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Abstract 

Previous studies (Sparavigna, 2023) have demonstrated the Tsallis q-Gaussian functions suitable for the 
analysis of Raman spectra. The q-Gaussians are symmetric functions that can be used for simulating 
different line shapes of Raman bands. Here we propose an asymmetric form of the q-Gaussians, to 
generalize the Breit-Wigner-Fano profiles. Some examples are proposed, in particular a case study of the 
LO band of SiC. 

Keywords:  Tsallis q-Gaussian distribution, Breit-Wigner-Fano function, Gaussian distribution, Cauchy 
distribution, Lorentzian distribution,  Raman spectroscopy. 

 

 

q-Gaussian functions, also known as "Tsallis functions", are probability distributions derived from the 

Tsallis statistics (Tsallis, 1988, 1995, Hanel et al., 2009). The q-Gaussians are based on a generalized 

form of the exponential function (see discussion in Sparavigna, 2022), characterized by a continuous 

parameter q in the range 1 < q < 3.  As given by Umarov et al., 2008, the q-Gaussian function is based 

on function 𝑓(𝑥) = 𝐶𝑒𝑞(−𝛽𝑥2) , where 𝑒𝑞(. ) is the q-exponential function and 𝐶 a constant.  In the 

exponent, we use 𝛽 = 1 (2𝜎2)⁄  , with variance σ. The q-exponential has expression:   𝑒𝑥𝑝𝑞(𝑢) =

[1 + (1 − 𝑞)𝑢]1 (1−𝑞)⁄  , which possesses a bell-shaped profile. In the case that we have the peak of the 

function at position  𝑥𝑜, the q-Gaussian function is given as: 

 

q-Gaussian = 𝐶𝑒𝑥𝑝𝑞(−𝛽(𝑥 − 𝑥𝑜)2) = 𝐶[1 − (1 − 𝑞)𝛽(𝑥 − 𝑥𝑜)2]1 (1−𝑞)⁄  

 

For q equal to 2, the q-Gaussian is the Cauchy-Lorentzian distribution (Naudts, 2009).  For q close to 

1, we have the usual Gaussian form. For the q-parameter between 1 and 2, the shape of the q-Gaussian 

function is intermediate between the Gaussian and the Lorentzian profile. This behavior turns the q-

Gaussian into a function suitable for the analysis of Raman spectra, where the spectral bands are 

characterized, in the same manner, by intermediate profiles between Lorentzian and Gaussian outlines 

(Kirillov, 2004a). Besides these two functions, which remain the most popular for fitting Raman spectra, 

linear combinations (pseudo-Voigt distributions) or convolutions of them (Voigt distributions) are used 

too (Meier, 2005). The Voigtian function is essentially a Lorentzian height weighted by a Gaussian 

profile. 
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Gaussian, Lorentzian, Voigtian and pseudo-Voigtian functions, such as the q-Gaussians are symmetric 

functions. In fitting the Raman bands, we have encountered peaks which are asymmetric. For instance, 

in the case of Diamond, (see SSRN), we had the necessity to use three q-Gaussians to fit the asymmetric 

Raman peak of the spectrum of synthetic diamond. Of course the presence of more bands producing 

what looks like an asymmetric peak can be motivated by physical reasons; in any case, an alternative 

approach exists to fit asymmetric profiles. The alternative is based on the use of Breit-Wigner-Fano 

(BWF) functions. 

 

The BWF function is given as: 

 

𝐵𝑊𝐹 = 𝐶
[1 + 𝜉𝛾1 2⁄ (𝑥 − 𝑥𝑜)]

2

[1 + 𝛾(𝑥 − 𝑥𝑜)2]
 

 

In it, ξ is the asymmetry parameter (see Hasdeo et al., 2014, for the use of Breit-Wigner-Fano line shapes 

for the Raman spectrum of graphene). We could generalize the BWF in the q-form (BFWq): 

 

q-BWF =  𝐶[1 + 𝜉𝛽1 2⁄ (𝑞 − 1)1 2⁄ (𝑥 − 𝑥𝑜)]
2

 [1 + (𝑞 − 1)𝛽(𝑥 − 𝑥𝑜)2]1 (1−𝑞)⁄  

 

However, we can further generalize the asymmetric form in the following manner: 

 

q-BWF =  𝐶[1 + 𝜉𝛽1 2⁄ (𝑞 − 1)1 2⁄ (𝑥 − 𝑥𝑜)]
2𝛼

 [1 + (𝑞 − 1)𝛽(𝑥 − 𝑥𝑜)2]1 (1−𝑞)⁄  

 

When q=2, α=1, we have the function BWF.  

