the PD population may be detected with respect
to the irregularity in the spatial amplitude and duration of
the single FT movements. The identified clusters seem to
describe different symptoms occurring in the patients, such as
bradykinesia and hypokinesia. This finer analysis represents a
novelty with respect to [16], that did not investigate specific
alterations occurring in the PD population. The recognition of
these subtypes of PD represents an interesting and challenging
research direction to be further investigated in future works.

The results presented in this paper, though preliminary,
suggest that the proposed system may be a useful tool to
support clinicians in the assessment of symptoms severity,
thus bolstering the implementation of objective methods to
evaluate not only FT but also PD itself, and paving the way
to pervasive-health-based follow-up procedures.
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