 

Hasdeo and coworkers are giving, in their Eq.(1), the BWF line shape composed by three terms: “a 

constant continuum spectrum, a discrete Lorentzian spectrum, and an interference effect between both 

spectra”. The interference term is producing the asymmetry of the profile, according to the positive and 

negative values of the argument (x-xo). The dimensionless ξ parameter is “mimicking the ratio between 

the probability amplitude of the continuum spectra to that of the discrete spectra” (Hasdeo et al., 2014). 

Also in Prawer and Nemanich, 2004, we can find mentioned the asymmetry of Raman peaks according 

to specific effects; we find also the “phonon confinement effects for finite crystal domains” (Richter et 

al., 1981).  In Campbell and Fauchet, 1986, we can easily see that the effects of microcrystal size on the 

shape of Raman spectra. In their Fig.4, an asymmetric peak for thin film of silicon on saphire (SOS) is 

shown.  

Let us start from fitting with q-BWF the curve proposed in the Fig.3(a) by Hasdeo et al. The continuous 

curve is given by Hasdeo and coworkers according to a theoretical model. The curve is clearly 

asymmetric. The fitting result is shown in the following Figure. We can see that the q-BWF is a BWF 

function, as expected by the theory. 

 

 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4495547
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Fig. 1: The best fit (blue) onto the curve (red) given by Hasdeo et al. A q-BWF is used (the values of α, 

ξ and q-parameters are given in the figure. The misfit is proposed in the lower part of the plot. On the 

right, the same fit is shown with the log scale for y-axis (semi log scale). Data and q-BWF are given as 

functions of integers n (equally spaced points), for the x-axis which is representing the Raman shift. A 

convenient scale is used for the y-axis (intensity axis). The fitting calculation is obtained by minimizing 

the sum of the squares of the deviations (sum from n=1 to n=660). The value of this sum is 5.5 x 10−5. 

 

Let us consider the work by Campbell and Fauchet, 1986, and their Fig.4, with the peak for thin film of 

silicon on saphire (SOS). 

 

 

Fig. 2: The best fit (blue) onto the curve (red) given by Campbell and Fauchet, 1986.  A q-BWF is used 

(the values ofα, ξ and q-parameters are given in the figure. The misfit is proposed in the lower part of 

the plot.  The fitting calculation is obtained by minimizing the sum of the squares of the deviations (sum 

from n=1 to n=230). The value of this sum is 8.5 x 10−4. 
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Then, let us apply the q-BWF to a specific case, that of the LO mode Raman band of SiC. Data are 

obtained from the Raman Open Database, a database which developed in the framework of project 

SOLSA H2020 (El Mendili et al., 2019), https://solsa.crystallography.net/rod/1000172.html .  
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Fig.3: The best fit (blue) onto data (red) of ROD 1000172 (related ref. Capitani et al., 2007).  On the 

right, the data with log scale y-axis (semi log scale). A q-BWF is used (the values of parameters are 

given in the figure. The fitting calculation is obtained by minimizing the sum of the squares of the 

deviations (sum from n=1 to n=660). The value of this sum is 6 .6 x 10−4. 

 

https://solsa.crystallography.net/rod/1000172.html
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Remarks - Tsallis Gaussians can be easily compared with Gaussian and Lorentzian functions, and with 

pseudo-Voigtian functions too. In the same manner, the q-BWF can be easily compared to BWF 

function. Here we have proposed just three examples, but further studies are necessary to test the q-

BWF. 
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